diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_gcd.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_gcd.c | 818 |
1 files changed, 0 insertions, 818 deletions
diff --git a/src/lib/libcrypto/bn/bn_gcd.c b/src/lib/libcrypto/bn/bn_gcd.c deleted file mode 100644 index fa5d71a7f3..0000000000 --- a/src/lib/libcrypto/bn/bn_gcd.c +++ /dev/null | |||
@@ -1,818 +0,0 @@ | |||
1 | /* $OpenBSD: bn_gcd.c,v 1.29 2024/04/10 14:58:06 beck Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include <openssl/err.h> | ||
113 | |||
114 | #include "bn_local.h" | ||
115 | |||
116 | static BIGNUM * | ||
117 | euclid(BIGNUM *a, BIGNUM *b) | ||
118 | { | ||
119 | BIGNUM *t; | ||
120 | int shifts = 0; | ||
121 | |||
122 | /* Loop invariant: 0 <= b <= a. */ | ||
123 | while (!BN_is_zero(b)) { | ||
124 | if (BN_is_odd(a) && BN_is_odd(b)) { | ||
125 | if (!BN_sub(a, a, b)) | ||
126 | goto err; | ||
127 | if (!BN_rshift1(a, a)) | ||
128 | goto err; | ||
129 | } else if (BN_is_odd(a) && !BN_is_odd(b)) { | ||
130 | if (!BN_rshift1(b, b)) | ||
131 | goto err; | ||
132 | } else if (!BN_is_odd(a) && BN_is_odd(b)) { | ||
133 | if (!BN_rshift1(a, a)) | ||
134 | goto err; | ||
135 | } else { | ||
136 | if (!BN_rshift1(a, a)) | ||
137 | goto err; | ||
138 | if (!BN_rshift1(b, b)) | ||
139 | goto err; | ||
140 | shifts++; | ||
141 | continue; | ||
142 | } | ||
143 | |||
144 | if (BN_cmp(a, b) < 0) { | ||
145 | t = a; | ||
146 | a = b; | ||
147 | b = t; | ||
148 | } | ||
149 | } | ||
150 | |||
151 | if (shifts) { | ||
152 | if (!BN_lshift(a, a, shifts)) | ||
153 | goto err; | ||
154 | } | ||
155 | |||
156 | return a; | ||
157 | |||
158 | err: | ||
159 | return NULL; | ||
160 | } | ||
161 | |||
162 | int | ||
163 | BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) | ||
164 | { | ||
165 | BIGNUM *a, *b, *t; | ||
166 | int ret = 0; | ||
167 | |||
168 | BN_CTX_start(ctx); | ||
169 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
170 | goto err; | ||
171 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
172 | goto err; | ||
173 | |||
174 | if (!bn_copy(a, in_a)) | ||
175 | goto err; | ||
176 | if (!bn_copy(b, in_b)) | ||
177 | goto err; | ||
178 | a->neg = 0; | ||
179 | b->neg = 0; | ||
180 | |||
181 | if (BN_cmp(a, b) < 0) { | ||
182 | t = a; | ||
183 | a = b; | ||
184 | b = t; | ||
185 | } | ||
186 | t = euclid(a, b); | ||
187 | if (t == NULL) | ||
188 | goto err; | ||
189 | |||
190 | if (!bn_copy(r, t)) | ||
191 | goto err; | ||
192 | ret = 1; | ||
193 | |||
194 | err: | ||
195 | BN_CTX_end(ctx); | ||
196 | return (ret); | ||
197 | } | ||
198 | LCRYPTO_ALIAS(BN_gcd); | ||
199 | |||
200 | /* | ||
201 | * BN_gcd_no_branch is a special version of BN_mod_inverse_no_branch. | ||
202 | * that returns the GCD. | ||
203 | */ | ||
204 | static BIGNUM * | ||
205 | BN_gcd_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, | ||
206 | BN_CTX *ctx) | ||
207 | { | ||
208 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; | ||
209 | BIGNUM local_A, local_B; | ||
210 | BIGNUM *pA, *pB; | ||
