diff options
author | beck <> | 2000-03-19 11:13:58 +0000 |
---|---|---|
committer | beck <> | 2000-03-19 11:13:58 +0000 |
commit | 796d609550df3a33fc11468741c5d2f6d3df4c11 (patch) | |
tree | 6c6d539061caa20372dad0ac4ddb1dfae2fbe7fe /src/lib/libcrypto/bn/bn_prime.c | |
parent | 5be3114c1fd7e0dfea1e38d3abb4cbba75244419 (diff) | |
download | openbsd-796d609550df3a33fc11468741c5d2f6d3df4c11.tar.gz openbsd-796d609550df3a33fc11468741c5d2f6d3df4c11.tar.bz2 openbsd-796d609550df3a33fc11468741c5d2f6d3df4c11.zip |
OpenSSL 0.9.5 merge
*warning* this bumps shared lib minors for libssl and libcrypto from 2.1 to 2.2
if you are using the ssl26 packages for ssh and other things to work you will
need to get new ones (see ~beck/libsslsnap/<arch>) on cvs or ~beck/src-patent.tar.gz on cvs
Diffstat (limited to 'src/lib/libcrypto/bn/bn_prime.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_prime.c | 378 |
1 files changed, 198 insertions, 180 deletions
diff --git a/src/lib/libcrypto/bn/bn_prime.c b/src/lib/libcrypto/bn/bn_prime.c index 6fa0f9be1e..a5f01b92eb 100644 --- a/src/lib/libcrypto/bn/bn_prime.c +++ b/src/lib/libcrypto/bn/bn_prime.c | |||
@@ -55,6 +55,59 @@ | |||
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
56 | * [including the GNU Public Licence.] | 56 | * [including the GNU Public Licence.] |
57 | */ | 57 | */ |
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
58 | 111 | ||
59 | #include <stdio.h> | 112 | #include <stdio.h> |
60 | #include <time.h> | 113 | #include <time.h> |
@@ -62,26 +115,29 @@ | |||
62 | #include "bn_lcl.h" | 115 | #include "bn_lcl.h" |
63 | #include <openssl/rand.h> | 116 | #include <openssl/rand.h> |
64 | 117 | ||
65 | /* The quick seive algorithm approach to weeding out primes is | 118 | /* The quick sieve algorithm approach to weeding out primes is |
66 | * Philip Zimmermann's, as implemented in PGP. I have had a read of | 119 | * Philip Zimmermann's, as implemented in PGP. I have had a read of |
67 | * his comments and implemented my own version. | 120 | * his comments and implemented my own version. |
68 | */ | 121 | */ |
69 | #include "bn_prime.h" | 122 | #include "bn_prime.h" |
70 | 123 | ||
71 | static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx,BN_CTX *ctx2, | 124 | static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, |
72 | BN_MONT_CTX *mont); | 125 | const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont); |
73 | static int probable_prime(BIGNUM *rnd, int bits); | 126 | static int probable_prime(BIGNUM *rnd, int bits); |
74 | static int probable_prime_dh(BIGNUM *rnd, int bits, | 127 | static int probable_prime_dh(BIGNUM *rnd, int bits, |
75 | BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); | 128 | BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); |
76 | static int probable_prime_dh_strong(BIGNUM *rnd, int bits, | 129 | static int probable_prime_dh_safe(BIGNUM *rnd, int bits, |
77 | BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); | 130 | BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); |
