diff options
Diffstat (limited to 'src/lib/libcrypto/bn')
70 files changed, 0 insertions, 27798 deletions
diff --git a/src/lib/libcrypto/bn/arch/aarch64/bn_arch.h b/src/lib/libcrypto/bn/arch/aarch64/bn_arch.h deleted file mode 100644 index fe6f8a3aea..0000000000 --- a/src/lib/libcrypto/bn/arch/aarch64/bn_arch.h +++ /dev/null | |||
@@ -1,369 +0,0 @@ | |||
1 | /* $OpenBSD: bn_arch.h,v 1.13 2023/07/24 10:21:29 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #include <openssl/bn.h> | ||
19 | |||
20 | #ifndef HEADER_BN_ARCH_H | ||
21 | #define HEADER_BN_ARCH_H | ||
22 | |||
23 | #ifndef OPENSSL_NO_ASM | ||
24 | |||
25 | #if defined(__GNUC__) | ||
26 | |||
27 | #define HAVE_BN_CLZW | ||
28 | |||
29 | static inline int | ||
30 | bn_clzw(BN_ULONG w) | ||
31 | { | ||
32 | BN_ULONG n; | ||
33 | |||
34 | __asm__ ("clz %[n], %[w]" | ||
35 | : [n]"=r"(n) | ||
36 | : [w]"r"(w)); | ||
37 | |||
38 | return n; | ||
39 | } | ||
40 | |||
41 | #define HAVE_BN_ADDW | ||
42 | |||
43 | static inline void | ||
44 | bn_addw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
45 | { | ||
46 | BN_ULONG carry, r0; | ||
47 | |||
48 | __asm__ ( | ||
49 | "adds %[r0], %[a], %[b] \n" | ||
50 | "cset %[carry], cs \n" | ||
51 | : [carry]"=r"(carry), [r0]"=r"(r0) | ||
52 | : [a]"r"(a), [b]"r"(b) | ||
53 | : "cc"); | ||
54 | |||
55 | *out_r1 = carry; | ||
56 | *out_r0 = r0; | ||
57 | } | ||
58 | |||
59 | #define HAVE_BN_ADDW_ADDW | ||
60 | |||
61 | static inline void | ||
62 | bn_addw_addw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG *out_r1, | ||
63 | BN_ULONG *out_r0) | ||
64 | { | ||
65 | BN_ULONG carry, r0; | ||
66 | |||
67 | __asm__ ( | ||
68 | "adds %[r0], %[a], %[b] \n" | ||
69 | "cset %[carry], cs \n" | ||
70 | "adds %[r0], %[r0], %[c] \n" | ||
71 | "cinc %[carry], %[carry], cs \n" | ||
72 | : [carry]"=&r"(carry), [r0]"=&r"(r0) | ||
73 | : [a]"r"(a), [b]"r"(b), [c]"r"(c) | ||
74 | : "cc"); | ||
75 | |||
76 | *out_r1 = carry; | ||
77 | *out_r0 = r0; | ||
78 | } | ||
79 | |||
80 | #define HAVE_BN_QWADDQW | ||
81 | |||
82 | static inline void | ||
83 | bn_qwaddqw(BN_ULONG a3, BN_ULONG a2, BN_ULONG a1, BN_ULONG a0, BN_ULONG b3, | ||
84 | BN_ULONG b2, BN_ULONG b1, BN_ULONG b0, BN_ULONG carry, BN_ULONG *out_carry, | ||
85 | BN_ULONG *out_r3, BN_ULONG *out_r2, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
86 | { | ||
87 | BN_ULONG r3, r2, r1, r0; | ||
88 | |||
89 | __asm__ ( | ||
90 | "adds xzr, %[carry], #-1 \n" | ||
91 | "adcs %[r0], %[a0], %[b0] \n" | ||
92 | "adcs %[r1], %[a1], %[b1] \n" | ||
93 | "adcs %[r2], %[a2], %[b2] \n" | ||
94 | "adcs %[r3], %[a3], %[b3] \n" | ||
95 | "cset %[carry], cs \n" | ||
96 | : [carry]"+r"(carry), [r3]"=&r"(r3), [r2]"=&r"(r2), | ||
97 | [r1]"=&r"(r1), [r0]"=&r"(r0) | ||
98 | : [a3]"r"(a3), [a2]"r"(a2), [a1]"r"(a1), [a0]"r"(a0), | ||
99 | [b3]"r"(b3), [b2]"r"(b2), [b1]"r"(b1), [b0]"r"(b0) | ||
100 | : "cc"); | ||
101 | |||
102 | *out_carry = carry; | ||
103 | *out_r3 = r3; | ||
104 | *out_r2 = r2; | ||
105 | *out_r1 = r1; | ||
106 | *out_r0 = r0; | ||
107 | } | ||
108 | |||
109 | #define HAVE_BN_MULW | ||
110 | |||
111 | static inline void | ||
112 | bn_mulw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
113 | { | ||
114 | BN_ULONG r1, r0; | ||
115 | |||
116 | /* Unsigned multiplication using a umulh/mul pair. */ | ||
117 | __asm__ ( | ||
118 | "umulh %[r1], %[a], %[b] \n" | ||
119 | "mul %[r0], %[a], %[b] \n" | ||
120 | : [r1]"=&r"(r1), [r0]"=r"(r0) | ||
121 | : [a]"r"(a), [b]"r"(b)); | ||
122 | |||
123 | *out_r1 = r1; | ||
124 | *out_r0 = r0; | ||
125 | } | ||
126 | |||
127 | #define HAVE_BN_MULW_ADDW | ||
128 | |||
129 | static inline void | ||
130 | bn_mulw_addw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG *out_r1, | ||
131 | BN_ULONG *out_r0) | ||
132 | { | ||
133 | BN_ULONG r1, r0; | ||
134 | |||
135 | __asm__ ( | ||
136 | "umulh %[r1], %[a], %[b] \n" | ||
137 | "mul %[r0], %[a], %[b] \n" | ||
138 | "adds %[r0], %[r0], %[c] \n" | ||
139 | "adc %[r1], %[r1], xzr \n" | ||
140 | : [r1]"=&r"(r1), [r0]"=&r"(r0) | ||
141 | : [a]"r"(a), [b]"r"(b), [c]"r"(c) | ||
142 | : "cc"); | ||
143 | |||
144 | *out_r1 = r1; | ||
145 | *out_r0 = r0; | ||
146 | } | ||
147 | |||
148 | #define HAVE_BN_MULW_ADDW_ADDW | ||
149 | |||
150 | static inline void | ||
151 | bn_mulw_addw_addw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG d, | ||
152 | BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
153 | { | ||
154 | BN_ULONG r1, r0; | ||
155 | |||
156 | __asm__ ( | ||
157 | "umulh %[r1], %[a], %[b] \n" | ||
158 | "mul %[r0], %[a], %[b] \n" | ||
159 | "adds %[r0], %[r0], %[c] \n" | ||
160 | "adc %[r1], %[r1], xzr \n" | ||
161 | "adds %[r0], %[r0], %[d] \n" | ||
162 | "adc %[r1], %[r1], xzr \n" | ||
163 | : [r1]"=&r"(r1), [r0]"=&r"(r0) | ||
164 | : [a]"r"(a), [b]"r"(b), [c]"r"(c), [d]"r"(d) | ||
165 | : "cc"); | ||
166 | |||
167 | *out_r1 = r1; | ||
168 | *out_r0 = r0; | ||
169 | } | ||
170 | |||
171 | #define HAVE_BN_MULW_ADDTW | ||
172 | |||
173 | static inline void | ||
174 | bn_mulw_addtw(BN_ULONG a, BN_ULONG b, BN_ULONG c2, BN_ULONG c1, BN_ULONG c0, | ||
175 | BN_ULONG *out_r2, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
176 | { | ||
177 | BN_ULONG r2, r1, r0; | ||
178 | |||
179 | __asm__ ( | ||
180 | "umulh %[r1], %[a], %[b] \n" | ||
181 | "mul %[r0], %[a], %[b] \n" | ||
182 | "adds %[r0], %[r0], %[c0] \n" | ||
183 | "adcs %[r1], %[r1], %[c1] \n" | ||
184 | "adc %[r2], xzr, %[c2] \n" | ||
185 | : [r2]"=&r"(r2), [r1]"=&r"(r1), [r0]"=&r"(r0) | ||
186 | : [a]"r"(a), [b]"r"(b), [c2]"r"(c2), [c1]"r"(c1), [c0]"r"(c0) | ||
187 | : "cc"); | ||
188 | |||
189 | *out_r2 = r2; | ||
190 | *out_r1 = r1; | ||
191 | *out_r0 = r0; | ||
192 | } | ||
193 | |||
194 | #define HAVE_BN_MUL2_MULW_ADDTW | ||
195 | |||
196 | static inline void | ||
197 | bn_mul2_mulw_addtw(BN_ULONG a, BN_ULONG b, BN_ULONG c2, BN_ULONG c1, BN_ULONG c0, | ||
198 | BN_ULONG *out_r2, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
199 | { | ||
200 | BN_ULONG r2, r1, r0, x1, x0; | ||
201 | |||
202 | __asm__ ( | ||
203 | "umulh %[x1], %[a], %[b] \n" | ||
204 | "mul %[x0], %[a], %[b] \n" | ||
205 | "adds %[r0], %[c0], %[x0] \n" | ||
206 | "adcs %[r1], %[c1], %[x1] \n" | ||
207 | "adc %[r2], xzr, %[c2] \n" | ||
208 | "adds %[r0], %[r0], %[x0] \n" | ||
209 | "adcs %[r1], %[r1], %[x1] \n" | ||
210 | "adc %[r2], xzr, %[r2] \n" | ||
211 | : [r2]"=&r"(r2), [r1]"=&r"(r1), [r0]"=&r"(r0), [x1]"=&r"(x1), | ||
212 | [x0]"=&r"(x0) | ||
213 | : [a]"r"(a), [b]"r"(b), [c2]"r"(c2), [c1]"r"(c1), [c0]"r"(c0) | ||
214 | : "cc"); | ||
215 | |||
216 | *out_r2 = r2; | ||
217 | *out_r1 = r1; | ||
218 | *out_r0 = r0; | ||
219 | } | ||
220 | |||
221 | #define HAVE_BN_QWMULW_ADDW | ||
222 | |||
223 | static inline void | ||
224 | bn_qwmulw_addw(BN_ULONG a3, BN_ULONG a2, BN_ULONG a1, BN_ULONG a0, BN_ULONG b, | ||
225 | BN_ULONG c, BN_ULONG *out_r4, BN_ULONG *out_r3, BN_ULONG *out_r2, | ||
226 | BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
227 | { | ||
228 | BN_ULONG r4, r3, r2, r1, r0; | ||
229 | |||
230 | __asm__ ( | ||
231 | "umulh %[r1], %[a0], %[b] \n" | ||
232 | "mul %[r0], %[a0], %[b] \n" | ||
233 | "adds %[r0], %[r0], %[c] \n" | ||
234 | "umulh %[r2], %[a1], %[b] \n" | ||
235 | "mul %[c], %[a1], %[b] \n" | ||
236 | "adcs %[r1], %[r1], %[c] \n" | ||
237 | "umulh %[r3], %[a2], %[b] \n" | ||
238 | "mul %[c], %[a2], %[b] \n" | ||
239 | "adcs %[r2], %[r2], %[c] \n" | ||
240 | "umulh %[r4], %[a3], %[b] \n" | ||
241 | "mul %[c], %[a3], %[b] \n" | ||
242 | "adcs %[r3], %[r3], %[c] \n" | ||
243 | "adc %[r4], %[r4], xzr \n" | ||
244 | : [c]"+&r"(c), [r4]"=&r"(r4), [r3]"=&r"(r3), [r2]"=&r"(r2), | ||
245 | [r1]"=&r"(r1), [r0]"=&r"(r0) | ||
246 | : [a3]"r"(a3), [a2]"r"(a2), [a1]"r"(a1), [a0]"r"(a0), [b]"r"(b) | ||
247 | : "cc"); | ||
248 | |||
249 | *out_r4 = r4; | ||
250 | *out_r3 = r3; | ||
251 | *out_r2 = r2; | ||
252 | *out_r1 = r1; | ||
253 | *out_r0 = r0; | ||
254 | } | ||
255 | |||
256 | #define HAVE_BN_QWMULW_ADDQW_ADDW | ||
257 | |||
258 | static inline void | ||
259 | bn_qwmulw_addqw_addw(BN_ULONG a3, BN_ULONG a2, BN_ULONG a1, BN_ULONG a0, | ||
260 | BN_ULONG b, BN_ULONG c3, BN_ULONG c2, BN_ULONG c1, BN_ULONG c0, BN_ULONG d, | ||
261 | BN_ULONG *out_r4, BN_ULONG *out_r3, BN_ULONG *out_r2, BN_ULONG *out_r1, | ||
262 | BN_ULONG *out_r0) | ||
263 | { | ||
264 | BN_ULONG r4, r3, r2, r1, r0; | ||
265 | |||
266 | __asm__ ( | ||
267 | "umulh %[r1], %[a0], %[b] \n" | ||
268 | "mul %[r0], %[a0], %[b] \n" | ||
269 | "adds %[r0], %[r0], %[d] \n" | ||
270 | "umulh %[r2], %[a1], %[b] \n" | ||
271 | "mul %[d], %[a1], %[b] \n" | ||
272 | "adcs %[r1], %[r1], %[d] \n" | ||
273 | "umulh %[r3], %[a2], %[b] \n" | ||
274 | "mul %[d], %[a2], %[b] \n" | ||
275 | "adcs %[r2], %[r2], %[d] \n" | ||
276 | "umulh %[r4], %[a3], %[b] \n" | ||
277 | "mul %[d], %[a3], %[b] \n" | ||
278 | "adcs %[r3], %[r3], %[d] \n" | ||
279 | "adc %[r4], %[r4], xzr \n" | ||
280 | "adds %[r0], %[r0], %[c0] \n" | ||
281 | "adcs %[r1], %[r1], %[c1] \n" | ||
282 | "adcs %[r2], %[r2], %[c2] \n" | ||
283 | "adcs %[r3], %[r3], %[c3] \n" | ||
284 | "adc %[r4], %[r4], xzr \n" | ||
285 | : [d]"+&r"(d), [r4]"=&r"(r4), [r3]"=&r"(r3), [r2]"=&r"(r2), | ||
286 | [r1]"=&r"(r1), [r0]"=&r"(r0) | ||
287 | : [a3]"r"(a3), [a2]"r"(a2), [a1]"r"(a1), [a0]"r"(a0), [b]"r"(b), | ||
288 | [c3]"r"(c3), [c2]"r"(c2), [c1]"r"(c1), [c0]"r"(c0) | ||
289 | : "cc"); | ||
290 | |||
291 | *out_r4 = r4; | ||
292 | *out_r3 = r3; | ||
293 | *out_r2 = r2; | ||
294 | *out_r1 = r1; | ||
295 | *out_r0 = r0; | ||
296 | } | ||
297 | |||
298 | #define HAVE_BN_SUBW | ||
299 | |||
300 | static inline void | ||
301 | bn_subw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_borrow, BN_ULONG *out_r0) | ||
302 | { | ||
303 | BN_ULONG borrow, r0; | ||
304 | |||
305 | __asm__ ( | ||
306 | "subs %[r0], %[a], %[b] \n" | ||
307 | "cset %[borrow], cc \n" | ||
308 | : [borrow]"=r"(borrow), [r0]"=r"(r0) | ||
309 | : [a]"r"(a), [b]"r"(b) | ||
310 | : "cc"); | ||
311 | |||
312 | *out_borrow = borrow; | ||
313 | *out_r0 = r0; | ||
314 | } | ||
315 | |||
316 | #define HAVE_BN_SUBW_SUBW | ||
317 | |||
318 | static inline void | ||
319 | bn_subw_subw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG *out_borrow, | ||
320 | BN_ULONG *out_r0) | ||
321 | { | ||
322 | BN_ULONG borrow, r0; | ||
323 | |||
324 | __asm__ ( | ||
325 | "subs %[r0], %[a], %[b] \n" | ||
326 | "cset %[borrow], cc \n" | ||
327 | "subs %[r0], %[r0], %[c] \n" | ||
328 | "cinc %[borrow], %[borrow], cc \n" | ||
329 | : [borrow]"=&r"(borrow), [r0]"=&r"(r0) | ||
330 | : [a]"r"(a), [b]"r"(b), [c]"r"(c) | ||
331 | : "cc"); | ||
332 | |||
333 | *out_borrow = borrow; | ||
334 | *out_r0 = r0; | ||
335 | } | ||
336 | |||
337 | #define HAVE_BN_QWSUBQW | ||
338 | |||
339 | static inline void | ||
340 | bn_qwsubqw(BN_ULONG a3, BN_ULONG a2, BN_ULONG a1, BN_ULONG a0, BN_ULONG b3, | ||
341 | BN_ULONG b2, BN_ULONG b1, BN_ULONG b0, BN_ULONG borrow, BN_ULONG *out_borrow, | ||
342 | BN_ULONG *out_r3, BN_ULONG *out_r2, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
343 | { | ||
344 | BN_ULONG r3, r2, r1, r0; | ||
345 | |||
346 | __asm__ ( | ||
347 | "subs xzr, xzr, %[borrow] \n" | ||
348 | "sbcs %[r0], %[a0], %[b0] \n" | ||
349 | "sbcs %[r1], %[a1], %[b1] \n" | ||
350 | "sbcs %[r2], %[a2], %[b2] \n" | ||
351 | "sbcs %[r3], %[a3], %[b3] \n" | ||
352 | "cset %[borrow], cc \n" | ||
353 | : [borrow]"+r"(borrow), [r3]"=&r"(r3), [r2]"=&r"(r2), | ||
354 | [r1]"=&r"(r1), [r0]"=&r"(r0) | ||
355 | : [a3]"r"(a3), [a2]"r"(a2), [a1]"r"(a1), [a0]"r"(a0), | ||
356 | [b3]"r"(b3), [b2]"r"(b2), [b1]"r"(b1), [b0]"r"(b0) | ||
357 | : "cc"); | ||
358 | |||
359 | *out_borrow = borrow; | ||
360 | *out_r3 = r3; | ||
361 | *out_r2 = r2; | ||
362 | *out_r1 = r1; | ||
363 | *out_r0 = r0; | ||
364 | } | ||
365 | |||
366 | #endif /* __GNUC__ */ | ||
367 | |||
368 | #endif | ||
369 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/alpha/bn_arch.h b/src/lib/libcrypto/bn/arch/alpha/bn_arch.h deleted file mode 100644 index 5bf4ba8722..0000000000 --- a/src/lib/libcrypto/bn/arch/alpha/bn_arch.h +++ /dev/null | |||
@@ -1,44 +0,0 @@ | |||
1 | /* $OpenBSD: bn_arch.h,v 1.4 2023/02/16 10:41:03 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #ifndef HEADER_BN_ARCH_H | ||
19 | #define HEADER_BN_ARCH_H | ||
20 | |||
21 | #ifndef OPENSSL_NO_ASM | ||
22 | |||
23 | #if 0 /* Needs testing and enabling. */ | ||
24 | #if defined(__GNUC__) | ||
25 | #define HAVE_BN_MULW | ||
26 | |||
27 | static inline void | ||
28 | bn_mulw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
29 | { | ||
30 | BN_ULONG r1, r0; | ||
31 | |||
32 | /* Unsigned multiplication using a umulh/mulq pair. */ | ||
33 | __asm__ ("umulh %2, %3, %0; mulq %2, %3, %1" | ||
34 | : "=&r"(r1), "=r"(r0) | ||
35 | : "r"(a), "r"(b)); | ||
36 | |||
37 | *out_r1 = r1; | ||
38 | *out_r0 = r0; | ||
39 | } | ||
40 | #endif /* __GNUC__ */ | ||
41 | #endif | ||
42 | |||
43 | #endif | ||
44 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/amd64/bignum_add.S b/src/lib/libcrypto/bn/arch/amd64/bignum_add.S deleted file mode 100644 index 5fe4aae7a1..0000000000 --- a/src/lib/libcrypto/bn/arch/amd64/bignum_add.S +++ /dev/null | |||
@@ -1,165 +0,0 @@ | |||
1 | // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
2 | // | ||
3 | // Permission to use, copy, modify, and/or distribute this software for any | ||
4 | // purpose with or without fee is hereby granted, provided that the above | ||
5 | // copyright notice and this permission notice appear in all copies. | ||
6 | // | ||
7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
10 | // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
12 | // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
13 | // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
14 | |||
15 | // ---------------------------------------------------------------------------- | ||
16 | // Add, z := x + y | ||
17 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[p] | ||
18 | // | ||
19 | // extern uint64_t bignum_add | ||
20 | // (uint64_t p, uint64_t *z, | ||
21 | // uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
22 | // | ||
23 | // Does the z := x + y operation, truncating modulo p words in general and | ||
24 | // returning a top carry (0 or 1) in the p'th place, only adding the input | ||
25 | // words below p (as well as m and n respectively) to get the sum and carry. | ||
26 | // | ||
27 | // Standard x86-64 ABI: RDI = p, RSI = z, RDX = m, RCX = x, R8 = n, R9 = y, returns RAX | ||
28 | // Microsoft x64 ABI: RCX = p, RDX = z, R8 = m, R9 = x, [RSP+40] = n, [RSP+48] = y, returns RAX | ||
29 | // ---------------------------------------------------------------------------- | ||
30 | |||
31 | #include "s2n_bignum_internal.h" | ||
32 | |||
33 | .intel_syntax noprefix | ||
34 | S2N_BN_SYM_VISIBILITY_DIRECTIVE(bignum_add) | ||
35 | S2N_BN_SYM_PRIVACY_DIRECTIVE(bignum_add) | ||
36 | .text | ||
37 | |||
38 | #define p rdi | ||
39 | #define z rsi | ||
40 | #define m rdx | ||
41 | #define x rcx | ||
42 | #define n r8 | ||
43 | #define y r9 | ||
44 | #define i r10 | ||
45 | #define a rax | ||
46 | |||
47 | #define ashort eax | ||
48 | |||
49 | |||
50 | |||
51 | S2N_BN_SYMBOL(bignum_add): | ||
52 | _CET_ENDBR | ||
53 | |||
54 | #if WINDOWS_ABI | ||
55 | push rdi | ||
56 | push rsi | ||
57 | mov rdi, rcx | ||
58 | mov rsi, rdx | ||
59 | mov rdx, r8 | ||
60 | mov rcx, r9 | ||
61 | mov r8, [rsp+56] | ||
62 | mov r9, [rsp+64] | ||
63 | #endif | ||
64 | |||
65 | // Zero the main index counter for both branches | ||
66 | |||
67 | xor i, i | ||
68 | |||
69 | // First clamp the two input sizes m := min(p,m) and n := min(p,n) since | ||
70 | // we'll never need words past the p'th. Can now assume m <= p and n <= p. | ||
71 | // Then compare the modified m and n and branch accordingly | ||
72 | |||
73 | cmp p, m | ||
74 | cmovc m, p | ||
75 | cmp p, n | ||
76 | cmovc n, p | ||
77 | cmp m, n | ||
78 | jc ylonger | ||
79 | |||
80 | // The case where x is longer or of the same size (p >= m >= n) | ||
81 | |||
82 | sub p, m | ||
83 | sub m, n | ||
84 | inc m | ||
85 | test n, n | ||
86 | jz xtest | ||
87 | xmainloop: | ||
88 | mov a, [x+8*i] | ||
89 | adc a, [y+8*i] | ||
90 | mov [z+8*i],a | ||
91 | inc i | ||
92 | dec n | ||
93 | jnz xmainloop | ||
94 | jmp xtest | ||
95 | xtoploop: | ||
96 | mov a, [x+8*i] | ||
97 | adc a, 0 | ||
98 | mov [z+8*i],a | ||
99 | inc i | ||
100 | xtest: | ||
101 | dec m | ||
102 | jnz xtoploop | ||
103 | mov ashort, 0 | ||
104 | adc a, 0 | ||
105 | test p, p | ||
106 | jnz tails | ||
107 | #if WINDOWS_ABI | ||
108 | pop rsi | ||
109 | pop rdi | ||
110 | #endif | ||
111 | ret | ||
112 | |||
113 | // The case where y is longer (p >= n > m) | ||
114 | |||
115 | ylonger: | ||
116 | |||
117 | sub p, n | ||
118 | sub n, m | ||
119 | test m, m | ||
120 | jz ytoploop | ||
121 | ymainloop: | ||
122 | mov a, [x+8*i] | ||
123 | adc a, [y+8*i] | ||
124 | mov [z+8*i],a | ||
125 | inc i | ||
126 | dec m | ||
127 | jnz ymainloop | ||
128 | ytoploop: | ||
129 | mov a, [y+8*i] | ||
130 | adc a, 0 | ||
131 | mov [z+8*i],a | ||
132 | inc i | ||
133 | dec n | ||
134 | jnz ytoploop | ||
135 | mov ashort, 0 | ||
136 | adc a, 0 | ||
137 | test p, p | ||
138 | jnz tails | ||
139 | #if WINDOWS_ABI | ||
140 | pop rsi | ||
141 | pop rdi | ||
142 | #endif | ||
143 | ret | ||
144 | |||
145 | // Adding a non-trivial tail, when p > max(m,n) | ||
146 | |||
147 | tails: | ||
148 | mov [z+8*i],a | ||
149 | xor a, a | ||
150 | jmp tail | ||
151 | tailloop: | ||
152 | mov [z+8*i],a | ||
153 | tail: | ||
154 | inc i | ||
155 | dec p | ||
156 | jnz tailloop | ||
157 | #if WINDOWS_ABI | ||
158 | pop rsi | ||
159 | pop rdi | ||
160 | #endif | ||
161 | ret | ||
162 | |||
163 | #if defined(__linux__) && defined(__ELF__) | ||
164 | .section .note.GNU-stack,"",%progbits | ||
165 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/amd64/bignum_cmadd.S b/src/lib/libcrypto/bn/arch/amd64/bignum_cmadd.S deleted file mode 100644 index 25ba17bce2..0000000000 --- a/src/lib/libcrypto/bn/arch/amd64/bignum_cmadd.S +++ /dev/null | |||
@@ -1,155 +0,0 @@ | |||
1 | // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
2 | // | ||
3 | // Permission to use, copy, modify, and/or distribute this software for any | ||
4 | // purpose with or without fee is hereby granted, provided that the above | ||
5 | // copyright notice and this permission notice appear in all copies. | ||
6 | // | ||
7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
10 | // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
12 | // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
13 | // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
14 | |||
15 | // ---------------------------------------------------------------------------- | ||
16 | // Multiply-add with single-word multiplier, z := z + c * y | ||
17 | // Inputs c, y[n]; outputs function return (carry-out) and z[k] | ||
18 | // | ||
19 | // extern uint64_t bignum_cmadd | ||
20 | // (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y); | ||
21 | // | ||
22 | // Does the "z := z + c * y" operation where y is n digits, result z is p. | ||
23 | // Truncates the result in general. | ||
24 | // | ||
25 | // The return value is a high/carry word that is meaningful when p = n + 1, or | ||
26 | // more generally when n <= p and the result fits in p + 1 digits. In these | ||
27 | // cases it gives the top digit of the (p + 1)-digit result. | ||
28 | // | ||
29 | // Standard x86-64 ABI: RDI = k, RSI = z, RDX = c, RCX = n, R8 = y, returns RAX | ||
30 | // Microsoft x64 ABI: RCX = k, RDX = z, R8 = c, R9 = n, [RSP+40] = y, returns RAX | ||
31 | // ---------------------------------------------------------------------------- | ||
32 | |||
33 | #include "s2n_bignum_internal.h" | ||
34 | |||
35 | .intel_syntax noprefix | ||
36 | S2N_BN_SYM_VISIBILITY_DIRECTIVE(bignum_cmadd) | ||
37 | S2N_BN_SYM_PRIVACY_DIRECTIVE(bignum_cmadd) | ||
38 | .text | ||
39 | |||
40 | #define p rdi | ||
41 | #define z rsi | ||
42 | #define c r9 | ||
43 | #define n rcx | ||
44 | #define x r8 | ||
45 | |||
46 | #define i r10 | ||
47 | #define h r11 | ||
48 | |||
49 | #define r rbx | ||
50 | |||
51 | #define hshort r11d | ||
52 | #define ishort r10d | ||
53 | |||
54 | |||
55 | |||
