diff options
Diffstat (limited to 'trees.c')
-rw-r--r-- | trees.c | 1048 |
1 files changed, 1048 insertions, 0 deletions
@@ -0,0 +1,1048 @@ | |||
1 | /* trees.c -- output deflated data using Huffman coding | ||
2 | * Copyright (C) 1995 Jean-loup Gailly | ||
3 | * For conditions of distribution and use, see copyright notice in zlib.h | ||
4 | */ | ||
5 | |||
6 | /* | ||
7 | * ALGORITHM | ||
8 | * | ||
9 | * The "deflation" process uses several Huffman trees. The more | ||
10 | * common source values are represented by shorter bit sequences. | ||
11 | * | ||
12 | * Each code tree is stored in a compressed form which is itself | ||
13 | * a Huffman encoding of the lengths of all the code strings (in | ||
14 | * ascending order by source values). The actual code strings are | ||
15 | * reconstructed from the lengths in the inflate process, as described | ||
16 | * in the deflate specification. | ||
17 | * | ||
18 | * REFERENCES | ||
19 | * | ||
20 | * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". | ||
21 | * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc | ||
22 | * | ||
23 | * Storer, James A. | ||
24 | * Data Compression: Methods and Theory, pp. 49-50. | ||
25 | * Computer Science Press, 1988. ISBN 0-7167-8156-5. | ||
26 | * | ||
27 | * Sedgewick, R. | ||
28 | * Algorithms, p290. | ||
29 | * Addison-Wesley, 1983. ISBN 0-201-06672-6. | ||
30 | */ | ||
31 | |||
32 | /* $Id: trees.c,v 1.2 1995/04/10 16:21:44 jloup Exp $ */ | ||
33 | |||
34 | #include "deflate.h" | ||
35 | |||
36 | #ifdef DEBUG | ||
37 | # include <ctype.h> | ||
38 | #endif | ||
39 | |||
40 | /* =========================================================================== | ||
41 | * Constants | ||
42 | */ | ||
43 | |||
44 | #define MAX_BL_BITS 7 | ||
45 | /* Bit length codes must not exceed MAX_BL_BITS bits */ | ||
46 | |||
47 | #define END_BLOCK 256 | ||
48 | /* end of block literal code */ | ||
49 | |||
50 | #define REP_3_6 16 | ||
51 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ | ||
52 | |||
53 | #define REPZ_3_10 17 | ||
54 | /* repeat a zero length 3-10 times (3 bits of repeat count) */ | ||
55 | |||
56 | #define REPZ_11_138 18 | ||
57 | /* repeat a zero length 11-138 times (7 bits of repeat count) */ | ||
58 | |||
59 | local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ | ||
60 | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; | ||
61 | |||
62 | local int extra_dbits[D_CODES] /* extra bits for each distance code */ | ||
63 | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; | ||
64 | |||
65 | local int extra_blbits[BL_CODES]/* extra bits for each bit length code */ | ||
66 | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; | ||
67 | |||
68 | local uch bl_order[BL_CODES] | ||
69 | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; | ||
70 | /* The lengths of the bit length codes are sent in order of decreasing | ||
71 | * probability, to avoid transmitting the lengths for unused bit length codes. | ||
72 | */ | ||
73 | |||
74 | #define Buf_size (8 * 2*sizeof(char)) | ||
75 | /* Number of bits used within bi_buf. (bi_buf might be implemented on | ||
76 | * more than 16 bits on some systems.) | ||
77 | */ | ||
78 | |||
79 | /* =========================================================================== | ||
80 | * Local data. These are initialized only once. | ||
81 | * To do: initialize at compile time to be completely reentrant. ??? | ||
82 | */ | ||
83 | |||
84 | local ct_data static_ltree[L_CODES+2]; | ||
85 | /* The static literal tree. Since the bit lengths are imposed, there is no | ||
86 | * need for the L_CODES extra codes used during heap construction. However | ||
87 | * The codes 286 and 287 are needed to build a canonical tree (see ct_init | ||
88 | * below). | ||
89 | */ | ||
90 | |||
91 | local ct_data static_dtree[D_CODES]; | ||
92 | /* The static distance tree. (Actually a trivial tree since all codes use | ||
93 | * 5 bits.) | ||
94 | */ | ||
95 | |||
96 | local uch dist_code[512]; | ||
97 | /* distance codes. The first 256 values correspond to the distances | ||
98 | * 3 .. 258, the last 256 values correspond to the top 8 bits of | ||
99 | * the 15 bit distances. | ||
100 | */ | ||
101 | |||
102 | local uch length_code[MAX_MATCH-MIN_MATCH+1]; | ||
103 | /* length code for each normalized match length (0 == MIN_MATCH) */ | ||
104 | |||
105 | local int base_length[LENGTH_CODES]; | ||
106 | /* First normalized length for each code (0 = MIN_MATCH) */ | ||
107 | |||
108 | local int base_dist[D_CODES]; | ||
109 | /* First normalized distance for each code (0 = distance of 1) */ | ||
110 | |||
111 | struct static_tree_desc_s { | ||
112 | ct_data *static_tree; /* static tree or NULL */ | ||
113 | int *extra_bits; /* extra bits for each code or NULL */ | ||
114 | int extra_base; /* base index for extra_bits */ | ||
115 | int elems; /* max number of elements in the tree */ | ||
116 | int max_length; /* max bit length for the codes */ | ||
117 | }; | ||
118 | |||
119 | local static_tree_desc static_l_desc = | ||
120 | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; | ||
121 | |||
122 | local static_tree_desc static_d_desc = | ||
123 | {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; | ||
124 | |||
125 | local static_tree_desc static_bl_desc = | ||
126 | {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; | ||
127 | |||
128 | /* =========================================================================== | ||
129 | * Local (static) routines in this file. | ||
130 | */ | ||
131 | |||
132 | local void ct_static_init __P((void)); | ||
133 | local void init_block __P((deflate_state *s)); | ||
