diff options
Diffstat (limited to 'inftrees.c')
-rw-r--r-- | inftrees.c | 471 |
1 files changed, 471 insertions, 0 deletions
diff --git a/inftrees.c b/inftrees.c new file mode 100644 index 0000000..4b00e3c --- /dev/null +++ b/inftrees.c | |||
@@ -0,0 +1,471 @@ | |||
1 | /* inftrees.c -- generate Huffman trees for efficient decoding | ||
2 | * Copyright (C) 1995 Mark Adler | ||
3 | * For conditions of distribution and use, see copyright notice in zlib.h | ||
4 | */ | ||
5 | |||
6 | #include "zutil.h" | ||
7 | #include "inftrees.h" | ||
8 | |||
9 | struct internal_state {int dummy;}; /* for buggy compilers */ | ||
10 | |||
11 | /* simplify the use of the inflate_huft type with some defines */ | ||
12 | #define base more.Base | ||
13 | #define next more.Next | ||
14 | #define exop word.what.Exop | ||
15 | #define bits word.what.Bits | ||
16 | |||
17 | |||
18 | local int huft_build __P(( | ||
19 | uInt *, /* code lengths in bits */ | ||
20 | uInt, /* number of codes */ | ||
21 | uInt, /* number of "simple" codes */ | ||
22 | uInt *, /* list of base values for non-simple codes */ | ||
23 | uInt *, /* list of extra bits for non-simple codes */ | ||
24 | inflate_huft **, /* result: starting table */ | ||
25 | uInt *, /* maximum lookup bits (returns actual) */ | ||
26 | z_stream *)); /* for zalloc function */ | ||
27 | |||
28 | local voidp falloc __P(( | ||
29 | voidp, /* opaque pointer (not used) */ | ||
30 | uInt, /* number of items */ | ||
31 | uInt)); /* size of item */ | ||
32 | |||
33 | local void ffree __P(( | ||
34 | voidp q, /* opaque pointer (not used) */ | ||
35 | voidp p)); /* what to free (not used) */ | ||
36 | |||
37 | /* Tables for deflate from PKZIP's appnote.txt. */ | ||
38 | local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */ | ||
39 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, | ||
40 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; | ||
41 | /* actually lengths - 2; also see note #13 above about 258 */ | ||
42 | local uInt cplext[] = { /* Extra bits for literal codes 257..285 */ | ||
43 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, | ||
44 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 128, 128}; /* 128==invalid */ | ||
45 | local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */ | ||
46 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, | ||
47 | 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, | ||
48 | 8193, 12289, 16385, 24577}; | ||
49 | local uInt cpdext[] = { /* Extra bits for distance codes */ | ||
50 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, | ||
51 | 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, | ||
52 | 12, 12, 13, 13}; | ||
53 | |||
54 | /* | ||
55 | Huffman code decoding is performed using a multi-level table lookup. | ||
56 | The fastest way to decode is to simply build a lookup table whose | ||
57 | size is determined by the longest code. However, the time it takes | ||
58 | to build this table can also be a factor if the data being decoded | ||
59 | is not very long. The most common codes are necessarily the | ||
60 | shortest codes, so those codes dominate the decoding time, and hence | ||
61 | the speed. The idea is you can have a shorter table that decodes the | ||
62 | shorter, more probable codes, and then point to subsidiary tables for | ||
63 | the longer codes. The time it costs to decode the longer codes is | ||
64 | then traded against the time it takes to make longer tables. | ||
65 | |||
66 | This results of this trade are in the variables lbits and dbits | ||
67 | below. lbits is the number of bits the first level table for literal/ | ||
68 | length codes can decode in one step, and dbits is the same thing for | ||