56 | S2N_BN_SYMBOL(bignum_cmadd): | ||
57 | _CET_ENDBR | ||
58 | |||
59 | #if WINDOWS_ABI | ||
60 | push rdi | ||
61 | push rsi | ||
62 | mov rdi, rcx | ||
63 | mov rsi, rdx | ||
64 | mov rdx, r8 | ||
65 | mov rcx, r9 | ||
66 | mov r8, [rsp+56] | ||
67 | #endif | ||
68 | |||
69 | // Seems hard to avoid one more register | ||
70 | |||
71 | push rbx | ||
72 | |||
73 | // First clamp the input size n := min(p,n) since we can never need to read | ||
74 | // past the p'th term of the input to generate p-digit output. | ||
75 | // Subtract p := p - min(n,p) so it holds the size of the extra tail needed | ||
76 | |||
77 | cmp p, n | ||
78 | cmovc n, p | ||
79 | sub p, n | ||
80 | |||
81 | // Initialize high part h = 0; if n = 0 do nothing but return that zero | ||
82 | |||
83 | xor h, h | ||
84 | test n, n | ||
85 | jz end | ||
86 | |||
87 | // Move c into a safer register as multiplies overwrite rdx | ||
88 | |||
89 | mov c, rdx | ||
90 | |||
91 | // Initialization of the loop: 2^64 * CF + [h,z_0'] = z_0 + c * x_0 | ||
92 | |||
93 | mov rax, [x] | ||
94 | mul c | ||
95 | add [z], rax | ||
96 | mov h, rdx | ||
97 | mov ishort, 1 | ||
98 | dec n | ||
99 | jz hightail | ||
100 | |||
101 | // Main loop, where we always have CF + previous high part h to add in | ||
102 | |||
103 | loop: | ||
104 | adc h, [z+8*i] | ||
105 | sbb r, r | ||
106 | mov rax, [x+8*i] | ||
107 | mul c | ||
108 | sub rdx, r | ||
109 | add rax, h | ||
110 | mov [z+8*i], rax | ||
111 | mov h, rdx | ||
112 | inc i | ||
113 | dec n | ||
114 | jnz loop | ||
115 | |||
116 | hightail: | ||
117 | adc h, 0 | ||
118 | |||
119 | // Propagate the carry all the way to the end with h as extra carry word | ||
120 | |||
121 | tail: | ||
122 | test p, p | ||
123 | jz end | ||
124 | |||
125 | add [z+8*i], h | ||
126 | mov hshort, 0 | ||
127 | inc i | ||
128 | dec p | ||
129 | jz highend | ||
130 | |||
131 | tloop: | ||
132 | adc [z+8*i], h | ||
133 | inc i | ||
134 | dec p | ||
135 | jnz tloop | ||
136 | |||
137 | highend: | ||
138 | |||
139 | adc h, 0 | ||
140 | |||
141 | // Return the high/carry word | ||
142 | |||
143 | end: | ||
144 | mov rax, h | ||
145 | |||
146 | pop rbx | ||
147 | #if WINDOWS_ABI | ||
148 | pop rsi | ||
149 | pop rdi | ||
150 | #endif | ||
151 | ret | ||
152 | |||
153 | #if defined(__linux__) && defined(__ELF__) | ||
154 | .section .note.GNU-stack,"",%progbits | ||
155 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/amd64/bignum_cmul.S b/src/lib/libcrypto/bn/arch/amd64/bignum_cmul.S deleted file mode 100644 index 12f785d63a..0000000000 --- a/src/lib/libcrypto/bn/arch/amd64/bignum_cmul.S +++ /dev/null | |||
@@ -1,138 +0,0 @@ | |||
1 | // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
2 | // | ||
3 | // Permission to use, copy, modify, and/or distribute this software for any | ||
4 | // purpose with or without fee is hereby granted, provided that the above | ||
5 | // copyright notice and this permission notice appear in all copies. | ||
6 | // | ||
7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
10 | // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
12 | // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
13 | // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
14 | |||
15 | // ---------------------------------------------------------------------------- | ||
16 | // Multiply by a single word, z := c * y | ||
17 | // Inputs c, y[n]; outputs function return (carry-out) and z[k] | ||
18 | // | ||
19 | // extern uint64_t bignum_cmul | ||
20 | // (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y); | ||
21 | // | ||
22 | // Does the "z := c * y" operation where y is n digits, result z is p. | ||
23 | // Truncates the result in general unless p >= n + 1. | ||
24 | // | ||
25 | // The return value is a high/carry word that is meaningful when p >= n as | ||
26 | // giving the high part of the result. Since this is always zero if p > n, | ||
27 | // it is mainly of interest in the special case p = n, i.e. where the source | ||
28 | // and destination have the same nominal size, when it gives the extra word | ||
29 | // of the full result. | ||
30 | // | ||
31 | // Standard x86-64 ABI: RDI = k, RSI = z, RDX = c, RCX = n, R8 = y, returns RAX | ||
32 | // Microsoft x64 ABI: RCX = k, RDX = z, R8 = c, R9 = n, [RSP+40] = y, returns RAX | ||
33 | // ---------------------------------------------------------------------------- | ||
34 | |||
35 | #include "s2n_bignum_internal.h" | ||
36 | |||
37 | .intel_syntax noprefix | ||
38 | S2N_BN_SYM_VISIBILITY_DIRECTIVE(bignum_cmul) | ||
39 | S2N_BN_SYM_PRIVACY_DIRECTIVE(bignum_cmul) | ||
40 | .text | ||
41 | |||
42 | #define p rdi | ||
43 | #define z rsi | ||
44 | #define c r9 | ||
45 | #define n rcx | ||
46 | #define x r8 | ||
47 | |||
48 | #define i r10 | ||
49 | #define h r11 | ||
50 | |||
51 | |||
52 | |||
53 | S2N_BN_SYMBOL(bignum_cmul): | ||
54 | _CET_ENDBR | ||
55 | |||
56 | #if WINDOWS_ABI | ||
57 | push rdi | ||
58 | push rsi | ||
59 | mov rdi, rcx | ||
60 | mov rsi, rdx | ||
61 | mov rdx, r8 | ||
62 | mov rcx, r9 | ||
63 | mov r8, [rsp+56] | ||
64 | #endif | ||
65 | |||
66 | // First clamp the input size n := min(p,n) since we can never need to read | ||
67 | // past the p'th term of the input to generate p-digit output. Now we can | ||
68 | // assume that n <= p | ||
69 | |||
70 | cmp p, n | ||
71 | cmovc n, p | ||
72 | |||
73 | // Initialize current input/output pointer offset i and high part h. | ||
74 | // But then if n = 0 skip the multiplication and go to the tail part | ||
75 | |||
76 | xor h, h | ||
77 | xor i, i | ||
78 | test n, n | ||
79 | jz tail | ||
80 | |||
81 | // Move c into a safer register as multiplies overwrite rdx | ||
82 | |||
83 | mov c, rdx | ||
84 | |||
85 | // Initialization of the loop: [h,l] = c * x_0 | ||
86 | |||
87 | mov rax, [x] | ||
88 | mul c | ||
89 | mov [z], rax | ||
90 | mov h, rdx | ||
91 | inc i | ||
92 | cmp i, n | ||
93 | jz tail | ||
94 | |||
95 | // Main loop doing the multiplications | ||
96 | |||
97 | loop: | ||
98 | mov rax, [x+8*i] | ||
99 | mul c | ||
100 | add rax, h | ||
101 | adc rdx, 0 | ||
102 | mov [z+8*i], rax | ||
103 | mov h, rdx | ||
104 | inc i | ||
105 | cmp i, n | ||
106 | jc loop | ||
107 | |||
108 | // Add a tail when the destination is longer | ||
109 | |||
110 | tail: | ||
111 | cmp i, p | ||
112 | jnc end | ||
113 | mov [z+8*i], h | ||
114 | xor h, h | ||
115 | inc i | ||
116 | cmp i, p | ||
117 | jnc end | ||
118 | |||
119 | tloop: | ||
120 | mov [z+8*i], h | ||
121 | inc i | ||
122 | cmp i, p | ||
123 | jc tloop | ||
124 | |||
125 | // Return the high/carry word | ||
126 | |||
127 | end: | ||
128 | mov rax, h | ||
129 | |||
130 | #if WINDOWS_ABI | ||
131 | pop rsi | ||
132 | pop rdi | ||
133 | #endif | ||
134 | ret | ||
135 | |||
136 | #if defined(__linux__) && defined(__ELF__) | ||
137 | .section .note.GNU-stack,"",%progbits | ||
138 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/amd64/bignum_mul.S b/src/lib/libcrypto/bn/arch/amd64/bignum_mul.S deleted file mode 100644 index a3552679a2..0000000000 --- a/src/lib/libcrypto/bn/arch/amd64/bignum_mul.S +++ /dev/null | |||
@@ -1,167 +0,0 @@ | |||
1 | // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
2 | // | ||
3 | // Permission to use, copy, modify, and/or distribute this software for any | ||
4 | // purpose with or without fee is hereby granted, provided that the above | ||
5 | // copyright notice and this permission notice appear in all copies. | ||
6 | // | ||
7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
10 | // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
12 | // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
13 | // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
14 | |||
15 | // ---------------------------------------------------------------------------- | ||
16 | // Multiply z := x * y | ||
17 | // Inputs x[m], y[n]; output z[k] | ||
18 | // | ||
19 | // extern void bignum_mul | ||
20 | // (uint64_t k, uint64_t *z, | ||
21 | // uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
22 | // | ||
23 | // Does the "z := x * y" operation where x is m digits, y is n, result z is k. | ||
24 | // Truncates the result in general unless k >= m + n | ||
25 | // | ||
26 | // Standard x86-64 ABI: RDI = k, RSI = z, RDX = m, RCX = x, R8 = n, R9 = y | ||
27 | // Microsoft x64 ABI: RCX = k, RDX = z, R8 = m, R9 = x, [RSP+40] = n, [RSP+48] = y | ||
28 | // ---------------------------------------------------------------------------- | ||
29 | |||
30 | #include "s2n_bignum_internal.h" | ||
31 | |||
32 | .intel_syntax noprefix | ||
33 | S2N_BN_SYM_VISIBILITY_DIRECTIVE(bignum_mul) | ||
34 | S2N_BN_SYM_PRIVACY_DIRECTIVE(bignum_mul) | ||
35 | .text | ||
36 | |||
37 | // These are actually right | ||
38 | |||
39 | #define p rdi | ||
40 | #define z rsi | ||
41 | #define n r8 | ||
42 | |||
43 | // These are not | ||
44 | |||
45 | #define c r15 | ||
46 | #define h r14 | ||
47 | #define l r13 | ||
48 | #define x r12 | ||
49 | #define y r11 | ||
50 | #define i rbx | ||
51 | #define k r10 | ||
52 | #define m rbp | ||
53 | |||
54 | // These are always local scratch since multiplier result is in these | ||
55 | |||
56 | #define a rax | ||
57 | #define d rdx | ||
58 | |||
59 | |||
60 | |||
61 | S2N_BN_SYMBOL(bignum_mul): | ||
62 | _CET_ENDBR | ||
63 | |||
64 | #if WINDOWS_ABI | ||
65 | push rdi | ||
66 | push rsi | ||
67 | mov rdi, rcx | ||
68 | mov rsi, rdx | ||
69 | mov rdx, r8 | ||
70 | mov rcx, r9 | ||
71 | mov r8, [rsp+56] | ||
72 | mov r9, [rsp+64] | ||
73 | #endif | ||
74 | |||
75 | // We use too many registers, and also we need rax:rdx for multiplications | ||
76 | |||
77 | push rbx | ||
78 | push rbp | ||
79 | push r12 | ||
80 | push r13 | ||
81 | push r14 | ||
82 | push r15 | ||
83 | mov m, rdx | ||
84 | |||
85 | // If the result size is zero, do nothing | ||
86 | // Note that even if either or both inputs has size zero, we can't | ||
87 | // just give up because we at least need to zero the output array | ||
88 | // If we did a multiply-add variant, however, then we could | ||
89 | |||
90 | test p, p | ||
91 | jz end | ||
92 | |||
93 | // Set initial 2-part sum to zero (we zero c inside the body) | ||
94 | |||
95 | xor h,h | ||
96 | xor l,l | ||
97 | |||
98 | // Otherwise do outer loop k = 0 ... k = p - 1 | ||
99 | |||
100 | xor k, k | ||
101 | |||
102 | outerloop: | ||
103 | |||
104 | // Zero our carry term first; we eventually want it and a zero is useful now | ||
105 | // Set a = max 0 (k + 1 - n), i = min (k + 1) m | ||
106 | // This defines the range a <= j < i for the inner summation | ||
107 | // Note that since k < p < 2^64 we can assume k + 1 doesn't overflow | ||
108 | // And since we want to increment it anyway, we might as well do it now | ||
109 | |||
110 | xor c, c // c = 0 | ||
111 | inc k // k = k + 1 | ||
112 | |||
113 | mov a, k // a = k + 1 | ||
114 | sub a, n // a = k + 1 - n | ||
115 | cmovc a, c // a = max 0 (k + 1 - n) | ||
116 | |||
117 | mov i, m // i = m | ||
118 | cmp k, m // CF <=> k + 1 < m | ||
119 | cmovc i, k // i = min (k + 1) m | ||
120 | |||
121 | // Turn i into a loop count, and skip things if it's <= 0 | ||
122 | // Otherwise set up initial pointers x -> x0[a] and y -> y0[k - a] | ||
123 | // and then launch into the main inner loop, postdecrementing i | ||
124 | |||
125 | mov d, k | ||
126 | sub d, i | ||
127 | sub i, a | ||
128 | jbe innerend | ||
129 | lea x,[rcx+8*a] | ||
130 | lea y,[r9+8*d-8] | ||
131 | |||
132 | innerloop: | ||
133 | mov rax, [y+8*i] | ||
134 | mul QWORD PTR [x] | ||
135 | add x, 8 | ||
136 | add l, rax | ||
137 | adc h, rdx | ||
138 | adc c, 0 | ||
139 | dec i | ||
140 | jnz innerloop | ||
141 | |||
142 | innerend: | ||
143 | |||
144 | mov [z], l | ||
145 | mov l, h | ||
146 | mov h, c | ||
147 | add z, 8 | ||
148 | |||
149 | cmp k, p | ||
150 | jc outerloop | ||
151 | |||
152 | end: | ||
153 | pop r15 | ||
154 | pop r14 | ||
155 | pop r13 | ||
156 | pop r12 | ||
157 | pop rbp | ||
158 | pop rbx | ||
159 | #if WINDOWS_ABI | ||
160 | pop rsi | ||
161 | pop rdi | ||
162 | #endif | ||
163 | ret | ||
164 | |||
165 | #if defined(__linux__) && defined(__ELF__) | ||
166 | .section .note.GNU-stack,"",%progbits | ||
167 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/amd64/bignum_mul_4_8_alt.S b/src/lib/libcrypto/bn/arch/amd64/bignum_mul_4_8_alt.S deleted file mode 100644 index 70ff69e372..0000000000 --- a/src/lib/libcrypto/bn/arch/amd64/bignum_mul_4_8_alt.S +++ /dev/null | |||
@@ -1,157 +0,0 @@ | |||
1 | // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
2 | // | ||
3 | // Permission to use, copy, modify, and/or distribute this software for any | ||
4 | // purpose with or without fee is hereby granted, provided that the above | ||
5 | // copyright notice and this permission notice appear in all copies. | ||
6 | // | ||
7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
10 | // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
12 | // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
13 | // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
14 | |||
15 | // ---------------------------------------------------------------------------- | ||
16 | // Multiply z := x * y | ||
17 | // Inputs x[4], y[4]; output z[8] | ||
18 | // | ||
19 | // extern void bignum_mul_4_8_alt | ||
20 | // (uint64_t z[static 8], uint64_t x[static 4], uint64_t y[static 4]); | ||
21 | // | ||
22 | // Standard x86-64 ABI: RDI = z, RSI = x, RDX = y | ||
23 | // Microsoft x64 ABI: RCX = z, RDX = x, R8 = y | ||
24 | // ---------------------------------------------------------------------------- | ||
25 | |||
26 | #include "s2n_bignum_internal.h" | ||
27 | |||
28 | .intel_syntax noprefix | ||
29 | S2N_BN_SYM_VISIBILITY_DIRECTIVE(bignum_mul_4_8_alt) | ||
30 | S2N_BN_SYM_PRIVACY_DIRECTIVE(bignum_mul_4_8_alt) | ||
31 | .text | ||
32 | |||
33 | // These are actually right | ||
34 | |||
35 | #define z rdi | ||
36 | #define x rsi | ||
37 | |||
38 | // This is moved from rdx to free it for muls | ||
39 | |||
40 | #define y rcx | ||
41 | |||
42 | // Other variables used as a rotating 3-word window to add terms to | ||
43 | |||
44 | #define t0 r8 | ||
45 | #define t1 r9 | ||
46 | #define t2 r10 | ||
47 | |||
48 | // Macro for the key "multiply and add to (c,h,l)" step | ||
49 | |||
50 | #define combadd(c,h,l,numa,numb) \ | ||
51 | mov rax, numa; \ | ||
52 | mul QWORD PTR numb; \ | ||
53 | add l, rax; \ | ||
54 | adc h, rdx; \ | ||
55 | adc c, 0 | ||
56 | |||
57 | // A minutely shorter form for when c = 0 initially | ||
58 | |||
59 | #define combadz(c,h,l,numa,numb) \ | ||
60 | mov rax, numa; \ | ||
61 | mul QWORD PTR numb; \ | ||
62 | add l, rax; \ | ||
63 | adc h, rdx; \ | ||
64 | adc c, c | ||
65 | |||
66 | // A short form where we don't expect a top carry | ||
67 | |||
68 | #define combads(h,l,numa,numb) \ | ||
69 | mov rax, numa; \ | ||
70 | mul QWORD PTR numb; \ | ||
71 | add l, rax; \ | ||
72 | adc h, rdx | ||
73 | |||
74 | S2N_BN_SYMBOL(bignum_mul_4_8_alt): | ||
75 | _CET_ENDBR | ||
76 | |||
77 | #if WINDOWS_ABI | ||
78 | push rdi | ||
79 | push rsi | ||
80 | mov rdi, rcx | ||
81 | mov rsi, rdx | ||
82 | mov rdx, r8 | ||
83 | #endif | ||
84 | |||
85 | // Copy y into a safe register to start with | ||
86 | |||
87 | mov y, rdx | ||
88 | |||
89 | // Result term 0 | ||
90 | |||
91 | mov rax, [x] | ||
92 | mul QWORD PTR [y] | ||
93 | |||
94 | mov [z], rax | ||
95 | mov t0, rdx | ||
96 | xor t1, t1 | ||
97 | |||
98 | // Result term 1 | ||
99 | |||
100 | xor t2, t2 | ||
101 | combads(t1,t0,[x],[y+8]) | ||
102 | combadz(t2,t1,t0,[x+8],[y]) | ||
103 | mov [z+8], t0 | ||
104 | |||
105 | // Result term 2 | ||
106 | |||
107 | xor t0, t0 | ||
108 | combadz(t0,t2,t1,[x],[y+16]) | ||
109 | combadd(t0,t2,t1,[x+8],[y+8]) | ||
110 | combadd(t0,t2,t1,[x+16],[y]) | ||
111 | mov [z+16], t1 | ||
112 | |||
113 | // Result term 3 | ||
114 | |||
115 | xor t1, t1 | ||
116 | combadz(t1,t0,t2,[x],[y+24]) | ||
117 | combadd(t1,t0,t2,[x+8],[y+16]) | ||
118 | combadd(t1,t0,t2,[x+16],[y+8]) | ||
119 | combadd(t1,t0,t2,[x+24],[y]) | ||
120 | mov [z+24], t2 | ||
121 | |||
122 | // Result term 4 | ||
123 | |||
124 | xor t2, t2 | ||
125 | combadz(t2,t1,t0,[x+8],[y+24]) | ||
126 | combadd(t2,t1,t0,[x+16],[y+16]) | ||
127 | combadd(t2,t1,t0,[x+24],[y+8]) | ||
128 | mov [z+32], t0 | ||
129 | |||
130 | // Result term 5 | ||
131 | |||
132 | xor t0, t0 | ||
133 | combadz(t0,t2,t1,[x+16],[y+24]) | ||
134 | combadd(t0,t2,t1,[x+24],[y+16]) | ||
135 | mov [z+40], t1 | ||
136 | |||
137 | // Result term 6 | ||
138 | |||
139 | xor t1, t1 | ||
140 | combads(t0,t2,[x+24],[y+24]) | ||
141 | mov [z+48], t2 | ||
142 | |||
143 | // Result term 7 | ||
144 | |||
145 | mov [z+56], t0 | ||
146 | |||
147 | // Return | ||
148 | |||
149 | #if WINDOWS_ABI | ||
150 | pop rsi | ||
151 | pop rdi | ||
152 | #endif | ||
153 | ret | ||
154 | |||
155 | #if defined(__linux__) && defined(__ELF__) | ||
156 | .section .note.GNU-stack,"",%progbits | ||
157 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/amd64/bignum_mul_8_16_alt.S b/src/lib/libcrypto/bn/arch/amd64/bignum_mul_8_16_alt.S deleted file mode 100644 index 066403b074..0000000000 --- a/src/lib/libcrypto/bn/arch/amd64/bignum_mul_8_16_alt.S +++ /dev/null | |||
@@ -1,244 +0,0 @@ | |||
1 | // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
2 | // | ||
3 | // Permission to use, copy, modify, and/or distribute this software for any | ||
4 | // purpose with or without fee is hereby granted, provided that the above | ||
5 | // copyright notice and this permission notice appear in all copies. | ||
6 | // | ||
7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
10 | // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
12 | // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
13 | // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
14 | |||
15 | // ---------------------------------------------------------------------------- | ||
16 | // Multiply z := x * y | ||
17 | // Inputs x[8], y[8]; output z[16] | ||
18 | // | ||
19 | // extern void bignum_mul_8_16_alt | ||
20 | // (uint64_t z[static 16], uint64_t x[static 8], uint64_t y[static 8]); | ||
21 | // | ||
22 | // Standard x86-64 ABI: RDI = z, RSI = x, RDX = y | ||
23 | // Microsoft x64 ABI: RCX = z, RDX = x, R8 = y | ||
24 | // ---------------------------------------------------------------------------- | ||
25 | |||
26 | #include "s2n_bignum_internal.h" | ||
27 | |||
28 | .intel_syntax noprefix | ||
29 | S2N_BN_SYM_VISIBILITY_DIRECTIVE(bignum_mul_8_16_alt) | ||
30 | S2N_BN_SYM_PRIVACY_DIRECTIVE(bignum_mul_8_16_alt) | ||
31 | .text | ||
32 | |||
33 | // These are actually right | ||
34 | |||
35 | #define z rdi | ||
36 | #define x rsi | ||
37 | |||
38 | // This is moved from rdx to free it for muls | ||
39 | |||
40 | #define y rcx | ||
41 | |||
42 | // Other variables used as a rotating 3-word window to add terms to | ||
43 | |||
44 | #define t0 r8 | ||
45 | #define t1 r9 | ||
46 | #define t2 r10 | ||
47 | |||
48 | // Macro for the key "multiply and add to (c,h,l)" step | ||
49 | |||
50 | #define combadd(c,h,l,numa,numb) \ | ||
51 | mov rax, numa; \ | ||
52 | mul QWORD PTR numb; \ | ||
53 | add l, rax; \ | ||
54 | adc h, rdx; \ | ||
55 | adc c, 0 | ||
56 | |||
57 | // A minutely shorter form for when c = 0 initially | ||
58 | |||
59 | #define combadz(c,h,l,numa,numb) \ | ||
60 | mov rax, numa; \ | ||
61 | mul QWORD PTR numb; \ | ||
62 | add l, rax; \ | ||
63 | adc h, rdx; \ | ||
64 | adc c, c | ||
65 | |||
66 | // A short form where we don't expect a top carry | ||
67 | |||
68 | #define combads(h,l,numa,numb) \ | ||
69 | mov rax, numa; \ | ||
70 | mul QWORD PTR numb; \ | ||
71 | add l, rax; \ | ||
72 | adc h, rdx | ||
73 | |||
74 | S2N_BN_SYMBOL(bignum_mul_8_16_alt): | ||
75 | _CET_ENDBR | ||
76 | |||
77 | #if WINDOWS_ABI | ||
78 | push rdi | ||
79 | push rsi | ||
80 | mov rdi, rcx | ||
81 | mov rsi, rdx | ||
82 | mov rdx, r8 | ||
83 | #endif | ||
84 | |||
85 | // Copy y into a safe register to start with | ||
86 | |||
87 | mov y, rdx | ||
88 | |||
89 | // Result term 0 | ||
90 | |||
91 | mov rax, [x] | ||
92 | mul QWORD PTR [y] | ||
93 | |||
94 | mov [z], rax | ||
95 | mov t0, rdx | ||
96 | xor t1, t1 | ||
97 | |||
98 | // Result term 1 | ||
99 | |||
100 | xor t2, t2 | ||
