summaryrefslogtreecommitdiff
path: root/inftrees.c
diff options
context:
space:
mode:
Diffstat (limited to 'inftrees.c')
-rw-r--r--inftrees.c711
1 files changed, 289 insertions, 422 deletions
diff --git a/inftrees.c b/inftrees.c
index 4c32ca3..24ca089 100644
--- a/inftrees.c
+++ b/inftrees.c
@@ -1,454 +1,321 @@
1/* inftrees.c -- generate Huffman trees for efficient decoding 1/* inftrees.c -- generate Huffman trees for efficient decoding
2 * Copyright (C) 1995-2002 Mark Adler 2 * Copyright (C) 1995-2003 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h 3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */ 4 */
5 5
6#include "zutil.h" 6#include "zutil.h"
7#include "inftrees.h" 7#include "inftrees.h"
8 8
9#if !defined(BUILDFIXED) && !defined(STDC) 9#define MAXBITS 15
10# define BUILDFIXED /* non ANSI compilers may not accept inffixed.h */
11#endif
12 10
13const char inflate_copyright[] = 11const char inflate_copyright[] =
14 " inflate 1.1.4 Copyright 1995-2002 Mark Adler "; 12 " inflate 1.2.0 Copyright 1995-2003 Mark Adler ";
15/* 13/*
16 If you use the zlib library in a product, an acknowledgment is welcome 14 If you use the zlib library in a product, an acknowledgment is welcome
17 in the documentation of your product. If for some reason you cannot 15 in the documentation of your product. If for some reason you cannot
18 include such an acknowledgment, I would appreciate that you keep this 16 include such an acknowledgment, I would appreciate that you keep this
19 copyright string in the executable of your product. 17 copyright string in the executable of your product.
20 */ 18 */
21struct internal_state {int dummy;}; /* for buggy compilers */
22
23/* simplify the use of the inflate_huft type with some defines */
24#define exop word.what.Exop
25#define bits word.what.Bits
26
27
28local int huft_build OF((
29 uIntf *, /* code lengths in bits */
30 uInt, /* number of codes */
31 uInt, /* number of "simple" codes */
32 const uIntf *, /* list of base values for non-simple codes */
33 const uIntf *, /* list of extra bits for non-simple codes */
34 inflate_huft * FAR*,/* result: starting table */
35 uIntf *, /* maximum lookup bits (returns actual) */
36 inflate_huft *, /* space for trees */
37 uInt *, /* hufts used in space */
38 uIntf * )); /* space for values */
39
40/* Tables for deflate from PKZIP's appnote.txt. */
41local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
42 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
43 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
44 /* see note #13 above about 258 */
45local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
46 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
47 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
48local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
49 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
50 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
51 8193, 12289, 16385, 24577};
52local const uInt cpdext[30] = { /* Extra bits for distance codes */
53 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
54 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
55 12, 12, 13, 13};
56 19
57/* 20/*
58 Huffman code decoding is performed using a multi-level table lookup. 21 Build a set of tables to decode the provided canonical Huffman code.
59 The fastest way to decode is to simply build a lookup table whose 22 The code lengths are lens[0..codes-1]. The result starts at *table,
60 size is determined by the longest code. However, the time it takes 23 whose indices are 0..2^bits-1. work is a writable array of at least
61 to build this table can also be a factor if the data being decoded 24 lens shorts, which is used as a work area. type is the type of code
62 is not very long. The most common codes are necessarily the 25 to be generated, CODES, LENS, or DISTS. On return, zero is success,
63 shortest codes, so those codes dominate the decoding time, and hence 26 -1 is an invalid code, and +1 means that ENOUGH isn't enough. table
64 the speed. The idea is you can have a shorter table that decodes the 27 on return points to the next available entry's address. bits is the
65 shorter, more probable codes, and then point to subsidiary tables for 28 requested root table index bits, and on return it is the actual root
66 the longer codes. The time it costs to decode the longer codes is 29 table index bits. It will differ if the request is greater than the
67 then traded against the time it takes to make longer tables. 30 longest code or if it is less than the shortest code.