78 | BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int strong, BIGNUM *add, | 131 | |
132 | BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, BIGNUM *add, | ||
79 | BIGNUM *rem, void (*callback)(int,int,void *), void *cb_arg) | 133 | BIGNUM *rem, void (*callback)(int,int,void *), void *cb_arg) |
80 | { | 134 | { |
81 | BIGNUM *rnd=NULL; | 135 | BIGNUM *rnd=NULL; |
82 | BIGNUM t; | 136 | BIGNUM t; |
137 | int found=0; | ||
83 | int i,j,c1=0; | 138 | int i,j,c1=0; |
84 | BN_CTX *ctx; | 139 | BN_CTX *ctx; |
140 | int checks = BN_prime_checks_for_size(bits); | ||
85 | 141 | ||
86 | ctx=BN_CTX_new(); | 142 | ctx=BN_CTX_new(); |
87 | if (ctx == NULL) goto err; | 143 | if (ctx == NULL) goto err; |
@@ -100,9 +156,9 @@ loop: | |||
100 | } | 156 | } |
101 | else | 157 | else |
102 | { | 158 | { |
103 | if (strong) | 159 | if (safe) |
104 | { | 160 | { |
105 | if (!probable_prime_dh_strong(rnd,bits,add,rem,ctx)) | 161 | if (!probable_prime_dh_safe(rnd,bits,add,rem,ctx)) |
106 | goto err; | 162 | goto err; |
107 | } | 163 | } |
108 | else | 164 | else |
@@ -114,160 +170,185 @@ loop: | |||
114 | /* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */ | 170 | /* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */ |
115 | if (callback != NULL) callback(0,c1++,cb_arg); | 171 | if (callback != NULL) callback(0,c1++,cb_arg); |
116 | 172 | ||
117 | if (!strong) | 173 | if (!safe) |
118 | { | 174 | { |
119 | i=BN_is_prime(rnd,BN_prime_checks,callback,ctx,cb_arg); | 175 | i=BN_is_prime_fasttest(rnd,checks,callback,ctx,cb_arg,0); |
120 | if (i == -1) goto err; | 176 | if (i == -1) goto err; |
121 | if (i == 0) goto loop; | 177 | if (i == 0) goto loop; |
122 | } | 178 | } |
123 | else | 179 | else |
124 | { | 180 | { |
125 | /* for a strong prime generation, | 181 | /* for "safe prime" generation, |
126 | * check that (p-1)/2 is prime. | 182 | * check that (p-1)/2 is prime. |
127 | * Since a prime is odd, We just | 183 | * Since a prime is odd, We just |
128 | * need to divide by 2 */ | 184 | * need to divide by 2 */ |
129 | if (!BN_rshift1(&t,rnd)) goto err; | 185 | if (!BN_rshift1(&t,rnd)) goto err; |
130 | 186 | ||
131 | for (i=0; i<BN_prime_checks; i++) | 187 | for (i=0; i<checks; i++) |
132 | { | 188 | { |
133 | j=BN_is_prime(rnd,1,callback,ctx,cb_arg); | 189 | j=BN_is_prime_fasttest(rnd,1,callback,ctx,cb_arg,0); |
134 | if (j == -1) goto err; | 190 | if (j == -1) goto err; |
135 | if (j == 0) goto loop; | 191 | if (j == 0) goto loop; |
136 | 192 | ||
137 | j=BN_is_prime(&t,1,callback,ctx,cb_arg); | 193 | j=BN_is_prime_fasttest(&t,1,callback,ctx,cb_arg,0); |
138 | if (j == -1) goto err; | 194 | if (j == -1) goto err; |
139 | if (j == 0) goto loop; | 195 | if (j == 0) goto loop; |
140 | 196 | ||
141 | if (callback != NULL) callback(2,c1-1,cb_arg); | 197 | if (callback != NULL) callback(2,c1-1,cb_arg); |
142 | /* We have a strong prime test pass */ | 198 | /* We have a safe prime test pass */ |
143 | } | 199 | } |
144 | } | 200 | } |