211 | BIGNUM *ret = NULL; | ||
212 | int sign; | ||
213 | |||
214 | if (in == NULL) | ||
215 | goto err; | ||
216 | R = in; | ||
217 | |||
218 | BN_init(&local_A); | ||
219 | BN_init(&local_B); | ||
220 | |||
221 | BN_CTX_start(ctx); | ||
222 | if ((A = BN_CTX_get(ctx)) == NULL) | ||
223 | goto err; | ||
224 | if ((B = BN_CTX_get(ctx)) == NULL) | ||
225 | goto err; | ||
226 | if ((X = BN_CTX_get(ctx)) == NULL) | ||
227 | goto err; | ||
228 | if ((D = BN_CTX_get(ctx)) == NULL) | ||
229 | goto err; | ||
230 | if ((M = BN_CTX_get(ctx)) == NULL) | ||
231 | goto err; | ||
232 | if ((Y = BN_CTX_get(ctx)) == NULL) | ||
233 | goto err; | ||
234 | if ((T = BN_CTX_get(ctx)) == NULL) | ||
235 | goto err; | ||
236 | |||
237 | if (!BN_one(X)) | ||
238 | goto err; | ||
239 | BN_zero(Y); | ||
240 | if (!bn_copy(B, a)) | ||
241 | goto err; | ||
242 | if (!bn_copy(A, n)) | ||
243 | goto err; | ||
244 | A->neg = 0; | ||
245 | |||
246 | if (B->neg || (BN_ucmp(B, A) >= 0)) { | ||
247 | /* | ||
248 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
249 | * BN_div_no_branch will be called eventually. | ||
250 | */ | ||
251 | pB = &local_B; | ||
252 | /* BN_init() done at the top of the function. */ | ||
253 | BN_with_flags(pB, B, BN_FLG_CONSTTIME); | ||
254 | if (!BN_nnmod(B, pB, A, ctx)) | ||
255 | goto err; | ||
256 | } | ||
257 | sign = -1; | ||
258 | /* From B = a mod |n|, A = |n| it follows that | ||
259 | * | ||
260 | * 0 <= B < A, | ||
261 | * -sign*X*a == B (mod |n|), | ||
262 | * sign*Y*a == A (mod |n|). | ||
263 | */ | ||
264 | |||
265 | while (!BN_is_zero(B)) { | ||
266 | BIGNUM *tmp; | ||
267 | |||
268 | /* | ||
269 | * 0 < B < A, | ||
270 | * (*) -sign*X*a == B (mod |n|), | ||
271 | * sign*Y*a == A (mod |n|) | ||
272 | */ | ||
273 | |||
274 | /* | ||
275 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
276 | * BN_div_no_branch will be called eventually. | ||
277 | */ | ||
278 | pA = &local_A; | ||
279 | /* BN_init() done at the top of the function. */ | ||
280 | BN_with_flags(pA, A, BN_FLG_CONSTTIME); | ||
281 | |||
282 | /* (D, M) := (A/B, A%B) ... */ | ||
283 | if (!BN_div_ct(D, M, pA, B, ctx)) | ||
284 | goto err; | ||
285 | |||
286 | /* Now | ||
287 | * A = D*B + M; | ||
288 | * thus we have | ||
289 | * (**) sign*Y*a == D*B + M (mod |n|). | ||
290 | */ | ||
291 | tmp = A; /* keep the BIGNUM object, the value does not matter */ | ||
292 | |||
293 | /* (A, B) := (B, A mod B) ... */ | ||
294 | A = B; | ||
295 | B = M; | ||
296 | /* ... so we have 0 <= B < A again */ | ||
297 | |||
298 | /* Since the former M is now B and the former B is now A, | ||
299 | * (**) translates into | ||
300 | * sign*Y*a == D*A + B (mod |n|), | ||
301 | * i.e. | ||
302 | * sign*Y*a - D*A == B (mod |n|). | ||
303 | * Similarly, (*) translates into | ||
304 | * -sign*X*a == A (mod |n|). | ||
305 | * | ||
306 | * Thus, | ||
307 | * sign*Y*a + D*sign*X*a == B (mod |n|), | ||
308 | * i.e. | ||
309 | * sign*(Y + D*X)*a == B (mod |n|). | ||
310 | * | ||
311 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | ||