134 | local void pqdownheap __P((deflate_state *s, ct_data *tree, int k)); | ||
135 | local void gen_bitlen __P((deflate_state *s, tree_desc *desc)); | ||
136 | local void gen_codes __P((ct_data *tree, int max_code, ush bl_count[])); | ||
137 | local void build_tree __P((deflate_state *s, tree_desc *desc)); | ||
138 | local void scan_tree __P((deflate_state *s, ct_data *tree, int max_code)); | ||
139 | local void send_tree __P((deflate_state *s, ct_data *tree, int max_code)); | ||
140 | local int build_bl_tree __P((deflate_state *s)); | ||
141 | local void send_all_trees __P((deflate_state *s, int lcodes, int dcodes, | ||
142 | int blcodes)); | ||
143 | local void compress_block __P((deflate_state *s, ct_data *ltree, | ||
144 | ct_data *dtree)); | ||
145 | local void set_data_type __P((deflate_state *s)); | ||
146 | local void send_bits __P((deflate_state *s, int value, int length)); | ||
147 | local unsigned bi_reverse __P((unsigned value, int length)); | ||
148 | local void bi_windup __P((deflate_state *s)); | ||
149 | local void copy_block __P((deflate_state *s, char *buf, unsigned len, | ||
150 | int header)); | ||
151 | |||
152 | #ifndef DEBUG | ||
153 | # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) | ||
154 | /* Send a code of the given tree. c and tree must not have side effects */ | ||
155 | |||
156 | #else /* DEBUG */ | ||
157 | # define send_code(s, c, tree) \ | ||
158 | { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \ | ||
159 | send_bits(s, tree[c].Code, tree[c].Len); } | ||
160 | #endif | ||
161 | |||
162 | #define d_code(dist) \ | ||
163 | ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) | ||
164 | /* Mapping from a distance to a distance code. dist is the distance - 1 and | ||
165 | * must not have side effects. dist_code[256] and dist_code[257] are never | ||
166 | * used. | ||
167 | */ | ||
168 | |||
169 | #define MAX(a,b) (a >= b ? a : b) | ||
170 | /* the arguments must not have side effects */ | ||
171 | |||
172 | /* =========================================================================== | ||
173 | * Initialize the various 'constant' tables. | ||
174 | * To do: do this at compile time. | ||
175 | */ | ||
176 | local void ct_static_init() | ||
177 | { | ||
178 | int n; /* iterates over tree elements */ | ||
179 | int bits; /* bit counter */ | ||
180 | int length; /* length value */ | ||
181 | int code; /* code value */ | ||
182 | int dist; /* distance index */ | ||
183 | ush bl_count[MAX_BITS+1]; | ||
184 | /* number of codes at each bit length for an optimal tree */ | ||
185 | |||
186 | /* Initialize the mapping length (0..255) -> length code (0..28) */ | ||
187 | length = 0; | ||
188 | for (code = 0; code < LENGTH_CODES-1; code++) { | ||
189 | base_length[code] = length; | ||
190 | for (n = 0; n < (1<<extra_lbits[code]); n++) { | ||
191 | length_code[length++] = (uch)code; | ||
192 | } | ||
193 | } | ||
194 | Assert (length == 256, "ct_static_init: length != 256"); | ||
195 | /* Note that the length 255 (match length 258) can be represented | ||
196 | * in two different ways: code 284 + 5 bits or code 285, so we | ||
197 | * overwrite length_code[255] to use the best encoding: | ||
198 | */ | ||
199 | length_code[length-1] = (uch)code; | ||
200 | |||
201 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | ||
202 | dist = 0; | ||
203 | for (code = 0 ; code < 16; code++) { | ||
204 | base_dist[code] = dist; | ||
205 | for (n = 0; n < (1<<extra_dbits[code]); n++) { | ||
206 | dist_code[dist++] = (uch)code; | ||
207 | } | ||
208 | } | ||
209 | Assert (dist == 256, "ct_static_init: dist != 256"); | ||
210 | dist >>= 7; /* from now on, all distances are divided by 128 */ | ||
211 | for ( ; code < D_CODES; code++) { | ||
212 | base_dist[code] = dist << 7; | ||
213 | for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { | ||
214 | dist_code[256 + dist++] = (uch)code; | ||
215 | } | ||
216 | } | ||
217 | Assert (dist == 256, "ct_static_init: 256+dist != 512"); | ||
218 | |||
219 | /* Construct the codes of the static literal tree */ | ||
220 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; | ||
221 | n = 0; | ||
222 | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; | ||
223 | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; | ||
224 | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; | ||
225 | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; | ||
226 | /* Codes 286 and 287 do not exist, but we must include them in the | ||
227 | * tree construction to get a canonical Huffman tree (longest code | ||
228 | * all ones) | ||
229 | */ | ||
230 | gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); | ||
231 | |||
232 | /* The static distance tree is trivial: */ | ||
233 | for (n = 0; n < D_CODES; n++) { | ||
234 | static_dtree[n].Len = 5; | ||
235 | static_dtree[n].Code = bi_reverse(n, 5); | ||
236 | } | ||
237 | } | ||
238 | |||
239 | /* =========================================================================== | ||
240 | * Initialize the tree data structures for a new zlib stream. | ||
241 | */ | ||
242 | void ct_init(s) | ||
243 | deflate_state *s; | ||
244 | { | ||
245 | if (static_dtree[0].Len == 0) { | ||
246 | ct_static_init(); /* To do: at compile time */ | ||
247 | } | ||
248 | |||
249 | s->compressed_len = 0L; | ||
250 | |||
251 | s->l_desc.dyn_tree = s->dyn_ltree; | ||
252 | s->l_desc.stat_desc = &static_l_desc; | ||
253 | |||
254 | s->d_desc.dyn_tree = s->dyn_dtree; | ||
255 | s->d_desc.stat_desc = &static_d_desc; | ||
256 | |||
257 | s->bl_desc.dyn_tree = s->bl_tree; | ||