68
69 This results of this trade are in the variables lbits and dbits
70 below. lbits is the number of bits the first level table for literal/
71 length codes can decode in one step, and dbits is the same thing for
72 the distance codes. Subsequent tables are also less than or equal to
73 those sizes. These values may be adjusted either when all of the
74 codes are shorter than that, in which case the longest code length in
75 bits is used, or when the shortest code is *longer* than the requested
76 table size, in which case the length of the shortest code in bits is
77 used.
78
79 There are two different values for the two tables, since they code a
80 different number of possibilities each. The literal/length table
81 codes 286 possible values, or in a flat code, a little over eight
82 bits. The distance table codes 30 possible values, or a little less
83 than five bits, flat. The optimum values for speed end up being
84 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
85 The optimum values may differ though from machine to machine, and
86 possibly even between compilers. Your mileage may vary.
87 */ 31 */
88 32int inflate_table(type, lens, codes, table, bits, work)
89 33codetype type;
90/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */ 34unsigned short FAR *lens;
91#define BMAX 15 /* maximum bit length of any code */ 35unsigned codes;
92 36code * FAR *table;
93local int huft_build(b, n, s, d, e, t, m, hp, hn, v) 37unsigned *bits;
94uIntf *b; /* code lengths in bits (all assumed <= BMAX) */ 38unsigned short FAR *work;
95uInt n; /* number of codes (assumed <= 288) */
96uInt s; /* number of simple-valued codes (0..s-1) */
97const uIntf *d; /* list of base values for non-simple codes */
98const uIntf *e; /* list of extra bits for non-simple codes */
99inflate_huft * FAR *t; /* result: starting table */
100uIntf *m; /* maximum lookup bits, returns actual */
101inflate_huft *hp; /* space for trees */
102uInt *hn; /* hufts used in space */
103uIntf *v; /* working area: values in order of bit length */
104/* Given a list of code lengths and a maximum table size, make a set of
105 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
106 if the given code set is incomplete (the tables are still built in this
107 case), or Z_DATA_ERROR if the input is invalid. */
108{ 39{
40 unsigned len; /* a code's length in bits */
41 unsigned sym; /* index of code symbols */
42 unsigned min, max; /* minimum and maximum code lengths */
43 unsigned root; /* number of index bits for root table */
44 unsigned curr; /* number of index bits for current table */
45 unsigned drop; /* code bits to drop for sub-table */
46 int left; /* number of prefix codes available */
47 unsigned used; /* code entries in table used */
48 unsigned huff; /* Huffman code */
49 unsigned incr; /* for incrementing code, index */
50 unsigned fill; /* index for replicating entries */
51 unsigned low; /* low bits for current root entry */
52 unsigned mask; /* mask for low root bits */
53 code this; /* table entry for duplication */
54 code FAR *next; /* next available space in table */
55 const unsigned short *base; /* base value table to use */
56 const unsigned short *extra; /* extra bits table to use */
57 int end; /* use base and extra for symbol > end */
58 unsigned short count[MAXBITS+1]; /* number of codes of each length */
59 unsigned short offs[MAXBITS+1]; /* offsets in table for each length */
60 static const unsigned short lbase[31] = { /* Length codes 257..285 base */
61 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
62 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
63 static const unsigned short lext[31] = { /* Length codes 257..285 extra */
64 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
65 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 73, 194};
66 static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
67 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
68 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
69 8193, 12289, 16385, 24577, 0, 0};
70 static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
71 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
72 23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
73 28, 28, 29, 29, 64, 64};
74
75 /*
76 Process a set of code lengths to create a canonical Huffman code. The
77 code lengths are lens[0..codes-1]. Each length corresponds to the
78 symbols 0..codes-1. The Huffman code is generated by first sorting the
79 symbols by length from short to long, and retaining the symbol order
80 for codes with equal lengths. Then the code starts with all zero bits
81 for the first code of the shortest length, and the codes are integer
82 increments for the same length, and zeros are appended as the length
83 increases. For the deflate format, these bits are stored backwards
84 from their more natural integer increment ordering, and so when the
85 decoding tables are built in the large loop below, the integer codes
86 are incremented backwards.