145 | /* we have a prime :-) */ | 201 | /* we have a prime :-) */ |
146 | ret=rnd; | 202 | found = 1; |
147 | err: | 203 | err: |
148 | if ((ret == NULL) && (rnd != NULL)) BN_free(rnd); | 204 | if (!found && (ret == NULL) && (rnd != NULL)) BN_free(rnd); |
149 | BN_free(&t); | 205 | BN_free(&t); |
150 | if (ctx != NULL) BN_CTX_free(ctx); | 206 | if (ctx != NULL) BN_CTX_free(ctx); |
151 | return(ret); | 207 | return(found ? rnd : NULL); |
152 | } | 208 | } |
153 | 209 | ||
154 | int BN_is_prime(BIGNUM *a, int checks, void (*callback)(int,int,void *), | 210 | int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int,int,void *), |
155 | BN_CTX *ctx_passed, void *cb_arg) | 211 | BN_CTX *ctx_passed, void *cb_arg) |
156 | { | 212 | { |
157 | int i,j,c2=0,ret= -1; | 213 | return BN_is_prime_fasttest(a, checks, callback, ctx_passed, cb_arg, 0); |
158 | BIGNUM *check; | 214 | } |
159 | BN_CTX *ctx=NULL,*ctx2=NULL; | ||
160 | BN_MONT_CTX *mont=NULL; | ||
161 | 215 | ||
216 | int BN_is_prime_fasttest(const BIGNUM *a, int checks, | ||
217 | void (*callback)(int,int,void *), | ||
218 | BN_CTX *ctx_passed, void *cb_arg, | ||
219 | int do_trial_division) | ||
220 | { | ||
221 | int i, j, ret = -1; | ||
222 | int k; | ||
223 | BN_CTX *ctx = NULL; | ||
224 | BIGNUM *A1, *A1_odd, *check; /* taken from ctx */ | ||
225 | BN_MONT_CTX *mont = NULL; | ||
226 | const BIGNUM *A = NULL; | ||
227 | |||
228 | if (checks == BN_prime_checks) | ||
229 | checks = BN_prime_checks_for_size(BN_num_bits(a)); | ||
230 | |||
231 | /* first look for small factors */ | ||
162 | if (!BN_is_odd(a)) | 232 | if (!BN_is_odd(a)) |
163 | return(0); | 233 | return(0); |
234 | if (do_trial_division) | ||
235 | { | ||
236 | for (i = 1; i < NUMPRIMES; i++) | ||
237 | if (BN_mod_word(a, primes[i]) == 0) | ||
238 | return 0; | ||
239 | if (callback != NULL) callback(1, -1, cb_arg); | ||
240 | } | ||
241 | |||
164 | if (ctx_passed != NULL) | 242 | if (ctx_passed != NULL) |
165 | ctx=ctx_passed; | 243 | ctx = ctx_passed; |
166 | else | 244 | else |
167 | if ((ctx=BN_CTX_new()) == NULL) goto err; | 245 | if ((ctx=BN_CTX_new()) == NULL) |
168 | 246 | goto err; | |
169 | if ((ctx2=BN_CTX_new()) == NULL) goto err; | 247 | BN_CTX_start(ctx); |
170 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
171 | |||
172 | check= &(ctx->bn[ctx->tos++]); | ||
173 | 248 | ||
174 | /* Setup the montgomery structure */ | 249 | /* A := abs(a) */ |
175 | if (!BN_MONT_CTX_set(mont,a,ctx2)) goto err; | 250 | if (a->neg) |
251 | { | ||
252 | BIGNUM *t; | ||
253 | if ((t = BN_CTX_get(ctx)) == NULL) goto err; | ||
254 | BN_copy(t, a); | ||
255 | t->neg = 0; | ||
256 | A = t; | ||
257 | } | ||
258 | else | ||
259 | A = a; | ||
260 | A1 = BN_CTX_get(ctx); | ||
261 | A1_odd = BN_CTX_get(ctx); | ||
262 | check = BN_CTX_get(ctx); | ||
263 | if (check == NULL) goto err; | ||
264 | |||
265 | /* compute A1 := A - 1 */ | ||
266 | if (!BN_copy(A1, A)) | ||
267 | goto err; | ||
268 | if (!BN_sub_word(A1, 1)) | ||
269 | goto err; | ||
270 | if (BN_is_zero(A1)) | ||