69 | the distance codes. Subsequent tables are also less than or equal to | ||
70 | those sizes. These values may be adjusted either when all of the | ||
71 | codes are shorter than that, in which case the longest code length in | ||
72 | bits is used, or when the shortest code is *longer* than the requested | ||
73 | table size, in which case the length of the shortest code in bits is | ||
74 | used. | ||
75 | |||
76 | There are two different values for the two tables, since they code a | ||
77 | different number of possibilities each. The literal/length table | ||
78 | codes 286 possible values, or in a flat code, a little over eight | ||
79 | bits. The distance table codes 30 possible values, or a little less | ||
80 | than five bits, flat. The optimum values for speed end up being | ||
81 | about one bit more than those, so lbits is 8+1 and dbits is 5+1. | ||
82 | The optimum values may differ though from machine to machine, and | ||
83 | possibly even between compilers. Your mileage may vary. | ||
84 | */ | ||
85 | |||
86 | |||
87 | /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */ | ||
88 | #define BMAX 15 /* maximum bit length of any code */ | ||
89 | #define N_MAX 288 /* maximum number of codes in any set */ | ||
90 | |||
91 | #ifdef DEBUG | ||
92 | uInt inflate_hufts; | ||
93 | #endif | ||
94 | |||
95 | local int huft_build(b, n, s, d, e, t, m, zs) | ||
96 | uInt *b; /* code lengths in bits (all assumed <= BMAX) */ | ||
97 | uInt n; /* number of codes (assumed <= N_MAX) */ | ||
98 | uInt s; /* number of simple-valued codes (0..s-1) */ | ||
99 | uInt *d; /* list of base values for non-simple codes */ | ||
100 | uInt *e; /* list of extra bits for non-simple codes */ | ||
101 | inflate_huft **t; /* result: starting table */ | ||
102 | uInt *m; /* maximum lookup bits, returns actual */ | ||
103 | z_stream *zs; /* for zalloc function */ | ||
104 | /* Given a list of code lengths and a maximum table size, make a set of | ||
105 | tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR | ||
106 | if the given code set is incomplete (the tables are still built in this | ||
107 | case), Z_DATA_ERROR if the input is invalid (all zero length codes or an | ||
108 | over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */ | ||
109 | { | ||
110 | uInt a; /* counter for codes of length k */ | ||
111 | uInt c[BMAX+1]; /* bit length count table */ | ||
112 | uInt f; /* i repeats in table every f entries */ | ||
113 | int g; /* maximum code length */ | ||
114 | int h; /* table level */ | ||
115 | register uInt i; /* counter, current code */ | ||
116 | register uInt j; /* counter */ | ||
117 | register int k; /* number of bits in current code */ | ||
118 | int l; /* bits per table (returned in m) */ | ||
119 | register uInt *p; /* pointer into c[], b[], or v[] */ | ||
120 | register inflate_huft *q; /* points to current table */ | ||
121 | inflate_huft r; /* table entry for structure assignment */ | ||
122 | inflate_huft *u[BMAX]; /* table stack */ | ||
123 | uInt v[N_MAX]; /* values in order of bit length */ | ||
124 | register int w; /* bits before this table == (l * h) */ | ||
125 | uInt x[BMAX+1]; /* bit offsets, then code stack */ | ||
126 | uInt *xp; /* pointer into x */ | ||
127 | int y; /* number of dummy codes added */ | ||
128 | uInt z; /* number of entries in current table */ | ||
129 | |||
130 | |||
131 | /* Generate counts for each bit length */ | ||
132 | p = c; | ||
133 | #define C0 *p++ = 0; | ||
134 | #define C2 C0 C0 C0 C0 | ||
135 | #define C4 C2 C2 C2 C2 | ||
136 | C4 /* clear c[]--assume BMAX+1 is 16 */ | ||
137 | p = b; i = n; | ||
138 | do { | ||
139 | c[*p++]++; /* assume all entries <= BMAX */ | ||