101 | combads(t1,t0,[x],[y+8]) | ||
102 | combadz(t2,t1,t0,[x+8],[y]) | ||
103 | mov [z+8], t0 | ||
104 | |||
105 | // Result term 2 | ||
106 | |||
107 | xor t0, t0 | ||
108 | combadz(t0,t2,t1,[x],[y+16]) | ||
109 | combadd(t0,t2,t1,[x+8],[y+8]) | ||
110 | combadd(t0,t2,t1,[x+16],[y]) | ||
111 | mov [z+16], t1 | ||
112 | |||
113 | // Result term 3 | ||
114 | |||
115 | xor t1, t1 | ||
116 | combadz(t1,t0,t2,[x],[y+24]) | ||
117 | combadd(t1,t0,t2,[x+8],[y+16]) | ||
118 | combadd(t1,t0,t2,[x+16],[y+8]) | ||
119 | combadd(t1,t0,t2,[x+24],[y]) | ||
120 | mov [z+24], t2 | ||
121 | |||
122 | // Result term 4 | ||
123 | |||
124 | xor t2, t2 | ||
125 | combadz(t2,t1,t0,[x],[y+32]) | ||
126 | combadd(t2,t1,t0,[x+8],[y+24]) | ||
127 | combadd(t2,t1,t0,[x+16],[y+16]) | ||
128 | combadd(t2,t1,t0,[x+24],[y+8]) | ||
129 | combadd(t2,t1,t0,[x+32],[y]) | ||
130 | mov [z+32], t0 | ||
131 | |||
132 | // Result term 5 | ||
133 | |||
134 | xor t0, t0 | ||
135 | combadz(t0,t2,t1,[x],[y+40]) | ||
136 | combadd(t0,t2,t1,[x+8],[y+32]) | ||
137 | combadd(t0,t2,t1,[x+16],[y+24]) | ||
138 | combadd(t0,t2,t1,[x+24],[y+16]) | ||
139 | combadd(t0,t2,t1,[x+32],[y+8]) | ||
140 | combadd(t0,t2,t1,[x+40],[y]) | ||
141 | mov [z+40], t1 | ||
142 | |||
143 | // Result term 6 | ||
144 | |||
145 | xor t1, t1 | ||
146 | combadz(t1,t0,t2,[x],[y+48]) | ||
147 | combadd(t1,t0,t2,[x+8],[y+40]) | ||
148 | combadd(t1,t0,t2,[x+16],[y+32]) | ||
149 | combadd(t1,t0,t2,[x+24],[y+24]) | ||
150 | combadd(t1,t0,t2,[x+32],[y+16]) | ||
151 | combadd(t1,t0,t2,[x+40],[y+8]) | ||
152 | combadd(t1,t0,t2,[x+48],[y]) | ||
153 | mov [z+48], t2 | ||
154 | |||
155 | // Result term 7 | ||
156 | |||
157 | xor t2, t2 | ||
158 | combadz(t2,t1,t0,[x],[y+56]) | ||
159 | combadd(t2,t1,t0,[x+8],[y+48]) | ||
160 | combadd(t2,t1,t0,[x+16],[y+40]) | ||
161 | combadd(t2,t1,t0,[x+24],[y+32]) | ||
162 | combadd(t2,t1,t0,[x+32],[y+24]) | ||
163 | combadd(t2,t1,t0,[x+40],[y+16]) | ||
164 | combadd(t2,t1,t0,[x+48],[y+8]) | ||
165 | combadd(t2,t1,t0,[x+56],[y]) | ||
166 | mov [z+56], t0 | ||
167 | |||
168 | // Result term 8 | ||
169 | |||
170 | xor t0, t0 | ||
171 | combadz(t0,t2,t1,[x+8],[y+56]) | ||
172 | combadd(t0,t2,t1,[x+16],[y+48]) | ||
173 | combadd(t0,t2,t1,[x+24],[y+40]) | ||
174 | combadd(t0,t2,t1,[x+32],[y+32]) | ||
175 | combadd(t0,t2,t1,[x+40],[y+24]) | ||
176 | combadd(t0,t2,t1,[x+48],[y+16]) | ||
177 | combadd(t0,t2,t1,[x+56],[y+8]) | ||
178 | mov [z+64], t1 | ||
179 | |||
180 | // Result term 9 | ||
181 | |||
182 | xor t1, t1 | ||
183 | combadz(t1,t0,t2,[x+16],[y+56]) | ||
184 | combadd(t1,t0,t2,[x+24],[y+48]) | ||
185 | combadd(t1,t0,t2,[x+32],[y+40]) | ||
186 | combadd(t1,t0,t2,[x+40],[y+32]) | ||
187 | combadd(t1,t0,t2,[x+48],[y+24]) | ||
188 | combadd(t1,t0,t2,[x+56],[y+16]) | ||
189 | mov [z+72], t2 | ||
190 | |||
191 | // Result term 10 | ||
192 | |||
193 | xor t2, t2 | ||
194 | combadz(t2,t1,t0,[x+24],[y+56]) | ||
195 | combadd(t2,t1,t0,[x+32],[y+48]) | ||
196 | combadd(t2,t1,t0,[x+40],[y+40]) | ||
197 | combadd(t2,t1,t0,[x+48],[y+32]) | ||
198 | combadd(t2,t1,t0,[x+56],[y+24]) | ||
199 | mov [z+80], t0 | ||
200 | |||
201 | // Result term 11 | ||
202 | |||
203 | xor t0, t0 | ||
204 | combadz(t0,t2,t1,[x+32],[y+56]) | ||
205 | combadd(t0,t2,t1,[x+40],[y+48]) | ||
206 | combadd(t0,t2,t1,[x+48],[y+40]) | ||
207 | combadd(t0,t2,t1,[x+56],[y+32]) | ||
208 | mov [z+88], t1 | ||
209 | |||
210 | // Result term 12 | ||
211 | |||
212 | xor t1, t1 | ||
213 | combadz(t1,t0,t2,[x+40],[y+56]) | ||
214 | combadd(t1,t0,t2,[x+48],[y+48]) | ||
215 | combadd(t1,t0,t2,[x+56],[y+40]) | ||
216 | mov [z+96], t2 | ||
217 | |||
218 | // Result term 13 | ||
219 | |||
220 | xor t2, t2 | ||
221 | combadz(t2,t1,t0,[x+48],[y+56]) | ||
222 | combadd(t2,t1,t0,[x+56],[y+48]) | ||
223 | mov [z+104], t0 | ||
224 | |||
225 | // Result term 14 | ||
226 | |||
227 | combads(t2,t1,[x+56],[y+56]) | ||
228 | mov [z+112], t1 | ||
229 | |||
230 | // Result term 11 | ||
231 | |||
232 | mov [z+120], t2 | ||
233 | |||
234 | // Return | ||
235 | |||
236 | #if WINDOWS_ABI | ||
237 | pop rsi | ||
238 | pop rdi | ||
239 | #endif | ||
240 | ret | ||
241 | |||
242 | #if defined(__linux__) && defined(__ELF__) | ||
243 | .section .note.GNU-stack,"",%progbits | ||
244 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/amd64/bignum_sqr.S b/src/lib/libcrypto/bn/arch/amd64/bignum_sqr.S deleted file mode 100644 index 54e3f59442..0000000000 --- a/src/lib/libcrypto/bn/arch/amd64/bignum_sqr.S +++ /dev/null | |||
@@ -1,197 +0,0 @@ | |||
1 | // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
2 | // | ||
3 | // Permission to use, copy, modify, and/or distribute this software for any | ||
4 | // purpose with or without fee is hereby granted, provided that the above | ||
5 | // copyright notice and this permission notice appear in all copies. | ||
6 | // | ||
7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
10 | // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
12 | // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
13 | // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
14 | |||
15 | // ---------------------------------------------------------------------------- | ||
16 | // Square z := x^2 | ||
17 | // Input x[n]; output z[k] | ||
18 | // | ||
19 | // extern void bignum_sqr | ||
20 | // (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x); | ||
21 | // | ||
22 | // Does the "z := x^2" operation where x is n digits and result z is k. | ||
23 | // Truncates the result in general unless k >= 2 * n | ||
24 | // | ||
25 | // Standard x86-64 ABI: RDI = k, RSI = z, RDX = n, RCX = x | ||
26 | // Microsoft x64 ABI: RCX = k, RDX = z, R8 = n, R9 = x | ||
27 | // ---------------------------------------------------------------------------- | ||
28 | |||
29 | #include "s2n_bignum_internal.h" | ||
30 | |||
31 | .intel_syntax noprefix | ||
32 | S2N_BN_SYM_VISIBILITY_DIRECTIVE(bignum_sqr) | ||
33 | S2N_BN_SYM_PRIVACY_DIRECTIVE(bignum_sqr) | ||
34 | .text | ||
35 | |||
36 | // First three are where arguments come in, but n is moved. | ||
37 | |||
38 | #define p rdi | ||
39 | #define z rsi | ||
40 | #define x rcx | ||
41 | #define n r8 | ||
42 | |||
43 | // These are always local scratch since multiplier result is in these | ||
44 | |||
45 | #define a rax | ||
46 | #define d rdx | ||
47 | |||
48 | // Other variables | ||
49 | |||
50 | #define i rbx | ||
51 | #define ll rbp | ||
52 | #define hh r9 | ||
53 | #define k r10 | ||
54 | #define y r11 | ||
55 | #define htop r12 | ||
56 | #define l r13 | ||
57 | #define h r14 | ||
58 | #define c r15 | ||
59 | |||
60 | // Short versions | ||
61 | |||
62 | #define llshort ebp | ||
63 | |||
64 | S2N_BN_SYMBOL(bignum_sqr): | ||
65 | _CET_ENDBR | ||
66 | |||
67 | #if WINDOWS_ABI | ||
68 | push rdi | ||
69 | push rsi | ||
70 | mov rdi, rcx | ||
71 | mov rsi, rdx | ||
72 | mov rdx, r8 | ||
73 | mov rcx, r9 | ||
74 | #endif | ||
75 | |||
76 | // We use too many registers, and also we need rax:rdx for multiplications | ||
77 | |||
78 | push rbx | ||
79 | push rbp | ||
80 | push r12 | ||
81 | push r13 | ||
82 | push r14 | ||
83 | push r15 | ||
84 | mov n, rdx | ||
85 | |||
86 | // If p = 0 the result is trivial and nothing needs doing | ||
87 | |||
88 | test p, p | ||
89 | jz end | ||
90 | |||
91 | // initialize (hh,ll) = 0 | ||
92 | |||
93 | xor llshort, llshort | ||
94 | xor hh, hh | ||
95 | |||
96 | // Iterate outer loop from k = 0 ... k = p - 1 producing result digits | ||
97 | |||
98 | xor k, k | ||
99 | |||
100 | outerloop: | ||
101 | |||
102 | // First let bot = MAX 0 (k + 1 - n) and top = MIN (k + 1) n | ||
103 | // We want to accumulate all x[i] * x[k - i] for bot <= i < top | ||
104 | // For the optimization of squaring we avoid duplication and do | ||
105 | // 2 * x[i] * x[k - i] for i < htop, where htop = MIN ((k+1)/2) n | ||
106 | // Initialize i = bot; in fact just compute bot as i directly. | ||
107 | |||
108 | xor c, c | ||
109 | lea i, [k+1] | ||
110 | mov htop, i | ||
111 | shr htop, 1 | ||
112 | sub i, n | ||
113 | cmovc i, c | ||
114 | cmp htop, n | ||
115 | cmovnc htop, n | ||
116 | |||
117 | // Initialize the three-part local sum (c,h,l); c was already done above | ||
118 | |||
119 | xor l, l | ||
120 | xor h, h | ||
121 | |||
122 | // If htop <= bot then main doubled part of the sum is empty | ||
123 | |||
124 | cmp i, htop | ||
125 | jnc nosumming | ||
126 | |||
127 | // Use a moving pointer for [y] = x[k-i] for the cofactor | ||
128 | |||
129 | mov a, k | ||
130 | sub a, i | ||
131 | lea y, [x+8*a] | ||
132 | |||
133 | // Do the main part of the sum x[i] * x[k - i] for 2 * i < k | ||
134 | |||
135 | innerloop: | ||
136 | mov a, [x+8*i] | ||
137 | mul QWORD PTR [y] | ||
138 | add l, a | ||
139 | adc h, d | ||
140 | adc c, 0 | ||
141 | sub y, 8 | ||
142 | inc i | ||
143 | cmp i, htop | ||
144 | jc innerloop | ||
145 | |||
146 | // Now double it | ||
147 | |||
148 | add l, l | ||
149 | adc h, h | ||
150 | adc c, c | ||
151 | |||
152 | // If k is even (which means 2 * i = k) and i < n add the extra x[i]^2 term | ||
153 | |||
154 | nosumming: | ||
155 | test k, 1 | ||
156 | jnz innerend | ||
157 | cmp i, n | ||
158 | jnc innerend | ||
159 | |||
160 | mov a, [x+8*i] | ||
161 | mul a | ||
162 | add l, a | ||
163 | adc h, d | ||
164 | adc c, 0 | ||
165 | |||
166 | // Now add the local sum into the global sum, store and shift | ||
167 | |||
168 | innerend: | ||
169 | add l, ll | ||
170 | mov [z+8*k], l | ||
171 | adc h, hh | ||
172 | mov ll, h | ||
173 | adc c, 0 | ||
174 | mov hh, c | ||
175 | |||
176 | inc k | ||
177 | cmp k, p | ||
178 | jc outerloop | ||
179 | |||
180 | // Restore registers and return | ||
181 | |||
182 | end: | ||
183 | pop r15 | ||
184 | pop r14 | ||
185 | pop r13 | ||
186 | pop r12 | ||
187 | pop rbp | ||
188 | pop rbx | ||
189 | #if WINDOWS_ABI | ||
190 | pop rsi | ||
191 | pop rdi | ||
192 | #endif | ||
193 | ret | ||
194 | |||
195 | #if defined(__linux__) && defined(__ELF__) | ||
196 | .section .note.GNU-stack,"",%progbits | ||
197 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/amd64/bignum_sqr_4_8_alt.S b/src/lib/libcrypto/bn/arch/amd64/bignum_sqr_4_8_alt.S deleted file mode 100644 index 7c534ae907..0000000000 --- a/src/lib/libcrypto/bn/arch/amd64/bignum_sqr_4_8_alt.S +++ /dev/null | |||
@@ -1,145 +0,0 @@ | |||
1 | // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
2 | // | ||
3 | // Permission to use, copy, modify, and/or distribute this software for any | ||
4 | // purpose with or without fee is hereby granted, provided that the above | ||
5 | // copyright notice and this permission notice appear in all copies. | ||
6 | // | ||
7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
10 | // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
12 | // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
13 | // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
14 | |||
15 | // ---------------------------------------------------------------------------- | ||
16 | // Square, z := x^2 | ||
17 | // Input x[4]; output z[8] | ||
18 | // | ||
19 | // extern void bignum_sqr_4_8_alt | ||
20 | // (uint64_t z[static 8], uint64_t x[static 4]); | ||
21 | // | ||
22 | // Standard x86-64 ABI: RDI = z, RSI = x | ||
23 | // Microsoft x64 ABI: RCX = z, RDX = x | ||
24 | // ---------------------------------------------------------------------------- | ||
25 | |||
26 | #include "s2n_bignum_internal.h" | ||
27 | |||
28 | .intel_syntax noprefix | ||
29 | S2N_BN_SYM_VISIBILITY_DIRECTIVE(bignum_sqr_4_8_alt) | ||
30 | S2N_BN_SYM_PRIVACY_DIRECTIVE(bignum_sqr_4_8_alt) | ||
31 | .text | ||
32 | |||
33 | // Input arguments | ||
34 | |||
35 | #define z rdi | ||
36 | #define x rsi | ||
37 | |||
38 | // Other variables used as a rotating 3-word window to add terms to | ||
39 | |||
40 | #define t0 rcx | ||
41 | #define t1 r8 | ||
42 | #define t2 r9 | ||
43 | |||
44 | // Macro for the key "multiply and add to (c,h,l)" step, for square term | ||
45 | |||
46 | #define combadd1(c,h,l,numa) \ | ||
47 | mov rax, numa; \ | ||
48 | mul rax; \ | ||
49 | add l, rax; \ | ||
50 | adc h, rdx; \ | ||
51 | adc c, 0 | ||
52 | |||
53 | // A short form where we don't expect a top carry | ||
54 | |||
55 | #define combads(h,l,numa) \ | ||
56 | mov rax, numa; \ | ||
57 | mul rax; \ | ||
58 | add l, rax; \ | ||
59 | adc h, rdx | ||
60 | |||
61 | // A version doubling before adding, for non-square terms | ||
62 | |||
63 | #define combadd2(c,h,l,numa,numb) \ | ||
64 | mov rax, numa; \ | ||
65 | mul QWORD PTR numb; \ | ||
66 | add rax, rax; \ | ||
67 | adc rdx, rdx; \ | ||
68 | adc c, 0; \ | ||
69 | add l, rax; \ | ||
70 | adc h, rdx; \ | ||
71 | adc c, 0 | ||
72 | |||
73 | S2N_BN_SYMBOL(bignum_sqr_4_8_alt): | ||
74 | _CET_ENDBR | ||
75 | |||
76 | #if WINDOWS_ABI | ||
77 | push rdi | ||
78 | push rsi | ||
79 | mov rdi, rcx | ||
80 | mov rsi, rdx | ||
81 | #endif | ||
82 | |||
83 | // Result term 0 | ||
84 | |||
85 | mov rax, [x] | ||
86 | mul rax | ||
87 | |||
88 | mov [z], rax | ||
89 | mov t0, rdx | ||
90 | xor t1, t1 | ||
91 | |||
92 | // Result term 1 | ||
93 | |||
94 | xor t2, t2 | ||
95 | combadd2(t2,t1,t0,[x],[x+8]) | ||
96 | mov [z+8], t0 | ||
97 | |||
98 | // Result term 2 | ||
99 | |||
100 | xor t0, t0 | ||
101 | combadd1(t0,t2,t1,[x+8]) | ||
102 | combadd2(t0,t2,t1,[x],[x+16]) | ||
103 | mov [z+16], t1 | ||
104 | |||
105 | // Result term 3 | ||
106 | |||
107 | xor t1, t1 | ||
108 | combadd2(t1,t0,t2,[x],[x+24]) | ||
109 | combadd2(t1,t0,t2,[x+8],[x+16]) | ||
110 | mov [z+24], t2 | ||
111 | |||
112 | // Result term 4 | ||
113 | |||
114 | xor t2, t2 | ||
115 | combadd2(t2,t1,t0,[x+8],[x+24]) | ||
116 | combadd1(t2,t1,t0,[x+16]) | ||
117 | mov [z+32], t0 | ||
118 | |||
119 | // Result term 5 | ||
120 | |||
121 | xor t0, t0 | ||
122 | combadd2(t0,t2,t1,[x+16],[x+24]) | ||
123 | mov [z+40], t1 | ||
124 | |||
125 | // Result term 6 | ||
126 | |||
127 | xor t1, t1 | ||
128 | combads(t0,t2,[x+24]) | ||
129 | mov [z+48], t2 | ||
130 | |||
131 | // Result term 7 | ||
132 | |||
133 | mov [z+56], t0 | ||
134 | |||
135 | // Return | ||
136 | |||
137 | #if WINDOWS_ABI | ||
138 | pop rsi | ||
139 | pop rdi | ||
140 | #endif | ||
141 | ret | ||
142 | |||
143 | #if defined(__linux__) && defined(__ELF__) | ||
144 | .section .note.GNU-stack,"",%progbits | ||
145 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/amd64/bignum_sqr_8_16_alt.S b/src/lib/libcrypto/bn/arch/amd64/bignum_sqr_8_16_alt.S deleted file mode 100644 index ac0b6f96c2..0000000000 --- a/src/lib/libcrypto/bn/arch/amd64/bignum_sqr_8_16_alt.S +++ /dev/null | |||
@@ -1,242 +0,0 @@ | |||
1 | // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
2 | // | ||
3 | // Permission to use, copy, modify, and/or distribute this software for any | ||
4 | // purpose with or without fee is hereby granted, provided that the above | ||
5 | // copyright notice and this permission notice appear in all copies. | ||
6 | // | ||
7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
10 | // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
12 | // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
13 | // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
14 | |||
15 | // ---------------------------------------------------------------------------- | ||
16 | // Square, z := x^2 | ||
17 | // Input x[8]; output z[16] | ||
18 | // | ||
19 | // extern void bignum_sqr_8_16_alt (uint64_t z[static 16], uint64_t x[static 8]); | ||
20 | // | ||
21 | // Standard x86-64 ABI: RDI = z, RSI = x | ||
22 | // Microsoft x64 ABI: RCX = z, RDX = x | ||
23 | // ---------------------------------------------------------------------------- | ||
24 | |||
25 | #include "s2n_bignum_internal.h" | ||
26 | |||
27 | .intel_syntax noprefix | ||
28 | S2N_BN_SYM_VISIBILITY_DIRECTIVE(bignum_sqr_8_16_alt) | ||
29 | S2N_BN_SYM_PRIVACY_DIRECTIVE(bignum_sqr_8_16_alt) | ||
30 | .text | ||
31 | |||
32 | // Input arguments | ||
33 | |||
34 | #define z rdi | ||
35 | #define x rsi | ||
36 | |||
37 | // Other variables used as a rotating 3-word window to add terms to | ||
38 | |||
39 | #define t0 r8 | ||
40 | #define t1 r9 | ||
41 | #define t2 r10 | ||
42 | |||
43 | // Additional temporaries for local windows to share doublings | ||
44 | |||
45 | #define u0 rcx | ||
46 | #define u1 r11 | ||
47 | |||
48 | // Macro for the key "multiply and add to (c,h,l)" step | ||
49 | |||
50 | #define combadd(c,h,l,numa,numb) \ | ||
51 | mov rax, numa; \ | ||
52 | mul QWORD PTR numb; \ | ||
53 | add l, rax; \ | ||
54 | adc h, rdx; \ | ||
55 | adc c, 0 | ||
56 | |||
57 | // Set up initial window (c,h,l) = numa * numb | ||
58 | |||
59 | #define combaddz(c,h,l,numa,numb) \ | ||
60 | mov rax, numa; \ | ||
61 | mul QWORD PTR numb; \ | ||
62 | xor c, c; \ | ||
63 | mov l, rax; \ | ||
64 | mov h, rdx | ||
65 | |||
66 | // Doubling step (c,h,l) = 2 * (c,hh,ll) + (0,h,l) | ||
67 | |||
68 | #define doubladd(c,h,l,hh,ll) \ | ||
69 | add ll, ll; \ | ||
70 | adc hh, hh; \ | ||
71 | adc c, c; \ | ||
72 | add l, ll; \ | ||
73 | adc h, hh; \ | ||
74 | adc c, 0 | ||
75 | |||
76 | // Square term incorporation (c,h,l) += numba^2 | ||
77 | |||
78 | #define combadd1(c,h,l,numa) \ | ||
79 | mov rax, numa; \ | ||
80 | mul rax; \ | ||
81 | add l, rax; \ | ||
82 | adc h, rdx; \ | ||
83 | adc c, 0 | ||
84 | |||
85 | // A short form where we don't expect a top carry | ||
86 | |||
87 | #define combads(h,l,numa) \ | ||
88 | mov rax, numa; \ | ||
89 | mul rax; \ | ||
90 | add l, rax; \ | ||
91 | adc h, rdx | ||
92 | |||
93 | // A version doubling directly before adding, for single non-square terms | ||
94 | |||
95 | #define combadd2(c,h,l,numa,numb) \ | ||
96 | mov rax, numa; \ | ||
97 | mul QWORD PTR numb; \ | ||
98 | add rax, rax; \ | ||
99 | adc rdx, rdx; \ | ||
100 | adc c, 0; \ | ||
101 | add l, rax; \ | ||
102 | adc h, rdx; \ | ||
103 | adc c, 0 | ||
104 | |||
105 | S2N_BN_SYMBOL(bignum_sqr_8_16_alt): | ||
106 | _CET_ENDBR | ||
107 | |||
108 | #if WINDOWS_ABI | ||
109 | push rdi | ||
110 | push rsi | ||
111 | mov rdi, rcx | ||
112 | mov rsi, rdx | ||
113 | #endif | ||
114 | |||
115 | // Result term 0 | ||
116 | |||
117 | mov rax, [x] | ||
118 | mul rax | ||
119 | |||
120 | mov [z], rax | ||
121 | mov t0, rdx | ||
122 | xor t1, t1 | ||
123 | |||
124 | // Result term 1 | ||
125 | |||
126 | xor t2, t2 | ||
127 | combadd2(t2,t1,t0,[x],[x+8]) | ||
128 | mov [z+8], t0 | ||
129 | |||
130 | // Result term 2 | ||
131 | |||
132 | xor t0, t0 | ||
133 | combadd1(t0,t2,t1,[x+8]) | ||
134 | combadd2(t0,t2,t1,[x],[x+16]) | ||
135 | mov [z+16], t1 | ||
136 | |||
137 | // Result term 3 | ||
138 | |||
139 | combaddz(t1,u1,u0,[x],[x+24]) | ||
140 | combadd(t1,u1,u0,[x+8],[x+16]) | ||
141 | doubladd(t1,t0,t2,u1,u0) | ||
142 | mov [z+24], t2 | ||
143 | |||
144 | // Result term 4 | ||
145 | |||
146 | combaddz(t2,u1,u0,[x],[x+32]) | ||
147 | combadd(t2,u1,u0,[x+8],[x+24]) | ||
148 | doubladd(t2,t1,t0,u1,u0) | ||
149 | combadd1(t2,t1,t0,[x+16]) | ||
150 | mov [z+32], t0 | ||
151 | |||
152 | // Result term 5 | ||
153 | |||
154 | combaddz(t0,u1,u0,[x],[x+40]) | ||
155 | combadd(t0,u1,u0,[x+8],[x+32]) | ||
156 | combadd(t0,u1,u0,[x+16],[x+24]) | ||
157 | doubladd(t0,t2,t1,u1,u0) | ||
158 | mov [z+40], t1 | ||
159 | |||
160 | // Result term 6 | ||
161 | |||
162 | combaddz(t1,u1,u0,[x],[x+48]) | ||
163 | combadd(t1,u1,u0,[x+8],[x+40]) | ||
164 | combadd(t1,u1,u0,[x+16],[x+32]) | ||
165 | doubladd(t1,t0,t2,u1,u0) | ||
166 | combadd1(t1,t0,t2,[x+24]) | ||
167 | mov [z+48], t2 | ||
168 | |||
169 | // Result term 7 | ||
170 | |||
171 | combaddz(t2,u1,u0,[x],[x+56]) | ||
172 | combadd(t2,u1,u0,[x+8],[x+48]) | ||
173 | combadd(t2,u1,u0,[x+16],[x+40]) | ||
174 | combadd(t2,u1,u0,[x+24],[x+32]) | ||
175 | doubladd(t2,t1,t0,u1,u0) | ||
176 | mov [z+56], t0 | ||
177 | |||
178 | // Result term 8 | ||
179 | |||
180 | combaddz(t0,u1,u0,[x+8],[x+56]) | ||
181 | combadd(t0,u1,u0,[x+16],[x+48]) | ||
182 | combadd(t0,u1,u0,[x+24],[x+40]) | ||
183 | doubladd(t0,t2,t1,u1,u0) | ||
184 | combadd1(t0,t2,t1,[x+32]) | ||
185 | mov [z+64], t1 | ||
186 | |||
187 | // Result term 9 | ||
188 | |||
189 | combaddz(t1,u1,u0,[x+16],[x+56]) | ||
190 | combadd(t1,u1,u0,[x+24],[x+48]) | ||
191 | combadd(t1,u1,u0,[x+32],[x+40]) | ||
192 | doubladd(t1,t0,t2,u1,u0) | ||
193 | mov [z+72], t2 | ||
194 | |||
195 | // Result term 10 | ||