87
88 This routine assumes, but does not check, that all of the entries in
89 lens[] are in the range 0..MAXBITS. The caller must assure this.
90 1..MAXBITS is interpreted as that code length. zero means that that
91 symbol does not occur in this code.
92
93 The codes are sorted by computing a count of codes for each length,
94 creating from that a table of starting indices for each length in the
95 sorted table, and then entering the symbols in order in the sorted
96 table. The sorted table is work[], with that space being provided by
97 the caller.
98
99 The length counts are used for other purposes as well, i.e. finding
100 the minimum and maximum length codes, determining if there are any
101 codes at all, checking for a valid set of lengths, and looking ahead
102 at length counts to determine sub-table sizes when building the
103 decoding tables.
104 */
105
106 /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
107 for (len = 0; len <= MAXBITS; len++)
108 count[len] = 0;
109 for (sym = 0; sym < codes; sym++)
110 count[lens[sym]]++;
111
112 /* bound code lengths, force root to be within code lengths */
113 root = *bits;
114 for (max = MAXBITS; max >= 1; max--)
115 if (count[max] != 0) break;
116 if (root > max) root = max;
117 if (max == 0) return -1; /* no codes! */
118 for (min = 1; min <= MAXBITS; min++)
119 if (count[min] != 0) break;
120 if (root < min) root = min;
121
122 /* check for an over-subscribed or incomplete set of lengths */
123 left = 1;
124 for (len = 1; len <= MAXBITS; len++) {
125 left <<= 1;
126 left -= count[len];
127 if (left < 0) return -1; /* over-subscribed */
128 }
129 if (left > 0 && (type == CODES || (codes - count[0] != 1)))
130 return -1; /* incomplete set */
131
132 /* generate offsets into symbol table for each length for sorting */
133 offs[1] = 0;
134 for (len = 1; len < MAXBITS; len++)
135 offs[len + 1] = offs[len] + count[len];
136
137 /* sort symbols by length, by symbol order within each length */
138 for (sym = 0; sym < codes; sym++)
139 if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
140
141 /*
142 Create and fill in decoding tables. In this loop, the table being
143 filled is at next and has curr index bits. The code being used is huff
144 with length len. That code is converted to an index by dropping drop
145 bits off of the bottom. For codes where len is less than drop + curr,
146 those top drop + curr - len bits are incremented through all values to
147 fill the table with replicated entries.
148
149 root is the number of index bits for the root table. When len exceeds
150 root, sub-tables are created pointed to by the root entry with an index
151 of the low root bits of huff. This is saved in low to check for when a
152 new sub-table should be started. drop is zero when the root table is
153 being filled, and drop is root when sub-tables are being filled.
154
155 When a new sub-table is needed, it is necessary to look ahead in the
156 code lengths to determine what size sub-table is needed. The length
157 counts are used for this, and so count[] is decremented as codes are
158 entered in the tables.
159
160 used keeps track of how many table entries have been allocated from the
161 provided *table space. It is checked when a LENS table is being made
162 against the space in *table, ENOUGH, minus the maximum space needed by
163 the worst case distance code, MAXD. This should never happen, but the
164 sufficiency of ENOUGH has not been proven exhaustively, hence the check.
165 This assumes that when type == LENS, bits == 9.
166
167 sym increments through all symbols, and the loop terminates when
168 all codes of length max, i.e. all codes, have been processed. This
169 routine permits incomplete codes, so another loop after this one fills
170 in the rest of the decoding tables with invalid code markers.