312 | * -sign*X*a == B (mod |n|), | ||
313 | * sign*Y*a == A (mod |n|). | ||
314 | * Note that X and Y stay non-negative all the time. | ||
315 | */ | ||
316 | |||
317 | if (!BN_mul(tmp, D, X, ctx)) | ||
318 | goto err; | ||
319 | if (!BN_add(tmp, tmp, Y)) | ||
320 | goto err; | ||
321 | |||
322 | M = Y; /* keep the BIGNUM object, the value does not matter */ | ||
323 | Y = X; | ||
324 | X = tmp; | ||
325 | sign = -sign; | ||
326 | } | ||
327 | |||
328 | /* | ||
329 | * The while loop (Euclid's algorithm) ends when | ||
330 | * A == gcd(a,n); | ||
331 | */ | ||
332 | |||
333 | if (!bn_copy(R, A)) | ||
334 | goto err; | ||
335 | ret = R; | ||
336 | err: | ||
337 | if ((ret == NULL) && (in == NULL)) | ||
338 | BN_free(R); | ||
339 | BN_CTX_end(ctx); | ||
340 | return (ret); | ||
341 | } | ||
342 | |||
343 | int | ||
344 | BN_gcd_ct(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) | ||
345 | { | ||
346 | if (BN_gcd_no_branch(r, in_a, in_b, ctx) == NULL) | ||
347 | return 0; | ||
348 | return 1; | ||
349 | } | ||
350 | |||
351 | /* BN_mod_inverse_no_branch is a special version of BN_mod_inverse. | ||
352 | * It does not contain branches that may leak sensitive information. | ||
353 | */ | ||
354 | static BIGNUM * | ||
355 | BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, | ||
356 | BN_CTX *ctx) | ||
357 | { | ||
358 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; | ||
359 | BIGNUM local_A, local_B; | ||
360 | BIGNUM *pA, *pB; | ||
361 | BIGNUM *ret = NULL; | ||
362 | int sign; | ||
363 | |||
364 | BN_init(&local_A); | ||
365 | BN_init(&local_B); | ||
366 | |||
367 | BN_CTX_start(ctx); | ||
368 | if ((A = BN_CTX_get(ctx)) == NULL) | ||
369 | goto err; | ||
370 | if ((B = BN_CTX_get(ctx)) == NULL) | ||
371 | goto err; | ||
372 | if ((X = BN_CTX_get(ctx)) == NULL) | ||
373 | goto err; | ||
374 | if ((D = BN_CTX_get(ctx)) == NULL) | ||
375 | goto err; | ||
376 | if ((M = BN_CTX_get(ctx)) == NULL) | ||
377 | goto err; | ||
378 | if ((Y = BN_CTX_get(ctx)) == NULL) | ||
379 | goto err; | ||
380 | if ((T = BN_CTX_get(ctx)) == NULL) | ||
381 | goto err; | ||
382 | |||
383 | if (in == NULL) | ||
384 | R = BN_new(); | ||
385 | else | ||
386 | R = in; | ||
387 | if (R == NULL) | ||
388 | goto err; | ||
389 | |||
390 | if (!BN_one(X)) | ||
391 | goto err; | ||
392 | BN_zero(Y); | ||
393 | if (!bn_copy(B, a)) | ||
394 | goto err; | ||
395 | if (!bn_copy(A, n)) | ||
396 | goto err; | ||
397 | A->neg = 0; | ||
398 | |||
399 | if (B->neg || (BN_ucmp(B, A) >= 0)) { | ||
400 | /* | ||
401 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
402 | * BN_div_no_branch will be called eventually. | ||
403 | */ | ||
404 | pB = &local_B; | ||
405 | /* BN_init() done at the top of the function. */ | ||
406 | BN_with_flags(pB, B, BN_FLG_CONSTTIME); | ||
407 | if (!BN_nnmod(B, pB, A, ctx)) | ||
408 | goto err; | ||
409 | } | ||
410 | sign = -1; | ||
411 | /* From B = a mod |n|, A = |n| it follows that | ||
412 | * | ||
413 | * 0 <= B < A, | ||
414 | * -sign*X*a == B (mod |n|), | ||