196 | |||
197 | combaddz(t2,u1,u0,[x+24],[x+56]) | ||
198 | combadd(t2,u1,u0,[x+32],[x+48]) | ||
199 | doubladd(t2,t1,t0,u1,u0) | ||
200 | combadd1(t2,t1,t0,[x+40]) | ||
201 | mov [z+80], t0 | ||
202 | |||
203 | // Result term 11 | ||
204 | |||
205 | combaddz(t0,u1,u0,[x+32],[x+56]) | ||
206 | combadd(t0,u1,u0,[x+40],[x+48]) | ||
207 | doubladd(t0,t2,t1,u1,u0) | ||
208 | mov [z+88], t1 | ||
209 | |||
210 | // Result term 12 | ||
211 | |||
212 | xor t1, t1 | ||
213 | combadd2(t1,t0,t2,[x+40],[x+56]) | ||
214 | combadd1(t1,t0,t2,[x+48]) | ||
215 | mov [z+96], t2 | ||
216 | |||
217 | // Result term 13 | ||
218 | |||
219 | xor t2, t2 | ||
220 | combadd2(t2,t1,t0,[x+48],[x+56]) | ||
221 | mov [z+104], t0 | ||
222 | |||
223 | // Result term 14 | ||
224 | |||
225 | combads(t2,t1,[x+56]) | ||
226 | mov [z+112], t1 | ||
227 | |||
228 | // Result term 15 | ||
229 | |||
230 | mov [z+120], t2 | ||
231 | |||
232 | // Return | ||
233 | |||
234 | #if WINDOWS_ABI | ||
235 | pop rsi | ||
236 | pop rdi | ||
237 | #endif | ||
238 | ret | ||
239 | |||
240 | #if defined(__linux__) && defined(__ELF__) | ||
241 | .section .note.GNU-stack,"",%progbits | ||
242 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/amd64/bignum_sub.S b/src/lib/libcrypto/bn/arch/amd64/bignum_sub.S deleted file mode 100644 index 3ff8a30510..0000000000 --- a/src/lib/libcrypto/bn/arch/amd64/bignum_sub.S +++ /dev/null | |||
@@ -1,153 +0,0 @@ | |||
1 | // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
2 | // | ||
3 | // Permission to use, copy, modify, and/or distribute this software for any | ||
4 | // purpose with or without fee is hereby granted, provided that the above | ||
5 | // copyright notice and this permission notice appear in all copies. | ||
6 | // | ||
7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
10 | // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
12 | // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
13 | // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
14 | |||
15 | // ---------------------------------------------------------------------------- | ||
16 | // Subtract, z := x - y | ||
17 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[p] | ||
18 | // | ||
19 | // extern uint64_t bignum_sub | ||
20 | // (uint64_t p, uint64_t *z, | ||
21 | // uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
22 | // | ||
23 | // Does the z := x - y operation, truncating modulo p words in general and | ||
24 | // returning a top borrow (0 or 1) in the p'th place, only subtracting input | ||
25 | // words below p (as well as m and n respectively) to get the diff and borrow. | ||
26 | // | ||
27 | // Standard x86-64 ABI: RDI = p, RSI = z, RDX = m, RCX = x, R8 = n, R9 = y, returns RAX | ||
28 | // Microsoft x64 ABI: RCX = p, RDX = z, R8 = m, R9 = x, [RSP+40] = n, [RSP+48] = y, returns RAX | ||
29 | // ---------------------------------------------------------------------------- | ||
30 | |||
31 | #include "s2n_bignum_internal.h" | ||
32 | |||
33 | .intel_syntax noprefix | ||
34 | S2N_BN_SYM_VISIBILITY_DIRECTIVE(bignum_sub) | ||
35 | S2N_BN_SYM_PRIVACY_DIRECTIVE(bignum_sub) | ||
36 | .text | ||
37 | |||
38 | #define p rdi | ||
39 | #define z rsi | ||
40 | #define m rdx | ||
41 | #define x rcx | ||
42 | #define n r8 | ||
43 | #define y r9 | ||
44 | #define i r10 | ||
45 | #define a rax | ||
46 | |||
47 | #define ashort eax | ||
48 | |||
49 | |||
50 | |||
51 | S2N_BN_SYMBOL(bignum_sub): | ||
52 | _CET_ENDBR | ||
53 | |||
54 | #if WINDOWS_ABI | ||
55 | push rdi | ||
56 | push rsi | ||
57 | mov rdi, rcx | ||
58 | mov rsi, rdx | ||
59 | mov rdx, r8 | ||
60 | mov rcx, r9 | ||
61 | mov r8, [rsp+56] | ||
62 | mov r9, [rsp+64] | ||
63 | #endif | ||
64 | |||
65 | // Zero the main index counter for both branches | ||
66 | |||
67 | xor i, i | ||
68 | |||
69 | // First clamp the two input sizes m := min(p,m) and n := min(p,n) since | ||
70 | // we'll never need words past the p'th. Can now assume m <= p and n <= p. | ||
71 | // Then compare the modified m and n and branch accordingly | ||
72 | |||
73 | cmp p, m | ||
74 | cmovc m, p | ||
75 | cmp p, n | ||
76 | cmovc n, p | ||
77 | cmp m, n | ||
78 | jc ylonger | ||
79 | |||
80 | // The case where x is longer or of the same size (p >= m >= n) | ||
81 | |||
82 | sub p, m | ||
83 | sub m, n | ||
84 | inc m | ||
85 | test n, n | ||
86 | jz xtest | ||
87 | xmainloop: | ||
88 | mov a, [x+8*i] | ||
89 | sbb a, [y+8*i] | ||
90 | mov [z+8*i],a | ||
91 | inc i | ||
92 | dec n | ||
93 | jnz xmainloop | ||
94 | jmp xtest | ||
95 | xtoploop: | ||
96 | mov a, [x+8*i] | ||
97 | sbb a, 0 | ||
98 | mov [z+8*i],a | ||
99 | inc i | ||
100 | xtest: | ||
101 | dec m | ||
102 | jnz xtoploop | ||
103 | sbb a, a | ||
104 | test p, p | ||
105 | jz tailskip | ||
106 | tailloop: | ||
107 | mov [z+8*i],a | ||
108 | inc i | ||
109 | dec p | ||
110 | jnz tailloop | ||
111 | tailskip: | ||
112 | neg a | ||
113 | #if WINDOWS_ABI | ||
114 | pop rsi | ||
115 | pop rdi | ||
116 | #endif | ||
117 | ret | ||
118 | |||
119 | // The case where y is longer (p >= n > m) | ||
120 | |||
121 | ylonger: | ||
122 | |||
123 | sub p, n | ||
124 | sub n, m | ||
125 | test m, m | ||
126 | jz ytoploop | ||
127 | ymainloop: | ||
128 | mov a, [x+8*i] | ||
129 | sbb a, [y+8*i] | ||
130 | mov [z+8*i],a | ||
131 | inc i | ||
132 | dec m | ||
133 | jnz ymainloop | ||
134 | ytoploop: | ||
135 | mov ashort, 0 | ||
136 | sbb a, [y+8*i] | ||
137 | mov [z+8*i],a | ||
138 | inc i | ||
139 | dec n | ||
140 | jnz ytoploop | ||
141 | sbb a, a | ||
142 | test p, p | ||
143 | jnz tailloop | ||
144 | neg a | ||
145 | #if WINDOWS_ABI | ||
146 | pop rsi | ||
147 | pop rdi | ||
148 | #endif | ||
149 | ret | ||
150 | |||
151 | #if defined(__linux__) && defined(__ELF__) | ||
152 | .section .note.GNU-stack,"",%progbits | ||
153 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/amd64/bn_arch.c b/src/lib/libcrypto/bn/arch/amd64/bn_arch.c deleted file mode 100644 index a377a05681..0000000000 --- a/src/lib/libcrypto/bn/arch/amd64/bn_arch.c +++ /dev/null | |||
@@ -1,131 +0,0 @@ | |||
1 | /* $OpenBSD: bn_arch.c,v 1.7 2023/06/24 16:01:44 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #include <openssl/bn.h> | ||
19 | |||
20 | #include "bn_arch.h" | ||
21 | #include "bn_local.h" | ||
22 | #include "s2n_bignum.h" | ||
23 | |||
24 | #ifdef HAVE_BN_ADD | ||
25 | BN_ULONG | ||
26 | bn_add(BN_ULONG *r, int r_len, const BN_ULONG *a, int a_len, const BN_ULONG *b, | ||
27 | int b_len) | ||
28 | { | ||
29 | return bignum_add(r_len, (uint64_t *)r, a_len, (uint64_t *)a, | ||
30 | b_len, (uint64_t *)b); | ||
31 | } | ||
32 | #endif | ||
33 | |||
34 | |||
35 | #ifdef HAVE_BN_ADD_WORDS | ||
36 | BN_ULONG | ||
37 | bn_add_words(BN_ULONG *rd, const BN_ULONG *ad, const BN_ULONG *bd, int n) | ||
38 | { | ||
39 | return bignum_add(n, (uint64_t *)rd, n, (uint64_t *)ad, n, | ||
40 | (uint64_t *)bd); | ||
41 | } | ||
42 | #endif | ||
43 | |||
44 | #ifdef HAVE_BN_SUB | ||
45 | BN_ULONG | ||
46 | bn_sub(BN_ULONG *r, int r_len, const BN_ULONG *a, int a_len, const BN_ULONG *b, | ||
47 | int b_len) | ||
48 | { | ||
49 | return bignum_sub(r_len, (uint64_t *)r, a_len, (uint64_t *)a, | ||
50 | b_len, (uint64_t *)b); | ||
51 | } | ||
52 | #endif | ||
53 | |||
54 | #ifdef HAVE_BN_SUB_WORDS | ||
55 | BN_ULONG | ||
56 | bn_sub_words(BN_ULONG *rd, const BN_ULONG *ad, const BN_ULONG *bd, int n) | ||
57 | { | ||
58 | return bignum_sub(n, (uint64_t *)rd, n, (uint64_t *)ad, n, | ||
59 | (uint64_t *)bd); | ||
60 | } | ||
61 | #endif | ||
62 | |||
63 | #ifdef HAVE_BN_MUL_ADD_WORDS | ||
64 | BN_ULONG | ||
65 | bn_mul_add_words(BN_ULONG *rd, const BN_ULONG *ad, int num, BN_ULONG w) | ||
66 | { | ||
67 | return bignum_cmadd(num, (uint64_t *)rd, w, num, (uint64_t *)ad); | ||
68 | } | ||
69 | #endif | ||
70 | |||
71 | #ifdef HAVE_BN_MUL_WORDS | ||
72 | BN_ULONG | ||
73 | bn_mul_words(BN_ULONG *rd, const BN_ULONG *ad, int num, BN_ULONG w) | ||
74 | { | ||
75 | return bignum_cmul(num, (uint64_t *)rd, w, num, (uint64_t *)ad); | ||
76 | } | ||
77 | #endif | ||
78 | |||
79 | #ifdef HAVE_BN_MUL_COMBA4 | ||
80 | void | ||
81 | bn_mul_comba4(BN_ULONG *rd, BN_ULONG *ad, BN_ULONG *bd) | ||
82 | { | ||
83 | /* XXX - consider using non-alt on CPUs that have the ADX extension. */ | ||
84 | bignum_mul_4_8_alt((uint64_t *)rd, (uint64_t *)ad, (uint64_t *)bd); | ||
85 | } | ||
86 | #endif | ||
87 | |||
88 | #ifdef HAVE_BN_MUL_COMBA8 | ||
89 | void | ||
90 | bn_mul_comba8(BN_ULONG *rd, BN_ULONG *ad, BN_ULONG *bd) | ||
91 | { | ||
92 | /* XXX - consider using non-alt on CPUs that have the ADX extension. */ | ||
93 | bignum_mul_8_16_alt((uint64_t *)rd, (uint64_t *)ad, (uint64_t *)bd); | ||
94 | } | ||
95 | #endif | ||
96 | |||
97 | #ifdef HAVE_BN_SQR | ||
98 | int | ||
99 | bn_sqr(BIGNUM *r, const BIGNUM *a, int r_len, BN_CTX *ctx) | ||
100 | { | ||
101 | bignum_sqr(r_len, (uint64_t *)r->d, a->top, (uint64_t *)a->d); | ||
102 | |||
103 | return 1; | ||
104 | } | ||
105 | #endif | ||
106 | |||
107 | #ifdef HAVE_BN_SQR_COMBA4 | ||
108 | void | ||
109 | bn_sqr_comba4(BN_ULONG *rd, const BN_ULONG *ad) | ||
110 | { | ||
111 | /* XXX - consider using non-alt on CPUs that have the ADX extension. */ | ||
112 | bignum_sqr_4_8_alt((uint64_t *)rd, (uint64_t *)ad); | ||
113 | } | ||
114 | #endif | ||
115 | |||
116 | #ifdef HAVE_BN_SQR_COMBA8 | ||
117 | void | ||
118 | bn_sqr_comba8(BN_ULONG *rd, const BN_ULONG *ad) | ||
119 | { | ||
120 | /* XXX - consider using non-alt on CPUs that have the ADX extension. */ | ||
121 | bignum_sqr_8_16_alt((uint64_t *)rd, (uint64_t *)ad); | ||
122 | } | ||
123 | #endif | ||
124 | |||
125 | #ifdef HAVE_BN_WORD_CLZ | ||
126 | int | ||
127 | bn_word_clz(BN_ULONG w) | ||
128 | { | ||
129 | return word_clz(w); | ||
130 | } | ||
131 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/amd64/bn_arch.h b/src/lib/libcrypto/bn/arch/amd64/bn_arch.h deleted file mode 100644 index 927cd75208..0000000000 --- a/src/lib/libcrypto/bn/arch/amd64/bn_arch.h +++ /dev/null | |||
@@ -1,109 +0,0 @@ | |||
1 | /* $OpenBSD: bn_arch.h,v 1.14 2024/03/26 06:09:25 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #include <openssl/bn.h> | ||
19 | |||
20 | #ifndef HEADER_BN_ARCH_H | ||
21 | #define HEADER_BN_ARCH_H | ||
22 | |||
23 | #ifndef OPENSSL_NO_ASM | ||
24 | |||
25 | #define HAVE_BN_ADD | ||
26 | #define HAVE_BN_ADD_WORDS | ||
27 | |||
28 | #define HAVE_BN_DIV_WORDS | ||
29 | |||
30 | #define HAVE_BN_MUL_ADD_WORDS | ||
31 | #define HAVE_BN_MUL_COMBA4 | ||
32 | #define HAVE_BN_MUL_COMBA8 | ||
33 | #define HAVE_BN_MUL_WORDS | ||
34 | |||
35 | #define HAVE_BN_SQR | ||
36 | #define HAVE_BN_SQR_COMBA4 | ||
37 | #define HAVE_BN_SQR_COMBA8 | ||
38 | |||
39 | #define HAVE_BN_SUB | ||
40 | #define HAVE_BN_SUB_WORDS | ||
41 | |||
42 | #define HAVE_BN_WORD_CLZ | ||
43 | |||
44 | #if defined(__GNUC__) | ||
45 | |||
46 | #define HAVE_BN_DIV_REM_WORDS_INLINE | ||
47 | |||
48 | static inline void | ||
49 | bn_div_rem_words_inline(BN_ULONG h, BN_ULONG l, BN_ULONG d, BN_ULONG *out_q, | ||
50 | BN_ULONG *out_r) | ||
51 | { | ||
52 | BN_ULONG q, r; | ||
53 | |||
54 | /* | ||
55 | * Unsigned division of %rdx:%rax by d with quotient being stored in | ||
56 | * %rax and remainder in %rdx. | ||
57 | */ | ||
58 | __asm__ volatile ("divq %4" | ||
59 | : "=a"(q), "=d"(r) | ||
60 | : "d"(h), "a"(l), "rm"(d) | ||
61 | : "cc"); | ||
62 | |||
63 | *out_q = q; | ||
64 | *out_r = r; | ||
65 | } | ||
66 | |||
67 | #define HAVE_BN_MULW | ||
68 | |||
69 | static inline void | ||
70 | bn_mulw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
71 | { | ||
72 | BN_ULONG r1, r0; | ||
73 | |||
74 | /* | ||
75 | * Unsigned multiplication of %rax, with the double word result being | ||
76 | * stored in %rdx:%rax. | ||
77 | */ | ||
78 | __asm__ ("mulq %3" | ||
79 | : "=d"(r1), "=a"(r0) | ||
80 | : "a"(a), "rm"(b) | ||
81 | : "cc"); | ||
82 | |||
83 | *out_r1 = r1; | ||
84 | *out_r0 = r0; | ||
85 | } | ||
86 | |||
87 | #define HAVE_BN_SUBW | ||
88 | |||
89 | static inline void | ||
90 | bn_subw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_borrow, BN_ULONG *out_r0) | ||
91 | { | ||
92 | BN_ULONG borrow, r0; | ||
93 | |||
94 | __asm__ ( | ||
95 | "subq %3, %1 \n" | ||
96 | "setb %b0 \n" | ||
97 | "and $1, %0 \n" | ||
98 | : "=r"(borrow), "=r"(r0) | ||
99 | : "1"(a), "rm"(b) | ||
100 | : "cc"); | ||
101 | |||
102 | *out_borrow = borrow; | ||
103 | *out_r0 = r0; | ||
104 | } | ||
105 | |||
106 | #endif /* __GNUC__ */ | ||
107 | |||
108 | #endif | ||
109 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/amd64/word_clz.S b/src/lib/libcrypto/bn/arch/amd64/word_clz.S deleted file mode 100644 index 3926fcd4b0..0000000000 --- a/src/lib/libcrypto/bn/arch/amd64/word_clz.S +++ /dev/null | |||
@@ -1,60 +0,0 @@ | |||
1 | // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
2 | // | ||
3 | // Permission to use, copy, modify, and/or distribute this software for any | ||
4 | // purpose with or without fee is hereby granted, provided that the above | ||
5 | // copyright notice and this permission notice appear in all copies. | ||
6 | // | ||
7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
10 | // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
12 | // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
13 | // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
14 | |||
15 | // ---------------------------------------------------------------------------- | ||
16 | // Count leading zero bits in a single word | ||
17 | // Input a; output function return | ||
18 | // | ||
19 | // extern uint64_t word_clz (uint64_t a); | ||
20 | // | ||
21 | // Standard x86-64 ABI: RDI = a, returns RAX | ||
22 | // Microsoft x64 ABI: RCX = a, returns RAX | ||
23 | // ---------------------------------------------------------------------------- | ||
24 | |||
25 | #include "s2n_bignum_internal.h" | ||
26 | |||
27 | .intel_syntax noprefix | ||
28 | S2N_BN_SYM_VISIBILITY_DIRECTIVE(word_clz) | ||
29 | S2N_BN_SYM_PRIVACY_DIRECTIVE(word_clz) | ||
30 | .text | ||
31 | |||
32 | S2N_BN_SYMBOL(word_clz): | ||
33 | _CET_ENDBR | ||
34 | |||
35 | #if WINDOWS_ABI | ||
36 | push rdi | ||
37 | push rsi | ||
38 | mov rdi, rcx | ||
39 | #endif | ||
40 | |||
41 | // First do rax = 63 - bsr(a), which is right except (maybe) for zero inputs | ||
42 | |||
43 | bsr rax, rdi | ||
44 | xor rax, 63 | ||
45 | |||
46 | // Force return of 64 in the zero-input case | ||
47 | |||
48 | mov edx, 64 | ||
49 | test rdi, rdi | ||
50 | cmove rax, rdx | ||
51 | |||
52 | #if WINDOWS_ABI | ||
53 | pop rsi | ||
54 | pop rdi | ||
55 | #endif | ||
56 | ret | ||
57 | |||
58 | #if defined(__linux__) && defined(__ELF__) | ||
59 | .section .note.GNU-stack,"",%progbits | ||
60 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/arm/bn_arch.h b/src/lib/libcrypto/bn/arch/arm/bn_arch.h deleted file mode 100644 index ef9bf7f156..0000000000 --- a/src/lib/libcrypto/bn/arch/arm/bn_arch.h +++ /dev/null | |||
@@ -1,73 +0,0 @@ | |||
1 | /* $OpenBSD: bn_arch.h,v 1.2 2023/06/24 15:51:47 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #include <openssl/bn.h> | ||
19 | |||
20 | #ifndef HEADER_BN_ARCH_H | ||
21 | #define HEADER_BN_ARCH_H | ||
22 | |||
23 | #ifndef OPENSSL_NO_ASM | ||
24 | |||
25 | #if defined(__GNUC__) | ||
26 | |||
27 | #define HAVE_BN_SUBW | ||
28 | |||
29 | static inline void | ||
30 | bn_subw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_borrow, BN_ULONG *out_r0) | ||
31 | { | ||
32 | BN_ULONG borrow, r0; | ||
33 | |||
34 | __asm__ ( | ||
35 | "mov %[borrow], #0 \n" | ||
36 | "subs %[r0], %[a], %[b] \n" | ||
37 | "sbc %[borrow], %[borrow], #0 \n" | ||
38 | "neg %[borrow], %[borrow] \n" | ||
39 | : [borrow]"=&r"(borrow), [r0]"=r"(r0) | ||
40 | : [a]"r"(a), [b]"r"(b) | ||
41 | : "cc"); | ||
42 | |||
43 | *out_borrow = borrow; | ||
44 | *out_r0 = r0; | ||
45 | } | ||
46 | |||
47 | #define HAVE_BN_SUBW_SUBW | ||
48 | |||
49 | static inline void | ||
50 | bn_subw_subw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG *out_borrow, | ||
51 | BN_ULONG *out_r0) | ||
52 | { | ||
53 | BN_ULONG borrow, r0; | ||
54 | |||
55 | __asm__ ( | ||
56 | "mov %[borrow], #0 \n" | ||
57 | "subs %[r0], %[a], %[b] \n" | ||
58 | "sbc %[borrow], %[borrow], #0 \n" | ||
59 | "subs %[r0], %[r0], %[c] \n" | ||
60 | "sbc %[borrow], %[borrow], #0 \n" | ||
61 | "neg %[borrow], %[borrow] \n" | ||
62 | : [borrow]"=&r"(borrow), [r0]"=&r"(r0) | ||
63 | : [a]"r"(a), [b]"r"(b), [c]"r"(c) | ||
64 | : "cc"); | ||
65 | |||
66 | *out_borrow = borrow; | ||
67 | *out_r0 = r0; | ||
68 | } | ||
69 | |||
70 | #endif /* __GNUC__ */ | ||
71 | |||
72 | #endif | ||
73 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/hppa/bn_arch.h b/src/lib/libcrypto/bn/arch/hppa/bn_arch.h deleted file mode 100644 index 136adf0e97..0000000000 --- a/src/lib/libcrypto/bn/arch/hppa/bn_arch.h +++ /dev/null | |||
@@ -1,24 +0,0 @@ | |||
1 | /* $OpenBSD: bn_arch.h,v 1.1 2023/01/20 10:04:33 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #ifndef HEADER_BN_ARCH_H | ||
19 | #define HEADER_BN_ARCH_H | ||
20 | |||
21 | #ifndef OPENSSL_NO_ASM | ||
22 | |||
23 | #endif | ||
24 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/i386/bn_arch.h b/src/lib/libcrypto/bn/arch/i386/bn_arch.h deleted file mode 100644 index eef519fcc7..0000000000 --- a/src/lib/libcrypto/bn/arch/i386/bn_arch.h +++ /dev/null | |||
@@ -1,86 +0,0 @@ | |||
1 | /* $OpenBSD: bn_arch.h,v 1.9 2023/02/16 10:41:03 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #include <openssl/bn.h> | ||
19 | |||
20 | #ifndef HEADER_BN_ARCH_H | ||
21 | #define HEADER_BN_ARCH_H | ||
22 | |||
23 | #ifndef OPENSSL_NO_ASM | ||
24 | |||
25 | #define HAVE_BN_ADD_WORDS | ||
26 | |||
27 | #define HAVE_BN_DIV_WORDS | ||
28 | |||
29 | #define HAVE_BN_MUL_ADD_WORDS | ||
30 | #define HAVE_BN_MUL_COMBA4 | ||
31 | #define HAVE_BN_MUL_COMBA8 | ||
32 | #define HAVE_BN_MUL_WORDS | ||
33 | |||
34 | #define HAVE_BN_SQR_COMBA4 | ||
35 | #define HAVE_BN_SQR_COMBA8 | ||
36 | #define HAVE_BN_SQR_WORDS | ||
37 | |||
38 | #define HAVE_BN_SUB_WORDS | ||
39 | |||
40 | #if defined(__GNUC__) | ||
41 | #define HAVE_BN_DIV_REM_WORDS_INLINE | ||
42 | |||
43 | static inline void | ||
44 | bn_div_rem_words_inline(BN_ULONG h, BN_ULONG l, BN_ULONG d, BN_ULONG *out_q, | ||
45 | BN_ULONG *out_r) | ||
46 | { | ||
47 | BN_ULONG q, r; | ||
48 | |||
49 | /* | ||
50 | * Unsigned division of %edx:%eax by d with quotient being stored in | ||
51 | * %eax and remainder in %edx. | ||
52 | */ | ||
53 | __asm__ volatile ("divl %4" | ||
54 | : "=a"(q), "=d"(r) | ||
55 | : "a"(l), "d"(h), "rm"(d) | ||
56 | : "cc"); | ||
57 | |||
58 | *out_q = q; | ||
59 | *out_r = r; | ||
60 | } | ||
61 | #endif /* __GNUC__ */ | ||
62 | |||
63 | #if defined(__GNUC__) | ||
64 | #define HAVE_BN_MULW | ||
65 | |||
66 | static inline void | ||
67 | bn_mulw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
68 | { | ||
69 | BN_ULONG r1, r0; | ||
70 | |||
71 | /* | ||
72 | * Unsigned multiplication of %eax, with the double word result being | ||
73 | * stored in %edx:%eax. | ||
74 | */ | ||
75 | __asm__ ("mull %3" | ||
76 | : "=d"(r1), "=a"(r0) | ||
77 | : "a"(a), "rm"(b) | ||
78 | : "cc"); | ||
79 | |||
80 | *out_r1 = r1; | ||
81 | *out_r0 = r0; | ||
82 | } | ||
83 | #endif /* __GNUC__ */ | ||
84 | |||
85 | #endif | ||
86 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/m88k/bn_arch.h b/src/lib/libcrypto/bn/arch/m88k/bn_arch.h deleted file mode 100644 index 136adf0e97..0000000000 --- a/src/lib/libcrypto/bn/arch/m88k/bn_arch.h +++ /dev/null | |||
@@ -1,24 +0,0 @@ | |||
1 | /* $OpenBSD: bn_arch.h,v 1.1 2023/01/20 10:04:33 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #ifndef HEADER_BN_ARCH_H | ||
19 | #define HEADER_BN_ARCH_H | ||
20 | |||
21 | #ifndef OPENSSL_NO_ASM | ||
22 | |||
23 | #endif | ||
24 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/mips64/bn_arch.h b/src/lib/libcrypto/bn/arch/mips64/bn_arch.h deleted file mode 100644 index 53771bce1e..0000000000 --- a/src/lib/libcrypto/bn/arch/mips64/bn_arch.h +++ /dev/null | |||
@@ -1,40 +0,0 @@ | |||
1 | /* $OpenBSD: bn_arch.h,v 1.7 2023/01/23 12:17:58 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #ifndef HEADER_BN_ARCH_H | ||
19 | #define HEADER_BN_ARCH_H | ||
20 | |||
21 | #ifndef OPENSSL_NO_ASM | ||
22 | |||