258 | s->bl_desc.stat_desc = &static_bl_desc; | ||
259 | |||
260 | s->bi_buf = 0; | ||
261 | s->bi_valid = 0; | ||
262 | #ifdef DEBUG | ||
263 | s->bits_sent = 0L; | ||
264 | #endif | ||
265 | |||
266 | /* Initialize the first block of the first file: */ | ||
267 | init_block(s); | ||
268 | } | ||
269 | |||
270 | /* =========================================================================== | ||
271 | * Initialize a new block. | ||
272 | */ | ||
273 | local void init_block(s) | ||
274 | deflate_state *s; | ||
275 | { | ||
276 | int n; /* iterates over tree elements */ | ||
277 | |||
278 | /* Initialize the trees. */ | ||
279 | for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; | ||
280 | for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; | ||
281 | for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; | ||
282 | |||
283 | s->dyn_ltree[END_BLOCK].Freq = 1; | ||
284 | s->opt_len = s->static_len = 0L; | ||
285 | s->last_lit = s->matches = 0; | ||
286 | } | ||
287 | |||
288 | #define SMALLEST 1 | ||
289 | /* Index within the heap array of least frequent node in the Huffman tree */ | ||
290 | |||
291 | |||
292 | /* =========================================================================== | ||
293 | * Remove the smallest element from the heap and recreate the heap with | ||
294 | * one less element. Updates heap and heap_len. | ||
295 | */ | ||
296 | #define pqremove(s, tree, top) \ | ||
297 | {\ | ||
298 | top = s->heap[SMALLEST]; \ | ||
299 | s->heap[SMALLEST] = s->heap[s->heap_len--]; \ | ||
300 | pqdownheap(s, tree, SMALLEST); \ | ||
301 | } | ||
302 | |||
303 | /* =========================================================================== | ||
304 | * Compares to subtrees, using the tree depth as tie breaker when | ||
305 | * the subtrees have equal frequency. This minimizes the worst case length. | ||
306 | */ | ||
307 | #define smaller(tree, n, m, depth) \ | ||
308 | (tree[n].Freq < tree[m].Freq || \ | ||
309 | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) | ||
310 | |||
311 | /* =========================================================================== | ||
312 | * Restore the heap property by moving down the tree starting at node k, | ||
313 | * exchanging a node with the smallest of its two sons if necessary, stopping | ||
314 | * when the heap property is re-established (each father smaller than its | ||
315 | * two sons). | ||
316 | */ | ||
317 | local void pqdownheap(s, tree, k) | ||
318 | deflate_state *s; | ||
319 | ct_data *tree; /* the tree to restore */ | ||
320 | int k; /* node to move down */ | ||
321 | { | ||
322 | int v = s->heap[k]; | ||
323 | int j = k << 1; /* left son of k */ | ||
324 | while (j <= s->heap_len) { | ||
325 | /* Set j to the smallest of the two sons: */ | ||
326 | if (j < s->heap_len && | ||
327 | smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { | ||
328 | j++; | ||
329 | } | ||
330 | /* Exit if v is smaller than both sons */ | ||
331 | if (smaller(tree, v, s->heap[j], s->depth)) break; | ||
332 | |||
333 | /* Exchange v with the smallest son */ | ||
334 | s->heap[k] = s->heap[j]; k = j; | ||
335 | |||
336 | /* And continue down the tree, setting j to the left son of k */ | ||
337 | j <<= 1; | ||
338 | } | ||
339 | s->heap[k] = v; | ||
340 | } | ||
341 | |||
342 | /* =========================================================================== | ||
343 | * Compute the optimal bit lengths for a tree and update the total bit length | ||
344 | * for the current block. | ||
345 | * IN assertion: the fields freq and dad are set, heap[heap_max] and | ||
346 | * above are the tree nodes sorted by increasing frequency. | ||
347 | * OUT assertions: the field len is set to the optimal bit length, the | ||
348 | * array bl_count contains the frequencies for each bit length. | ||
349 | * The length opt_len is updated; static_len is also updated if stree is | ||
350 | * not null. | ||
351 | */ | ||
352 | local void gen_bitlen(s, desc) | ||
353 | deflate_state *s; | ||
354 | tree_desc *desc; /* the tree descriptor */ | ||
355 | { | ||
356 | ct_data *tree = desc->dyn_tree; | ||
357 | int max_code = desc->max_code; | ||
358 | ct_data *stree = desc->stat_desc->static_tree; | ||
359 | int *extra = desc->stat_desc->extra_bits; | ||
360 | int base = desc->stat_desc->extra_base; | ||
361 | int max_length = desc->stat_desc->max_length; | ||
362 | int h; /* heap index */ | ||
363 | int n, m; /* iterate over the tree elements */ | ||
364 | int bits; /* bit length */ | ||
365 | int xbits; /* extra bits */ | ||
366 | ush f; /* frequency */ | ||
367 | int overflow = 0; /* number of elements with bit length too large */ | ||
368 | |||
369 | for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; | ||
370 | |||
371 | /* In a first pass, compute the optimal bit lengths (which may | ||
372 | * overflow in the case of the bit length tree). | ||
373 | */ | ||
374 | tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ | ||
375 | |||
376 | for (h = s->heap_max+1; h < HEAP_SIZE; h++) { | ||
377 | n = s->heap[h]; | ||
378 | bits = tree[tree[n].Dad].Len + 1; | ||
379 | if (bits > max_length) bits = max_length, overflow++; | ||
380 | tree[n].Len = (ush)bits; | ||
381 | /* We overwrite tree[n].Dad which is no longer needed */ | ||
382 | |||
383 | if (n > max_code) continue; /* not a leaf node */ | ||
384 | |||
385 | s->bl_count[bits]++; | ||
386 | xbits = 0; | ||
387 | if (n >= base) xbits = extra[n-base]; | ||
388 | f = tree[n].Freq; | ||
389 | s->opt_len += (ulg)f * (bits + xbits); | ||
390 | if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); | ||
391 | } | ||