271 | { | ||
272 | ret = 0; | ||
273 | goto err; | ||
274 | } | ||
176 | 275 | ||
177 | for (i=0; i<checks; i++) | 276 | /* write A1 as A1_odd * 2^k */ |
277 | k = 1; | ||
278 | while (!BN_is_bit_set(A1, k)) | ||
279 | k++; | ||
280 | if (!BN_rshift(A1_odd, A1, k)) | ||
281 | goto err; | ||
282 | |||
283 | /* Montgomery setup for computations mod A */ | ||
284 | mont = BN_MONT_CTX_new(); | ||
285 | if (mont == NULL) | ||
286 | goto err; | ||
287 | if (!BN_MONT_CTX_set(mont, A, ctx)) | ||
288 | goto err; | ||
289 | |||
290 | for (i = 0; i < checks; i++) | ||
178 | { | 291 | { |
179 | if (!BN_rand(check,BN_num_bits(a)-1,0,0)) goto err; | 292 | if (!BN_pseudo_rand(check, BN_num_bits(A1), 0, 0)) |
180 | j=witness(check,a,ctx,ctx2,mont); | 293 | goto err; |
294 | if (BN_cmp(check, A1) >= 0) | ||
295 | if (!BN_sub(check, check, A1)) | ||
296 | goto err; | ||
297 | if (!BN_add_word(check, 1)) | ||
298 | goto err; | ||
299 | /* now 1 <= check < A */ | ||
300 | |||
301 | j = witness(check, A, A1, A1_odd, k, ctx, mont); | ||
181 | if (j == -1) goto err; | 302 | if (j == -1) goto err; |
182 | if (j) | 303 | if (j) |
183 | { | 304 | { |
184 | ret=0; | 305 | ret=0; |
185 | goto err; | 306 | goto err; |
186 | } | 307 | } |
187 | if (callback != NULL) callback(1,c2++,cb_arg); | 308 | if (callback != NULL) callback(1,i,cb_arg); |
188 | } | 309 | } |
189 | ret=1; | 310 | ret=1; |
190 | err: | 311 | err: |
191 | ctx->tos--; | 312 | if (ctx != NULL) |
192 | if ((ctx_passed == NULL) && (ctx != NULL)) | 313 | { |
193 | BN_CTX_free(ctx); | 314 | BN_CTX_end(ctx); |
194 | if (ctx2 != NULL) | 315 | if (ctx_passed == NULL) |
195 | BN_CTX_free(ctx2); | 316 | BN_CTX_free(ctx); |
196 | if (mont != NULL) BN_MONT_CTX_free(mont); | 317 | } |
197 | 318 | if (mont != NULL) | |
319 | BN_MONT_CTX_free(mont); | ||
320 | |||
198 | return(ret); | 321 | return(ret); |
199 | } | 322 | } |
200 | 323 | ||
201 | #define RECP_MUL_MOD | 324 | static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, |
202 | 325 | const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont) | |
203 | static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx, BN_CTX *ctx2, | ||
204 | BN_MONT_CTX *mont) | ||
205 | { | 326 | { |
206 | int k,i,ret= -1,good; | 327 | if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */ |
207 | BIGNUM *d,*dd,*tmp,*d1,*d2,*n1; | 328 | return -1; |
208 | BIGNUM *mont_one,*mont_n1,*mont_a; | 329 | if (BN_is_one(w)) |
209 | 330 | return 0; /* probably prime */ | |
210 | d1= &(ctx->bn[ctx->tos]); | 331 | if (BN_cmp(w, a1) == 0) |
211 | d2= &(ctx->bn[ctx->tos+1]); | 332 | return 0; /* w == -1 (mod a), 'a' is probably prime */ |
212 | n1= &(ctx->bn[ctx->tos+2]); | 333 | while (--k) |
213 | ctx->tos+=3; | ||
214 | |||
215 | mont_one= &(ctx2->bn[ctx2->tos]); | ||
216 | mont_n1= &(ctx2->bn[ctx2->tos+1]); | ||
217 | mont_a= &(ctx2->bn[ctx2->tos+2]); | ||
218 | ctx2->tos+=3; | ||
219 | |||
220 | d=d1; | ||
221 | dd=d2; | ||
222 | if (!BN_one(d)) goto err; | ||
223 | if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */ | ||