23 | #define HAVE_BN_ADD_WORDS | ||
24 | |||
25 | #define HAVE_BN_DIV_WORDS | ||
26 | #define HAVE_BN_DIV_3_WORDS | ||
27 | |||
28 | #define HAVE_BN_MUL_ADD_WORDS | ||
29 | #define HAVE_BN_MUL_COMBA4 | ||
30 | #define HAVE_BN_MUL_COMBA8 | ||
31 | #define HAVE_BN_MUL_WORDS | ||
32 | |||
33 | #define HAVE_BN_SQR_COMBA4 | ||
34 | #define HAVE_BN_SQR_COMBA8 | ||
35 | #define HAVE_BN_SQR_WORDS | ||
36 | |||
37 | #define HAVE_BN_SUB_WORDS | ||
38 | |||
39 | #endif | ||
40 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/powerpc/bn_arch.h b/src/lib/libcrypto/bn/arch/powerpc/bn_arch.h deleted file mode 100644 index 46e932a2d5..0000000000 --- a/src/lib/libcrypto/bn/arch/powerpc/bn_arch.h +++ /dev/null | |||
@@ -1,39 +0,0 @@ | |||
1 | /* $OpenBSD: bn_arch.h,v 1.6 2023/01/23 12:17:58 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #ifndef HEADER_BN_ARCH_H | ||
19 | #define HEADER_BN_ARCH_H | ||
20 | |||
21 | #ifndef OPENSSL_NO_ASM | ||
22 | |||
23 | #define HAVE_BN_ADD_WORDS | ||
24 | |||
25 | #define HAVE_BN_DIV_WORDS | ||
26 | |||
27 | #define HAVE_BN_MUL_ADD_WORDS | ||
28 | #define HAVE_BN_MUL_COMBA4 | ||
29 | #define HAVE_BN_MUL_COMBA8 | ||
30 | #define HAVE_BN_MUL_WORDS | ||
31 | |||
32 | #define HAVE_BN_SQR_COMBA4 | ||
33 | #define HAVE_BN_SQR_COMBA8 | ||
34 | #define HAVE_BN_SQR_WORDS | ||
35 | |||
36 | #define HAVE_BN_SUB_WORDS | ||
37 | |||
38 | #endif | ||
39 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/powerpc64/bn_arch.h b/src/lib/libcrypto/bn/arch/powerpc64/bn_arch.h deleted file mode 100644 index 18bac203eb..0000000000 --- a/src/lib/libcrypto/bn/arch/powerpc64/bn_arch.h +++ /dev/null | |||
@@ -1,44 +0,0 @@ | |||
1 | /* $OpenBSD: bn_arch.h,v 1.4 2023/02/16 10:41:03 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #ifndef HEADER_BN_ARCH_H | ||
19 | #define HEADER_BN_ARCH_H | ||
20 | |||
21 | #ifndef OPENSSL_NO_ASM | ||
22 | |||
23 | #if 0 /* Needs testing and enabling. */ | ||
24 | #if defined(__GNUC__) | ||
25 | #define HAVE_BN_MULW | ||
26 | |||
27 | static inline void | ||
28 | bn_mulw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
29 | { | ||
30 | BN_ULONG r1, r0; | ||
31 | |||
32 | /* Unsigned multiplication using a mulhdu/mul pair. */ | ||
33 | __asm__ ("mulhdu %0, %2, %3; mul %1, %2, %3" | ||
34 | : "=&r"(r1), "=r"(r0) | ||
35 | : "r"(a), "r"(b)); | ||
36 | |||
37 | *out_r1 = r1; | ||
38 | *out_r0 = r0; | ||
39 | } | ||
40 | #endif /* __GNUC__ */ | ||
41 | #endif | ||
42 | |||
43 | #endif | ||
44 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/riscv64/bn_arch.h b/src/lib/libcrypto/bn/arch/riscv64/bn_arch.h deleted file mode 100644 index e67de835cf..0000000000 --- a/src/lib/libcrypto/bn/arch/riscv64/bn_arch.h +++ /dev/null | |||
@@ -1,86 +0,0 @@ | |||
1 | /* $OpenBSD: bn_arch.h,v 1.7 2023/07/09 10:37:32 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #include <openssl/bn.h> | ||
19 | |||
20 | #ifndef HEADER_BN_ARCH_H | ||
21 | #define HEADER_BN_ARCH_H | ||
22 | |||
23 | #ifndef OPENSSL_NO_ASM | ||
24 | |||
25 | #if defined(__GNUC__) | ||
26 | |||
27 | #define HAVE_BN_ADDW | ||
28 | |||
29 | static inline void | ||
30 | bn_addw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
31 | { | ||
32 | BN_ULONG carry, r0; | ||
33 | |||
34 | __asm__ ( | ||
35 | "add %[r0], %[a], %[b] \n" | ||
36 | "sltu %[carry], %[r0], %[a] \n" | ||
37 | : [carry]"=r"(carry), [r0]"=&r"(r0) | ||
38 | : [a]"r"(a), [b]"r"(b)); | ||
39 | |||
40 | *out_r1 = carry; | ||
41 | *out_r0 = r0; | ||
42 | } | ||
43 | |||
44 | #define HAVE_BN_MULW | ||
45 | |||
46 | static inline void | ||
47 | bn_mulw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
48 | { | ||
49 | BN_ULONG r1, r0; | ||
50 | |||
51 | /* | ||
52 | * Unsigned multiplication using a mulh/mul pair. Note that the order | ||
53 | * of these instructions is important, as they can potentially be fused | ||
54 | * into a single operation. | ||
55 | */ | ||
56 | __asm__ ( | ||
57 | "mulhu %[r1], %[a], %[b] \n" | ||
58 | "mul %[r0], %[a], %[b] \n" | ||
59 | : [r1]"=&r"(r1), [r0]"=r"(r0) | ||
60 | : [a]"r"(a), [b]"r"(b)); | ||
61 | |||
62 | *out_r1 = r1; | ||
63 | *out_r0 = r0; | ||
64 | } | ||
65 | |||
66 | #define HAVE_BN_SUBW | ||
67 | |||
68 | static inline void | ||
69 | bn_subw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_borrow, BN_ULONG *out_r0) | ||
70 | { | ||
71 | BN_ULONG borrow, r0; | ||
72 | |||
73 | __asm__ ( | ||
74 | "sub %[r0], %[a], %[b] \n" | ||
75 | "sltu %[borrow], %[a], %[r0] \n" | ||
76 | : [borrow]"=r"(borrow), [r0]"=&r"(r0) | ||
77 | : [a]"r"(a), [b]"r"(b)); | ||
78 | |||
79 | *out_borrow = borrow; | ||
80 | *out_r0 = r0; | ||
81 | } | ||
82 | |||
83 | #endif /* __GNUC__ */ | ||
84 | |||
85 | #endif | ||
86 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/sh/bn_arch.h b/src/lib/libcrypto/bn/arch/sh/bn_arch.h deleted file mode 100644 index 4d6571f9cb..0000000000 --- a/src/lib/libcrypto/bn/arch/sh/bn_arch.h +++ /dev/null | |||
@@ -1,24 +0,0 @@ | |||
1 | /* $OpenBSD: bn_arch.h,v 1.1 2023/01/20 10:04:34 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #ifndef HEADER_BN_ARCH_H | ||
19 | #define HEADER_BN_ARCH_H | ||
20 | |||
21 | #ifndef OPENSSL_NO_ASM | ||
22 | |||
23 | #endif | ||
24 | #endif | ||
diff --git a/src/lib/libcrypto/bn/arch/sparc64/bn_arch.h b/src/lib/libcrypto/bn/arch/sparc64/bn_arch.h deleted file mode 100644 index 4d6571f9cb..0000000000 --- a/src/lib/libcrypto/bn/arch/sparc64/bn_arch.h +++ /dev/null | |||
@@ -1,24 +0,0 @@ | |||
1 | /* $OpenBSD: bn_arch.h,v 1.1 2023/01/20 10:04:34 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #ifndef HEADER_BN_ARCH_H | ||
19 | #define HEADER_BN_ARCH_H | ||
20 | |||
21 | #ifndef OPENSSL_NO_ASM | ||
22 | |||
23 | #endif | ||
24 | #endif | ||
diff --git a/src/lib/libcrypto/bn/asm/alpha-mont.pl b/src/lib/libcrypto/bn/asm/alpha-mont.pl deleted file mode 100644 index 874597f1c0..0000000000 --- a/src/lib/libcrypto/bn/asm/alpha-mont.pl +++ /dev/null | |||
@@ -1,315 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # On 21264 RSA sign performance improves by 70/35/20/15 percent for | ||
11 | # 512/1024/2048/4096 bit key lengths. This is against vendor compiler | ||
12 | # instructed to '-tune host' code with in-line assembler. Other | ||
13 | # benchmarks improve by 15-20%. To anchor it to something else, the | ||
14 | # code provides approximately the same performance per GHz as AMD64. | ||
15 | # I.e. if you compare 1GHz 21264 and 2GHz Opteron, you'll observe ~2x | ||
16 | # difference. | ||
17 | |||
18 | # int bn_mul_mont( | ||
19 | $rp="a0"; # BN_ULONG *rp, | ||
20 | $ap="a1"; # const BN_ULONG *ap, | ||
21 | $bp="a2"; # const BN_ULONG *bp, | ||
22 | $np="a3"; # const BN_ULONG *np, | ||
23 | $n0="a4"; # const BN_ULONG *n0, | ||
24 | $num="a5"; # int num); | ||
25 | |||
26 | $lo0="t0"; | ||
27 | $hi0="t1"; | ||
28 | $lo1="t2"; | ||
29 | $hi1="t3"; | ||
30 | $aj="t4"; | ||
31 | $bi="t5"; | ||
32 | $nj="t6"; | ||
33 | $tp="t7"; | ||
34 | $alo="t8"; | ||
35 | $ahi="t9"; | ||
36 | $nlo="t10"; | ||
37 | $nhi="t11"; | ||
38 | $tj="t12"; | ||
39 | $i="s3"; | ||
40 | $j="s4"; | ||
41 | $m1="s5"; | ||
42 | |||
43 | $code=<<___; | ||
44 | #include <machine/asm.h> | ||
45 | |||
46 | .text | ||
47 | |||
48 | .set noat | ||
49 | .set noreorder | ||
50 | |||
51 | .globl bn_mul_mont | ||
52 | .align 5 | ||
53 | .ent bn_mul_mont | ||
54 | bn_mul_mont: | ||
55 | lda sp,-48(sp) | ||
56 | stq ra,0(sp) | ||
57 | stq s3,8(sp) | ||
58 | stq s4,16(sp) | ||
59 | stq s5,24(sp) | ||
60 | stq fp,32(sp) | ||
61 | mov sp,fp | ||
62 | .mask 0x0400f000,-48 | ||
63 | .frame fp,48,ra | ||
64 | .prologue 0 | ||
65 | |||
66 | .align 4 | ||
67 | .set reorder | ||
68 | sextl $num,$num | ||
69 | mov 0,v0 | ||
70 | cmplt $num,4,AT | ||
71 | bne AT,.Lexit | ||
72 | |||
73 | ldq $hi0,0($ap) # ap[0] | ||
74 | s8addq $num,16,AT | ||
75 | ldq $aj,8($ap) | ||
76 | subq sp,AT,sp | ||
77 | ldq $bi,0($bp) # bp[0] | ||
78 | lda AT,-4096(zero) # mov -4096,AT | ||
79 | ldq $n0,0($n0) | ||
80 | and sp,AT,sp | ||
81 | |||
82 | mulq $hi0,$bi,$lo0 | ||
83 | ldq $hi1,0($np) # np[0] | ||
84 | umulh $hi0,$bi,$hi0 | ||
85 | ldq $nj,8($np) | ||
86 | |||
87 | mulq $lo0,$n0,$m1 | ||
88 | |||
89 | mulq $hi1,$m1,$lo1 | ||
90 | umulh $hi1,$m1,$hi1 | ||
91 | |||
92 | addq $lo1,$lo0,$lo1 | ||
93 | cmpult $lo1,$lo0,AT | ||
94 | addq $hi1,AT,$hi1 | ||
95 | |||
96 | mulq $aj,$bi,$alo | ||
97 | mov 2,$j | ||
98 | umulh $aj,$bi,$ahi | ||
99 | mov sp,$tp | ||
100 | |||
101 | mulq $nj,$m1,$nlo | ||
102 | s8addq $j,$ap,$aj | ||
103 | umulh $nj,$m1,$nhi | ||
104 | s8addq $j,$np,$nj | ||
105 | .align 4 | ||
106 | .L1st: | ||
107 | .set noreorder | ||
108 | ldq $aj,0($aj) | ||
109 | addl $j,1,$j | ||
110 | ldq $nj,0($nj) | ||
111 | lda $tp,8($tp) | ||
112 | |||
113 | addq $alo,$hi0,$lo0 | ||
114 | mulq $aj,$bi,$alo | ||
115 | cmpult $lo0,$hi0,AT | ||
116 | addq $nlo,$hi1,$lo1 | ||
117 | |||
118 | mulq $nj,$m1,$nlo | ||
119 | addq $ahi,AT,$hi0 | ||
120 | cmpult $lo1,$hi1,v0 | ||
121 | cmplt $j,$num,$tj | ||
122 | |||
123 | umulh $aj,$bi,$ahi | ||
124 | addq $nhi,v0,$hi1 | ||
125 | addq $lo1,$lo0,$lo1 | ||
126 | s8addq $j,$ap,$aj | ||
127 | |||
128 | umulh $nj,$m1,$nhi | ||
129 | cmpult $lo1,$lo0,v0 | ||
130 | addq $hi1,v0,$hi1 | ||
131 | s8addq $j,$np,$nj | ||
132 | |||
133 | stq $lo1,-8($tp) | ||
134 | nop | ||
135 | unop | ||
136 | bne $tj,.L1st | ||
137 | .set reorder | ||
138 | |||
139 | addq $alo,$hi0,$lo0 | ||
140 | addq $nlo,$hi1,$lo1 | ||
141 | cmpult $lo0,$hi0,AT | ||
142 | cmpult $lo1,$hi1,v0 | ||
143 | addq $ahi,AT,$hi0 | ||
144 | addq $nhi,v0,$hi1 | ||
145 | |||
146 | addq $lo1,$lo0,$lo1 | ||
147 | cmpult $lo1,$lo0,v0 | ||
148 | addq $hi1,v0,$hi1 | ||
149 | |||
150 | stq $lo1,0($tp) | ||
151 | |||
152 | addq $hi1,$hi0,$hi1 | ||
153 | cmpult $hi1,$hi0,AT | ||
154 | stq $hi1,8($tp) | ||
155 | stq AT,16($tp) | ||
156 | |||
157 | mov 1,$i | ||
158 | .align 4 | ||
159 | .Louter: | ||
160 | s8addq $i,$bp,$bi | ||
161 | ldq $hi0,0($ap) | ||
162 | ldq $aj,8($ap) | ||
163 | ldq $bi,0($bi) | ||
164 | ldq $hi1,0($np) | ||
165 | ldq $nj,8($np) | ||
166 | ldq $tj,0(sp) | ||
167 | |||
168 | mulq $hi0,$bi,$lo0 | ||
169 | umulh $hi0,$bi,$hi0 | ||
170 | |||
171 | addq $lo0,$tj,$lo0 | ||
172 | cmpult $lo0,$tj,AT | ||
173 | addq $hi0,AT,$hi0 | ||
174 | |||
175 | mulq $lo0,$n0,$m1 | ||
176 | |||
177 | mulq $hi1,$m1,$lo1 | ||
178 | umulh $hi1,$m1,$hi1 | ||
179 | |||
180 | addq $lo1,$lo0,$lo1 | ||
181 | cmpult $lo1,$lo0,AT | ||
182 | mov 2,$j | ||
183 | addq $hi1,AT,$hi1 | ||
184 | |||
185 | mulq $aj,$bi,$alo | ||
186 | mov sp,$tp | ||
187 | umulh $aj,$bi,$ahi | ||
188 | |||
189 | mulq $nj,$m1,$nlo | ||
190 | s8addq $j,$ap,$aj | ||
191 | umulh $nj,$m1,$nhi | ||
192 | .align 4 | ||
193 | .Linner: | ||
194 | .set noreorder | ||
195 | ldq $tj,8($tp) #L0 | ||
196 | nop #U1 | ||
197 | ldq $aj,0($aj) #L1 | ||
198 | s8addq $j,$np,$nj #U0 | ||
199 | |||
200 | ldq $nj,0($nj) #L0 | ||
201 | nop #U1 | ||
202 | addq $alo,$hi0,$lo0 #L1 | ||
203 | lda $tp,8($tp) | ||
204 | |||
205 | mulq $aj,$bi,$alo #U1 | ||
206 | cmpult $lo0,$hi0,AT #L0 | ||
207 | addq $nlo,$hi1,$lo1 #L1 | ||
208 | addl $j,1,$j | ||
209 | |||
210 | mulq $nj,$m1,$nlo #U1 | ||
211 | addq $ahi,AT,$hi0 #L0 | ||
212 | addq $lo0,$tj,$lo0 #L1 | ||
213 | cmpult $lo1,$hi1,v0 #U0 | ||
214 | |||
215 | umulh $aj,$bi,$ahi #U1 | ||
216 | cmpult $lo0,$tj,AT #L0 | ||
217 | addq $lo1,$lo0,$lo1 #L1 | ||
218 | addq $nhi,v0,$hi1 #U0 | ||
219 | |||
220 | umulh $nj,$m1,$nhi #U1 | ||
221 | s8addq $j,$ap,$aj #L0 | ||
222 | cmpult $lo1,$lo0,v0 #L1 | ||
223 | cmplt $j,$num,$tj #U0 # borrow $tj | ||
224 | |||
225 | addq $hi0,AT,$hi0 #L0 | ||
226 | addq $hi1,v0,$hi1 #U1 | ||
227 | stq $lo1,-8($tp) #L1 | ||
228 | bne $tj,.Linner #U0 | ||
229 | .set reorder | ||
230 | |||
231 | ldq $tj,8($tp) | ||
232 | addq $alo,$hi0,$lo0 | ||
233 | addq $nlo,$hi1,$lo1 | ||
234 | cmpult $lo0,$hi0,AT | ||
235 | cmpult $lo1,$hi1,v0 | ||
236 | addq $ahi,AT,$hi0 | ||
237 | addq $nhi,v0,$hi1 | ||
238 | |||
239 | addq $lo0,$tj,$lo0 | ||
240 | cmpult $lo0,$tj,AT | ||
241 | addq $hi0,AT,$hi0 | ||
242 | |||
243 | ldq $tj,16($tp) | ||
244 | addq $lo1,$lo0,$j | ||
245 | cmpult $j,$lo0,v0 | ||
246 | addq $hi1,v0,$hi1 | ||
247 | |||
248 | addq $hi1,$hi0,$lo1 | ||
249 | stq $j,0($tp) | ||
250 | cmpult $lo1,$hi0,$hi1 | ||
251 | addq $lo1,$tj,$lo1 | ||
252 | cmpult $lo1,$tj,AT | ||
253 | addl $i,1,$i | ||
254 | addq $hi1,AT,$hi1 | ||
255 | stq $lo1,8($tp) | ||
256 | cmplt $i,$num,$tj # borrow $tj | ||
257 | stq $hi1,16($tp) | ||
258 | bne $tj,.Louter | ||
259 | |||
260 | s8addq $num,sp,$tj # &tp[num] | ||
261 | mov $rp,$bp # put rp aside | ||
262 | mov sp,$tp | ||
263 | mov sp,$ap | ||
264 | mov 0,$hi0 # clear borrow bit | ||
265 | |||
266 | .align 4 | ||
267 | .Lsub: ldq $lo0,0($tp) | ||
268 | ldq $lo1,0($np) | ||
269 | lda $tp,8($tp) | ||
270 | lda $np,8($np) | ||
271 | subq $lo0,$lo1,$lo1 # tp[i]-np[i] | ||
272 | cmpult $lo0,$lo1,AT | ||
273 | subq $lo1,$hi0,$lo0 | ||
274 | cmpult $lo1,$lo0,$hi0 | ||
275 | or $hi0,AT,$hi0 | ||
276 | stq $lo0,0($rp) | ||
277 | cmpult $tp,$tj,v0 | ||
278 | lda $rp,8($rp) | ||
279 | bne v0,.Lsub | ||
280 | |||
281 | subq $hi1,$hi0,$hi0 # handle upmost overflow bit | ||
282 | mov sp,$tp | ||
283 | mov $bp,$rp # restore rp | ||
284 | |||
285 | and sp,$hi0,$ap | ||
286 | bic $bp,$hi0,$bp | ||
287 | bis $bp,$ap,$ap # ap=borrow?tp:rp | ||
288 | |||
289 | .align 4 | ||
290 | .Lcopy: ldq $aj,0($ap) # copy or in-place refresh | ||
291 | lda $tp,8($tp) | ||
292 | lda $rp,8($rp) | ||
293 | lda $ap,8($ap) | ||
294 | stq zero,-8($tp) # zap tp | ||
295 | cmpult $tp,$tj,AT | ||
296 | stq $aj,-8($rp) | ||
297 | bne AT,.Lcopy | ||
298 | mov 1,v0 | ||
299 | |||
300 | .Lexit: | ||
301 | .set noreorder | ||
302 | mov fp,sp | ||
303 | /*ldq ra,0(sp)*/ | ||
304 | ldq s3,8(sp) | ||
305 | ldq s4,16(sp) | ||
306 | ldq s5,24(sp) | ||
307 | ldq fp,32(sp) | ||
308 | lda sp,48(sp) | ||
309 | ret (ra) | ||
310 | .end bn_mul_mont | ||
311 | .align 2 | ||
312 | ___ | ||
313 | |||
314 | print $code; | ||
315 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/armv4-mont.pl b/src/lib/libcrypto/bn/asm/armv4-mont.pl deleted file mode 100644 index f78a8b5f0f..0000000000 --- a/src/lib/libcrypto/bn/asm/armv4-mont.pl +++ /dev/null | |||
@@ -1,204 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # January 2007. | ||
11 | |||
12 | # Montgomery multiplication for ARMv4. | ||
13 | # | ||
14 | # Performance improvement naturally varies among CPU implementations | ||
15 | # and compilers. The code was observed to provide +65-35% improvement | ||
16 | # [depending on key length, less for longer keys] on ARM920T, and | ||
17 | # +115-80% on Intel IXP425. This is compared to pre-bn_mul_mont code | ||
18 | # base and compiler generated code with in-lined umull and even umlal | ||
19 | # instructions. The latter means that this code didn't really have an | ||
20 | # "advantage" of utilizing some "secret" instruction. | ||
21 | # | ||
22 | # The code is interoperable with Thumb ISA and is rather compact, less | ||
23 | # than 1/2KB. Windows CE port would be trivial, as it's exclusively | ||
24 | # about decorations, ABI and instruction syntax are identical. | ||
25 | |||
26 | while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} | ||
27 | open STDOUT,">$output"; | ||
28 | |||
29 | $num="r0"; # starts as num argument, but holds &tp[num-1] | ||
30 | $ap="r1"; | ||
31 | $bp="r2"; $bi="r2"; $rp="r2"; | ||
32 | $np="r3"; | ||
33 | $tp="r4"; | ||
34 | $aj="r5"; | ||
35 | $nj="r6"; | ||
36 | $tj="r7"; | ||
37 | $n0="r8"; | ||
38 | ########### # r9 is reserved by ELF as platform specific, e.g. TLS pointer | ||
39 | $alo="r10"; # sl, gcc uses it to keep @GOT | ||
40 | $ahi="r11"; # fp | ||
41 | $nlo="r12"; # ip | ||
42 | ########### # r13 is stack pointer | ||
43 | $nhi="r14"; # lr | ||
44 | ########### # r15 is program counter | ||
45 | |||
46 | #### argument block layout relative to &tp[num-1], a.k.a. $num | ||
47 | $_rp="$num,#12*4"; | ||
48 | # ap permanently resides in r1 | ||
49 | $_bp="$num,#13*4"; | ||
50 | # np permanently resides in r3 | ||
51 | $_n0="$num,#14*4"; | ||
52 | $_num="$num,#15*4"; $_bpend=$_num; | ||
53 | |||
54 | $code=<<___; | ||
55 | .text | ||
56 | |||
57 | .global bn_mul_mont | ||
58 | .type bn_mul_mont,%function | ||
59 | |||
60 | .align 2 | ||
61 | bn_mul_mont: | ||
62 | stmdb sp!,{r0,r2} @ sp points at argument block | ||
63 | ldr $num,[sp,#3*4] @ load num | ||
64 | cmp $num,#2 | ||
65 | movlt r0,#0 | ||
66 | addlt sp,sp,#2*4 | ||
67 | blt .Labrt | ||
68 | |||
69 | stmdb sp!,{r4-r12,lr} @ save 10 registers | ||
70 | |||
71 | mov $num,$num,lsl#2 @ rescale $num for byte count | ||
72 | sub sp,sp,$num @ alloca(4*num) | ||
73 | sub sp,sp,#4 @ +extra dword | ||
74 | sub $num,$num,#4 @ "num=num-1" | ||
75 | add $tp,$bp,$num @ &bp[num-1] | ||
76 | |||
77 | add $num,sp,$num @ $num to point at &tp[num-1] | ||
78 | ldr $n0,[$_n0] @ &n0 | ||
79 | ldr $bi,[$bp] @ bp[0] | ||
80 | ldr $aj,[$ap],#4 @ ap[0],ap++ | ||
81 | ldr $nj,[$np],#4 @ np[0],np++ | ||
82 | ldr $n0,[$n0] @ *n0 | ||
83 | str $tp,[$_bpend] @ save &bp[num] | ||
84 | |||
85 | umull $alo,$ahi,$aj,$bi @ ap[0]*bp[0] | ||
86 | str $n0,[$_n0] @ save n0 value | ||
87 | mul $n0,$alo,$n0 @ "tp[0]"*n0 | ||
88 | mov $nlo,#0 | ||
89 | umlal $alo,$nlo,$nj,$n0 @ np[0]*n0+"t[0]" | ||
90 | mov $tp,sp | ||
91 | |||
92 | .L1st: | ||
93 | ldr $aj,[$ap],#4 @ ap[j],ap++ | ||
94 | mov $alo,$ahi | ||
95 | ldr $nj,[$np],#4 @ np[j],np++ | ||
96 | mov $ahi,#0 | ||
97 | umlal $alo,$ahi,$aj,$bi @ ap[j]*bp[0] | ||
98 | mov $nhi,#0 | ||
99 | umlal $nlo,$nhi,$nj,$n0 @ np[j]*n0 | ||
100 | adds $nlo,$nlo,$alo | ||
101 | str $nlo,[$tp],#4 @ tp[j-1]=,tp++ | ||
102 | adc $nlo,$nhi,#0 | ||
103 | cmp $tp,$num | ||
104 | bne .L1st | ||
105 | |||
106 | adds $nlo,$nlo,$ahi | ||
107 | ldr $tp,[$_bp] @ restore bp | ||
108 | mov $nhi,#0 | ||
109 | ldr $n0,[$_n0] @ restore n0 | ||
110 | adc $nhi,$nhi,#0 | ||
111 | str $nlo,[$num] @ tp[num-1]= | ||
112 | str $nhi,[$num,#4] @ tp[num]= | ||
113 | |||
114 | .Louter: | ||
115 | sub $tj,$num,sp @ "original" $num-1 value | ||
116 | sub $ap,$ap,$tj @ "rewind" ap to &ap[1] | ||
117 | ldr $bi,[$tp,#4]! @ *(++bp) | ||
118 | sub $np,$np,$tj @ "rewind" np to &np[1] | ||
119 | ldr $aj,[$ap,#-4] @ ap[0] | ||
120 | ldr $alo,[sp] @ tp[0] | ||
121 | ldr $nj,[$np,#-4] @ np[0] | ||
122 | ldr $tj,[sp,#4] @ tp[1] | ||
123 | |||
124 | mov $ahi,#0 | ||
125 | umlal $alo,$ahi,$aj,$bi @ ap[0]*bp[i]+tp[0] | ||
126 | str $tp,[$_bp] @ save bp | ||
127 | mul $n0,$alo,$n0 | ||
128 | mov $nlo,#0 | ||
129 | umlal $alo,$nlo,$nj,$n0 @ np[0]*n0+"tp[0]" | ||
130 | mov $tp,sp | ||
131 | |||
132 | .Linner: | ||
133 | ldr $aj,[$ap],#4 @ ap[j],ap++ | ||
134 | adds $alo,$ahi,$tj @ +=tp[j] | ||
135 | ldr $nj,[$np],#4 @ np[j],np++ | ||
136 | mov $ahi,#0 | ||
137 | umlal $alo,$ahi,$aj,$bi @ ap[j]*bp[i] | ||
138 | mov $nhi,#0 | ||
139 | umlal $nlo,$nhi,$nj,$n0 @ np[j]*n0 | ||
140 | adc $ahi,$ahi,#0 | ||
141 | ldr $tj,[$tp,#8] @ tp[j+1] | ||
142 | adds $nlo,$nlo,$alo | ||
143 | str $nlo,[$tp],#4 @ tp[j-1]=,tp++ | ||
144 | adc $nlo,$nhi,#0 | ||
145 | cmp $tp,$num | ||
146 | bne .Linner | ||
147 | |||
148 | adds $nlo,$nlo,$ahi | ||
149 | mov $nhi,#0 | ||
150 | ldr $tp,[$_bp] @ restore bp | ||
151 | adc $nhi,$nhi,#0 | ||
152 | ldr $n0,[$_n0] @ restore n0 | ||
153 | adds $nlo,$nlo,$tj | ||
154 | ldr $tj,[$_bpend] @ restore &bp[num] | ||
155 | adc $nhi,$nhi,#0 | ||
156 | str $nlo,[$num] @ tp[num-1]= | ||
157 | str $nhi,[$num,#4] @ tp[num]= | ||
158 | |||
159 | cmp $tp,$tj | ||
160 | bne .Louter | ||
161 | |||
162 | ldr $rp,[$_rp] @ pull rp | ||
163 | add $num,$num,#4 @ $num to point at &tp[num] | ||
164 | sub $aj,$num,sp @ "original" num value | ||
165 | mov $tp,sp @ "rewind" $tp | ||
166 | mov $ap,$tp @ "borrow" $ap | ||
167 | sub $np,$np,$aj @ "rewind" $np to &np[0] | ||
168 | |||
169 | subs $tj,$tj,$tj @ "clear" carry flag | ||
170 | .Lsub: ldr $tj,[$tp],#4 | ||
171 | ldr $nj,[$np],#4 | ||
172 | sbcs $tj,$tj,$nj @ tp[j]-np[j] | ||
173 | str $tj,[$rp],#4 @ rp[j]= | ||
174 | teq $tp,$num @ preserve carry | ||
175 | bne .Lsub | ||
176 | sbcs $nhi,$nhi,#0 @ upmost carry | ||
177 | mov $tp,sp @ "rewind" $tp | ||
178 | sub $rp,$rp,$aj @ "rewind" $rp | ||
179 | |||
180 | and $ap,$tp,$nhi | ||
181 | bic $np,$rp,$nhi | ||
182 | orr $ap,$ap,$np @ ap=borrow?tp:rp | ||