415 | * sign*Y*a == A (mod |n|). | ||
416 | */ | ||
417 | |||
418 | while (!BN_is_zero(B)) { | ||
419 | BIGNUM *tmp; | ||
420 | |||
421 | /* | ||
422 | * 0 < B < A, | ||
423 | * (*) -sign*X*a == B (mod |n|), | ||
424 | * sign*Y*a == A (mod |n|) | ||
425 | */ | ||
426 | |||
427 | /* | ||
428 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
429 | * BN_div_no_branch will be called eventually. | ||
430 | */ | ||
431 | pA = &local_A; | ||
432 | /* BN_init() done at the top of the function. */ | ||
433 | BN_with_flags(pA, A, BN_FLG_CONSTTIME); | ||
434 | |||
435 | /* (D, M) := (A/B, A%B) ... */ | ||
436 | if (!BN_div_ct(D, M, pA, B, ctx)) | ||
437 | goto err; | ||
438 | |||
439 | /* Now | ||
440 | * A = D*B + M; | ||
441 | * thus we have | ||
442 | * (**) sign*Y*a == D*B + M (mod |n|). | ||
443 | */ | ||
444 | tmp = A; /* keep the BIGNUM object, the value does not matter */ | ||
445 | |||
446 | /* (A, B) := (B, A mod B) ... */ | ||
447 | A = B; | ||
448 | B = M; | ||
449 | /* ... so we have 0 <= B < A again */ | ||
450 | |||
451 | /* Since the former M is now B and the former B is now A, | ||
452 | * (**) translates into | ||
453 | * sign*Y*a == D*A + B (mod |n|), | ||
454 | * i.e. | ||
455 | * sign*Y*a - D*A == B (mod |n|). | ||
456 | * Similarly, (*) translates into | ||
457 | * -sign*X*a == A (mod |n|). | ||
458 | * | ||
459 | * Thus, | ||
460 | * sign*Y*a + D*sign*X*a == B (mod |n|), | ||
461 | * i.e. | ||
462 | * sign*(Y + D*X)*a == B (mod |n|). | ||
463 | * | ||
464 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | ||
465 | * -sign*X*a == B (mod |n|), | ||
466 | * sign*Y*a == A (mod |n|). | ||
467 | * Note that X and Y stay non-negative all the time. | ||
468 | */ | ||
469 | |||
470 | if (!BN_mul(tmp, D, X, ctx)) | ||
471 | goto err; | ||
472 | if (!BN_add(tmp, tmp, Y)) | ||
473 | goto err; | ||
474 | |||
475 | M = Y; /* keep the BIGNUM object, the value does not matter */ | ||
476 | Y = X; | ||
477 | X = tmp; | ||
478 | sign = -sign; | ||
479 | } | ||
480 | |||
481 | /* | ||
482 | * The while loop (Euclid's algorithm) ends when | ||
483 | * A == gcd(a,n); | ||
484 | * we have | ||
485 | * sign*Y*a == A (mod |n|), | ||
486 | * where Y is non-negative. | ||
487 | */ | ||
488 | |||
489 | if (sign < 0) { | ||
490 | if (!BN_sub(Y, n, Y)) | ||
491 | goto err; | ||
492 | } | ||
493 | /* Now Y*a == A (mod |n|). */ | ||
494 | |||
495 | if (!BN_is_one(A)) { | ||
496 | BNerror(BN_R_NO_INVERSE); | ||
497 | goto err; | ||
498 | } | ||
499 | |||
500 | if (!BN_nnmod(Y, Y, n, ctx)) | ||
501 | goto err; | ||
502 | if (!bn_copy(R, Y)) | ||
503 | goto err; | ||
504 | |||
505 | ret = R; | ||
506 | |||
507 | err: | ||
508 | if ((ret == NULL) && (in == NULL)) | ||
509 | BN_free(R); | ||
510 | BN_CTX_end(ctx); | ||
511 | return (ret); | ||
512 | } | ||
513 | |||
514 | /* solves ax == 1 (mod n) */ | ||
515 | static BIGNUM * | ||
516 | BN_mod_inverse_internal(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, | ||
517 | int ct) | ||
518 | { | ||
519 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; | ||