140 | } while (--i); | ||
141 | if (c[0] == n) /* null input--all zero length codes */ | ||
142 | { | ||
143 | *t = (inflate_huft *)Z_NULL; | ||
144 | *m = 0; | ||
145 | return Z_OK; | ||
146 | } | ||
147 | |||
148 | |||
149 | /* Find minimum and maximum length, bound *m by those */ | ||
150 | l = *m; | ||
151 | for (j = 1; j <= BMAX; j++) | ||
152 | if (c[j]) | ||
153 | break; | ||
154 | k = j; /* minimum code length */ | ||
155 | if ((uInt)l < j) | ||
156 | l = j; | ||
157 | for (i = BMAX; i; i--) | ||
158 | if (c[i]) | ||
159 | break; | ||
160 | g = i; /* maximum code length */ | ||
161 | if ((uInt)l > i) | ||
162 | l = i; | ||
163 | *m = l; | ||
164 | |||
165 | |||
166 | /* Adjust last length count to fill out codes, if needed */ | ||
167 | for (y = 1 << j; j < i; j++, y <<= 1) | ||
168 | if ((y -= c[j]) < 0) | ||
169 | return Z_DATA_ERROR; | ||
170 | if ((y -= c[i]) < 0) | ||
171 | return Z_DATA_ERROR; | ||
172 | c[i] += y; | ||
173 | |||
174 | |||
175 | /* Generate starting offsets into the value table for each length */ | ||
176 | x[1] = j = 0; | ||
177 | p = c + 1; xp = x + 2; | ||
178 | while (--i) { /* note that i == g from above */ | ||
179 | *xp++ = (j += *p++); | ||
180 | } | ||
181 | |||
182 | |||
183 | /* Make a table of values in order of bit lengths */ | ||
184 | p = b; i = 0; | ||
185 | do { | ||
186 | if ((j = *p++) != 0) | ||
187 | v[x[j]++] = i; | ||
188 | } while (++i < n); | ||
189 | |||
190 | |||
191 | /* Generate the Huffman codes and for each, make the table entries */ | ||
192 | x[0] = i = 0; /* first Huffman code is zero */ | ||
193 | p = v; /* grab values in bit order */ | ||
194 | h = -1; /* no tables yet--level -1 */ | ||
195 | w = -l; /* bits decoded == (l * h) */ | ||
196 | u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */ | ||
197 | q = (inflate_huft *)Z_NULL; /* ditto */ | ||
198 | z = 0; /* ditto */ | ||
199 | |||
200 | /* go through the bit lengths (k already is bits in shortest code) */ | ||
201 | for (; k <= g; k++) | ||
202 | { | ||
203 | a = c[k]; | ||
204 | while (a--) | ||
205 | { | ||
206 | /* here i is the Huffman code of length k bits for value *p */ | ||
207 | /* make tables up to required level */ | ||
208 | while (k > w + l) | ||
209 | { | ||
210 | h++; | ||
211 | w += l; /* previous table always l bits */ | ||
212 | |||
213 | /* compute minimum size table less than or equal to l bits */ | ||
214 | z = (z = g - w) > (uInt)l ? l : z; /* table size upper limit */ | ||
215 | if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ | ||
216 | { /* too few codes for k-w bit table */ | ||
217 | f -= a + 1; /* deduct codes from patterns left */ | ||
218 | xp = c + k; | ||
219 | if (j < z) | ||
220 | while (++j < z) /* try smaller tables up to z bits */ | ||
221 | { | ||
222 | if ((f <<= 1) <= *++xp) | ||
223 | break; /* enough codes to use up j bits */ | ||
224 | f -= *xp; /* else deduct codes from patterns */ | ||
225 | } | ||
226 | } | ||
227 | z = 1 << j; /* table entries for j-bit table */ | ||
228 | |||
229 | /* allocate and link in new table */ | ||
230 | if ((q = (inflate_huft *)ZALLOC | ||
231 | (zs,z + 1,sizeof(inflate_huft))) == Z_NULL) | ||
232 | { | ||
233 | if (h) | ||
234 | inflate_trees_free(u[0], zs); | ||
235 | return Z_MEM_ERROR; /* not enough memory */ | ||
236 | } | ||
237 | #ifdef DEBUG | ||
238 | inflate_hufts += z + 1; | ||
239 | #endif | ||
240 | *t = q + 1; /* link to list for huft_free() */ | ||
241 | *(t = &(q->next)) = (inflate_huft *)Z_NULL; | ||
242 | u[h] = ++q; /* table starts after link */ | ||
243 | |||
244 | /* connect to last table, if there is one */ | ||
245 | if (h) | ||
246 | { | ||
247 | x[h] = i; /* save pattern for backing up */ | ||