183 | |||
184 | .Lcopy: ldr $tj,[$ap],#4 @ copy or in-place refresh | ||
185 | str sp,[$tp],#4 @ zap tp | ||
186 | str $tj,[$rp],#4 | ||
187 | cmp $tp,$num | ||
188 | bne .Lcopy | ||
189 | |||
190 | add sp,$num,#4 @ skip over tp[num+1] | ||
191 | ldmia sp!,{r4-r12,lr} @ restore registers | ||
192 | add sp,sp,#2*4 @ skip over {r0,r2} | ||
193 | mov r0,#1 | ||
194 | .Labrt: tst lr,#1 | ||
195 | moveq pc,lr @ be binary compatible with V4, yet | ||
196 | bx lr @ interoperable with Thumb ISA:-) | ||
197 | .size bn_mul_mont,.-bn_mul_mont | ||
198 | .asciz "Montgomery multiplication for ARMv4, CRYPTOGAMS by <appro\@openssl.org>" | ||
199 | .align 2 | ||
200 | ___ | ||
201 | |||
202 | $code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4 | ||
203 | print $code; | ||
204 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/bn-586.pl b/src/lib/libcrypto/bn/asm/bn-586.pl deleted file mode 100644 index 71b775af8d..0000000000 --- a/src/lib/libcrypto/bn/asm/bn-586.pl +++ /dev/null | |||
@@ -1,567 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | |||
3 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
4 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
5 | require "x86asm.pl"; | ||
6 | |||
7 | &asm_init($ARGV[0],$0); | ||
8 | |||
9 | $sse2=0; | ||
10 | for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } | ||
11 | |||
12 | &external_label("OPENSSL_ia32cap_P") if ($sse2); | ||
13 | |||
14 | &bn_mul_add_words("bn_mul_add_words"); | ||
15 | &bn_mul_words("bn_mul_words"); | ||
16 | &bn_sqr_words("bn_sqr_words"); | ||
17 | &bn_div_words("bn_div_words"); | ||
18 | &bn_add_words("bn_add_words"); | ||
19 | &bn_sub_words("bn_sub_words"); | ||
20 | |||
21 | &asm_finish(); | ||
22 | |||
23 | sub bn_mul_add_words | ||
24 | { | ||
25 | local($name)=@_; | ||
26 | |||
27 | &function_begin_B($name,""); | ||
28 | |||
29 | $r="eax"; | ||
30 | $a="edx"; | ||
31 | $c="ecx"; | ||
32 | |||
33 | if ($sse2) { | ||
34 | &picsetup("eax"); | ||
35 | &picsymbol("eax", "OPENSSL_ia32cap_P", "eax"); | ||
36 | &bt(&DWP(0,"eax"),"\$IA32CAP_BIT0_SSE2"); | ||
37 | &jnc(&label("maw_non_sse2")); | ||
38 | |||
39 | &mov($r,&wparam(0)); | ||
40 | &mov($a,&wparam(1)); | ||
41 | &mov($c,&wparam(2)); | ||
42 | &movd("mm0",&wparam(3)); # mm0 = w | ||
43 | &pxor("mm1","mm1"); # mm1 = carry_in | ||
44 | &jmp(&label("maw_sse2_entry")); | ||
45 | |||
46 | &set_label("maw_sse2_unrolled",16); | ||
47 | &movd("mm3",&DWP(0,$r,"",0)); # mm3 = r[0] | ||
48 | &paddq("mm1","mm3"); # mm1 = carry_in + r[0] | ||
49 | &movd("mm2",&DWP(0,$a,"",0)); # mm2 = a[0] | ||
50 | &pmuludq("mm2","mm0"); # mm2 = w*a[0] | ||
51 | &movd("mm4",&DWP(4,$a,"",0)); # mm4 = a[1] | ||
52 | &pmuludq("mm4","mm0"); # mm4 = w*a[1] | ||
53 | &movd("mm6",&DWP(8,$a,"",0)); # mm6 = a[2] | ||
54 | &pmuludq("mm6","mm0"); # mm6 = w*a[2] | ||
55 | &movd("mm7",&DWP(12,$a,"",0)); # mm7 = a[3] | ||
56 | &pmuludq("mm7","mm0"); # mm7 = w*a[3] | ||
57 | &paddq("mm1","mm2"); # mm1 = carry_in + r[0] + w*a[0] | ||
58 | &movd("mm3",&DWP(4,$r,"",0)); # mm3 = r[1] | ||
59 | &paddq("mm3","mm4"); # mm3 = r[1] + w*a[1] | ||
60 | &movd("mm5",&DWP(8,$r,"",0)); # mm5 = r[2] | ||
61 | &paddq("mm5","mm6"); # mm5 = r[2] + w*a[2] | ||
62 | &movd("mm4",&DWP(12,$r,"",0)); # mm4 = r[3] | ||
63 | &paddq("mm7","mm4"); # mm7 = r[3] + w*a[3] | ||
64 | &movd(&DWP(0,$r,"",0),"mm1"); | ||
65 | &movd("mm2",&DWP(16,$a,"",0)); # mm2 = a[4] | ||
66 | &pmuludq("mm2","mm0"); # mm2 = w*a[4] | ||
67 | &psrlq("mm1",32); # mm1 = carry0 | ||
68 | &movd("mm4",&DWP(20,$a,"",0)); # mm4 = a[5] | ||
69 | &pmuludq("mm4","mm0"); # mm4 = w*a[5] | ||
70 | &paddq("mm1","mm3"); # mm1 = carry0 + r[1] + w*a[1] | ||
71 | &movd("mm6",&DWP(24,$a,"",0)); # mm6 = a[6] | ||
72 | &pmuludq("mm6","mm0"); # mm6 = w*a[6] | ||
73 | &movd(&DWP(4,$r,"",0),"mm1"); | ||
74 | &psrlq("mm1",32); # mm1 = carry1 | ||
75 | &movd("mm3",&DWP(28,$a,"",0)); # mm3 = a[7] | ||
76 | &add($a,32); | ||
77 | &pmuludq("mm3","mm0"); # mm3 = w*a[7] | ||
78 | &paddq("mm1","mm5"); # mm1 = carry1 + r[2] + w*a[2] | ||
79 | &movd("mm5",&DWP(16,$r,"",0)); # mm5 = r[4] | ||
80 | &paddq("mm2","mm5"); # mm2 = r[4] + w*a[4] | ||
81 | &movd(&DWP(8,$r,"",0),"mm1"); | ||
82 | &psrlq("mm1",32); # mm1 = carry2 | ||
83 | &paddq("mm1","mm7"); # mm1 = carry2 + r[3] + w*a[3] | ||
84 | &movd("mm5",&DWP(20,$r,"",0)); # mm5 = r[5] | ||
85 | &paddq("mm4","mm5"); # mm4 = r[5] + w*a[5] | ||
86 | &movd(&DWP(12,$r,"",0),"mm1"); | ||
87 | &psrlq("mm1",32); # mm1 = carry3 | ||
88 | &paddq("mm1","mm2"); # mm1 = carry3 + r[4] + w*a[4] | ||
89 | &movd("mm5",&DWP(24,$r,"",0)); # mm5 = r[6] | ||
90 | &paddq("mm6","mm5"); # mm6 = r[6] + w*a[6] | ||
91 | &movd(&DWP(16,$r,"",0),"mm1"); | ||
92 | &psrlq("mm1",32); # mm1 = carry4 | ||
93 | &paddq("mm1","mm4"); # mm1 = carry4 + r[5] + w*a[5] | ||
94 | &movd("mm5",&DWP(28,$r,"",0)); # mm5 = r[7] | ||
95 | &paddq("mm3","mm5"); # mm3 = r[7] + w*a[7] | ||
96 | &movd(&DWP(20,$r,"",0),"mm1"); | ||
97 | &psrlq("mm1",32); # mm1 = carry5 | ||
98 | &paddq("mm1","mm6"); # mm1 = carry5 + r[6] + w*a[6] | ||
99 | &movd(&DWP(24,$r,"",0),"mm1"); | ||
100 | &psrlq("mm1",32); # mm1 = carry6 | ||
101 | &paddq("mm1","mm3"); # mm1 = carry6 + r[7] + w*a[7] | ||
102 | &movd(&DWP(28,$r,"",0),"mm1"); | ||
103 | &lea($r,&DWP(32,$r)); | ||
104 | &psrlq("mm1",32); # mm1 = carry_out | ||
105 | |||
106 | &sub($c,8); | ||
107 | &jz(&label("maw_sse2_exit")); | ||
108 | &set_label("maw_sse2_entry"); | ||
109 | &test($c,0xfffffff8); | ||
110 | &jnz(&label("maw_sse2_unrolled")); | ||
111 | |||
112 | &set_label("maw_sse2_loop",4); | ||
113 | &movd("mm2",&DWP(0,$a)); # mm2 = a[i] | ||
114 | &movd("mm3",&DWP(0,$r)); # mm3 = r[i] | ||
115 | &pmuludq("mm2","mm0"); # a[i] *= w | ||
116 | &lea($a,&DWP(4,$a)); | ||
117 | &paddq("mm1","mm3"); # carry += r[i] | ||
118 | &paddq("mm1","mm2"); # carry += a[i]*w | ||
119 | &movd(&DWP(0,$r),"mm1"); # r[i] = carry_low | ||
120 | &sub($c,1); | ||
121 | &psrlq("mm1",32); # carry = carry_high | ||
122 | &lea($r,&DWP(4,$r)); | ||
123 | &jnz(&label("maw_sse2_loop")); | ||
124 | &set_label("maw_sse2_exit"); | ||
125 | &movd("eax","mm1"); # c = carry_out | ||
126 | &emms(); | ||
127 | &ret(); | ||
128 | |||
129 | &set_label("maw_non_sse2",16); | ||
130 | } | ||
131 | |||
132 | # function_begin prologue | ||
133 | &push("ebp"); | ||
134 | &push("ebx"); | ||
135 | &push("esi"); | ||
136 | &push("edi"); | ||
137 | |||
138 | &comment(""); | ||
139 | $Low="eax"; | ||
140 | $High="edx"; | ||
141 | $a="ebx"; | ||
142 | $w="ebp"; | ||
143 | $r="edi"; | ||
144 | $c="esi"; | ||
145 | |||
146 | &xor($c,$c); # clear carry | ||
147 | &mov($r,&wparam(0)); # | ||
148 | |||
149 | &mov("ecx",&wparam(2)); # | ||
150 | &mov($a,&wparam(1)); # | ||
151 | |||
152 | &and("ecx",0xfffffff8); # num / 8 | ||
153 | &mov($w,&wparam(3)); # | ||
154 | |||
155 | &push("ecx"); # Up the stack for a tmp variable | ||
156 | |||
157 | &jz(&label("maw_finish")); | ||
158 | |||
159 | &set_label("maw_loop",16); | ||
160 | |||
161 | for ($i=0; $i<32; $i+=4) | ||
162 | { | ||
163 | &comment("Round $i"); | ||
164 | |||
165 | &mov("eax",&DWP($i,$a)); # *a | ||
166 | &mul($w); # *a * w | ||
167 | &add("eax",$c); # L(t)+= c | ||
168 | &adc("edx",0); # H(t)+=carry | ||
169 | &add("eax",&DWP($i,$r)); # L(t)+= *r | ||
170 | &adc("edx",0); # H(t)+=carry | ||
171 | &mov(&DWP($i,$r),"eax"); # *r= L(t); | ||
172 | &mov($c,"edx"); # c= H(t); | ||
173 | } | ||
174 | |||
175 | &comment(""); | ||
176 | &sub("ecx",8); | ||
177 | &lea($a,&DWP(32,$a)); | ||
178 | &lea($r,&DWP(32,$r)); | ||
179 | &jnz(&label("maw_loop")); | ||
180 | |||
181 | &set_label("maw_finish",0); | ||
182 | &mov("ecx",&wparam(2)); # get num | ||
183 | &and("ecx",7); | ||
184 | &jnz(&label("maw_finish2")); # helps branch prediction | ||
185 | &jmp(&label("maw_end")); | ||
186 | |||
187 | &set_label("maw_finish2",1); | ||
188 | for ($i=0; $i<7; $i++) | ||
189 | { | ||
190 | &comment("Tail Round $i"); | ||
191 | &mov("eax",&DWP($i*4,$a)); # *a | ||
192 | &mul($w); # *a * w | ||
193 | &add("eax",$c); # L(t)+=c | ||
194 | &adc("edx",0); # H(t)+=carry | ||
195 | &add("eax",&DWP($i*4,$r)); # L(t)+= *r | ||
196 | &adc("edx",0); # H(t)+=carry | ||
197 | &dec("ecx") if ($i != 7-1); | ||
198 | &mov(&DWP($i*4,$r),"eax"); # *r= L(t); | ||
199 | &mov($c,"edx"); # c= H(t); | ||
200 | &jz(&label("maw_end")) if ($i != 7-1); | ||
201 | } | ||
202 | &set_label("maw_end",0); | ||
203 | &mov("eax",$c); | ||
204 | |||
205 | &pop("ecx"); # clear variable from | ||
206 | |||
207 | &function_end($name); | ||
208 | } | ||
209 | |||
210 | sub bn_mul_words | ||
211 | { | ||
212 | local($name)=@_; | ||
213 | |||
214 | &function_begin_B($name,""); | ||
215 | |||
216 | $r="eax"; | ||
217 | $a="edx"; | ||
218 | $c="ecx"; | ||
219 | |||
220 | if ($sse2) { | ||
221 | &picsetup("eax"); | ||
222 | &picsymbol("eax", "OPENSSL_ia32cap_P", "eax"); | ||
223 | &bt(&DWP(0,"eax"),"\$IA32CAP_BIT0_SSE2"); | ||
224 | &jnc(&label("mw_non_sse2")); | ||
225 | |||
226 | &mov($r,&wparam(0)); | ||
227 | &mov($a,&wparam(1)); | ||
228 | &mov($c,&wparam(2)); | ||
229 | &movd("mm0",&wparam(3)); # mm0 = w | ||
230 | &pxor("mm1","mm1"); # mm1 = carry = 0 | ||
231 | |||
232 | &set_label("mw_sse2_loop",16); | ||
233 | &movd("mm2",&DWP(0,$a)); # mm2 = a[i] | ||
234 | &pmuludq("mm2","mm0"); # a[i] *= w | ||
235 | &lea($a,&DWP(4,$a)); | ||
236 | &paddq("mm1","mm2"); # carry += a[i]*w | ||
237 | &movd(&DWP(0,$r),"mm1"); # r[i] = carry_low | ||
238 | &sub($c,1); | ||
239 | &psrlq("mm1",32); # carry = carry_high | ||
240 | &lea($r,&DWP(4,$r)); | ||
241 | &jnz(&label("mw_sse2_loop")); | ||
242 | |||
243 | &movd("eax","mm1"); # return carry | ||
244 | &emms(); | ||
245 | &ret(); | ||
246 | &set_label("mw_non_sse2",16); | ||
247 | } | ||
248 | |||
249 | # function_begin prologue | ||
250 | &push("ebp"); | ||
251 | &push("ebx"); | ||
252 | &push("esi"); | ||
253 | &push("edi"); | ||
254 | |||
255 | &comment(""); | ||
256 | $Low="eax"; | ||
257 | $High="edx"; | ||
258 | $a="ebx"; | ||
259 | $w="ecx"; | ||
260 | $r="edi"; | ||
261 | $c="esi"; | ||
262 | $num="ebp"; | ||
263 | |||
264 | &xor($c,$c); # clear carry | ||
265 | &mov($r,&wparam(0)); # | ||
266 | &mov($a,&wparam(1)); # | ||
267 | &mov($num,&wparam(2)); # | ||
268 | &mov($w,&wparam(3)); # | ||
269 | |||
270 | &and($num,0xfffffff8); # num / 8 | ||
271 | &jz(&label("mw_finish")); | ||
272 | |||
273 | &set_label("mw_loop",0); | ||
274 | for ($i=0; $i<32; $i+=4) | ||
275 | { | ||
276 | &comment("Round $i"); | ||
277 | |||
278 | &mov("eax",&DWP($i,$a,"",0)); # *a | ||
279 | &mul($w); # *a * w | ||
280 | &add("eax",$c); # L(t)+=c | ||
281 | # XXX | ||
282 | |||
283 | &adc("edx",0); # H(t)+=carry | ||
284 | &mov(&DWP($i,$r,"",0),"eax"); # *r= L(t); | ||
285 | |||
286 | &mov($c,"edx"); # c= H(t); | ||
287 | } | ||
288 | |||
289 | &comment(""); | ||
290 | &add($a,32); | ||
291 | &add($r,32); | ||
292 | &sub($num,8); | ||
293 | &jz(&label("mw_finish")); | ||
294 | &jmp(&label("mw_loop")); | ||
295 | |||
296 | &set_label("mw_finish",0); | ||
297 | &mov($num,&wparam(2)); # get num | ||
298 | &and($num,7); | ||
299 | &jnz(&label("mw_finish2")); | ||
300 | &jmp(&label("mw_end")); | ||
301 | |||
302 | &set_label("mw_finish2",1); | ||
303 | for ($i=0; $i<7; $i++) | ||
304 | { | ||
305 | &comment("Tail Round $i"); | ||
306 | &mov("eax",&DWP($i*4,$a,"",0));# *a | ||
307 | &mul($w); # *a * w | ||
308 | &add("eax",$c); # L(t)+=c | ||
309 | # XXX | ||
310 | &adc("edx",0); # H(t)+=carry | ||
311 | &mov(&DWP($i*4,$r,"",0),"eax");# *r= L(t); | ||
312 | &mov($c,"edx"); # c= H(t); | ||
313 | &dec($num) if ($i != 7-1); | ||
314 | &jz(&label("mw_end")) if ($i != 7-1); | ||
315 | } | ||
316 | &set_label("mw_end",0); | ||
317 | &mov("eax",$c); | ||
318 | |||
319 | &function_end($name); | ||
320 | } | ||
321 | |||
322 | sub bn_sqr_words | ||
323 | { | ||
324 | local($name)=@_; | ||
325 | |||
326 | &function_begin_B($name,""); | ||
327 | |||
328 | $r="eax"; | ||
329 | $a="edx"; | ||
330 | $c="ecx"; | ||
331 | |||
332 | if ($sse2) { | ||
333 | &picsetup("eax"); | ||
334 | &picsymbol("eax", "OPENSSL_ia32cap_P", "eax"); | ||
335 | &bt(&DWP(0,"eax"),"\$IA32CAP_BIT0_SSE2"); | ||
336 | &jnc(&label("sqr_non_sse2")); | ||
337 | |||
338 | &mov($r,&wparam(0)); | ||
339 | &mov($a,&wparam(1)); | ||
340 | &mov($c,&wparam(2)); | ||
341 | |||
342 | &set_label("sqr_sse2_loop",16); | ||
343 | &movd("mm0",&DWP(0,$a)); # mm0 = a[i] | ||
344 | &pmuludq("mm0","mm0"); # a[i] *= a[i] | ||
345 | &lea($a,&DWP(4,$a)); # a++ | ||
346 | &movq(&QWP(0,$r),"mm0"); # r[i] = a[i]*a[i] | ||
347 | &sub($c,1); | ||
348 | &lea($r,&DWP(8,$r)); # r += 2 | ||
349 | &jnz(&label("sqr_sse2_loop")); | ||
350 | |||
351 | &emms(); | ||
352 | &ret(); | ||
353 | &set_label("sqr_non_sse2",16); | ||
354 | } | ||
355 | |||
356 | # function_begin prologue | ||
357 | &push("ebp"); | ||
358 | &push("ebx"); | ||
359 | &push("esi"); | ||
360 | &push("edi"); | ||
361 | |||
362 | &comment(""); | ||
363 | $r="esi"; | ||
364 | $a="edi"; | ||
365 | $num="ebx"; | ||
366 | |||
367 | &mov($r,&wparam(0)); # | ||
368 | &mov($a,&wparam(1)); # | ||
369 | &mov($num,&wparam(2)); # | ||
370 | |||
371 | &and($num,0xfffffff8); # num / 8 | ||
372 | &jz(&label("sw_finish")); | ||
373 | |||
374 | &set_label("sw_loop",0); | ||
375 | for ($i=0; $i<32; $i+=4) | ||
376 | { | ||
377 | &comment("Round $i"); | ||
378 | &mov("eax",&DWP($i,$a,"",0)); # *a | ||
379 | # XXX | ||
380 | &mul("eax"); # *a * *a | ||
381 | &mov(&DWP($i*2,$r,"",0),"eax"); # | ||
382 | &mov(&DWP($i*2+4,$r,"",0),"edx");# | ||
383 | } | ||
384 | |||
385 | &comment(""); | ||
386 | &add($a,32); | ||
387 | &add($r,64); | ||
388 | &sub($num,8); | ||
389 | &jnz(&label("sw_loop")); | ||
390 | |||
391 | &set_label("sw_finish",0); | ||
392 | &mov($num,&wparam(2)); # get num | ||
393 | &and($num,7); | ||
394 | &jz(&label("sw_end")); | ||
395 | |||
396 | for ($i=0; $i<7; $i++) | ||
397 | { | ||
398 | &comment("Tail Round $i"); | ||
399 | &mov("eax",&DWP($i*4,$a,"",0)); # *a | ||
400 | # XXX | ||
401 | &mul("eax"); # *a * *a | ||
402 | &mov(&DWP($i*8,$r,"",0),"eax"); # | ||
403 | &dec($num) if ($i != 7-1); | ||
404 | &mov(&DWP($i*8+4,$r,"",0),"edx"); | ||
405 | &jz(&label("sw_end")) if ($i != 7-1); | ||
406 | } | ||
407 | &set_label("sw_end",0); | ||
408 | |||
409 | &function_end($name); | ||
410 | } | ||
411 | |||
412 | sub bn_div_words | ||
413 | { | ||
414 | local($name)=@_; | ||
415 | |||
416 | &function_begin_B($name,""); | ||
417 | &mov("edx",&wparam(0)); # | ||
418 | &mov("eax",&wparam(1)); # | ||
419 | &mov("ecx",&wparam(2)); # | ||
420 | &div("ecx"); | ||
421 | &ret(); | ||
422 | &function_end_B($name); | ||
423 | } | ||
424 | |||
425 | sub bn_add_words | ||
426 | { | ||
427 | local($name)=@_; | ||
428 | |||
429 | &function_begin($name,""); | ||
430 | |||
431 | &comment(""); | ||
432 | $a="esi"; | ||
433 | $b="edi"; | ||
434 | $c="eax"; | ||
435 | $r="ebx"; | ||
436 | $tmp1="ecx"; | ||
437 | $tmp2="edx"; | ||
438 | $num="ebp"; | ||
439 | |||
440 | &mov($r,&wparam(0)); # get r | ||
441 | &mov($a,&wparam(1)); # get a | ||
442 | &mov($b,&wparam(2)); # get b | ||
443 | &mov($num,&wparam(3)); # get num | ||
444 | &xor($c,$c); # clear carry | ||
445 | &and($num,0xfffffff8); # num / 8 | ||
446 | |||
447 | &jz(&label("aw_finish")); | ||
448 | |||
449 | &set_label("aw_loop",0); | ||
450 | for ($i=0; $i<8; $i++) | ||
451 | { | ||
452 | &comment("Round $i"); | ||
453 | |||
454 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
455 | &mov($tmp2,&DWP($i*4,$b,"",0)); # *b | ||
456 | &add($tmp1,$c); | ||
457 | &mov($c,0); | ||
458 | &adc($c,$c); | ||
459 | &add($tmp1,$tmp2); | ||
460 | &adc($c,0); | ||
461 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
462 | } | ||
463 | |||
464 | &comment(""); | ||
465 | &add($a,32); | ||
466 | &add($b,32); | ||
467 | &add($r,32); | ||
468 | &sub($num,8); | ||
469 | &jnz(&label("aw_loop")); | ||
470 | |||
471 | &set_label("aw_finish",0); | ||
472 | &mov($num,&wparam(3)); # get num | ||
473 | &and($num,7); | ||
474 | &jz(&label("aw_end")); | ||
475 | |||
476 | for ($i=0; $i<7; $i++) | ||
477 | { | ||
478 | &comment("Tail Round $i"); | ||
479 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
480 | &mov($tmp2,&DWP($i*4,$b,"",0));# *b | ||
481 | &add($tmp1,$c); | ||
482 | &mov($c,0); | ||
483 | &adc($c,$c); | ||
484 | &add($tmp1,$tmp2); | ||
485 | &adc($c,0); | ||
486 | &dec($num) if ($i != 6); | ||
487 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
488 | &jz(&label("aw_end")) if ($i != 6); | ||
489 | } | ||
490 | &set_label("aw_end",0); | ||
491 | |||
492 | # &mov("eax",$c); # $c is "eax" | ||
493 | |||
494 | &function_end($name); | ||
495 | } | ||
496 | |||
497 | sub bn_sub_words | ||
498 | { | ||
499 | local($name)=@_; | ||
500 | |||
501 | &function_begin($name,""); | ||
502 | |||
503 | &comment(""); | ||
504 | $a="esi"; | ||
505 | $b="edi"; | ||
506 | $c="eax"; | ||
507 | $r="ebx"; | ||
508 | $tmp1="ecx"; | ||
509 | $tmp2="edx"; | ||
510 | $num="ebp"; | ||
511 | |||
512 | &mov($r,&wparam(0)); # get r | ||
513 | &mov($a,&wparam(1)); # get a | ||
514 | &mov($b,&wparam(2)); # get b | ||
515 | &mov($num,&wparam(3)); # get num | ||
516 | &xor($c,$c); # clear carry | ||
517 | &and($num,0xfffffff8); # num / 8 | ||
518 | |||
519 | &jz(&label("aw_finish")); | ||
520 | |||
521 | &set_label("aw_loop",0); | ||
522 | for ($i=0; $i<8; $i++) | ||
523 | { | ||
524 | &comment("Round $i"); | ||
525 | |||
526 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
527 | &mov($tmp2,&DWP($i*4,$b,"",0)); # *b | ||
528 | &sub($tmp1,$c); | ||
529 | &mov($c,0); | ||
530 | &adc($c,$c); | ||
531 | &sub($tmp1,$tmp2); | ||
532 | &adc($c,0); | ||
533 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
534 | } | ||
535 | |||
536 | &comment(""); | ||
537 | &add($a,32); | ||
538 | &add($b,32); | ||
539 | &add($r,32); | ||
540 | &sub($num,8); | ||
541 | &jnz(&label("aw_loop")); | ||
542 | |||
543 | &set_label("aw_finish",0); | ||
544 | &mov($num,&wparam(3)); # get num | ||
545 | &and($num,7); | ||
546 | &jz(&label("aw_end")); | ||
547 | |||
548 | for ($i=0; $i<7; $i++) | ||
549 | { | ||
550 | &comment("Tail Round $i"); | ||
551 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
552 | &mov($tmp2,&DWP($i*4,$b,"",0));# *b | ||
553 | &sub($tmp1,$c); | ||
554 | &mov($c,0); | ||
555 | &adc($c,$c); | ||
556 | &sub($tmp1,$tmp2); | ||
557 | &adc($c,0); | ||
558 | &dec($num) if ($i != 6); | ||
559 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
560 | &jz(&label("aw_end")) if ($i != 6); | ||
561 | } | ||
562 | &set_label("aw_end",0); | ||
563 | |||
564 | # &mov("eax",$c); # $c is "eax" | ||
565 | |||
566 | &function_end($name); | ||
567 | } | ||
diff --git a/src/lib/libcrypto/bn/asm/co-586.pl b/src/lib/libcrypto/bn/asm/co-586.pl deleted file mode 100644 index 37d79cc0c1..0000000000 --- a/src/lib/libcrypto/bn/asm/co-586.pl +++ /dev/null | |||
@@ -1,287 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | |||
3 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
4 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
5 | require "x86asm.pl"; | ||
6 | |||
7 | &asm_init($ARGV[0],$0); | ||
8 | |||
9 | &bn_mul_comba("bn_mul_comba8",8); | ||
10 | &bn_mul_comba("bn_mul_comba4",4); | ||
11 | &bn_sqr_comba("bn_sqr_comba8",8); | ||
12 | &bn_sqr_comba("bn_sqr_comba4",4); | ||
13 | |||
14 | &asm_finish(); | ||
15 | |||
16 | sub mul_add_c | ||
17 | { | ||
18 | local($a,$ai,$b,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; | ||
19 | |||
20 | # pos == -1 if eax and edx are pre-loaded, 0 to load from next | ||
21 | # words, and 1 if load return value | ||
22 | |||
23 | &comment("mul a[$ai]*b[$bi]"); | ||
24 | |||
25 | # "eax" and "edx" will always be pre-loaded. | ||
26 | # &mov("eax",&DWP($ai*4,$a,"",0)) ; | ||
27 | # &mov("edx",&DWP($bi*4,$b,"",0)); | ||
28 | |||
29 | &mul("edx"); | ||
30 | &add($c0,"eax"); | ||
31 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a | ||
32 | &mov("eax",&wparam(0)) if $pos > 0; # load r[] | ||
33 | ### | ||
34 | &adc($c1,"edx"); | ||
35 | &mov("edx",&DWP(($nb)*4,$b,"",0)) if $pos == 0; # load next b | ||
36 | &mov("edx",&DWP(($nb)*4,$b,"",0)) if $pos == 1; # load next b | ||
37 | ### | ||
38 | &adc($c2,0); | ||
39 | # is pos > 1, it means it is the last loop | ||
