summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/bn/bn_prime.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/bn/bn_prime.c')
-rw-r--r--src/lib/libcrypto/bn/bn_prime.c378
1 files changed, 198 insertions, 180 deletions
diff --git a/src/lib/libcrypto/bn/bn_prime.c b/src/lib/libcrypto/bn/bn_prime.c
index 6fa0f9be1e..a5f01b92eb 100644
--- a/src/lib/libcrypto/bn/bn_prime.c
+++ b/src/lib/libcrypto/bn/bn_prime.c
@@ -55,6 +55,59 @@
55 * copied and put under another distribution licence 55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.] 56 * [including the GNU Public Licence.]
57 */ 57 */
58/* ====================================================================
59 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
58 111
59#include <stdio.h> 112#include <stdio.h>
60#include <time.h> 113#include <time.h>
@@ -62,26 +115,29 @@
62#include "bn_lcl.h" 115#include "bn_lcl.h"
63#include <openssl/rand.h> 116#include <openssl/rand.h>
64 117
65/* The quick seive algorithm approach to weeding out primes is 118/* The quick sieve algorithm approach to weeding out primes is
66 * Philip Zimmermann's, as implemented in PGP. I have had a read of 119 * Philip Zimmermann's, as implemented in PGP. I have had a read of
67 * his comments and implemented my own version. 120 * his comments and implemented my own version.
68 */ 121 */
69#include "bn_prime.h" 122#include "bn_prime.h"
70 123
71static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx,BN_CTX *ctx2, 124static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
72 BN_MONT_CTX *mont); 125 const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
73static int probable_prime(BIGNUM *rnd, int bits); 126static int probable_prime(BIGNUM *rnd, int bits);
74static int probable_prime_dh(BIGNUM *rnd, int bits, 127static int probable_prime_dh(BIGNUM *rnd, int bits,
75 BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); 128 BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);
76static int probable_prime_dh_strong(BIGNUM *rnd, int bits, 129static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
77 BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); 130 BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);
78BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int strong, BIGNUM *add, 131
132BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, BIGNUM *add,
79 BIGNUM *rem, void (*callback)(int,int,void *), void *cb_arg) 133 BIGNUM *rem, void (*callback)(int,int,void *), void *cb_arg)
80 { 134 {
81 BIGNUM *rnd=NULL; 135 BIGNUM *rnd=NULL;
82 BIGNUM t; 136 BIGNUM t;
137 int found=0;
83 int i,j,c1=0; 138 int i,j,c1=0;
84 BN_CTX *ctx; 139 BN_CTX *ctx;
140 int checks = BN_prime_checks_for_size(bits);
85 141
86 ctx=BN_CTX_new(); 142 ctx=BN_CTX_new();
87 if (ctx == NULL) goto err; 143 if (ctx == NULL) goto err;
@@ -100,9 +156,9 @@ loop:
100 } 156 }
101 else 157 else
102 { 158 {
103 if (strong) 159 if (safe)
104 { 160 {
105 if (!probable_prime_dh_strong(rnd,bits,add,rem,ctx)) 161 if (!probable_prime_dh_safe(rnd,bits,add,rem,ctx))
106 goto err; 162 goto err;
107 } 163 }
108 else 164 else
@@ -114,160 +170,185 @@ loop:
114 /* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */ 170 /* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */
115 if (callback != NULL) callback(0,c1++,cb_arg); 171 if (callback != NULL) callback(0,c1++,cb_arg);
116 172
117 if (!strong) 173 if (!safe)
118 { 174 {
119 i=BN_is_prime(rnd,BN_prime_checks,callback,ctx,cb_arg); 175 i=BN_is_prime_fasttest(rnd,checks,callback,ctx,cb_arg,0);
120 if (i == -1) goto err; 176 if (i == -1) goto err;
121 if (i == 0) goto loop; 177 if (i == 0) goto loop;
122 } 178 }
123 else 179 else
124 { 180 {
125 /* for a strong prime generation, 181 /* for "safe prime" generation,
126 * check that (p-1)/2 is prime. 182 * check that (p-1)/2 is prime.