392 | if (overflow == 0) return; | ||
393 | |||
394 | Trace((stderr,"\nbit length overflow\n")); | ||
395 | /* This happens for example on obj2 and pic of the Calgary corpus */ | ||
396 | |||
397 | /* Find the first bit length which could increase: */ | ||
398 | do { | ||
399 | bits = max_length-1; | ||
400 | while (s->bl_count[bits] == 0) bits--; | ||
401 | s->bl_count[bits]--; /* move one leaf down the tree */ | ||
402 | s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ | ||
403 | s->bl_count[max_length]--; | ||
404 | /* The brother of the overflow item also moves one step up, | ||
405 | * but this does not affect bl_count[max_length] | ||
406 | */ | ||
407 | overflow -= 2; | ||
408 | } while (overflow > 0); | ||
409 | |||
410 | /* Now recompute all bit lengths, scanning in increasing frequency. | ||
411 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | ||
412 | * lengths instead of fixing only the wrong ones. This idea is taken | ||
413 | * from 'ar' written by Haruhiko Okumura.) | ||
414 | */ | ||
415 | for (bits = max_length; bits != 0; bits--) { | ||
416 | n = s->bl_count[bits]; | ||
417 | while (n != 0) { | ||
418 | m = s->heap[--h]; | ||
419 | if (m > max_code) continue; | ||
420 | if (tree[m].Len != (unsigned) bits) { | ||
421 | Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); | ||
422 | s->opt_len += ((long)bits - (long)tree[m].Len) | ||
423 | *(long)tree[m].Freq; | ||
424 | tree[m].Len = (ush)bits; | ||
425 | } | ||
426 | n--; | ||
427 | } | ||
428 | } | ||
429 | } | ||
430 | |||
431 | /* =========================================================================== | ||
432 | * Generate the codes for a given tree and bit counts (which need not be | ||
433 | * optimal). | ||
434 | * IN assertion: the array bl_count contains the bit length statistics for | ||
435 | * the given tree and the field len is set for all tree elements. | ||
436 | * OUT assertion: the field code is set for all tree elements of non | ||
437 | * zero code length. | ||
438 | */ | ||
439 | local void gen_codes (tree, max_code, bl_count) | ||
440 | ct_data *tree; /* the tree to decorate */ | ||
441 | int max_code; /* largest code with non zero frequency */ | ||
442 | ush bl_count[]; /* number of codes at each bit length */ | ||
443 | { | ||
444 | ush next_code[MAX_BITS+1]; /* next code value for each bit length */ | ||
445 | ush code = 0; /* running code value */ | ||
446 | int bits; /* bit index */ | ||
447 | int n; /* code index */ | ||
448 | |||
449 | /* The distribution counts are first used to generate the code values | ||
450 | * without bit reversal. | ||
451 | */ | ||
452 | for (bits = 1; bits <= MAX_BITS; bits++) { | ||
453 | next_code[bits] = code = (code + bl_count[bits-1]) << 1; | ||
454 | } | ||
455 | /* Check that the bit counts in bl_count are consistent. The last code | ||
456 | * must be all ones. | ||
457 | */ | ||
458 | Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, | ||
459 | "inconsistent bit counts"); | ||
460 | Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); | ||
461 | |||
462 | for (n = 0; n <= max_code; n++) { | ||
463 | int len = tree[n].Len; | ||
464 | if (len == 0) continue; | ||
465 | /* Now reverse the bits */ | ||
466 | tree[n].Code = bi_reverse(next_code[len]++, len); | ||
467 | |||
468 | Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", | ||
469 | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); | ||
470 | } | ||
471 | } | ||
472 | |||
473 | /* =========================================================================== | ||
474 | * Construct one Huffman tree and assigns the code bit strings and lengths. | ||
475 | * Update the total bit length for the current block. | ||
476 | * IN assertion: the field freq is set for all tree elements. | ||
477 | * OUT assertions: the fields len and code are set to the optimal bit length | ||
478 | * and corresponding code. The length opt_len is updated; static_len is | ||
479 | * also updated if stree is not null. The field max_code is set. | ||
480 | */ | ||
481 | local void build_tree(s, desc) | ||
482 | deflate_state *s; | ||
483 | tree_desc *desc; /* the tree descriptor */ | ||
484 | { | ||
485 | ct_data *tree = desc->dyn_tree; | ||
486 | ct_data *stree = desc->stat_desc->static_tree; | ||
487 | int elems = desc->stat_desc->elems; | ||
488 | int n, m; /* iterate over heap elements */ | ||
489 | int max_code = -1; /* largest code with non zero frequency */ | ||
490 | int node = elems; /* next internal node of the tree */ | ||
491 | int new; /* new node being created */ | ||
492 | |||
493 | /* Construct the initial heap, with least frequent element in | ||
494 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | ||
495 | * heap[0] is not used. | ||
496 | */ | ||
497 | s->heap_len = 0, s->heap_max = HEAP_SIZE; | ||
498 | |||
499 | for (n = 0; n < elems; n++) { | ||
500 | if (tree[n].Freq != 0) { | ||
501 | s->heap[++(s->heap_len)] = max_code = n; | ||
502 | s->depth[n] = 0; | ||
503 | } else { | ||
504 | tree[n].Len = 0; | ||
505 | } | ||
506 | } | ||
507 | |||
508 | /* The pkzip format requires that at least one distance code exists, | ||
509 | * and that at least one bit should be sent even if there is only one | ||
510 | * possible code. So to avoid special checks later on we force at least | ||
511 | * two codes of non zero frequency. | ||
512 | */ | ||
513 | while (s->heap_len < 2) { | ||
514 | new = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); | ||
515 | tree[new].Freq = 1; | ||
516 | s->depth[new] = 0; | ||
517 | s->opt_len--; if (stree) s->static_len -= stree[new].Len; | ||
518 | /* new is 0 or 1 so it does not have extra bits */ | ||