520 | BIGNUM *ret = NULL; | ||
521 | int sign; | ||
522 | |||
523 | if (ct) | ||
524 | return BN_mod_inverse_no_branch(in, a, n, ctx); | ||
525 | |||
526 | BN_CTX_start(ctx); | ||
527 | if ((A = BN_CTX_get(ctx)) == NULL) | ||
528 | goto err; | ||
529 | if ((B = BN_CTX_get(ctx)) == NULL) | ||
530 | goto err; | ||
531 | if ((X = BN_CTX_get(ctx)) == NULL) | ||
532 | goto err; | ||
533 | if ((D = BN_CTX_get(ctx)) == NULL) | ||
534 | goto err; | ||
535 | if ((M = BN_CTX_get(ctx)) == NULL) | ||
536 | goto err; | ||
537 | if ((Y = BN_CTX_get(ctx)) == NULL) | ||
538 | goto err; | ||
539 | if ((T = BN_CTX_get(ctx)) == NULL) | ||
540 | goto err; | ||
541 | |||
542 | if (in == NULL) | ||
543 | R = BN_new(); | ||
544 | else | ||
545 | R = in; | ||
546 | if (R == NULL) | ||
547 | goto err; | ||
548 | |||
549 | if (!BN_one(X)) | ||
550 | goto err; | ||
551 | BN_zero(Y); | ||
552 | if (!bn_copy(B, a)) | ||
553 | goto err; | ||
554 | if (!bn_copy(A, n)) | ||
555 | goto err; | ||
556 | A->neg = 0; | ||
557 | if (B->neg || (BN_ucmp(B, A) >= 0)) { | ||
558 | if (!BN_nnmod(B, B, A, ctx)) | ||
559 | goto err; | ||
560 | } | ||
561 | sign = -1; | ||
562 | /* From B = a mod |n|, A = |n| it follows that | ||
563 | * | ||
564 | * 0 <= B < A, | ||
565 | * -sign*X*a == B (mod |n|), | ||
566 | * sign*Y*a == A (mod |n|). | ||
567 | */ | ||
568 | |||
569 | if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) { | ||
570 | /* Binary inversion algorithm; requires odd modulus. | ||
571 | * This is faster than the general algorithm if the modulus | ||
572 | * is sufficiently small (about 400 .. 500 bits on 32-bit | ||
573 | * systems, but much more on 64-bit systems) */ | ||
574 | int shift; | ||
575 | |||
576 | while (!BN_is_zero(B)) { | ||
577 | /* | ||
578 | * 0 < B < |n|, | ||
579 | * 0 < A <= |n|, | ||
580 | * (1) -sign*X*a == B (mod |n|), | ||
581 | * (2) sign*Y*a == A (mod |n|) | ||
582 | */ | ||
583 | |||
584 | /* Now divide B by the maximum possible power of two in the integers, | ||
585 | * and divide X by the same value mod |n|. | ||
586 | * When we're done, (1) still holds. */ | ||
587 | shift = 0; | ||
588 | while (!BN_is_bit_set(B, shift)) /* note that 0 < B */ | ||
589 | { | ||
590 | shift++; | ||
591 | |||
592 | if (BN_is_odd(X)) { | ||
593 | if (!BN_uadd(X, X, n)) | ||
594 | goto err; | ||
595 | } | ||
596 | /* now X is even, so we can easily divide it by two */ | ||
597 | if (!BN_rshift1(X, X)) | ||
598 | goto err; | ||
599 | } | ||
600 | if (shift > 0) { | ||
601 | if (!BN_rshift(B, B, shift)) | ||
602 | goto err; | ||
603 | } | ||
604 | |||
605 | /* Same for A and Y. Afterwards, (2) still holds. */ | ||
606 | shift = 0; | ||
607 | while (!BN_is_bit_set(A, shift)) /* note that 0 < A */ | ||
608 | { | ||
609 | shift++; | ||
610 | |||
611 | if (BN_is_odd(Y)) { | ||
612 | if (!BN_uadd(Y, Y, n)) | ||
613 | goto err; | ||
614 | } | ||
615 | /* now Y is even */ | ||
616 | if (!BN_rshift1(Y, Y)) | ||
617 | goto err; | ||
618 | } | ||
619 | if (shift > 0) { | ||