171 */
172
173 /* set up for code type */
174 switch (type) {
175 case CODES:
176 base = extra = work; /* dummy value--not used */
177 end = 19;
178 break;
179 case LENS:
180 base = lbase;
181 base -= 257;
182 extra = lext;
183 extra -= 257;
184 end = 256;
185 break;
186 default: /* DISTS */
187 base = dbase;
188 extra = dext;
189 end = -1;
190 }
109 191
110 uInt a; /* counter for codes of length k */ 192 /* initialize state for loop */
111 uInt c[BMAX+1]; /* bit length count table */ 193 huff = 0; /* starting code */
112 uInt f; /* i repeats in table every f entries */ 194 sym = 0; /* starting code symbol */
113 int g; /* maximum code length */ 195 len = min; /* starting code length */
114 int h; /* table level */ 196 next = *table; /* current table to fill in */
115 register uInt i; /* counter, current code */ 197 curr = root; /* current table index bits */
116 register uInt j; /* counter */ 198 drop = 0; /* current bits to drop from code for index */
117 register int k; /* number of bits in current code */ 199 low = (unsigned)(-1); /* trigger new sub-table when len > root */
118 int l; /* bits per table (returned in m) */ 200 used = 1U << root; /* use root table entries */
119 uInt mask; /* (1 << w) - 1, to avoid cc -O bug on HP */ 201 mask = used - 1; /* mask for comparing low */
120 register uIntf *p; /* pointer into c[], b[], or v[] */ 202
121 inflate_huft *q; /* points to current table */ 203 /* check available table space */
122 struct inflate_huft_s r; /* table entry for structure assignment */ 204 if (type == LENS && used >= ENOUGH - MAXD)
123 inflate_huft *u[BMAX]; /* table stack */ 205 return 1;
124 register int w; /* bits before this table == (l * h) */ 206
125 uInt x[BMAX+1]; /* bit offsets, then code stack */ 207 /* process all codes and make table entries */
126 uIntf *xp; /* pointer into x */ 208 for (;;) {
127 int y; /* number of dummy codes added */ 209 /* create table entry */
128 uInt z; /* number of entries in current table */ 210 this.bits = (unsigned char)(len - drop);
129 211 if ((int)(work[sym]) < end) {
130 212 this.op = (unsigned char)0;
131 /* Generate counts for each bit length */ 213 this.val = work[sym];
132 p = c;
133#define C0 *p++ = 0;
134#define C2 C0 C0 C0 C0
135#define C4 C2 C2 C2 C2
136 C4 /* clear c[]--assume BMAX+1 is 16 */
137 p = b; i = n;
138 do {
139 c[*p++]++; /* assume all entries <= BMAX */
140 } while (--i);
141 if (c[0] == n) /* null input--all zero length codes */
142 {
143 *t = (inflate_huft *)Z_NULL;
144 *m = 0;
145 return Z_OK;
146 }
147
148
149 /* Find minimum and maximum length, bound *m by those */
150 l = *m;
151 for (j = 1; j <= BMAX; j++)
152 if (c[j])
153 break;
154 k = j; /* minimum code length */
155 if ((uInt)l < j)
156 l = j;
157 for (i = BMAX; i; i--)
158 if (c[i])
159 break;
160 g = i; /* maximum code length */
161 if ((uInt)l > i)
162 l = i;
163 *m = l;
164
165
166 /* Adjust last length count to fill out codes, if needed */
167 for (y = 1 << j; j < i; j++, y <<= 1)
168 if ((y -= c[j]) < 0)
169 return Z_DATA_ERROR;
170 if ((y -= c[i]) < 0)
171 return Z_DATA_ERROR;
172 c[i] += y;
173
174
175 /* Generate starting offsets into the value table for each length */
176 x[1] = j = 0;
177 p = c + 1; xp = x + 2;
178 while (--i) { /* note that i == g from above */
179 *xp++ = (j += *p++);
180 }
181
182
183 /* Make a table of values in order of bit lengths */
184 p = b; i = 0;
185 do {
186 if ((j = *p++) != 0)
187 v[x[j]++] = i;
188 } while (++i < n);
189 n = x[g]; /* set n to length of v */
190
191
192 /* Generate the Huffman codes and for each, make the table entries */
193 x[0] = i = 0; /* first Huffman code is zero */