127 * Since a prime is odd, We just 183 * Since a prime is odd, We just
128 * need to divide by 2 */ 184 * need to divide by 2 */
129 if (!BN_rshift1(&t,rnd)) goto err; 185 if (!BN_rshift1(&t,rnd)) goto err;
130 186
131 for (i=0; i<BN_prime_checks; i++) 187 for (i=0; i<checks; i++)
132 { 188 {
133 j=BN_is_prime(rnd,1,callback,ctx,cb_arg); 189 j=BN_is_prime_fasttest(rnd,1,callback,ctx,cb_arg,0);
134 if (j == -1) goto err; 190 if (j == -1) goto err;
135 if (j == 0) goto loop; 191 if (j == 0) goto loop;
136 192
137 j=BN_is_prime(&t,1,callback,ctx,cb_arg); 193 j=BN_is_prime_fasttest(&t,1,callback,ctx,cb_arg,0);
138 if (j == -1) goto err; 194 if (j == -1) goto err;
139 if (j == 0) goto loop; 195 if (j == 0) goto loop;
140 196
141 if (callback != NULL) callback(2,c1-1,cb_arg); 197 if (callback != NULL) callback(2,c1-1,cb_arg);
142 /* We have a strong prime test pass */ 198 /* We have a safe prime test pass */
143 } 199 }
144 } 200 }
145 /* we have a prime :-) */ 201 /* we have a prime :-) */
146 ret=rnd; 202 found = 1;
147err: 203err:
148 if ((ret == NULL) && (rnd != NULL)) BN_free(rnd); 204 if (!found && (ret == NULL) && (rnd != NULL)) BN_free(rnd);
149 BN_free(&t); 205 BN_free(&t);
150 if (ctx != NULL) BN_CTX_free(ctx); 206 if (ctx != NULL) BN_CTX_free(ctx);
151 return(ret); 207 return(found ? rnd : NULL);
152 } 208 }
153 209
154int BN_is_prime(BIGNUM *a, int checks, void (*callback)(int,int,void *), 210int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int,int,void *),
155 BN_CTX *ctx_passed, void *cb_arg) 211 BN_CTX *ctx_passed, void *cb_arg)
156 { 212 {
157 int i,j,c2=0,ret= -1; 213 return BN_is_prime_fasttest(a, checks, callback, ctx_passed, cb_arg, 0);
158 BIGNUM *check; 214 }
159 BN_CTX *ctx=NULL,*ctx2=NULL;
160 BN_MONT_CTX *mont=NULL;
161 215
216int BN_is_prime_fasttest(const BIGNUM *a, int checks,
217 void (*callback)(int,int,void *),
218 BN_CTX *ctx_passed, void *cb_arg,
219 int do_trial_division)
220 {
221 int i, j, ret = -1;
222 int k;
223 BN_CTX *ctx = NULL;
224 BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
225 BN_MONT_CTX *mont = NULL;
226 const BIGNUM *A = NULL;
227
228 if (checks == BN_prime_checks)
229 checks = BN_prime_checks_for_size(BN_num_bits(a));
230
231 /* first look for small factors */
162 if (!BN_is_odd(a)) 232 if (!BN_is_odd(a))
163 return(0); 233 return(0);
234 if (do_trial_division)
235 {
236 for (i = 1; i < NUMPRIMES; i++)
237 if (BN_mod_word(a, primes[i]) == 0)
238 return 0;
239 if (callback != NULL) callback(1, -1, cb_arg);
240 }
241
164 if (ctx_passed != NULL) 242 if (ctx_passed != NULL)
165 ctx=ctx_passed; 243 ctx = ctx_passed;
166 else 244 else
167 if ((ctx=BN_CTX_new()) == NULL) goto err; 245 if ((ctx=BN_CTX_new()) == NULL)