40 | &mov(&DWP($i*4,"eax","",0),$c0) if $pos > 0; # save r[]; | ||
41 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next a | ||
42 | } | ||
43 | |||
44 | sub sqr_add_c | ||
45 | { | ||
46 | local($r,$a,$ai,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; | ||
47 | |||
48 | # pos == -1 if eax and edx are pre-loaded, 0 to load from next | ||
49 | # words, and 1 if load return value | ||
50 | |||
51 | &comment("sqr a[$ai]*a[$bi]"); | ||
52 | |||
53 | # "eax" and "edx" will always be pre-loaded. | ||
54 | # &mov("eax",&DWP($ai*4,$a,"",0)) ; | ||
55 | # &mov("edx",&DWP($bi*4,$b,"",0)); | ||
56 | |||
57 | if ($ai == $bi) | ||
58 | { &mul("eax");} | ||
59 | else | ||
60 | { &mul("edx");} | ||
61 | &add($c0,"eax"); | ||
62 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a | ||
63 | ### | ||
64 | &adc($c1,"edx"); | ||
65 | &mov("edx",&DWP(($nb)*4,$a,"",0)) if ($pos == 1) && ($na != $nb); | ||
66 | ### | ||
67 | &adc($c2,0); | ||
68 | # is pos > 1, it means it is the last loop | ||
69 | &mov(&DWP($i*4,$r,"",0),$c0) if $pos > 0; # save r[]; | ||
70 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next b | ||
71 | } | ||
72 | |||
73 | sub sqr_add_c2 | ||
74 | { | ||
75 | local($r,$a,$ai,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; | ||
76 | |||
77 | # pos == -1 if eax and edx are pre-loaded, 0 to load from next | ||
78 | # words, and 1 if load return value | ||
79 | |||
80 | &comment("sqr a[$ai]*a[$bi]"); | ||
81 | |||
82 | # "eax" and "edx" will always be pre-loaded. | ||
83 | # &mov("eax",&DWP($ai*4,$a,"",0)) ; | ||
84 | # &mov("edx",&DWP($bi*4,$a,"",0)); | ||
85 | |||
86 | if ($ai == $bi) | ||
87 | { &mul("eax");} | ||
88 | else | ||
89 | { &mul("edx");} | ||
90 | &add("eax","eax"); | ||
91 | ### | ||
92 | &adc("edx","edx"); | ||
93 | ### | ||
94 | &adc($c2,0); | ||
95 | &add($c0,"eax"); | ||
96 | &adc($c1,"edx"); | ||
97 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a | ||
98 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next b | ||
99 | &adc($c2,0); | ||
100 | &mov(&DWP($i*4,$r,"",0),$c0) if $pos > 0; # save r[]; | ||
101 | &mov("edx",&DWP(($nb)*4,$a,"",0)) if ($pos <= 1) && ($na != $nb); | ||
102 | ### | ||
103 | } | ||
104 | |||
105 | sub bn_mul_comba | ||
106 | { | ||
107 | local($name,$num)=@_; | ||
108 | local($a,$b,$c0,$c1,$c2); | ||
109 | local($i,$as,$ae,$bs,$be,$ai,$bi); | ||
110 | local($tot,$end); | ||
111 | |||
112 | &function_begin_B($name,""); | ||
113 | |||
114 | $c0="ebx"; | ||
115 | $c1="ecx"; | ||
116 | $c2="ebp"; | ||
117 | $a="esi"; | ||
118 | $b="edi"; | ||
119 | |||
120 | $as=0; | ||
121 | $ae=0; | ||
122 | $bs=0; | ||
123 | $be=0; | ||
124 | $tot=$num+$num-1; | ||
125 | |||
126 | &push("esi"); | ||
127 | &mov($a,&wparam(1)); | ||
128 | &push("edi"); | ||
129 | &mov($b,&wparam(2)); | ||
130 | &push("ebp"); | ||
131 | &push("ebx"); | ||
132 | |||
133 | &xor($c0,$c0); | ||
134 | &mov("eax",&DWP(0,$a,"",0)); # load the first word | ||
135 | &xor($c1,$c1); | ||
136 | &mov("edx",&DWP(0,$b,"",0)); # load the first second | ||
137 | |||
138 | for ($i=0; $i<$tot; $i++) | ||
139 | { | ||
140 | $ai=$as; | ||
141 | $bi=$bs; | ||
142 | $end=$be+1; | ||
143 | |||
144 | &comment("################## Calculate word $i"); | ||
145 | |||
146 | for ($j=$bs; $j<$end; $j++) | ||
147 | { | ||
148 | &xor($c2,$c2) if ($j == $bs); | ||
149 | if (($j+1) == $end) | ||
150 | { | ||
151 | $v=1; | ||
152 | $v=2 if (($i+1) == $tot); | ||
153 | } | ||
154 | else | ||
155 | { $v=0; } | ||
156 | if (($j+1) != $end) | ||
157 | { | ||
158 | $na=($ai-1); | ||
159 | $nb=($bi+1); | ||
160 | } | ||
161 | else | ||
162 | { | ||
163 | $na=$as+($i < ($num-1)); | ||
164 | $nb=$bs+($i >= ($num-1)); | ||
165 | } | ||
166 | #printf STDERR "[$ai,$bi] -> [$na,$nb]\n"; | ||
167 | &mul_add_c($a,$ai,$b,$bi,$c0,$c1,$c2,$v,$i,$na,$nb); | ||
168 | if ($v) | ||
169 | { | ||
170 | &comment("saved r[$i]"); | ||
171 | # &mov("eax",&wparam(0)); | ||
172 | # &mov(&DWP($i*4,"eax","",0),$c0); | ||
173 | ($c0,$c1,$c2)=($c1,$c2,$c0); | ||
174 | } | ||
175 | $ai--; | ||
176 | $bi++; | ||
177 | } | ||
178 | $as++ if ($i < ($num-1)); | ||
179 | $ae++ if ($i >= ($num-1)); | ||
180 | |||
181 | $bs++ if ($i >= ($num-1)); | ||
182 | $be++ if ($i < ($num-1)); | ||
183 | } | ||
184 | &comment("save r[$i]"); | ||
185 | # &mov("eax",&wparam(0)); | ||
186 | &mov(&DWP($i*4,"eax","",0),$c0); | ||
187 | |||
188 | &pop("ebx"); | ||
189 | &pop("ebp"); | ||
190 | &pop("edi"); | ||
191 | &pop("esi"); | ||
192 | &ret(); | ||
193 | &function_end_B($name); | ||
194 | } | ||
195 | |||
196 | sub bn_sqr_comba | ||
197 | { | ||
198 | local($name,$num)=@_; | ||
199 | local($r,$a,$c0,$c1,$c2)=@_; | ||
200 | local($i,$as,$ae,$bs,$be,$ai,$bi); | ||
201 | local($b,$tot,$end,$half); | ||
202 | |||
203 | &function_begin_B($name,""); | ||
204 | |||
205 | $c0="ebx"; | ||
206 | $c1="ecx"; | ||
207 | $c2="ebp"; | ||
208 | $a="esi"; | ||
209 | $r="edi"; | ||
210 | |||
211 | &push("esi"); | ||
212 | &push("edi"); | ||
213 | &push("ebp"); | ||
214 | &push("ebx"); | ||
215 | &mov($r,&wparam(0)); | ||
216 | &mov($a,&wparam(1)); | ||
217 | &xor($c0,$c0); | ||
218 | &xor($c1,$c1); | ||
219 | &mov("eax",&DWP(0,$a,"",0)); # load the first word | ||
220 | |||
221 | $as=0; | ||
222 | $ae=0; | ||
223 | $bs=0; | ||
224 | $be=0; | ||
225 | $tot=$num+$num-1; | ||
226 | |||
227 | for ($i=0; $i<$tot; $i++) | ||
228 | { | ||
229 | $ai=$as; | ||
230 | $bi=$bs; | ||
231 | $end=$be+1; | ||
232 | |||
233 | &comment("############### Calculate word $i"); | ||
234 | for ($j=$bs; $j<$end; $j++) | ||
235 | { | ||
236 | &xor($c2,$c2) if ($j == $bs); | ||
237 | if (($ai-1) < ($bi+1)) | ||
238 | { | ||
239 | $v=1; | ||
240 | $v=2 if ($i+1) == $tot; | ||
241 | } | ||
242 | else | ||
243 | { $v=0; } | ||
244 | if (!$v) | ||
245 | { | ||
246 | $na=$ai-1; | ||
247 | $nb=$bi+1; | ||
248 | } | ||
249 | else | ||
250 | { | ||
251 | $na=$as+($i < ($num-1)); | ||
252 | $nb=$bs+($i >= ($num-1)); | ||
253 | } | ||
254 | if ($ai == $bi) | ||
255 | { | ||
256 | &sqr_add_c($r,$a,$ai,$bi, | ||
257 | $c0,$c1,$c2,$v,$i,$na,$nb); | ||
258 | } | ||
259 | else | ||
260 | { | ||
261 | &sqr_add_c2($r,$a,$ai,$bi, | ||
262 | $c0,$c1,$c2,$v,$i,$na,$nb); | ||
263 | } | ||
264 | if ($v) | ||
265 | { | ||
266 | &comment("saved r[$i]"); | ||
267 | #&mov(&DWP($i*4,$r,"",0),$c0); | ||
268 | ($c0,$c1,$c2)=($c1,$c2,$c0); | ||
269 | last; | ||
270 | } | ||
271 | $ai--; | ||
272 | $bi++; | ||
273 | } | ||
274 | $as++ if ($i < ($num-1)); | ||
275 | $ae++ if ($i >= ($num-1)); | ||
276 | |||
277 | $bs++ if ($i >= ($num-1)); | ||
278 | $be++ if ($i < ($num-1)); | ||
279 | } | ||
280 | &mov(&DWP($i*4,$r,"",0),$c0); | ||
281 | &pop("ebx"); | ||
282 | &pop("ebp"); | ||
283 | &pop("edi"); | ||
284 | &pop("esi"); | ||
285 | &ret(); | ||
286 | &function_end_B($name); | ||
287 | } | ||
diff --git a/src/lib/libcrypto/bn/asm/mips-mont.pl b/src/lib/libcrypto/bn/asm/mips-mont.pl deleted file mode 100644 index caae04ed3a..0000000000 --- a/src/lib/libcrypto/bn/asm/mips-mont.pl +++ /dev/null | |||
@@ -1,426 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # This module doesn't present direct interest for OpenSSL, because it | ||
11 | # doesn't provide better performance for longer keys, at least not on | ||
12 | # in-order-execution cores. While 512-bit RSA sign operations can be | ||
13 | # 65% faster in 64-bit mode, 1024-bit ones are only 15% faster, and | ||
14 | # 4096-bit ones are up to 15% slower. In 32-bit mode it varies from | ||
15 | # 16% improvement for 512-bit RSA sign to -33% for 4096-bit RSA | ||
16 | # verify:-( All comparisons are against bn_mul_mont-free assembler. | ||
17 | # The module might be of interest to embedded system developers, as | ||
18 | # the code is smaller than 1KB, yet offers >3x improvement on MIPS64 | ||
19 | # and 75-30% [less for longer keys] on MIPS32 over compiler-generated | ||
20 | # code. | ||
21 | |||
22 | ###################################################################### | ||
23 | # There is a number of MIPS ABI in use, O32 and N32/64 are most | ||
24 | # widely used. Then there is a new contender: NUBI. It appears that if | ||
25 | # one picks the latter, it's possible to arrange code in ABI neutral | ||
26 | # manner. Therefore let's stick to NUBI register layout: | ||
27 | # | ||
28 | ($zero,$at,$t0,$t1,$t2)=map("\$$_",(0..2,24,25)); | ||
29 | ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); | ||
30 | ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7,$s8,$s9,$s10,$s11)=map("\$$_",(12..23)); | ||
31 | ($gp,$tp,$sp,$fp,$ra)=map("\$$_",(3,28..31)); | ||
32 | # | ||
33 | # The return value is placed in $a0. Following coding rules facilitate | ||
34 | # interoperability: | ||
35 | # | ||
36 | # - never ever touch $tp, "thread pointer", former $gp; | ||
37 | # - copy return value to $t0, former $v0 [or to $a0 if you're adapting | ||
38 | # old code]; | ||
39 | # - on O32 populate $a4-$a7 with 'lw $aN,4*N($sp)' if necessary; | ||
40 | # | ||
41 | # For reference here is register layout for N32/64 MIPS ABIs: | ||
42 | # | ||
43 | # ($zero,$at,$v0,$v1)=map("\$$_",(0..3)); | ||
44 | # ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); | ||
45 | # ($t0,$t1,$t2,$t3,$t8,$t9)=map("\$$_",(12..15,24,25)); | ||
46 | # ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7)=map("\$$_",(16..23)); | ||
47 | # ($gp,$sp,$fp,$ra)=map("\$$_",(28..31)); | ||
48 | # | ||
49 | $flavour = shift; # supported flavours are o32,n32,64,nubi32,nubi64 | ||
50 | |||
51 | if ($flavour =~ /64|n32/i) { | ||
52 | $PTR_ADD="dadd"; # incidentally works even on n32 | ||
53 | $PTR_SUB="dsub"; # incidentally works even on n32 | ||
54 | $REG_S="sd"; | ||
55 | $REG_L="ld"; | ||
56 | $SZREG=8; | ||
57 | } else { | ||
58 | $PTR_ADD="add"; | ||
59 | $PTR_SUB="sub"; | ||
60 | $REG_S="sw"; | ||
61 | $REG_L="lw"; | ||
62 | $SZREG=4; | ||
63 | } | ||
64 | $SAVED_REGS_MASK = ($flavour =~ /nubi/i) ? 0x00fff000 : 0x00ff0000; | ||
65 | # | ||
66 | # <appro@openssl.org> | ||
67 | # | ||
68 | ###################################################################### | ||
69 | |||
70 | while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} | ||
71 | open STDOUT,">$output"; | ||
72 | |||
73 | if ($flavour =~ /64|n32/i) { | ||
74 | $LD="ld"; | ||
75 | $ST="sd"; | ||
76 | $MULTU="dmultu"; | ||
77 | $ADDU="daddu"; | ||
78 | $SUBU="dsubu"; | ||
79 | $BNSZ=8; | ||
80 | } else { | ||
81 | $LD="lw"; | ||
82 | $ST="sw"; | ||
83 | $MULTU="multu"; | ||
84 | $ADDU="addu"; | ||
85 | $SUBU="subu"; | ||
86 | $BNSZ=4; | ||
87 | } | ||
88 | |||
89 | # int bn_mul_mont( | ||
90 | $rp=$a0; # BN_ULONG *rp, | ||
91 | $ap=$a1; # const BN_ULONG *ap, | ||
92 | $bp=$a2; # const BN_ULONG *bp, | ||
93 | $np=$a3; # const BN_ULONG *np, | ||
94 | $n0=$a4; # const BN_ULONG *n0, | ||
95 | $num=$a5; # int num); | ||
96 | |||
97 | $lo0=$a6; | ||
98 | $hi0=$a7; | ||
99 | $lo1=$t1; | ||
100 | $hi1=$t2; | ||
101 | $aj=$s0; | ||
102 | $bi=$s1; | ||
103 | $nj=$s2; | ||
104 | $tp=$s3; | ||
105 | $alo=$s4; | ||
106 | $ahi=$s5; | ||
107 | $nlo=$s6; | ||
108 | $nhi=$s7; | ||
109 | $tj=$s8; | ||
110 | $i=$s9; | ||
111 | $j=$s10; | ||
112 | $m1=$s11; | ||
113 | |||
114 | $FRAMESIZE=14; | ||
115 | |||
116 | $code=<<___; | ||
117 | .text | ||
118 | |||
119 | .set noat | ||
120 | .set noreorder | ||
121 | |||
122 | .align 5 | ||
123 | .globl bn_mul_mont | ||
124 | .ent bn_mul_mont | ||
125 | bn_mul_mont: | ||
126 | ___ | ||
127 | $code.=<<___ if ($flavour =~ /o32/i); | ||
128 | lw $n0,16($sp) | ||
129 | lw $num,20($sp) | ||
130 | ___ | ||
131 | $code.=<<___; | ||
132 | slt $at,$num,4 | ||
133 | bnez $at,1f | ||
134 | li $t0,0 | ||
135 | slt $at,$num,17 # on in-order CPU | ||
136 | bnez $at,bn_mul_mont_internal | ||
137 | nop | ||
138 | 1: jr $ra | ||
139 | li $a0,0 | ||
140 | .end bn_mul_mont | ||
141 | |||
142 | .align 5 | ||
143 | .ent bn_mul_mont_internal | ||
144 | bn_mul_mont_internal: | ||
145 | .frame $fp,$FRAMESIZE*$SZREG,$ra | ||
146 | .mask 0x40000000|$SAVED_REGS_MASK,-$SZREG | ||
147 | $PTR_SUB $sp,$FRAMESIZE*$SZREG | ||
148 | $REG_S $fp,($FRAMESIZE-1)*$SZREG($sp) | ||
149 | $REG_S $s11,($FRAMESIZE-2)*$SZREG($sp) | ||
150 | $REG_S $s10,($FRAMESIZE-3)*$SZREG($sp) | ||
151 | $REG_S $s9,($FRAMESIZE-4)*$SZREG($sp) | ||
152 | $REG_S $s8,($FRAMESIZE-5)*$SZREG($sp) | ||
153 | $REG_S $s7,($FRAMESIZE-6)*$SZREG($sp) | ||
154 | $REG_S $s6,($FRAMESIZE-7)*$SZREG($sp) | ||
155 | $REG_S $s5,($FRAMESIZE-8)*$SZREG($sp) | ||
156 | $REG_S $s4,($FRAMESIZE-9)*$SZREG($sp) | ||
157 | ___ | ||
158 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
159 | $REG_S $s3,($FRAMESIZE-10)*$SZREG($sp) | ||
160 | $REG_S $s2,($FRAMESIZE-11)*$SZREG($sp) | ||
161 | $REG_S $s1,($FRAMESIZE-12)*$SZREG($sp) | ||
162 | $REG_S $s0,($FRAMESIZE-13)*$SZREG($sp) | ||
163 | ___ | ||
164 | $code.=<<___; | ||
165 | move $fp,$sp | ||
166 | |||
167 | .set reorder | ||
168 | $LD $n0,0($n0) | ||
169 | $LD $bi,0($bp) # bp[0] | ||
170 | $LD $aj,0($ap) # ap[0] | ||
171 | $LD $nj,0($np) # np[0] | ||
172 | |||
173 | $PTR_SUB $sp,2*$BNSZ # place for two extra words | ||
174 | sll $num,`log($BNSZ)/log(2)` | ||
175 | li $at,-4096 | ||
176 | $PTR_SUB $sp,$num | ||
177 | and $sp,$at | ||
178 | |||
179 | $MULTU $aj,$bi | ||
180 | $LD $alo,$BNSZ($ap) | ||
181 | $LD $nlo,$BNSZ($np) | ||
182 | mflo $lo0 | ||
183 | mfhi $hi0 | ||
184 | $MULTU $lo0,$n0 | ||
185 | mflo $m1 | ||
186 | |||
187 | $MULTU $alo,$bi | ||
188 | mflo $alo | ||
189 | mfhi $ahi | ||
190 | |||
191 | $MULTU $nj,$m1 | ||
192 | mflo $lo1 | ||
193 | mfhi $hi1 | ||
194 | $MULTU $nlo,$m1 | ||
195 | $ADDU $lo1,$lo0 | ||
196 | sltu $at,$lo1,$lo0 | ||
197 | $ADDU $hi1,$at | ||
198 | mflo $nlo | ||
199 | mfhi $nhi | ||
200 | |||
201 | move $tp,$sp | ||
202 | li $j,2*$BNSZ | ||
203 | .align 4 | ||
204 | .L1st: | ||
205 | .set noreorder | ||
206 | $PTR_ADD $aj,$ap,$j | ||
207 | $PTR_ADD $nj,$np,$j | ||
208 | $LD $aj,($aj) | ||
209 | $LD $nj,($nj) | ||
210 | |||
211 | $MULTU $aj,$bi | ||
212 | $ADDU $lo0,$alo,$hi0 | ||
213 | $ADDU $lo1,$nlo,$hi1 | ||
214 | sltu $at,$lo0,$hi0 | ||
215 | sltu $t0,$lo1,$hi1 | ||
216 | $ADDU $hi0,$ahi,$at | ||
217 | $ADDU $hi1,$nhi,$t0 | ||
218 | mflo $alo | ||
219 | mfhi $ahi | ||
220 | |||
221 | $ADDU $lo1,$lo0 | ||
222 | sltu $at,$lo1,$lo0 | ||
223 | $MULTU $nj,$m1 | ||
224 | $ADDU $hi1,$at | ||
225 | addu $j,$BNSZ | ||
226 | $ST $lo1,($tp) | ||
227 | sltu $t0,$j,$num | ||
228 | mflo $nlo | ||
229 | mfhi $nhi | ||
230 | |||
231 | bnez $t0,.L1st | ||
232 | $PTR_ADD $tp,$BNSZ | ||
233 | .set reorder | ||
234 | |||
235 | $ADDU $lo0,$alo,$hi0 | ||
236 | sltu $at,$lo0,$hi0 | ||
237 | $ADDU $hi0,$ahi,$at | ||
238 | |||
239 | $ADDU $lo1,$nlo,$hi1 | ||
240 | sltu $t0,$lo1,$hi1 | ||
241 | $ADDU $hi1,$nhi,$t0 | ||
242 | $ADDU $lo1,$lo0 | ||
243 | sltu $at,$lo1,$lo0 | ||
244 | $ADDU $hi1,$at | ||
245 | |||
246 | $ST $lo1,($tp) | ||
247 | |||
248 | $ADDU $hi1,$hi0 | ||
249 | sltu $at,$hi1,$hi0 | ||
250 | $ST $hi1,$BNSZ($tp) | ||
251 | $ST $at,2*$BNSZ($tp) | ||
252 | |||
253 | li $i,$BNSZ | ||
254 | .align 4 | ||
255 | .Louter: | ||
256 | $PTR_ADD $bi,$bp,$i | ||
257 | $LD $bi,($bi) | ||
258 | $LD $aj,($ap) | ||
259 | $LD $alo,$BNSZ($ap) | ||
260 | $LD $tj,($sp) | ||
261 | |||
262 | $MULTU $aj,$bi | ||
263 | $LD $nj,($np) | ||
264 | $LD $nlo,$BNSZ($np) | ||
265 | mflo $lo0 | ||
266 | mfhi $hi0 | ||
267 | $ADDU $lo0,$tj | ||
268 | $MULTU $lo0,$n0 | ||
269 | sltu $at,$lo0,$tj | ||
270 | $ADDU $hi0,$at | ||
271 | mflo $m1 | ||
272 | |||
273 | $MULTU $alo,$bi | ||
274 | mflo $alo | ||
275 | mfhi $ahi | ||
276 | |||
277 | $MULTU $nj,$m1 | ||
278 | mflo $lo1 | ||
279 | mfhi $hi1 | ||
280 | |||
281 | $MULTU $nlo,$m1 | ||
282 | $ADDU $lo1,$lo0 | ||
283 | sltu $at,$lo1,$lo0 | ||
284 | $ADDU $hi1,$at | ||
285 | mflo $nlo | ||
286 | mfhi $nhi | ||
287 | |||
288 | move $tp,$sp | ||
289 | li $j,2*$BNSZ | ||
290 | $LD $tj,$BNSZ($tp) | ||
291 | .align 4 | ||
292 | .Linner: | ||
293 | .set noreorder | ||
294 | $PTR_ADD $aj,$ap,$j | ||
295 | $PTR_ADD $nj,$np,$j | ||
296 | $LD $aj,($aj) | ||
297 | $LD $nj,($nj) | ||
298 | |||
299 | $MULTU $aj,$bi | ||
300 | $ADDU $lo0,$alo,$hi0 | ||
301 | $ADDU $lo1,$nlo,$hi1 | ||
302 | sltu $at,$lo0,$hi0 | ||
303 | sltu $t0,$lo1,$hi1 | ||
304 | $ADDU $hi0,$ahi,$at | ||
305 | $ADDU $hi1,$nhi,$t0 | ||
306 | mflo $alo | ||
307 | mfhi $ahi | ||
308 | |||
309 | $ADDU $lo0,$tj | ||
310 | addu $j,$BNSZ | ||
311 | $MULTU $nj,$m1 | ||
312 | sltu $at,$lo0,$tj | ||
313 | $ADDU $lo1,$lo0 | ||
314 | $ADDU $hi0,$at | ||
315 | sltu $t0,$lo1,$lo0 | ||
316 | $LD $tj,2*$BNSZ($tp) | ||
317 | $ADDU $hi1,$t0 | ||
318 | sltu $at,$j,$num | ||
319 | mflo $nlo | ||
320 | mfhi $nhi | ||
321 | $ST $lo1,($tp) | ||
322 | bnez $at,.Linner | ||
323 | $PTR_ADD $tp,$BNSZ | ||
324 | .set reorder | ||
325 | |||
326 | $ADDU $lo0,$alo,$hi0 | ||
327 | sltu $at,$lo0,$hi0 | ||
328 | $ADDU $hi0,$ahi,$at | ||
329 | $ADDU $lo0,$tj | ||
330 | sltu $t0,$lo0,$tj | ||
331 | $ADDU $hi0,$t0 | ||
332 | |||
333 | $LD $tj,2*$BNSZ($tp) | ||
334 | $ADDU $lo1,$nlo,$hi1 | ||
335 | sltu $at,$lo1,$hi1 | ||
336 | $ADDU $hi1,$nhi,$at | ||
337 | $ADDU $lo1,$lo0 | ||
338 | sltu $t0,$lo1,$lo0 | ||
339 | $ADDU $hi1,$t0 | ||
340 | $ST $lo1,($tp) | ||
341 | |||
342 | $ADDU $lo1,$hi1,$hi0 | ||
343 | sltu $hi1,$lo1,$hi0 | ||
344 | $ADDU $lo1,$tj | ||
345 | sltu $at,$lo1,$tj | ||
346 | $ADDU $hi1,$at | ||
347 | $ST $lo1,$BNSZ($tp) | ||
348 | $ST $hi1,2*$BNSZ($tp) | ||
349 | |||
350 | addu $i,$BNSZ | ||
351 | sltu $t0,$i,$num | ||
352 | bnez $t0,.Louter | ||
353 | |||
354 | .set noreorder | ||
355 | $PTR_ADD $tj,$sp,$num # &tp[num] | ||
356 | move $tp,$sp | ||
357 | move $ap,$sp | ||
358 | li $hi0,0 # clear borrow bit | ||
359 | |||
360 | .align 4 | ||
361 | .Lsub: $LD $lo0,($tp) | ||
362 | $LD $lo1,($np) | ||
363 | $PTR_ADD $tp,$BNSZ | ||
364 | $PTR_ADD $np,$BNSZ | ||
365 | $SUBU $lo1,$lo0,$lo1 # tp[i]-np[i] | ||
366 | sgtu $at,$lo1,$lo0 | ||
367 | $SUBU $lo0,$lo1,$hi0 | ||
368 | sgtu $hi0,$lo0,$lo1 | ||
369 | $ST $lo0,($rp) | ||
370 | or $hi0,$at | ||
371 | sltu $at,$tp,$tj | ||
372 | bnez $at,.Lsub | ||
373 | $PTR_ADD $rp,$BNSZ | ||
374 | |||
375 | $SUBU $hi0,$hi1,$hi0 # handle upmost overflow bit | ||
376 | move $tp,$sp | ||
377 | $PTR_SUB $rp,$num # restore rp | ||
378 | not $hi1,$hi0 | ||
379 | |||
380 | and $ap,$hi0,$sp | ||
381 | and $bp,$hi1,$rp | ||
382 | or $ap,$ap,$bp # ap=borrow?tp:rp | ||
383 | |||
384 | .align 4 | ||
385 | .Lcopy: $LD $aj,($ap) | ||
386 | $PTR_ADD $ap,$BNSZ | ||
387 | $ST $zero,($tp) | ||
388 | $PTR_ADD $tp,$BNSZ | ||
389 | sltu $at,$tp,$tj | ||
390 | $ST $aj,($rp) | ||
391 | bnez $at,.Lcopy | ||
392 | $PTR_ADD $rp,$BNSZ | ||
393 | |||
394 | li $a0,1 | ||
395 | li $t0,1 | ||
396 | |||
397 | .set noreorder | ||
398 | move $sp,$fp | ||
399 | $REG_L $fp,($FRAMESIZE-1)*$SZREG($sp) | ||
400 | $REG_L $s11,($FRAMESIZE-2)*$SZREG($sp) | ||
401 | $REG_L $s10,($FRAMESIZE-3)*$SZREG($sp) | ||
402 | $REG_L $s9,($FRAMESIZE-4)*$SZREG($sp) | ||
403 | $REG_L $s8,($FRAMESIZE-5)*$SZREG($sp) | ||
404 | $REG_L $s7,($FRAMESIZE-6)*$SZREG($sp) | ||
405 | $REG_L $s6,($FRAMESIZE-7)*$SZREG($sp) | ||
406 | $REG_L $s5,($FRAMESIZE-8)*$SZREG($sp) | ||
407 | $REG_L $s4,($FRAMESIZE-9)*$SZREG($sp) | ||
408 | ___ | ||
409 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
410 | $REG_L $s3,($FRAMESIZE-10)*$SZREG($sp) | ||
411 | $REG_L $s2,($FRAMESIZE-11)*$SZREG($sp) | ||
412 | $REG_L $s1,($FRAMESIZE-12)*$SZREG($sp) | ||
413 | $REG_L $s0,($FRAMESIZE-13)*$SZREG($sp) | ||
414 | ___ | ||
415 | $code.=<<___; | ||
416 | jr $ra | ||
417 | $PTR_ADD $sp,$FRAMESIZE*$SZREG | ||
418 | .end bn_mul_mont_internal | ||
419 | .rdata | ||
420 | .asciiz "Montgomery Multiplication for MIPS, CRYPTOGAMS by <appro\@openssl.org>" | ||
421 | ___ | ||
422 | |||
423 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
424 | |||
425 | print $code; | ||
426 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/mips.pl b/src/lib/libcrypto/bn/asm/mips.pl deleted file mode 100644 index 02d43e15b0..0000000000 --- a/src/lib/libcrypto/bn/asm/mips.pl +++ /dev/null | |||
@@ -1,2234 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. | ||
6 | # | ||
7 | # Rights for redistribution and usage in source and binary forms are | ||
8 | # granted according to the OpenSSL license. Warranty of any kind is | ||
9 | # disclaimed. | ||
10 | # ==================================================================== | ||