519 | } | ||
520 | desc->max_code = max_code; | ||
521 | |||
522 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | ||
523 | * establish sub-heaps of increasing lengths: | ||
524 | */ | ||
525 | for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); | ||
526 | |||
527 | /* Construct the Huffman tree by repeatedly combining the least two | ||
528 | * frequent nodes. | ||
529 | */ | ||
530 | do { | ||
531 | pqremove(s, tree, n); /* n = node of least frequency */ | ||
532 | m = s->heap[SMALLEST]; /* m = node of next least frequency */ | ||
533 | |||
534 | s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ | ||
535 | s->heap[--(s->heap_max)] = m; | ||
536 | |||
537 | /* Create a new node father of n and m */ | ||
538 | tree[node].Freq = tree[n].Freq + tree[m].Freq; | ||
539 | s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1); | ||
540 | tree[n].Dad = tree[m].Dad = (ush)node; | ||
541 | #ifdef DUMP_BL_TREE | ||
542 | if (tree == s->bl_tree) { | ||
543 | fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", | ||
544 | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); | ||
545 | } | ||
546 | #endif | ||
547 | /* and insert the new node in the heap */ | ||
548 | s->heap[SMALLEST] = node++; | ||
549 | pqdownheap(s, tree, SMALLEST); | ||
550 | |||
551 | } while (s->heap_len >= 2); | ||
552 | |||
553 | s->heap[--(s->heap_max)] = s->heap[SMALLEST]; | ||
554 | |||
555 | /* At this point, the fields freq and dad are set. We can now | ||
556 | * generate the bit lengths. | ||
557 | */ | ||
558 | gen_bitlen(s, (tree_desc *)desc); | ||
559 | |||
560 | /* The field len is now set, we can generate the bit codes */ | ||
561 | gen_codes ((ct_data *)tree, max_code, s->bl_count); | ||
562 | } | ||
563 | |||
564 | /* =========================================================================== | ||
565 | * Scan a literal or distance tree to determine the frequencies of the codes | ||
566 | * in the bit length tree. | ||
567 | */ | ||
568 | local void scan_tree (s, tree, max_code) | ||
569 | deflate_state *s; | ||
570 | ct_data *tree; /* the tree to be scanned */ | ||
571 | int max_code; /* and its largest code of non zero frequency */ | ||
572 | { | ||
573 | int n; /* iterates over all tree elements */ | ||
574 | int prevlen = -1; /* last emitted length */ | ||
575 | int curlen; /* length of current code */ | ||
576 | int nextlen = tree[0].Len; /* length of next code */ | ||
577 | int count = 0; /* repeat count of the current code */ | ||
578 | int max_count = 7; /* max repeat count */ | ||
579 | int min_count = 4; /* min repeat count */ | ||
580 | |||
581 | if (nextlen == 0) max_count = 138, min_count = 3; | ||
582 | tree[max_code+1].Len = (ush)0xffff; /* guard */ | ||
583 | |||
584 | for (n = 0; n <= max_code; n++) { | ||
585 | curlen = nextlen; nextlen = tree[n+1].Len; | ||
586 | if (++count < max_count && curlen == nextlen) { | ||
587 | continue; | ||
588 | } else if (count < min_count) { | ||
589 | s->bl_tree[curlen].Freq += count; | ||
590 | } else if (curlen != 0) { | ||
591 | if (curlen != prevlen) s->bl_tree[curlen].Freq++; | ||
592 | s->bl_tree[REP_3_6].Freq++; | ||
593 | } else if (count <= 10) { | ||
594 | s->bl_tree[REPZ_3_10].Freq++; | ||
595 | } else { | ||
596 | s->bl_tree[REPZ_11_138].Freq++; | ||
597 | } | ||
598 | count = 0; prevlen = curlen; | ||
599 | if (nextlen == 0) { | ||
600 | max_count = 138, min_count = 3; | ||
601 | } else if (curlen == nextlen) { | ||
602 | max_count = 6, min_count = 3; | ||
603 | } else { | ||
604 | max_count = 7, min_count = 4; | ||
605 | } | ||
606 | } | ||
607 | } | ||
608 | |||
609 | /* =========================================================================== | ||
610 | * Send a literal or distance tree in compressed form, using the codes in | ||
611 | * bl_tree. | ||
612 | */ | ||
613 | local void send_tree (s, tree, max_code) | ||
614 | deflate_state *s; | ||
615 | ct_data *tree; /* the tree to be scanned */ | ||
616 | int max_code; /* and its largest code of non zero frequency */ | ||
617 | { | ||
618 | int n; /* iterates over all tree elements */ | ||
619 | int prevlen = -1; /* last emitted length */ | ||
620 | int curlen; /* length of current code */ | ||
621 | int nextlen = tree[0].Len; /* length of next code */ | ||
622 | int count = 0; /* repeat count of the current code */ | ||
623 | int max_count = 7; /* max repeat count */ | ||
624 | int min_count = 4; /* min repeat count */ | ||
625 | |||
626 | /* tree[max_code+1].Len = -1; */ /* guard already set */ | ||
627 | if (nextlen == 0) max_count = 138, min_count = 3; | ||
628 | |||
629 | for (n = 0; n <= max_code; n++) { | ||
630 | curlen = nextlen; nextlen = tree[n+1].Len; | ||
631 | if (++count < max_count && curlen == nextlen) { | ||
632 | continue; | ||
633 | } else if (count < min_count) { | ||
634 | do { send_code(s, curlen, s->bl_tree); } while (--count != 0); | ||
635 | |||
636 | } else if (curlen != 0) { | ||
637 | if (curlen != prevlen) { | ||
638 | send_code(s, curlen, s->bl_tree); count--; | ||
639 | } | ||
640 | Assert(count >= 3 && count <= 6, " 3_6?"); | ||
641 | send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); | ||
642 | |||
643 | } else if (count <= 10) { | ||
644 | send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); | ||
645 | |||
646 | } else { | ||
647 | send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); | ||
648 | } | ||
649 | count = 0; prevlen = curlen; | ||
650 | if (nextlen == 0) { | ||
651 | max_count = 138, min_count = 3; | ||
652 | } else if (curlen == nextlen) { | ||
653 | max_count = 6, min_count = 3; | ||