194 p = v; /* grab values in bit order */
195 h = -1; /* no tables yet--level -1 */
196 w = -l; /* bits decoded == (l * h) */
197 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
198 q = (inflate_huft *)Z_NULL; /* ditto */
199 z = 0; /* ditto */
200
201 /* go through the bit lengths (k already is bits in shortest code) */
202 for (; k <= g; k++)
203 {
204 a = c[k];
205 while (a--)
206 {
207 /* here i is the Huffman code of length k bits for value *p */
208 /* make tables up to required level */
209 while (k > w + l)
210 {
211 h++;
212 w += l; /* previous table always l bits */
213
214 /* compute minimum size table less than or equal to l bits */
215 z = g - w;
216 z = z > (uInt)l ? l : z; /* table size upper limit */
217 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
218 { /* too few codes for k-w bit table */
219 f -= a + 1; /* deduct codes from patterns left */
220 xp = c + k;
221 if (j < z)
222 while (++j < z) /* try smaller tables up to z bits */
223 {
224 if ((f <<= 1) <= *++xp)
225 break; /* enough codes to use up j bits */
226 f -= *xp; /* else deduct codes from patterns */
227 }
228 } 214 }
229 z = 1 << j; /* table entries for j-bit table */ 215 else if ((int)(work[sym]) > end) {
230 216 this.op = (unsigned char)(extra[work[sym]]);
231 /* allocate new table */ 217 this.val = base[work[sym]];
232 if (*hn + z > MANY) /* (note: doesn't matter for fixed) */ 218 }
233 return Z_DATA_ERROR; /* overflow of MANY */ 219 else {
234 u[h] = q = hp + *hn; 220 this.op = (unsigned char)(32 + 64); /* end of block */
235 *hn += z; 221 this.val = 0;
236
237 /* connect to last table, if there is one */
238 if (h)
239 {
240 x[h] = i; /* save pattern for backing up */
241 r.bits = (Byte)l; /* bits to dump before this table */
242 r.exop = (Byte)j; /* bits in this table */
243 j = i >> (w - l);
244 r.base = (uInt)(q - u[h-1] - j); /* offset to this table */
245 u[h-1][j] = r; /* connect to last table */
246 } 222 }
247 else
248 *t = q; /* first table is returned result */
249 }
250
251 /* set up table entry in r */
252 r.bits = (Byte)(k - w);
253 if (p >= v + n)
254 r.exop = 128 + 64; /* out of values--invalid code */
255 else if (*p < s)
256 {
257 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
258 r.base = *p++; /* simple code is just the value */
259 }
260 else
261 {
262 r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
263 r.base = d[*p++ - s];
264 }
265
266 /* fill code-like entries with r */
267 f = 1 << (k - w);
268 for (j = i >> w; j < z; j += f)
269 q[j] = r;
270
271 /* backwards increment the k-bit code i */
272 for (j = 1 << (k - 1); i & j; j >>= 1)
273 i ^= j;
274 i ^= j;
275
276 /* backup over finished tables */
277 mask = (1 << w) - 1; /* needed on HP, cc -O bug */
278 while ((i & mask) != x[h])
279 {
280 h--; /* don't need to update q */
281 w -= l;
282 mask = (1 << w) - 1;
283 }
284 }
285 }
286
287 223
288 /* Return Z_BUF_ERROR if we were given an incomplete table */ 224 /* replicate for those indices with low len bits equal to huff */
289 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK; 225 incr = 1U << (len - drop);
290} 226 fill = 1U << curr;
227 do {
228 fill -= incr;
229 next[(huff >> drop) + fill] = this;
230 } while (fill != 0);
231
232 /* backwards increment the len-bit code huff */
233 incr = 1U << (len - 1);
234 while (huff & incr)
235 incr >>= 1;
236 if (incr != 0) {
237 huff &= incr - 1;
238 huff += incr;
239 }
240 else
241 huff = 0;
291 242
243 /* go to next symbol, update count, len */
244 sym++;
245 if (--(count[len]) == 0) {
246 if (len == max) break;
247 len = lens[work[sym]];
248 }
292 249
293int inflate_trees_bits(c, bb, tb, hp, z) 250 /* create new sub-table if needed */