168 246 goto err;
169 if ((ctx2=BN_CTX_new()) == NULL) goto err; 247 BN_CTX_start(ctx);
170 if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
171
172 check= &(ctx->bn[ctx->tos++]);
173 248
174 /* Setup the montgomery structure */ 249 /* A := abs(a) */
175 if (!BN_MONT_CTX_set(mont,a,ctx2)) goto err; 250 if (a->neg)
251 {
252 BIGNUM *t;
253 if ((t = BN_CTX_get(ctx)) == NULL) goto err;
254 BN_copy(t, a);
255 t->neg = 0;
256 A = t;
257 }
258 else
259 A = a;
260 A1 = BN_CTX_get(ctx);
261 A1_odd = BN_CTX_get(ctx);
262 check = BN_CTX_get(ctx);
263 if (check == NULL) goto err;
264
265 /* compute A1 := A - 1 */
266 if (!BN_copy(A1, A))
267 goto err;
268 if (!BN_sub_word(A1, 1))
269 goto err;
270 if (BN_is_zero(A1))
271 {
272 ret = 0;
273 goto err;
274 }
176 275
177 for (i=0; i<checks; i++) 276 /* write A1 as A1_odd * 2^k */
277 k = 1;
278 while (!BN_is_bit_set(A1, k))
279 k++;
280 if (!BN_rshift(A1_odd, A1, k))
281 goto err;
282
283 /* Montgomery setup for computations mod A */
284 mont = BN_MONT_CTX_new();
285 if (mont == NULL)
286 goto err;
287 if (!BN_MONT_CTX_set(mont, A, ctx))
288 goto err;
289
290 for (i = 0; i < checks; i++)
178 { 291 {
179 if (!BN_rand(check,BN_num_bits(a)-1,0,0)) goto err; 292 if (!BN_pseudo_rand(check, BN_num_bits(A1), 0, 0))
180 j=witness(check,a,ctx,ctx2,mont); 293 goto err;
294 if (BN_cmp(check, A1) >= 0)
295 if (!BN_sub(check, check, A1))
296 goto err;
297 if (!BN_add_word(check, 1))
298 goto err;
299 /* now 1 <= check < A */
300
301 j = witness(check, A, A1, A1_odd, k, ctx, mont);
181 if (j == -1) goto err; 302 if (j == -1) goto err;
182 if (j) 303 if (j)
183 { 304 {
184 ret=0; 305 ret=0;
185 goto err; 306 goto err;
186 } 307 }
187 if (callback != NULL) callback(1,c2++,cb_arg); 308 if (callback != NULL) callback(1,i,cb_arg);
188 } 309 }
189 ret=1; 310 ret=1;
190err: 311err:
191 ctx->tos--; 312 if (ctx != NULL)
192 if ((ctx_passed == NULL) && (ctx != NULL)) 313 {
193 BN_CTX_free(ctx); 314 BN_CTX_end(ctx);
194 if (ctx2 != NULL) 315 if (ctx_passed == NULL)
195 BN_CTX_free(ctx2); 316 BN_CTX_free(ctx);
196 if (mont != NULL) BN_MONT_CTX_free(mont); 317 }
197 318 if (mont != NULL)
319 BN_MONT_CTX_free(mont);
320
198 return(ret); 321 return(ret);
199 } 322 }
200 323
201#define RECP_MUL_MOD 324static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
202 325 const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont)
203static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx, BN_CTX *ctx2,
204 BN_MONT_CTX *mont)
205 { 326 {
206 int k,i,ret= -1,good; 327 if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
207 BIGNUM *d,*dd,*tmp,*d1,*d2,*n1; 328 return -1;