248 | r.bits = (char)l; /* bits to dump before this table */ | ||
249 | r.exop = (char)(-j); /* bits in this table */ | ||
250 | r.next = q; /* pointer to this table */ | ||
251 | j = i >> (w - l); /* (get around Turbo C bug) */ | ||
252 | u[h-1][j] = r; /* connect to last table */ | ||
253 | } | ||
254 | } | ||
255 | |||
256 | /* set up table entry in r */ | ||
257 | r.bits = (char)(k - w); | ||
258 | if (p >= v + n) | ||
259 | r.exop = -128; /* out of values--invalid code */ | ||
260 | else if (*p < s) | ||
261 | { | ||
262 | r.exop = (char)(*p < 256 ? 16 : -64); /* 256 is end-of-block code */ | ||
263 | r.base = *p++; /* simple code is just the value */ | ||
264 | } | ||
265 | else | ||
266 | { | ||
267 | r.exop = (char)e[*p - s]; /* non-simple--look up in lists */ | ||
268 | r.base = d[*p++ - s]; | ||
269 | } | ||
270 | |||
271 | /* fill code-like entries with r */ | ||
272 | f = 1 << (k - w); | ||
273 | for (j = i >> w; j < z; j += f) | ||
274 | q[j] = r; | ||
275 | |||
276 | /* backwards increment the k-bit code i */ | ||
277 | for (j = 1 << (k - 1); i & j; j >>= 1) | ||
278 | i ^= j; | ||
279 | i ^= j; | ||
280 | |||
281 | /* backup over finished tables */ | ||
282 | while ((i & ((1 << w) - 1)) != x[h]) | ||
283 | { | ||
284 | h--; /* don't need to update q */ | ||
285 | w -= l; | ||
286 | } | ||
287 | } | ||
288 | } | ||
289 | |||
290 | |||
291 | /* Return Z_BUF_ERROR if we were given an incomplete table */ | ||
292 | return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK; | ||
293 | } | ||
294 | |||
295 | |||
296 | int inflate_trees_bits(c, bb, tb, z) | ||
297 | uInt *c; /* 19 code lengths */ | ||
298 | uInt *bb; /* bits tree desired/actual depth */ | ||
299 | inflate_huft **tb; /* bits tree result */ | ||
300 | z_stream *z; /* for zfree function */ | ||
301 | { | ||
302 | int r; | ||
303 | |||
304 | r = huft_build(c, 19, 19, (uInt*)Z_NULL, (uInt*)Z_NULL, tb, bb, z); | ||
305 | if (r == Z_DATA_ERROR) | ||
306 | z->msg = "oversubscribed dynamic bit lengths tree"; | ||
307 | else if (r == Z_BUF_ERROR) | ||
308 | { | ||
309 | inflate_trees_free(*tb, z); | ||
310 | z->msg = "incomplete dynamic bit lengths tree"; | ||
311 | r = Z_DATA_ERROR; | ||
312 | } | ||
313 | return r; | ||
314 | } | ||
315 | |||
316 | |||
317 | int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z) | ||
318 | uInt nl; /* number of literal/length codes */ | ||
319 | uInt nd; /* number of distance codes */ | ||
320 | uInt *c; /* that many (total) code lengths */ | ||
321 | uInt *bl; /* literal desired/actual bit depth */ | ||
322 | uInt *bd; /* distance desired/actual bit depth */ | ||
323 | inflate_huft **tl; /* literal/length tree result */ | ||
324 | inflate_huft **td; /* distance tree result */ | ||
325 | z_stream *z; /* for zfree function */ | ||
326 | { | ||
327 | int r; | ||
328 | |||
329 | /* build literal/length tree */ | ||
330 | if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK) | ||
331 | { | ||
332 | if (r == Z_DATA_ERROR) | ||
333 | z->msg = "oversubscribed literal/length tree"; | ||
334 | else if (r == Z_BUF_ERROR) | ||
335 | { | ||
336 | inflate_trees_free(*tl, z); | ||
337 | z->msg = "incomplete literal/length tree"; | ||
338 | r = Z_DATA_ERROR; | ||
339 | } | ||
340 | return r; | ||
341 | } | ||
342 | |||
343 | /* build distance tree */ | ||
344 | if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK) | ||
345 | { | ||
346 | if (r == Z_DATA_ERROR) | ||
347 | z->msg = "oversubscribed literal/length tree"; | ||
348 | else if (r == Z_BUF_ERROR) { | ||
349 | #ifdef PKZIP_BUG_WORKAROUND | ||
350 | r = Z_OK; | ||
351 | } | ||
352 | #else | ||
353 | inflate_trees_free(*td, z); | ||