294uIntf *c; /* 19 code lengths */ 251 if (len > root && (huff & mask) != low) {
295uIntf *bb; /* bits tree desired/actual depth */ 252 /* if first time, transition to sub-tables */
296inflate_huft * FAR *tb; /* bits tree result */ 253 if (drop == 0)
297inflate_huft *hp; /* space for trees */ 254 drop = root;
298z_streamp z; /* for messages */ 255
299{ 256 /* increment past last table */
300 int r; 257 next += 1U << curr;
301 uInt hn = 0; /* hufts used in space */ 258
302 uIntf *v; /* work area for huft_build */ 259 /* determine length of next table */
303 260 curr = len - drop;
304 if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL) 261 left = (int)(1 << curr);
305 return Z_MEM_ERROR; 262 while (curr + drop < max) {
306 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, 263 left -= count[curr + drop];
307 tb, bb, hp, &hn, v); 264 if (left <= 0) break;
308 if (r == Z_DATA_ERROR) 265 curr++;
309 z->msg = (char*)"oversubscribed dynamic bit lengths tree"; 266 left <<= 1;
310 else if (r == Z_BUF_ERROR || *bb == 0) 267 }
311 {
312 z->msg = (char*)"incomplete dynamic bit lengths tree";
313 r = Z_DATA_ERROR;
314 }
315 ZFREE(z, v);
316 return r;
317}
318 268
269 /* check for enough space */
270 used += 1U << curr;
271 if (type == LENS && used >= ENOUGH - MAXD)
272 return 1;
319 273
320int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z) 274 /* point entry in root table to sub-table */
321uInt nl; /* number of literal/length codes */ 275 low = huff & mask;
322uInt nd; /* number of distance codes */ 276 (*table)[low].op = (unsigned char)curr;
323uIntf *c; /* that many (total) code lengths */ 277 (*table)[low].bits = (unsigned char)root;
324uIntf *bl; /* literal desired/actual bit depth */ 278 (*table)[low].val = (unsigned short)(next - *table);
325uIntf *bd; /* distance desired/actual bit depth */ 279 }
326inflate_huft * FAR *tl; /* literal/length tree result */
327inflate_huft * FAR *td; /* distance tree result */
328inflate_huft *hp; /* space for trees */
329z_streamp z; /* for messages */
330{
331 int r;
332 uInt hn = 0; /* hufts used in space */
333 uIntf *v; /* work area for huft_build */
334
335 /* allocate work area */
336 if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
337 return Z_MEM_ERROR;
338
339 /* build literal/length tree */
340 r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
341 if (r != Z_OK || *bl == 0)
342 {
343 if (r == Z_DATA_ERROR)
344 z->msg = (char*)"oversubscribed literal/length tree";
345 else if (r != Z_MEM_ERROR)
346 {
347 z->msg = (char*)"incomplete literal/length tree";
348 r = Z_DATA_ERROR;
349 }
350 ZFREE(z, v);
351 return r;
352 }
353
354 /* build distance tree */
355 r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
356 if (r != Z_OK || (*bd == 0 && nl > 257))
357 {
358 if (r == Z_DATA_ERROR)
359 z->msg = (char*)"oversubscribed distance tree";
360 else if (r == Z_BUF_ERROR) {
361#ifdef PKZIP_BUG_WORKAROUND
362 r = Z_OK;
363 }
364#else
365 z->msg = (char*)"incomplete distance tree";
366 r = Z_DATA_ERROR;
367 }
368 else if (r != Z_MEM_ERROR)
369 {
370 z->msg = (char*)"empty distance tree with lengths";
371 r = Z_DATA_ERROR;
372 } 280 }
373 ZFREE(z, v);
374 return r;
375#endif
376 }
377
378 /* done */
379 ZFREE(z, v);
380 return Z_OK;
381}
382 281
282 /*
283 Fill in rest of table for incomplete codes. This loop is similar to the
284 loop above in incrementing huff for table indices. It is assumed that
285 len is equal to curr + drop, so there is no loop needed to increment
286 through high index bits. When the current sub-table is filled, the loop
287 drops back to the root table to fill in any remaining entries there.