208 BIGNUM *mont_one,*mont_n1,*mont_a; 329 if (BN_is_one(w))
209 330 return 0; /* probably prime */
210 d1= &(ctx->bn[ctx->tos]); 331 if (BN_cmp(w, a1) == 0)
211 d2= &(ctx->bn[ctx->tos+1]); 332 return 0; /* w == -1 (mod a), 'a' is probably prime */
212 n1= &(ctx->bn[ctx->tos+2]); 333 while (--k)
213 ctx->tos+=3;
214
215 mont_one= &(ctx2->bn[ctx2->tos]);
216 mont_n1= &(ctx2->bn[ctx2->tos+1]);
217 mont_a= &(ctx2->bn[ctx2->tos+2]);
218 ctx2->tos+=3;
219
220 d=d1;
221 dd=d2;
222 if (!BN_one(d)) goto err;
223 if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */
224 k=BN_num_bits(n1);
225
226 if (!BN_to_montgomery(mont_one,BN_value_one(),mont,ctx2)) goto err;
227 if (!BN_to_montgomery(mont_n1,n1,mont,ctx2)) goto err;
228 if (!BN_to_montgomery(mont_a,a,mont,ctx2)) goto err;
229
230 BN_copy(d,mont_one);
231 for (i=k-1; i>=0; i--)
232 { 334 {
233 if ( (BN_cmp(d,mont_one) != 0) && 335 if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
234 (BN_cmp(d,mont_n1) != 0)) 336 return -1;
235 good=1; 337 if (BN_is_one(w))
236 else 338 return 1; /* 'a' is composite, otherwise a previous 'w' would
237 good=0; 339 * have been == -1 (mod 'a') */
238 340 if (BN_cmp(w, a1) == 0)
239 BN_mod_mul_montgomery(dd,d,d,mont,ctx2); 341 return 0; /* w == -1 (mod a), 'a' is probably prime */
240
241 if (good && (BN_cmp(dd,mont_one) == 0))
242 {
243 ret=1;
244 goto err;
245 }
246 if (BN_is_bit_set(n1,i))
247 {
248 BN_mod_mul_montgomery(d,dd,mont_a,mont,ctx2);
249 }
250 else
251 {
252 tmp=d;
253 d=dd;
254 dd=tmp;
255 }
256 } 342 }
257 if (BN_cmp(d,mont_one) == 0) 343 /* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
258 i=0; 344 * and it is neither -1 nor +1 -- so 'a' cannot be prime */
259 else i=1; 345 return 1;
260 ret=i;
261err:
262 ctx->tos-=3;
263 ctx2->tos-=3;
264 return(ret);
265 } 346 }
266 347
267static int probable_prime(BIGNUM *rnd, int bits) 348static int probable_prime(BIGNUM *rnd, int bits)
268 { 349 {
269 int i; 350 int i;
270 MS_STATIC BN_ULONG mods[NUMPRIMES]; 351 BN_ULONG mods[NUMPRIMES];
271 BN_ULONG delta,d; 352 BN_ULONG delta,d;
272 353
273again: 354again:
@@ -285,7 +366,7 @@ again:
285 d=delta; 366 d=delta;
286 delta+=2; 367 delta+=2;
287 /* perhaps need to check for overflow of 368 /* perhaps need to check for overflow of
288 * delta (but delta can be upto 2^32) 369 * delta (but delta can be up to 2^32)
289 * 21-May-98 eay - added overflow check */ 370 * 21-May-98 eay - added overflow check */
290 if (delta < d) goto again; 371 if (delta < d) goto again;
291 goto loop; 372 goto loop;
@@ -301,7 +382,8 @@ static int probable_prime_dh(BIGNUM *rnd, int bits, BIGNUM *add, BIGNUM *rem,
301 int i,ret=0; 382 int i,ret=0;
302 BIGNUM *t1; 383 BIGNUM *t1;