224 | k=BN_num_bits(n1); | ||
225 | |||
226 | if (!BN_to_montgomery(mont_one,BN_value_one(),mont,ctx2)) goto err; | ||
227 | if (!BN_to_montgomery(mont_n1,n1,mont,ctx2)) goto err; | ||
228 | if (!BN_to_montgomery(mont_a,a,mont,ctx2)) goto err; | ||
229 | |||
230 | BN_copy(d,mont_one); | ||
231 | for (i=k-1; i>=0; i--) | ||
232 | { | 334 | { |
233 | if ( (BN_cmp(d,mont_one) != 0) && | 335 | if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */ |
234 | (BN_cmp(d,mont_n1) != 0)) | 336 | return -1; |
235 | good=1; | 337 | if (BN_is_one(w)) |
236 | else | 338 | return 1; /* 'a' is composite, otherwise a previous 'w' would |
237 | good=0; | 339 | * have been == -1 (mod 'a') */ |
238 | 340 | if (BN_cmp(w, a1) == 0) | |
239 | BN_mod_mul_montgomery(dd,d,d,mont,ctx2); | 341 | return 0; /* w == -1 (mod a), 'a' is probably prime */ |
240 | |||
241 | if (good && (BN_cmp(dd,mont_one) == 0)) | ||
242 | { | ||
243 | ret=1; | ||
244 | goto err; | ||
245 | } | ||
246 | if (BN_is_bit_set(n1,i)) | ||
247 | { | ||
248 | BN_mod_mul_montgomery(d,dd,mont_a,mont,ctx2); | ||
249 | } | ||
250 | else | ||
251 | { | ||
252 | tmp=d; | ||
253 | d=dd; | ||
254 | dd=tmp; | ||
255 | } | ||
256 | } | 342 | } |
257 | if (BN_cmp(d,mont_one) == 0) | 343 | /* If we get here, 'w' is the (a-1)/2-th power of the original 'w', |
258 | i=0; | 344 | * and it is neither -1 nor +1 -- so 'a' cannot be prime */ |
259 | else i=1; | 345 | return 1; |
260 | ret=i; | ||
261 | err: | ||
262 | ctx->tos-=3; | ||
263 | ctx2->tos-=3; | ||
264 | return(ret); | ||
265 | } | 346 | } |
266 | 347 | ||
267 | static int probable_prime(BIGNUM *rnd, int bits) | 348 | static int probable_prime(BIGNUM *rnd, int bits) |
268 | { | 349 | { |
269 | int i; | 350 | int i; |
270 | MS_STATIC BN_ULONG mods[NUMPRIMES]; | 351 | BN_ULONG mods[NUMPRIMES]; |
271 | BN_ULONG delta,d; | 352 | BN_ULONG delta,d; |
272 | 353 | ||
273 | again: | 354 | again: |
@@ -285,7 +366,7 @@ again: | |||
285 | d=delta; | 366 | d=delta; |
286 | delta+=2; | 367 | delta+=2; |
287 | /* perhaps need to check for overflow of | 368 | /* perhaps need to check for overflow of |
288 | * delta (but delta can be upto 2^32) | 369 | * delta (but delta can be up to 2^32) |
289 | * 21-May-98 eay - added overflow check */ | 370 | * 21-May-98 eay - added overflow check */ |
290 | if (delta < d) goto again; | 371 | if (delta < d) goto again; |
291 | goto loop; | 372 | goto loop; |
@@ -301,7 +382,8 @@ static int probable_prime_dh(BIGNUM *rnd, int bits, BIGNUM *add, BIGNUM *rem, | |||
301 | int i,ret=0; | 382 | int i,ret=0; |
302 | BIGNUM *t1; | 383 | BIGNUM *t1; |
303 | 384 | ||
304 | t1= &(ctx->bn[ctx->tos++]); | 385 | BN_CTX_start(ctx); |
386 | if ((t1 = BN_CTX_get(ctx)) == NULL) goto err; | ||
305 | 387 | ||
306 | if (!BN_rand(rnd,bits,0,1)) goto err; | 388 | if (!BN_rand(rnd,bits,0,1)) goto err; |
307 | 389 | ||
@@ -327,20 +409,22 @@ static int probable_prime_dh(BIGNUM *rnd, int bits, BIGNUM *add, BIGNUM *rem, | |||
327 | } | 409 | } |
328 | ret=1; | 410 | ret=1; |