288 */
289 this.op = (unsigned char)64; /* invalid code marker */
290 this.bits = (unsigned char)(len - drop);
291 this.val = (unsigned short)0;
292 while (huff != 0) {
293 /* when done with sub-table, drop back to root table */
294 if (drop != 0 && (huff & mask) != low) {
295 drop = 0;
296 len = root;
297 next = *table;
298 curr = root;
299 this.bits = (unsigned char)len;
300 }
301
302 /* put invalid code marker in table */
303 next[huff >> drop] = this;
383 304
384/* build fixed tables only once--keep them here */ 305 /* backwards increment the len-bit code huff */
385#ifdef BUILDFIXED 306 incr = 1U << (len - 1);
386local int fixed_built = 0; 307 while (huff & incr)
387#define FIXEDH 544 /* number of hufts used by fixed tables */ 308 incr >>= 1;
388local inflate_huft fixed_mem[FIXEDH]; 309 if (incr != 0) {
389local uInt fixed_bl; 310 huff &= incr - 1;
390local uInt fixed_bd; 311 huff += incr;
391local inflate_huft *fixed_tl; 312 }
392local inflate_huft *fixed_td; 313 else
393#else 314 huff = 0;
394#include "inffixed.h"
395#endif
396
397
398int inflate_trees_fixed(bl, bd, tl, td, z)
399uIntf *bl; /* literal desired/actual bit depth */
400uIntf *bd; /* distance desired/actual bit depth */
401inflate_huft * FAR *tl; /* literal/length tree result */
402inflate_huft * FAR *td; /* distance tree result */
403z_streamp z; /* for memory allocation */
404{
405#ifdef BUILDFIXED
406 /* build fixed tables if not already */
407 if (!fixed_built)
408 {
409 int k; /* temporary variable */
410 uInt f = 0; /* number of hufts used in fixed_mem */
411 uIntf *c; /* length list for huft_build */
412 uIntf *v; /* work area for huft_build */
413
414 /* allocate memory */
415 if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
416 return Z_MEM_ERROR;
417 if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
418 {
419 ZFREE(z, c);
420 return Z_MEM_ERROR;
421 } 315 }
422 316
423 /* literal table */ 317 /* set return parameters */
424 for (k = 0; k < 144; k++) 318 *table += used;
425 c[k] = 8; 319 *bits = root;
426 for (; k < 256; k++) 320 return 0;
427 c[k] = 9;
428 for (; k < 280; k++)
429 c[k] = 7;
430 for (; k < 288; k++)
431 c[k] = 8;
432 fixed_bl = 9;
433 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
434 fixed_mem, &f, v);
435
436 /* distance table */
437 for (k = 0; k < 30; k++)
438 c[k] = 5;
439 fixed_bd = 5;
440 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
441 fixed_mem, &f, v);
442
443 /* done */
444 ZFREE(z, v);
445 ZFREE(z, c);
446 fixed_built = 1;
447 }
448#endif
449 *bl = fixed_bl;
450 *bd = fixed_bd;
451 *tl = fixed_tl;
452 *td = fixed_td;
453 return Z_OK;
454} 321}