303 384
304 t1= &(ctx->bn[ctx->tos++]); 385 BN_CTX_start(ctx);
386 if ((t1 = BN_CTX_get(ctx)) == NULL) goto err;
305 387
306 if (!BN_rand(rnd,bits,0,1)) goto err; 388 if (!BN_rand(rnd,bits,0,1)) goto err;
307 389
@@ -327,20 +409,22 @@ static int probable_prime_dh(BIGNUM *rnd, int bits, BIGNUM *add, BIGNUM *rem,
327 } 409 }
328 ret=1; 410 ret=1;
329err: 411err:
330 ctx->tos--; 412 BN_CTX_end(ctx);
331 return(ret); 413 return(ret);
332 } 414 }
333 415
334static int probable_prime_dh_strong(BIGNUM *p, int bits, BIGNUM *padd, 416static int probable_prime_dh_safe(BIGNUM *p, int bits, BIGNUM *padd,
335 BIGNUM *rem, BN_CTX *ctx) 417 BIGNUM *rem, BN_CTX *ctx)
336 { 418 {
337 int i,ret=0; 419 int i,ret=0;
338 BIGNUM *t1,*qadd=NULL,*q=NULL; 420 BIGNUM *t1,*qadd,*q;
339 421
340 bits--; 422 bits--;
341 t1= &(ctx->bn[ctx->tos++]); 423 BN_CTX_start(ctx);
342 q= &(ctx->bn[ctx->tos++]); 424 t1 = BN_CTX_get(ctx);
343 qadd= &(ctx->bn[ctx->tos++]); 425 q = BN_CTX_get(ctx);
426 qadd = BN_CTX_get(ctx);
427 if (qadd == NULL) goto err;
344 428
345 if (!BN_rshift1(qadd,padd)) goto err; 429 if (!BN_rshift1(qadd,padd)) goto err;
346 430
@@ -376,72 +460,6 @@ static int probable_prime_dh_strong(BIGNUM *p, int bits, BIGNUM *padd,
376 } 460 }
377 ret=1; 461 ret=1;
378err: 462err:
379 ctx->tos-=3; 463 BN_CTX_end(ctx);
380 return(ret);
381 }
382
383#if 0
384static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx)
385 {
386 int k,i,nb,ret= -1;
387 BIGNUM *d,*dd,*tmp;
388 BIGNUM *d1,*d2,*x,*n1,*inv;
389
390 d1= &(ctx->bn[ctx->tos]);
391 d2= &(ctx->bn[ctx->tos+1]);
392 x= &(ctx->bn[ctx->tos+2]);
393 n1= &(ctx->bn[ctx->tos+3]);
394 inv=&(ctx->bn[ctx->tos+4]);
395 ctx->tos+=5;
396
397 d=d1;
398 dd=d2;
399 if (!BN_one(d)) goto err;
400 if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */
401 k=BN_num_bits(n1);
402
403 /* i=BN_num_bits(n); */
404#ifdef RECP_MUL_MOD
405 nb=BN_reciprocal(inv,n,ctx); /**/
406 if (nb == -1) goto err;
407#endif
408
409 for (i=k-1; i>=0; i--)
410 {
411 if (BN_copy(x,d) == NULL) goto err;
412#ifndef RECP_MUL_MOD
413 if (!BN_mod_mul(dd,d,d,n,ctx)) goto err;
414#else
415 if (!BN_mod_mul_reciprocal(dd,d,d,n,inv,nb,ctx)) goto err;
416#endif
417 if ( BN_is_one(dd) &&
418 !BN_is_one(x) &&
419 (BN_cmp(x,n1) != 0))
420 {
421 ret=1;
422 goto err;
423 }
424 if (BN_is_bit_set(n1,i))
425 {
426#ifndef RECP_MUL_MOD
427 if (!BN_mod_mul(d,dd,a,n,ctx)) goto err;
428#else
429 if (!BN_mod_mul_reciprocal(d,dd,a,n,inv,nb,ctx)) goto err;
430#endif
431 }
432 else
433 {
434 tmp=d;
435 d=dd;
436 dd=tmp;
437 }
438 }
439 if (BN_is_one(d))
440 i=0;
441 else i=1;
442 ret=i;
443err:
444 ctx->tos-=5;
445 return(ret); 464 return(ret);
446 } 465 }
447#endif