620 | if (!BN_rshift(A, A, shift)) | ||
621 | goto err; | ||
622 | } | ||
623 | |||
624 | /* We still have (1) and (2). | ||
625 | * Both A and B are odd. | ||
626 | * The following computations ensure that | ||
627 | * | ||
628 | * 0 <= B < |n|, | ||
629 | * 0 < A < |n|, | ||
630 | * (1) -sign*X*a == B (mod |n|), | ||
631 | * (2) sign*Y*a == A (mod |n|), | ||
632 | * | ||
633 | * and that either A or B is even in the next iteration. | ||
634 | */ | ||
635 | if (BN_ucmp(B, A) >= 0) { | ||
636 | /* -sign*(X + Y)*a == B - A (mod |n|) */ | ||
637 | if (!BN_uadd(X, X, Y)) | ||
638 | goto err; | ||
639 | /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that | ||
640 | * actually makes the algorithm slower */ | ||
641 | if (!BN_usub(B, B, A)) | ||
642 | goto err; | ||
643 | } else { | ||
644 | /* sign*(X + Y)*a == A - B (mod |n|) */ | ||
645 | if (!BN_uadd(Y, Y, X)) | ||
646 | goto err; | ||
647 | /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */ | ||
648 | if (!BN_usub(A, A, B)) | ||
649 | goto err; | ||
650 | } | ||
651 | } | ||
652 | } else { | ||
653 | /* general inversion algorithm */ | ||
654 | |||
655 | while (!BN_is_zero(B)) { | ||
656 | BIGNUM *tmp; | ||
657 | |||
658 | /* | ||
659 | * 0 < B < A, | ||
660 | * (*) -sign*X*a == B (mod |n|), | ||
661 | * sign*Y*a == A (mod |n|) | ||
662 | */ | ||
663 | |||
664 | /* (D, M) := (A/B, A%B) ... */ | ||
665 | if (BN_num_bits(A) == BN_num_bits(B)) { | ||
666 | if (!BN_one(D)) | ||
667 | goto err; | ||
668 | if (!BN_sub(M, A, B)) | ||
669 | goto err; | ||
670 | } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { | ||
671 | /* A/B is 1, 2, or 3 */ | ||
672 | if (!BN_lshift1(T, B)) | ||
673 | goto err; | ||
674 | if (BN_ucmp(A, T) < 0) { | ||
675 | /* A < 2*B, so D=1 */ | ||
676 | if (!BN_one(D)) | ||
677 | goto err; | ||
678 | if (!BN_sub(M, A, B)) | ||
679 | goto err; | ||
680 | } else { | ||
681 | /* A >= 2*B, so D=2 or D=3 */ | ||
682 | if (!BN_sub(M, A, T)) | ||
683 | goto err; | ||
684 | if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */ | ||
685 | if (BN_ucmp(A, D) < 0) { | ||
686 | /* A < 3*B, so D=2 */ | ||
687 | if (!BN_set_word(D, 2)) | ||
688 | goto err; | ||
689 | /* M (= A - 2*B) already has the correct value */ | ||
690 | } else { | ||
691 | /* only D=3 remains */ | ||
692 | if (!BN_set_word(D, 3)) | ||
693 | goto err; | ||
694 | /* currently M = A - 2*B, but we need M = A - 3*B */ | ||
695 | if (!BN_sub(M, M, B)) | ||
696 | goto err; | ||
697 | } | ||
698 | } | ||
699 | } else { | ||
700 | if (!BN_div_nonct(D, M, A, B, ctx)) | ||
701 | goto err; | ||
702 | } | ||
703 | |||
704 | /* Now | ||
705 | * A = D*B + M; | ||
706 | * thus we have | ||
707 | * (**) sign*Y*a == D*B + M (mod |n|). | ||
708 | */ | ||
709 | tmp = A; /* keep the BIGNUM object, the value does not matter */ | ||
710 | |||
711 | /* (A, B) := (B, A mod B) ... */ | ||
712 | A = B; | ||
713 | B = M; | ||
714 | /* ... so we have 0 <= B < A again */ | ||
715 | |||
716 | /* Since the former M is now B and the former B is now A, | ||
717 | * (**) translates into | ||