354 | z->msg = "incomplete literal/length tree"; | ||
355 | r = Z_DATA_ERROR; | ||
356 | } | ||
357 | inflate_trees_free(*tl, z); | ||
358 | return r; | ||
359 | #endif | ||
360 | } | ||
361 | |||
362 | /* done */ | ||
363 | return Z_OK; | ||
364 | } | ||
365 | |||
366 | |||
367 | /* build fixed tables only once--keep them here */ | ||
368 | local int fixed_lock = 0; | ||
369 | local int fixed_built = 0; | ||
370 | #define FIXEDH 530 /* number of hufts used by fixed tables */ | ||
371 | local uInt fixed_left = FIXEDH; | ||
372 | local inflate_huft fixed_mem[FIXEDH]; | ||
373 | local uInt fixed_bl; | ||
374 | local uInt fixed_bd; | ||
375 | local inflate_huft *fixed_tl; | ||
376 | local inflate_huft *fixed_td; | ||
377 | |||
378 | |||
379 | local voidp falloc(q, n, s) | ||
380 | voidp q; /* opaque pointer (not used) */ | ||
381 | uInt n; /* number of items */ | ||
382 | uInt s; /* size of item */ | ||
383 | { | ||
384 | Assert(s == sizeof(inflate_huft) && n <= fixed_left, | ||
385 | "inflate_trees falloc overflow"); | ||
386 | fixed_left -= n; | ||
387 | return (voidp)(fixed_mem + fixed_left); | ||
388 | } | ||
389 | |||
390 | |||
391 | local void ffree(q, p) | ||
392 | voidp q; | ||
393 | voidp p; | ||
394 | { | ||
395 | Assert(0, "inflate_trees ffree called!"); | ||
396 | } | ||
397 | |||
398 | |||
399 | int inflate_trees_fixed(bl, bd, tl, td) | ||
400 | uInt *bl; /* literal desired/actual bit depth */ | ||
401 | uInt *bd; /* distance desired/actual bit depth */ | ||
402 | inflate_huft **tl; /* literal/length tree result */ | ||
403 | inflate_huft **td; /* distance tree result */ | ||
404 | { | ||
405 | /* build fixed tables if not built already--lock out other instances */ | ||
406 | while (++fixed_lock > 1) | ||
407 | fixed_lock--; | ||
408 | if (!fixed_built) | ||
409 | { | ||
410 | int k; /* temporary variable */ | ||
411 | unsigned c[288]; /* length list for huft_build */ | ||
412 | z_stream z; /* for falloc function */ | ||
413 | |||
414 | /* set up fake z_stream for memory routines */ | ||
415 | z.zalloc = falloc; | ||
416 | z.zfree = ffree; | ||
417 | z.opaque = Z_NULL; | ||
418 | |||
419 | /* literal table */ | ||
420 | for (k = 0; k < 144; k++) | ||
421 | c[k] = 8; | ||
422 | for (; k < 256; k++) | ||
423 | c[k] = 9; | ||
424 | for (; k < 280; k++) | ||
425 | c[k] = 7; | ||
426 | for (; k < 288; k++) | ||
427 | c[k] = 8; | ||
428 | fixed_bl = 7; | ||
429 | huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z); | ||
430 | |||
431 | /* distance table */ | ||
432 | for (k = 0; k < 30; k++) | ||
433 | c[k] = 5; | ||
434 | fixed_bd = 5; | ||
435 | huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z); | ||
436 | |||
437 | /* done */ | ||
438 | fixed_built = 1; | ||
439 | } | ||
440 | fixed_lock--; | ||
441 | *bl = fixed_bl; | ||
442 | *bd = fixed_bd; | ||
443 | *tl = fixed_tl; | ||
444 | *td = fixed_td; | ||
445 | return Z_OK; | ||
446 | } | ||
447 | |||
448 | |||
449 | int inflate_trees_free(t, z) | ||
450 | inflate_huft *t; /* table to free */ | ||
451 | z_stream *z; /* for zfree function */ | ||
452 | /* Free the malloc'ed tables built by huft_build(), which makes a linked | ||
453 | list of the tables it made, with the links in a dummy first entry of | ||
454 | each table. */ | ||
455 | { | ||
456 | register inflate_huft *p, *q; | ||
457 | |||
458 | /* Don't free fixed trees */ | ||
459 | if (t >= fixed_mem && t <= fixed_mem + FIXEDH) | ||
460 | return Z_OK; | ||
461 | |||
462 | /* Go through linked list, freeing from the malloced (t[-1]) address. */ | ||
463 | p = t; | ||
464 | while (p != Z_NULL) | ||
465 | { | ||
466 | q = (--p)->next; | ||
467 | ZFREE(z,p); | ||
468 | p = q; | ||
469 | } | ||
470 | return Z_OK; | ||
471 | } | ||