654 | } else { | ||
655 | max_count = 7, min_count = 4; | ||
656 | } | ||
657 | } | ||
658 | } | ||
659 | |||
660 | /* =========================================================================== | ||
661 | * Construct the Huffman tree for the bit lengths and return the index in | ||
662 | * bl_order of the last bit length code to send. | ||
663 | */ | ||
664 | local int build_bl_tree(s) | ||
665 | deflate_state *s; | ||
666 | { | ||
667 | int max_blindex; /* index of last bit length code of non zero freq */ | ||
668 | |||
669 | /* Determine the bit length frequencies for literal and distance trees */ | ||
670 | scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); | ||
671 | scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); | ||
672 | |||
673 | /* Build the bit length tree: */ | ||
674 | build_tree(s, (tree_desc *)(&(s->bl_desc))); | ||
675 | /* opt_len now includes the length of the tree representations, except | ||
676 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | ||
677 | */ | ||
678 | |||
679 | /* Determine the number of bit length codes to send. The pkzip format | ||
680 | * requires that at least 4 bit length codes be sent. (appnote.txt says | ||
681 | * 3 but the actual value used is 4.) | ||
682 | */ | ||
683 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { | ||
684 | if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; | ||
685 | } | ||
686 | /* Update opt_len to include the bit length tree and counts */ | ||
687 | s->opt_len += 3*(max_blindex+1) + 5+5+4; | ||
688 | Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | ||
689 | s->opt_len, s->static_len)); | ||
690 | |||
691 | return max_blindex; | ||
692 | } | ||
693 | |||
694 | /* =========================================================================== | ||
695 | * Send the header for a block using dynamic Huffman trees: the counts, the | ||
696 | * lengths of the bit length codes, the literal tree and the distance tree. | ||
697 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | ||
698 | */ | ||
699 | local void send_all_trees(s, lcodes, dcodes, blcodes) | ||
700 | deflate_state *s; | ||
701 | int lcodes, dcodes, blcodes; /* number of codes for each tree */ | ||
702 | { | ||
703 | int rank; /* index in bl_order */ | ||
704 | |||
705 | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | ||
706 | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | ||
707 | "too many codes"); | ||
708 | Tracev((stderr, "\nbl counts: ")); | ||
709 | send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ | ||
710 | send_bits(s, dcodes-1, 5); | ||
711 | send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ | ||
712 | for (rank = 0; rank < blcodes; rank++) { | ||
713 | Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | ||
714 | send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); | ||
715 | } | ||
716 | Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | ||
717 | |||
718 | send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ | ||
719 | Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | ||
720 | |||
721 | send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ | ||
722 | Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | ||
723 | } | ||
724 | |||
725 | /* =========================================================================== | ||
726 | * Determine the best encoding for the current block: dynamic trees, static | ||
727 | * trees or store, and output the encoded block to the zip file. This function | ||
728 | * returns the total compressed length for the file so far. | ||
729 | */ | ||
730 | ulg ct_flush_block(s, buf, stored_len, eof) | ||
731 | deflate_state *s; | ||
732 | char *buf; /* input block, or NULL if too old */ | ||
733 | ulg stored_len; /* length of input block */ | ||
734 | int eof; /* true if this is the last block for a file */ | ||
735 | { | ||
736 | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ | ||
737 | int max_blindex; /* index of last bit length code of non zero freq */ | ||
738 | |||
739 | /* Check if the file is ascii or binary */ | ||
740 | if (s->data_type == UNKNOWN) set_data_type(s); | ||
741 | |||
742 | /* Construct the literal and distance trees */ | ||
743 | build_tree(s, (tree_desc *)(&(s->l_desc))); | ||
744 | Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | ||
745 | s->static_len)); | ||
746 | |||
747 | build_tree(s, (tree_desc *)(&(s->d_desc))); | ||
748 | Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | ||
749 | s->static_len)); | ||
750 | /* At this point, opt_len and static_len are the total bit lengths of | ||
751 | * the compressed block data, excluding the tree representations. | ||
752 | */ | ||
753 | |||
754 | /* Build the bit length tree for the above two trees, and get the index | ||
755 | * in bl_order of the last bit length code to send. | ||
756 | */ | ||
757 | max_blindex = build_bl_tree(s); | ||
758 | |||
759 | /* Determine the best encoding. Compute first the block length in bytes */ | ||
760 | opt_lenb = (s->opt_len+3+7)>>3; | ||
761 | static_lenb = (s->static_len+3+7)>>3; | ||
762 | |||
763 | Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | ||
764 | opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | ||
765 | s->last_lit)); | ||
766 | |||
767 | if (static_lenb <= opt_lenb) opt_lenb = static_lenb; | ||
768 | |||
769 | /* If compression failed and this is the first and last block, | ||
770 | * and if the .zip file can be seeked (to rewrite the local header), | ||
771 | * the whole file is transformed into a stored file: | ||
772 | */ | ||
773 | #ifdef STORED_FILE_OK | ||
774 | # ifdef FORCE_METHOD | ||