718 | * sign*Y*a == D*A + B (mod |n|), | ||
719 | * i.e. | ||
720 | * sign*Y*a - D*A == B (mod |n|). | ||
721 | * Similarly, (*) translates into | ||
722 | * -sign*X*a == A (mod |n|). | ||
723 | * | ||
724 | * Thus, | ||
725 | * sign*Y*a + D*sign*X*a == B (mod |n|), | ||
726 | * i.e. | ||
727 | * sign*(Y + D*X)*a == B (mod |n|). | ||
728 | * | ||
729 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | ||
730 | * -sign*X*a == B (mod |n|), | ||
731 | * sign*Y*a == A (mod |n|). | ||
732 | * Note that X and Y stay non-negative all the time. | ||
733 | */ | ||
734 | |||
735 | /* most of the time D is very small, so we can optimize tmp := D*X+Y */ | ||
736 | if (BN_is_one(D)) { | ||
737 | if (!BN_add(tmp, X, Y)) | ||
738 | goto err; | ||
739 | } else { | ||
740 | if (BN_is_word(D, 2)) { | ||
741 | if (!BN_lshift1(tmp, X)) | ||
742 | goto err; | ||
743 | } else if (BN_is_word(D, 4)) { | ||
744 | if (!BN_lshift(tmp, X, 2)) | ||
745 | goto err; | ||
746 | } else if (D->top == 1) { | ||
747 | if (!bn_copy(tmp, X)) | ||
748 | goto err; | ||
749 | if (!BN_mul_word(tmp, D->d[0])) | ||
750 | goto err; | ||
751 | } else { | ||
752 | if (!BN_mul(tmp, D,X, ctx)) | ||
753 | goto err; | ||
754 | } | ||
755 | if (!BN_add(tmp, tmp, Y)) | ||
756 | goto err; | ||
757 | } | ||
758 | |||
759 | M = Y; /* keep the BIGNUM object, the value does not matter */ | ||
760 | Y = X; | ||
761 | X = tmp; | ||
762 | sign = -sign; | ||
763 | } | ||
764 | } | ||
765 | |||
766 | /* | ||
767 | * The while loop (Euclid's algorithm) ends when | ||
768 | * A == gcd(a,n); | ||
769 | * we have | ||
770 | * sign*Y*a == A (mod |n|), | ||
771 | * where Y is non-negative. | ||
772 | */ | ||
773 | |||
774 | if (sign < 0) { | ||
775 | if (!BN_sub(Y, n, Y)) | ||
776 | goto err; | ||
777 | } | ||
778 | /* Now Y*a == A (mod |n|). */ | ||
779 | |||
780 | if (!BN_is_one(A)) { | ||
781 | BNerror(BN_R_NO_INVERSE); | ||
782 | goto err; | ||
783 | } | ||
784 | |||
785 | if (!BN_nnmod(Y, Y, n, ctx)) | ||
786 | goto err; | ||
787 | if (!bn_copy(R, Y)) | ||
788 | goto err; | ||
789 | |||
790 | ret = R; | ||
791 | |||
792 | err: | ||
793 | if ((ret == NULL) && (in == NULL)) | ||
794 | BN_free(R); | ||
795 | BN_CTX_end(ctx); | ||
796 | return (ret); | ||
797 | } | ||
798 | |||
799 | BIGNUM * | ||
800 | BN_mod_inverse(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
801 | { | ||
802 | int ct = ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || | ||
803 | (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)); | ||
804 | return BN_mod_inverse_internal(in, a, n, ctx, ct); | ||
805 | } | ||
806 | LCRYPTO_ALIAS(BN_mod_inverse); | ||
807 | |||
808 | BIGNUM * | ||
809 | BN_mod_inverse_nonct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
810 | { | ||
811 | return BN_mod_inverse_internal(in, a, n, ctx, 0); | ||
812 | } | ||
813 | |||
814 | BIGNUM * | ||
815 | BN_mod_inverse_ct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
816 | { | ||
817 | return BN_mod_inverse_internal(in, a, n, ctx, 1); | ||
818 | } | ||