329 | err: | 411 | err: |
330 | ctx->tos--; | 412 | BN_CTX_end(ctx); |
331 | return(ret); | 413 | return(ret); |
332 | } | 414 | } |
333 | 415 | ||
334 | static int probable_prime_dh_strong(BIGNUM *p, int bits, BIGNUM *padd, | 416 | static int probable_prime_dh_safe(BIGNUM *p, int bits, BIGNUM *padd, |
335 | BIGNUM *rem, BN_CTX *ctx) | 417 | BIGNUM *rem, BN_CTX *ctx) |
336 | { | 418 | { |
337 | int i,ret=0; | 419 | int i,ret=0; |
338 | BIGNUM *t1,*qadd=NULL,*q=NULL; | 420 | BIGNUM *t1,*qadd,*q; |
339 | 421 | ||
340 | bits--; | 422 | bits--; |
341 | t1= &(ctx->bn[ctx->tos++]); | 423 | BN_CTX_start(ctx); |
342 | q= &(ctx->bn[ctx->tos++]); | 424 | t1 = BN_CTX_get(ctx); |
343 | qadd= &(ctx->bn[ctx->tos++]); | 425 | q = BN_CTX_get(ctx); |
426 | qadd = BN_CTX_get(ctx); | ||
427 | if (qadd == NULL) goto err; | ||
344 | 428 | ||
345 | if (!BN_rshift1(qadd,padd)) goto err; | 429 | if (!BN_rshift1(qadd,padd)) goto err; |
346 | 430 | ||
@@ -376,72 +460,6 @@ static int probable_prime_dh_strong(BIGNUM *p, int bits, BIGNUM *padd, | |||
376 | } | 460 | } |
377 | ret=1; | 461 | ret=1; |
378 | err: | 462 | err: |
379 | ctx->tos-=3; | 463 | BN_CTX_end(ctx); |
380 | return(ret); | ||
381 | } | ||
382 | |||
383 | #if 0 | ||
384 | static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx) | ||
385 | { | ||
386 | int k,i,nb,ret= -1; | ||
387 | BIGNUM *d,*dd,*tmp; | ||
388 | BIGNUM *d1,*d2,*x,*n1,*inv; | ||
389 | |||
390 | d1= &(ctx->bn[ctx->tos]); | ||
391 | d2= &(ctx->bn[ctx->tos+1]); | ||
392 | x= &(ctx->bn[ctx->tos+2]); | ||
393 | n1= &(ctx->bn[ctx->tos+3]); | ||
394 | inv=&(ctx->bn[ctx->tos+4]); | ||
395 | ctx->tos+=5; | ||
396 | |||
397 | d=d1; | ||
398 | dd=d2; | ||
399 | if (!BN_one(d)) goto err; | ||
400 | if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */ | ||
401 | k=BN_num_bits(n1); | ||
402 | |||
403 | /* i=BN_num_bits(n); */ | ||
404 | #ifdef RECP_MUL_MOD | ||
405 | nb=BN_reciprocal(inv,n,ctx); /**/ | ||
406 | if (nb == -1) goto err; | ||
407 | #endif | ||
408 | |||
409 | for (i=k-1; i>=0; i--) | ||
410 | { | ||
411 | if (BN_copy(x,d) == NULL) goto err; | ||
412 | #ifndef RECP_MUL_MOD | ||
413 | if (!BN_mod_mul(dd,d,d,n,ctx)) goto err; | ||
414 | #else | ||
415 | if (!BN_mod_mul_reciprocal(dd,d,d,n,inv,nb,ctx)) goto err; | ||
416 | #endif | ||
417 | if ( BN_is_one(dd) && | ||
418 | !BN_is_one(x) && | ||
419 | (BN_cmp(x,n1) != 0)) | ||
420 | { | ||
421 | ret=1; | ||
422 | goto err; | ||
423 | } | ||
424 | if (BN_is_bit_set(n1,i)) | ||
425 | { | ||
426 | #ifndef RECP_MUL_MOD | ||
427 | if (!BN_mod_mul(d,dd,a,n,ctx)) goto err; | ||
428 | #else | ||
429 | if (!BN_mod_mul_reciprocal(d,dd,a,n,inv,nb,ctx)) goto err; | ||
430 | #endif | ||
431 | } | ||
432 | else | ||
433 | { | ||
434 | tmp=d; | ||
435 | d=dd; | ||
436 | dd=tmp; | ||
437 | } | ||
438 | } | ||
439 | if (BN_is_one(d)) | ||
440 | i=0; | ||
441 | else i=1; | ||
442 | ret=i; | ||
443 | err: | ||
444 | ctx->tos-=5; | ||
445 | return(ret); | 464 | return(ret); |
446 | } | 465 | } |
447 | #endif | ||