775 | if (level == 1 && eof && compressed_len == 0L) { /* force stored file */ | ||
776 | # else | ||
777 | if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) { | ||
778 | # endif | ||
779 | /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ | ||
780 | if (buf == (char*)0) error ("block vanished"); | ||
781 | |||
782 | copy_block(buf, (unsigned)stored_len, 0); /* without header */ | ||
783 | s->compressed_len = stored_len << 3; | ||
784 | s->method = STORED; | ||
785 | } else | ||
786 | #endif /* STORED_FILE_OK */ | ||
787 | |||
788 | #ifdef FORCE_METHOD | ||
789 | if (level == 2 && buf != (char*)0) { /* force stored block */ | ||
790 | #else | ||
791 | if (stored_len+4 <= opt_lenb && buf != (char*)0) { | ||
792 | /* 4: two words for the lengths */ | ||
793 | #endif | ||
794 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | ||
795 | * Otherwise we can't have processed more than WSIZE input bytes since | ||
796 | * the last block flush, because compression would have been | ||
797 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | ||
798 | * transform a block into a stored block. | ||
799 | */ | ||
800 | send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ | ||
801 | s->compressed_len = (s->compressed_len + 3 + 7) & ~7L; | ||
802 | s->compressed_len += (stored_len + 4) << 3; | ||
803 | |||
804 | copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ | ||
805 | |||
806 | #ifdef FORCE_METHOD | ||
807 | } else if (level == 3) { /* force static trees */ | ||
808 | #else | ||
809 | } else if (static_lenb == opt_lenb) { | ||
810 | #endif | ||
811 | send_bits(s, (STATIC_TREES<<1)+eof, 3); | ||
812 | compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); | ||
813 | s->compressed_len += 3 + s->static_len; | ||
814 | } else { | ||
815 | send_bits(s, (DYN_TREES<<1)+eof, 3); | ||
816 | send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, | ||
817 | max_blindex+1); | ||
818 | compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); | ||
819 | s->compressed_len += 3 + s->opt_len; | ||
820 | } | ||
821 | Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | ||
822 | init_block(s); | ||
823 | |||
824 | if (eof) { | ||
825 | bi_windup(s); | ||
826 | s->compressed_len += 7; /* align on byte boundary */ | ||
827 | } | ||
828 | Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, | ||
829 | s->compressed_len-7*eof)); | ||
830 | |||
831 | return s->compressed_len >> 3; | ||
832 | } | ||
833 | |||
834 | /* =========================================================================== | ||
835 | * Save the match info and tally the frequency counts. Return true if | ||
836 | * the current block must be flushed. | ||
837 | */ | ||
838 | int ct_tally (s, dist, lc) | ||
839 | deflate_state *s; | ||
840 | int dist; /* distance of matched string */ | ||
841 | int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ | ||
842 | { | ||
843 | s->d_buf[s->last_lit] = (ush)dist; | ||
844 | s->l_buf[s->last_lit++] = (uch)lc; | ||
845 | if (dist == 0) { | ||
846 | /* lc is the unmatched char */ | ||
847 | s->dyn_ltree[lc].Freq++; | ||
848 | } else { | ||
849 | s->matches++; | ||
850 | /* Here, lc is the match length - MIN_MATCH */ | ||
851 | dist--; /* dist = match distance - 1 */ | ||
852 | Assert((ush)dist < (ush)MAX_DIST(s) && | ||
853 | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | ||
854 | (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match"); | ||
855 | |||
856 | s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++; | ||
857 | s->dyn_dtree[d_code(dist)].Freq++; | ||
858 | } | ||
859 | |||
860 | /* Try to guess if it is profitable to stop the current block here */ | ||
861 | if (s->level > 2 && (s->last_lit & 0xfff) == 0) { | ||
862 | /* Compute an upper bound for the compressed length */ | ||
863 | ulg out_length = (ulg)s->last_lit*8L; | ||
864 | ulg in_length = (ulg)s->strstart - s->block_start; | ||
865 | int dcode; | ||
866 | for (dcode = 0; dcode < D_CODES; dcode++) { | ||
867 | out_length += (ulg)s->dyn_dtree[dcode].Freq * | ||
868 | (5L+extra_dbits[dcode]); | ||
869 | } | ||
870 | out_length >>= 3; | ||
871 | Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", | ||
872 | s->last_lit, in_length, out_length, | ||
873 | 100L - out_length*100L/in_length)); | ||
874 | if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; | ||
875 | } | ||
876 | return (s->last_lit == s->lit_bufsize-1); | ||
877 | /* We avoid equality with lit_bufsize because of wraparound at 64K | ||
878 | * on 16 bit machines and because stored blocks are restricted to | ||
879 | * 64K-1 bytes. | ||
880 | */ | ||
881 | } | ||
882 | |||
883 | /* =========================================================================== | ||
884 | * Send the block data compressed using the given Huffman trees | ||
885 | */ | ||
886 | local void compress_block(s, ltree, dtree) | ||
887 | deflate_state *s; | ||
888 | ct_data *ltree; /* literal tree */ | ||
889 | ct_data *dtree; /* distance tree */ | ||
890 | { | ||
891 | unsigned dist; /* distance of matched string */ | ||
892 | int lc; /* match length or unmatched char (if dist == 0) */ | ||
893 | unsigned lx = 0; /* running index in l_buf */ | ||
894 | unsigned code; /* the code to send */ | ||
895 | int extra; /* number of extra bits to send */ | ||
896 | |||
897 | if (s->last_lit != 0) do { | ||
898 | dist = s->d_buf[lx]; | ||
899 | lc = s->l_buf[lx++]; | ||
900 | if (dist == 0) { | ||
901 | send_code(s, lc, ltree); /* send a literal byte */ | ||
902 | Tracecv(isgraph(lc), (stderr," '%c' ", lc)); | ||
903 | } else { | ||
904 | /* Here, lc is the match length - MIN_MATCH */ | ||
905 | code = length_code[lc]; | ||
906 | send_code(s, code+LITERALS+1, ltree); /* send the length code */ | ||
907 | extra = extra_lbits[code]; | ||
908 | if (extra != 0) { | ||
909 | lc -= base_length[code]; | ||
910 | send_bits(s, lc, extra); /* send the extra length bits */ | ||
911 | } | ||
912 | dist--; /* dist is now the match distance - 1 */ | ||
913 | code = d_code(dist); | ||
914 | Assert (code < D_CODES, "bad d_code"); | ||
915 | |||
916 | send_code(s, code, dtree); /* send the distance code */ | ||
917 | extra = extra_dbits[code]; | ||
918 | if (extra != 0) { | ||
919 | dist -= base_dist[code]; | ||
920 | send_bits(s, dist, extra); /* send the extra distance bits */ | ||
921 | } | ||
922 | } /* literal or match pair ? */ | ||
923 | |||
924 | /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ | ||
925 | Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow"); | ||
926 | |||
927 | } while (lx < s->last_lit); | ||
928 | |||
929 | send_code(s, END_BLOCK, ltree); | ||
930 | } | ||
931 | |||
932 | /* =========================================================================== | ||
933 | * Set the data type to ASCII or BINARY, using a crude approximation: | ||
934 | * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. | ||
935 | * IN assertion: the fields freq of dyn_ltree are set and the total of all | ||
936 | * frequencies does not exceed 64K (to fit in an int on 16 bit machines). | ||
937 | */ | ||
938 | local void set_data_type(s) | ||
939 | deflate_state *s; | ||
940 | { | ||
941 | int n = 0; | ||
942 | unsigned ascii_freq = 0; | ||
943 | unsigned bin_freq = 0; | ||
944 | while (n < 7) bin_freq += s->dyn_ltree[n++].Freq; | ||
945 | while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq; | ||
946 | while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq; | ||
947 | s->data_type = bin_freq > (ascii_freq >> 2) ? BINARY : ASCII; | ||
948 | } | ||
949 | |||
950 | /* =========================================================================== | ||
951 | * Output a short LSB first on the stream. | ||
952 | * IN assertion: there is enough room in pendingBuf. | ||
953 | */ | ||
954 | #define put_short(s, w) { \ | ||
955 | put_byte(s, (uch)((w) & 0xff)); \ | ||
956 | put_byte(s, (uch)((ush)(w) >> 8)); \ | ||
957 | } | ||
958 | |||
959 | /* =========================================================================== | ||
960 | * Send a value on a given number of bits. | ||
961 | * IN assertion: length <= 16 and value fits in length bits. | ||
962 | */ | ||
963 | local void send_bits(s, value, length) | ||
964 | deflate_state *s; | ||
965 | int value; /* value to send */ | ||
966 | int length; /* number of bits */ | ||
967 | { | ||
968 | #ifdef DEBUG | ||
969 | Tracev((stderr," l %2d v %4x ", length, value)); | ||
970 | Assert(length > 0 && length <= 15, "invalid length"); | ||
971 | s->bits_sent += (ulg)length; | ||
972 | #endif | ||
973 | /* If not enough room in bi_buf, use (valid) bits from bi_buf and | ||
974 | * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) | ||
975 | * unused bits in value. | ||
976 | */ | ||
977 | if (s->bi_valid > (int)Buf_size - length) { | ||
978 | s->bi_buf |= (value << s->bi_valid); | ||
979 | put_short(s, s->bi_buf); | ||
980 | s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); | ||
981 | s->bi_valid += length - Buf_size; | ||
982 | } else { | ||
983 | s->bi_buf |= value << s->bi_valid; | ||
984 | s->bi_valid += length; | ||
985 | } | ||
986 | } | ||
987 | |||
988 | /* =========================================================================== | ||
989 | * Reverse the first len bits of a code, using straightforward code (a faster | ||
990 | * method would use a table) | ||
991 | * IN assertion: 1 <= len <= 15 | ||
992 | */ | ||
993 | local unsigned bi_reverse(code, len) | ||
994 | unsigned code; /* the value to invert */ | ||
995 | int len; /* its bit length */ | ||
996 | { | ||
997 | register unsigned res = 0; | ||
998 | do { | ||
999 | res |= code & 1; | ||
1000 | code >>= 1, res <<= 1; | ||
1001 | } while (--len > 0); | ||
1002 | return res >> 1; | ||
1003 | } | ||
1004 | |||
1005 | /* =========================================================================== | ||
1006 | * Write out any remaining bits in an incomplete byte. | ||
1007 | */ | ||
1008 | local void bi_windup(s) | ||
1009 | deflate_state *s; | ||
1010 | { | ||
1011 | if (s->bi_valid > 8) { | ||
1012 | put_short(s, s->bi_buf); | ||
1013 | } else if (s->bi_valid > 0) { | ||
1014 | put_byte(s, s->bi_buf); | ||
1015 | } | ||
1016 | s->bi_buf = 0; | ||
1017 | s->bi_valid = 0; | ||
1018 | #ifdef DEBUG | ||
1019 | s->bits_sent = (s->bits_sent+7) & ~7; | ||
1020 | #endif | ||
1021 | } | ||
1022 | |||
1023 | /* =========================================================================== | ||
1024 | * Copy a stored block, storing first the length and its | ||
1025 | * one's complement if requested. | ||
1026 | */ | ||
1027 | local void copy_block(s, buf, len, header) | ||
1028 | deflate_state *s; | ||
1029 | char *buf; /* the input data */ | ||
1030 | unsigned len; /* its length */ | ||
1031 | int header; /* true if block header must be written */ | ||
1032 | { | ||
1033 | bi_windup(s); /* align on byte boundary */ | ||
1034 | |||
1035 | if (header) { | ||
1036 | put_short(s, (ush)len); | ||
1037 | put_short(s, (ush)~len); | ||
1038 | #ifdef DEBUG | ||
1039 | s->bits_sent += 2*16; | ||
1040 | #endif | ||
1041 | } | ||
1042 | #ifdef DEBUG | ||
1043 | s->bits_sent += (ulg)len<<3; | ||
1044 | #endif | ||
1045 | while (len--) { | ||
1046 | put_byte(s, *buf++); | ||
1047 | } | ||
1048 | } | ||