11 | |||
12 | |||
13 | # July 1999 | ||
14 | # | ||
15 | # This is drop-in MIPS III/IV ISA replacement for crypto/bn/bn_asm.c. | ||
16 | # | ||
17 | # The module is designed to work with either of the "new" MIPS ABI(5), | ||
18 | # namely N32 or N64, offered by IRIX 6.x. It's not meant to work under | ||
19 | # IRIX 5.x not only because it doesn't support new ABIs but also | ||
20 | # because 5.x kernels put R4x00 CPU into 32-bit mode and all those | ||
21 | # 64-bit instructions (daddu, dmultu, etc.) found below gonna only | ||
22 | # cause illegal instruction exception:-( | ||
23 | # | ||
24 | # In addition the code depends on preprocessor flags set up by MIPSpro | ||
25 | # compiler driver (either as or cc) and therefore (probably?) can't be | ||
26 | # compiled by the GNU assembler. GNU C driver manages fine though... | ||
27 | # I mean as long as -mmips-as is specified or is the default option, | ||
28 | # because then it simply invokes /usr/bin/as which in turn takes | ||
29 | # perfect care of the preprocessor definitions. Another neat feature | ||
30 | # offered by the MIPSpro assembler is an optimization pass. This gave | ||
31 | # me the opportunity to have the code looking more regular as all those | ||
32 | # architecture dependent instruction rescheduling details were left to | ||
33 | # the assembler. Cool, huh? | ||
34 | # | ||
35 | # Performance improvement is astonishing! 'apps/openssl speed rsa dsa' | ||
36 | # goes way over 3 times faster! | ||
37 | # | ||
38 | # <appro@fy.chalmers.se> | ||
39 | |||
40 | # October 2010 | ||
41 | # | ||
42 | # Adapt the module even for 32-bit ABIs and other OSes. The former was | ||
43 | # achieved by mechanical replacement of 64-bit arithmetic instructions | ||
44 | # such as dmultu, daddu, etc. with their 32-bit counterparts and | ||
45 | # adjusting offsets denoting multiples of BN_ULONG. Above mentioned | ||
46 | # >3x performance improvement naturally does not apply to 32-bit code | ||
47 | # [because there is no instruction 32-bit compiler can't use], one | ||
48 | # has to content with 40-85% improvement depending on benchmark and | ||
49 | # key length, more for longer keys. | ||
50 | |||
51 | $flavour = shift; | ||
52 | while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} | ||
53 | open STDOUT,">$output"; | ||
54 | |||
55 | if ($flavour =~ /64|n32/i) { | ||
56 | $LD="ld"; | ||
57 | $ST="sd"; | ||
58 | $MULTU="dmultu"; | ||
59 | $DIVU="ddivu"; | ||
60 | $ADDU="daddu"; | ||
61 | $SUBU="dsubu"; | ||
62 | $SRL="dsrl"; | ||
63 | $SLL="dsll"; | ||
64 | $BNSZ=8; | ||
65 | $PTR_ADD="daddu"; | ||
66 | $PTR_SUB="dsubu"; | ||
67 | $SZREG=8; | ||
68 | $REG_S="sd"; | ||
69 | $REG_L="ld"; | ||
70 | } else { | ||
71 | $LD="lw"; | ||
72 | $ST="sw"; | ||
73 | $MULTU="multu"; | ||
74 | $DIVU="divu"; | ||
75 | $ADDU="addu"; | ||
76 | $SUBU="subu"; | ||
77 | $SRL="srl"; | ||
78 | $SLL="sll"; | ||
79 | $BNSZ=4; | ||
80 | $PTR_ADD="addu"; | ||
81 | $PTR_SUB="subu"; | ||
82 | $SZREG=4; | ||
83 | $REG_S="sw"; | ||
84 | $REG_L="lw"; | ||
85 | $code=".set mips2\n"; | ||
86 | } | ||
87 | |||
88 | # Below is N32/64 register layout used in the original module. | ||
89 | # | ||
90 | ($zero,$at,$v0,$v1)=map("\$$_",(0..3)); | ||
91 | ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); | ||
92 | ($t0,$t1,$t2,$t3,$t8,$t9)=map("\$$_",(12..15,24,25)); | ||
93 | ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7)=map("\$$_",(16..23)); | ||
94 | ($gp,$sp,$fp,$ra)=map("\$$_",(28..31)); | ||
95 | ($ta0,$ta1,$ta2,$ta3)=($a4,$a5,$a6,$a7); | ||
96 | # | ||
97 | # No special adaptation is required for O32. NUBI on the other hand | ||
98 | # is treated by saving/restoring ($v1,$t0..$t3). | ||
99 | |||
100 | $gp=$v1 if ($flavour =~ /nubi/i); | ||
101 | |||
102 | $minus4=$v1; | ||
103 | |||
104 | $code.=<<___; | ||
105 | .rdata | ||
106 | .asciiz "mips3.s, Version 1.2" | ||
107 | .asciiz "MIPS II/III/IV ISA artwork by Andy Polyakov <appro\@fy.chalmers.se>" | ||
108 | |||
109 | .text | ||
110 | .set noat | ||
111 | |||
112 | .align 5 | ||
113 | .globl bn_mul_add_words | ||
114 | .ent bn_mul_add_words | ||
115 | bn_mul_add_words: | ||
116 | .set noreorder | ||
117 | bgtz $a2,bn_mul_add_words_internal | ||
118 | move $v0,$zero | ||
119 | jr $ra | ||
120 | move $a0,$v0 | ||
121 | .end bn_mul_add_words | ||
122 | |||
123 | .align 5 | ||
124 | .ent bn_mul_add_words_internal | ||
125 | bn_mul_add_words_internal: | ||
126 | ___ | ||
127 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
128 | .frame $sp,6*$SZREG,$ra | ||
129 | .mask 0x8000f008,-$SZREG | ||
130 | .set noreorder | ||
131 | $PTR_SUB $sp,6*$SZREG | ||
132 | $REG_S $ra,5*$SZREG($sp) | ||
133 | $REG_S $t3,4*$SZREG($sp) | ||
134 | $REG_S $t2,3*$SZREG($sp) | ||
135 | $REG_S $t1,2*$SZREG($sp) | ||
136 | $REG_S $t0,1*$SZREG($sp) | ||
137 | $REG_S $gp,0*$SZREG($sp) | ||
138 | ___ | ||
139 | $code.=<<___; | ||
140 | .set reorder | ||
141 | li $minus4,-4 | ||
142 | and $ta0,$a2,$minus4 | ||
143 | beqz $ta0,.L_bn_mul_add_words_tail | ||
144 | |||
145 | .L_bn_mul_add_words_loop: | ||
146 | $LD $t0,0($a1) | ||
147 | $MULTU $t0,$a3 | ||
148 | $LD $t1,0($a0) | ||
149 | $LD $t2,$BNSZ($a1) | ||
150 | $LD $t3,$BNSZ($a0) | ||
151 | $LD $ta0,2*$BNSZ($a1) | ||
152 | $LD $ta1,2*$BNSZ($a0) | ||
153 | $ADDU $t1,$v0 | ||
154 | sltu $v0,$t1,$v0 # All manuals say it "compares 32-bit | ||
155 | # values", but it seems to work fine | ||
156 | # even on 64-bit registers. | ||
157 | mflo $at | ||
158 | mfhi $t0 | ||
159 | $ADDU $t1,$at | ||
160 | $ADDU $v0,$t0 | ||
161 | $MULTU $t2,$a3 | ||
162 | sltu $at,$t1,$at | ||
163 | $ST $t1,0($a0) | ||
164 | $ADDU $v0,$at | ||
165 | |||
166 | $LD $ta2,3*$BNSZ($a1) | ||
167 | $LD $ta3,3*$BNSZ($a0) | ||
168 | $ADDU $t3,$v0 | ||
169 | sltu $v0,$t3,$v0 | ||
170 | mflo $at | ||
171 | mfhi $t2 | ||
172 | $ADDU $t3,$at | ||
173 | $ADDU $v0,$t2 | ||
174 | $MULTU $ta0,$a3 | ||
175 | sltu $at,$t3,$at | ||
176 | $ST $t3,$BNSZ($a0) | ||
177 | $ADDU $v0,$at | ||
178 | |||
179 | subu $a2,4 | ||
180 | $PTR_ADD $a0,4*$BNSZ | ||
181 | $PTR_ADD $a1,4*$BNSZ | ||
182 | $ADDU $ta1,$v0 | ||
183 | sltu $v0,$ta1,$v0 | ||
184 | mflo $at | ||
185 | mfhi $ta0 | ||
186 | $ADDU $ta1,$at | ||
187 | $ADDU $v0,$ta0 | ||
188 | $MULTU $ta2,$a3 | ||
189 | sltu $at,$ta1,$at | ||
190 | $ST $ta1,-2*$BNSZ($a0) | ||
191 | $ADDU $v0,$at | ||
192 | |||
193 | |||
194 | and $ta0,$a2,$minus4 | ||
195 | $ADDU $ta3,$v0 | ||
196 | sltu $v0,$ta3,$v0 | ||
197 | mflo $at | ||
198 | mfhi $ta2 | ||
199 | $ADDU $ta3,$at | ||
200 | $ADDU $v0,$ta2 | ||
201 | sltu $at,$ta3,$at | ||
202 | $ST $ta3,-$BNSZ($a0) | ||
203 | .set noreorder | ||
204 | bgtz $ta0,.L_bn_mul_add_words_loop | ||
205 | $ADDU $v0,$at | ||
206 | |||
207 | beqz $a2,.L_bn_mul_add_words_return | ||
208 | nop | ||
209 | |||
210 | .L_bn_mul_add_words_tail: | ||
211 | .set reorder | ||
212 | $LD $t0,0($a1) | ||
213 | $MULTU $t0,$a3 | ||
214 | $LD $t1,0($a0) | ||
215 | subu $a2,1 | ||
216 | $ADDU $t1,$v0 | ||
217 | sltu $v0,$t1,$v0 | ||
218 | mflo $at | ||
219 | mfhi $t0 | ||
220 | $ADDU $t1,$at | ||
221 | $ADDU $v0,$t0 | ||
222 | sltu $at,$t1,$at | ||
223 | $ST $t1,0($a0) | ||
224 | $ADDU $v0,$at | ||
225 | beqz $a2,.L_bn_mul_add_words_return | ||
226 | |||
227 | $LD $t0,$BNSZ($a1) | ||
228 | $MULTU $t0,$a3 | ||
229 | $LD $t1,$BNSZ($a0) | ||
230 | subu $a2,1 | ||
231 | $ADDU $t1,$v0 | ||
232 | sltu $v0,$t1,$v0 | ||
233 | mflo $at | ||
234 | mfhi $t0 | ||
235 | $ADDU $t1,$at | ||
236 | $ADDU $v0,$t0 | ||
237 | sltu $at,$t1,$at | ||
238 | $ST $t1,$BNSZ($a0) | ||
239 | $ADDU $v0,$at | ||
240 | beqz $a2,.L_bn_mul_add_words_return | ||
241 | |||
242 | $LD $t0,2*$BNSZ($a1) | ||
243 | $MULTU $t0,$a3 | ||
244 | $LD $t1,2*$BNSZ($a0) | ||
245 | $ADDU $t1,$v0 | ||
246 | sltu $v0,$t1,$v0 | ||
247 | mflo $at | ||
248 | mfhi $t0 | ||
249 | $ADDU $t1,$at | ||
250 | $ADDU $v0,$t0 | ||
251 | sltu $at,$t1,$at | ||
252 | $ST $t1,2*$BNSZ($a0) | ||
253 | $ADDU $v0,$at | ||
254 | |||
255 | .L_bn_mul_add_words_return: | ||
256 | .set noreorder | ||
257 | ___ | ||
258 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
259 | $REG_L $t3,4*$SZREG($sp) | ||
260 | $REG_L $t2,3*$SZREG($sp) | ||
261 | $REG_L $t1,2*$SZREG($sp) | ||
262 | $REG_L $t0,1*$SZREG($sp) | ||
263 | $REG_L $gp,0*$SZREG($sp) | ||
264 | $PTR_ADD $sp,6*$SZREG | ||
265 | ___ | ||
266 | $code.=<<___; | ||
267 | jr $ra | ||
268 | move $a0,$v0 | ||
269 | .end bn_mul_add_words_internal | ||
270 | |||
271 | .align 5 | ||
272 | .globl bn_mul_words | ||
273 | .ent bn_mul_words | ||
274 | bn_mul_words: | ||
275 | .set noreorder | ||
276 | bgtz $a2,bn_mul_words_internal | ||
277 | move $v0,$zero | ||
278 | jr $ra | ||
279 | move $a0,$v0 | ||
280 | .end bn_mul_words | ||
281 | |||
282 | .align 5 | ||
283 | .ent bn_mul_words_internal | ||
284 | bn_mul_words_internal: | ||
285 | ___ | ||
286 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
287 | .frame $sp,6*$SZREG,$ra | ||
288 | .mask 0x8000f008,-$SZREG | ||
289 | .set noreorder | ||
290 | $PTR_SUB $sp,6*$SZREG | ||
291 | $REG_S $ra,5*$SZREG($sp) | ||
292 | $REG_S $t3,4*$SZREG($sp) | ||
293 | $REG_S $t2,3*$SZREG($sp) | ||
294 | $REG_S $t1,2*$SZREG($sp) | ||
295 | $REG_S $t0,1*$SZREG($sp) | ||
296 | $REG_S $gp,0*$SZREG($sp) | ||
297 | ___ | ||
298 | $code.=<<___; | ||
299 | .set reorder | ||
300 | li $minus4,-4 | ||
301 | and $ta0,$a2,$minus4 | ||
302 | beqz $ta0,.L_bn_mul_words_tail | ||
303 | |||
304 | .L_bn_mul_words_loop: | ||
305 | $LD $t0,0($a1) | ||
306 | $MULTU $t0,$a3 | ||
307 | $LD $t2,$BNSZ($a1) | ||
308 | $LD $ta0,2*$BNSZ($a1) | ||
309 | $LD $ta2,3*$BNSZ($a1) | ||
310 | mflo $at | ||
311 | mfhi $t0 | ||
312 | $ADDU $v0,$at | ||
313 | sltu $t1,$v0,$at | ||
314 | $MULTU $t2,$a3 | ||
315 | $ST $v0,0($a0) | ||
316 | $ADDU $v0,$t1,$t0 | ||
317 | |||
318 | subu $a2,4 | ||
319 | $PTR_ADD $a0,4*$BNSZ | ||
320 | $PTR_ADD $a1,4*$BNSZ | ||
321 | mflo $at | ||
322 | mfhi $t2 | ||
323 | $ADDU $v0,$at | ||
324 | sltu $t3,$v0,$at | ||
325 | $MULTU $ta0,$a3 | ||
326 | $ST $v0,-3*$BNSZ($a0) | ||
327 | $ADDU $v0,$t3,$t2 | ||
328 | |||
329 | mflo $at | ||
330 | mfhi $ta0 | ||
331 | $ADDU $v0,$at | ||
332 | sltu $ta1,$v0,$at | ||
333 | $MULTU $ta2,$a3 | ||
334 | $ST $v0,-2*$BNSZ($a0) | ||
335 | $ADDU $v0,$ta1,$ta0 | ||
336 | |||
337 | and $ta0,$a2,$minus4 | ||
338 | mflo $at | ||
339 | mfhi $ta2 | ||
340 | $ADDU $v0,$at | ||
341 | sltu $ta3,$v0,$at | ||
342 | $ST $v0,-$BNSZ($a0) | ||
343 | .set noreorder | ||
344 | bgtz $ta0,.L_bn_mul_words_loop | ||
345 | $ADDU $v0,$ta3,$ta2 | ||
346 | |||
347 | beqz $a2,.L_bn_mul_words_return | ||
348 | nop | ||
349 | |||
350 | .L_bn_mul_words_tail: | ||
351 | .set reorder | ||
352 | $LD $t0,0($a1) | ||
353 | $MULTU $t0,$a3 | ||
354 | subu $a2,1 | ||
355 | mflo $at | ||
356 | mfhi $t0 | ||
357 | $ADDU $v0,$at | ||
358 | sltu $t1,$v0,$at | ||
359 | $ST $v0,0($a0) | ||
360 | $ADDU $v0,$t1,$t0 | ||
361 | beqz $a2,.L_bn_mul_words_return | ||
362 | |||
363 | $LD $t0,$BNSZ($a1) | ||
364 | $MULTU $t0,$a3 | ||
365 | subu $a2,1 | ||
366 | mflo $at | ||
367 | mfhi $t0 | ||
368 | $ADDU $v0,$at | ||
369 | sltu $t1,$v0,$at | ||
370 | $ST $v0,$BNSZ($a0) | ||
371 | $ADDU $v0,$t1,$t0 | ||
372 | beqz $a2,.L_bn_mul_words_return | ||
373 | |||
374 | $LD $t0,2*$BNSZ($a1) | ||
375 | $MULTU $t0,$a3 | ||
376 | mflo $at | ||
377 | mfhi $t0 | ||
378 | $ADDU $v0,$at | ||
379 | sltu $t1,$v0,$at | ||
380 | $ST $v0,2*$BNSZ($a0) | ||
381 | $ADDU $v0,$t1,$t0 | ||
382 | |||
383 | .L_bn_mul_words_return: | ||
384 | .set noreorder | ||
385 | ___ | ||
386 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
387 | $REG_L $t3,4*$SZREG($sp) | ||
388 | $REG_L $t2,3*$SZREG($sp) | ||
389 | $REG_L $t1,2*$SZREG($sp) | ||
390 | $REG_L $t0,1*$SZREG($sp) | ||
391 | $REG_L $gp,0*$SZREG($sp) | ||
392 | $PTR_ADD $sp,6*$SZREG | ||
393 | ___ | ||
394 | $code.=<<___; | ||
395 | jr $ra | ||
396 | move $a0,$v0 | ||
397 | .end bn_mul_words_internal | ||
398 | |||
399 | .align 5 | ||
400 | .globl bn_sqr_words | ||
401 | .ent bn_sqr_words | ||
402 | bn_sqr_words: | ||
403 | .set noreorder | ||
404 | bgtz $a2,bn_sqr_words_internal | ||
405 | move $v0,$zero | ||
406 | jr $ra | ||
407 | move $a0,$v0 | ||
408 | .end bn_sqr_words | ||
409 | |||
410 | .align 5 | ||
411 | .ent bn_sqr_words_internal | ||
412 | bn_sqr_words_internal: | ||
413 | ___ | ||
414 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
415 | .frame $sp,6*$SZREG,$ra | ||
416 | .mask 0x8000f008,-$SZREG | ||
417 | .set noreorder | ||
418 | $PTR_SUB $sp,6*$SZREG | ||
419 | $REG_S $ra,5*$SZREG($sp) | ||
420 | $REG_S $t3,4*$SZREG($sp) | ||
421 | $REG_S $t2,3*$SZREG($sp) | ||
422 | $REG_S $t1,2*$SZREG($sp) | ||
423 | $REG_S $t0,1*$SZREG($sp) | ||
424 | $REG_S $gp,0*$SZREG($sp) | ||
425 | ___ | ||
426 | $code.=<<___; | ||
427 | .set reorder | ||
428 | li $minus4,-4 | ||
429 | and $ta0,$a2,$minus4 | ||
430 | beqz $ta0,.L_bn_sqr_words_tail | ||
431 | |||
432 | .L_bn_sqr_words_loop: | ||
433 | $LD $t0,0($a1) | ||
434 | $MULTU $t0,$t0 | ||
435 | $LD $t2,$BNSZ($a1) | ||
436 | $LD $ta0,2*$BNSZ($a1) | ||
437 | $LD $ta2,3*$BNSZ($a1) | ||
438 | mflo $t1 | ||
439 | mfhi $t0 | ||
440 | $ST $t1,0($a0) | ||
441 | $ST $t0,$BNSZ($a0) | ||
442 | |||
443 | $MULTU $t2,$t2 | ||
444 | subu $a2,4 | ||
445 | $PTR_ADD $a0,8*$BNSZ | ||
446 | $PTR_ADD $a1,4*$BNSZ | ||
447 | mflo $t3 | ||
448 | mfhi $t2 | ||
449 | $ST $t3,-6*$BNSZ($a0) | ||
450 | $ST $t2,-5*$BNSZ($a0) | ||
451 | |||
452 | $MULTU $ta0,$ta0 | ||
453 | mflo $ta1 | ||
454 | mfhi $ta0 | ||
455 | $ST $ta1,-4*$BNSZ($a0) | ||
456 | $ST $ta0,-3*$BNSZ($a0) | ||
457 | |||
458 | |||
459 | $MULTU $ta2,$ta2 | ||
460 | and $ta0,$a2,$minus4 | ||
461 | mflo $ta3 | ||
462 | mfhi $ta2 | ||
463 | $ST $ta3,-2*$BNSZ($a0) | ||
464 | |||
465 | .set noreorder | ||
466 | bgtz $ta0,.L_bn_sqr_words_loop | ||
467 | $ST $ta2,-$BNSZ($a0) | ||
468 | |||
469 | beqz $a2,.L_bn_sqr_words_return | ||
470 | nop | ||
471 | |||
472 | .L_bn_sqr_words_tail: | ||
473 | .set reorder | ||
474 | $LD $t0,0($a1) | ||
475 | $MULTU $t0,$t0 | ||
476 | subu $a2,1 | ||
477 | mflo $t1 | ||
478 | mfhi $t0 | ||
479 | $ST $t1,0($a0) | ||
480 | $ST $t0,$BNSZ($a0) | ||
481 | beqz $a2,.L_bn_sqr_words_return | ||
482 | |||
483 | $LD $t0,$BNSZ($a1) | ||
484 | $MULTU $t0,$t0 | ||
485 | subu $a2,1 | ||
486 | mflo $t1 | ||
487 | mfhi $t0 | ||
488 | $ST $t1,2*$BNSZ($a0) | ||
489 | $ST $t0,3*$BNSZ($a0) | ||
490 | beqz $a2,.L_bn_sqr_words_return | ||
491 | |||
492 | $LD $t0,2*$BNSZ($a1) | ||
493 | $MULTU $t0,$t0 | ||
494 | mflo $t1 | ||
495 | mfhi $t0 | ||
496 | $ST $t1,4*$BNSZ($a0) | ||
497 | $ST $t0,5*$BNSZ($a0) | ||
498 | |||
499 | .L_bn_sqr_words_return: | ||
500 | .set noreorder | ||
501 | ___ | ||
502 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
503 | $REG_L $t3,4*$SZREG($sp) | ||
504 | $REG_L $t2,3*$SZREG($sp) | ||
505 | $REG_L $t1,2*$SZREG($sp) | ||
506 | $REG_L $t0,1*$SZREG($sp) | ||
507 | $REG_L $gp,0*$SZREG($sp) | ||
508 | $PTR_ADD $sp,6*$SZREG | ||
509 | ___ | ||
510 | $code.=<<___; | ||
511 | jr $ra | ||
512 | move $a0,$v0 | ||
513 | |||
514 | .end bn_sqr_words_internal | ||
515 | |||
516 | .align 5 | ||
517 | .globl bn_add_words | ||
518 | .ent bn_add_words | ||
519 | bn_add_words: | ||
520 | .set noreorder | ||
521 | bgtz $a3,bn_add_words_internal | ||
522 | move $v0,$zero | ||
523 | jr $ra | ||
524 | move $a0,$v0 | ||
525 | .end bn_add_words | ||
526 | |||
527 | .align 5 | ||
528 | .ent bn_add_words_internal | ||
529 | bn_add_words_internal: | ||
530 | ___ | ||
531 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
532 | .frame $sp,6*$SZREG,$ra | ||
533 | .mask 0x8000f008,-$SZREG | ||
534 | .set noreorder | ||
535 | $PTR_SUB $sp,6*$SZREG | ||
536 | $REG_S $ra,5*$SZREG($sp) | ||
537 | $REG_S $t3,4*$SZREG($sp) | ||
538 | $REG_S $t2,3*$SZREG($sp) | ||
539 | $REG_S $t1,2*$SZREG($sp) | ||
540 | $REG_S $t0,1*$SZREG($sp) | ||
541 | $REG_S $gp,0*$SZREG($sp) | ||
542 | ___ | ||
543 | $code.=<<___; | ||
544 | .set reorder | ||
545 | li $minus4,-4 | ||
546 | and $at,$a3,$minus4 | ||
547 | beqz $at,.L_bn_add_words_tail | ||
548 | |||
549 | .L_bn_add_words_loop: | ||
550 | $LD $t0,0($a1) | ||
551 | $LD $ta0,0($a2) | ||
552 | subu $a3,4 | ||
553 | $LD $t1,$BNSZ($a1) | ||
554 | and $at,$a3,$minus4 | ||
555 | $LD $t2,2*$BNSZ($a1) | ||
556 | $PTR_ADD $a2,4*$BNSZ | ||
557 | $LD $t3,3*$BNSZ($a1) | ||
558 | $PTR_ADD $a0,4*$BNSZ | ||
559 | $LD $ta1,-3*$BNSZ($a2) | ||
560 | $PTR_ADD $a1,4*$BNSZ | ||
561 | $LD $ta2,-2*$BNSZ($a2) | ||
562 | $LD $ta3,-$BNSZ($a2) | ||
563 | $ADDU $ta0,$t0 | ||
564 | sltu $t8,$ta0,$t0 | ||
565 | $ADDU $t0,$ta0,$v0 | ||
566 | sltu $v0,$t0,$ta0 | ||
567 | $ST $t0,-4*$BNSZ($a0) | ||
568 | $ADDU $v0,$t8 | ||
569 | |||
570 | $ADDU $ta1,$t1 | ||
571 | sltu $t9,$ta1,$t1 | ||
572 | $ADDU $t1,$ta1,$v0 | ||
573 | sltu $v0,$t1,$ta1 | ||
574 | $ST $t1,-3*$BNSZ($a0) | ||
575 | $ADDU $v0,$t9 | ||
576 | |||
577 | $ADDU $ta2,$t2 | ||
578 | sltu $t8,$ta2,$t2 | ||
579 | $ADDU $t2,$ta2,$v0 | ||
580 | sltu $v0,$t2,$ta2 | ||
581 | $ST $t2,-2*$BNSZ($a0) | ||
582 | $ADDU $v0,$t8 | ||
583 | |||
584 | $ADDU $ta3,$t3 | ||
585 | sltu $t9,$ta3,$t3 | ||
586 | $ADDU $t3,$ta3,$v0 | ||
587 | sltu $v0,$t3,$ta3 | ||
588 | $ST $t3,-$BNSZ($a0) | ||
589 | |||
590 | .set noreorder | ||
591 | bgtz $at,.L_bn_add_words_loop | ||
592 | $ADDU $v0,$t9 | ||
593 | |||
594 | beqz $a3,.L_bn_add_words_return | ||
595 | nop | ||
596 | |||
597 | .L_bn_add_words_tail: | ||
598 | .set reorder | ||
599 | $LD $t0,0($a1) | ||
600 | $LD $ta0,0($a2) | ||
601 | $ADDU $ta0,$t0 | ||
602 | subu $a3,1 | ||
603 | sltu $t8,$ta0,$t0 | ||
604 | $ADDU $t0,$ta0,$v0 | ||
605 | sltu $v0,$t0,$ta0 | ||
606 | $ST $t0,0($a0) | ||
607 | $ADDU $v0,$t8 | ||
608 | beqz $a3,.L_bn_add_words_return | ||
609 | |||
610 | $LD $t1,$BNSZ($a1) | ||
611 | $LD $ta1,$BNSZ($a2) | ||
612 | $ADDU $ta1,$t1 | ||
613 | subu $a3,1 | ||
614 | sltu $t9,$ta1,$t1 | ||
615 | $ADDU $t1,$ta1,$v0 | ||
616 | sltu $v0,$t1,$ta1 | ||
617 | $ST $t1,$BNSZ($a0) | ||
618 | $ADDU $v0,$t9 | ||
619 | beqz $a3,.L_bn_add_words_return | ||
620 | |||
621 | $LD $t2,2*$BNSZ($a1) | ||
622 | $LD $ta2,2*$BNSZ($a2) | ||
623 | $ADDU $ta2,$t2 | ||
624 | sltu $t8,$ta2,$t2 | ||
625 | $ADDU $t2,$ta2,$v0 | ||
626 | sltu $v0,$t2,$ta2 | ||
627 | $ST $t2,2*$BNSZ($a0) | ||
628 | $ADDU $v0,$t8 | ||
629 | |||
630 | .L_bn_add_words_return: | ||
631 | .set noreorder | ||
632 | ___ | ||
633 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
634 | $REG_L $t3,4*$SZREG($sp) | ||
635 | $REG_L $t2,3*$SZREG($sp) | ||
636 | $REG_L $t1,2*$SZREG($sp) | ||
637 | $REG_L $t0,1*$SZREG($sp) | ||
638 | $REG_L $gp,0*$SZREG($sp) | ||
639 | $PTR_ADD $sp,6*$SZREG | ||
640 | ___ | ||
641 | $code.=<<___; | ||
642 | jr $ra | ||
643 | move $a0,$v0 | ||
644 | |||
645 | .end bn_add_words_internal | ||
646 | |||
647 | .align 5 | ||
648 | .globl bn_sub_words | ||
649 | .ent bn_sub_words | ||
650 | bn_sub_words: | ||
651 | .set noreorder | ||
652 | bgtz $a3,bn_sub_words_internal | ||
653 | move $v0,$zero | ||
654 | jr $ra | ||
655 | move $a0,$zero | ||
656 | .end bn_sub_words | ||
657 | |||
658 | .align 5 | ||
659 | .ent bn_sub_words_internal | ||
660 | bn_sub_words_internal: | ||
661 | ___ | ||
662 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
663 | .frame $sp,6*$SZREG,$ra | ||
664 | .mask 0x8000f008,-$SZREG | ||
665 | .set noreorder | ||
666 | $PTR_SUB $sp,6*$SZREG | ||
667 | $REG_S $ra,5*$SZREG($sp) | ||
668 | $REG_S $t3,4*$SZREG($sp) | ||
669 | $REG_S $t2,3*$SZREG($sp) | ||
670 | $REG_S $t1,2*$SZREG($sp) | ||
671 | $REG_S $t0,1*$SZREG($sp) | ||
672 | $REG_S $gp,0*$SZREG($sp) | ||
673 | ___ | ||
674 | $code.=<<___; | ||
675 | .set reorder | ||
676 | li $minus4,-4 | ||
677 | and $at,$a3,$minus4 | ||
678 | beqz $at,.L_bn_sub_words_tail | ||
679 | |||
680 | .L_bn_sub_words_loop: | ||
681 | $LD $t0,0($a1) | ||
682 | $LD $ta0,0($a2) | ||
683 | subu $a3,4 | ||
684 | $LD $t1,$BNSZ($a1) | ||
685 | and $at,$a3,$minus4 | ||
686 | $LD $t2,2*$BNSZ($a1) | ||
687 | $PTR_ADD $a2,4*$BNSZ | ||
688 | $LD $t3,3*$BNSZ($a1) | ||
689 | $PTR_ADD $a0,4*$BNSZ | ||
690 | $LD $ta1,-3*$BNSZ($a2) | ||
691 | $PTR_ADD $a1,4*$BNSZ | ||
692 | $LD $ta2,-2*$BNSZ($a2) | ||
693 | $LD $ta3,-$BNSZ($a2) | ||
694 | sltu $t8,$t0,$ta0 | ||
695 | $SUBU $ta0,$t0,$ta0 | ||
696 | $SUBU $t0,$ta0,$v0 | ||
697 | sgtu $v0,$t0,$ta0 | ||
698 | $ST $t0,-4*$BNSZ($a0) | ||
699 | $ADDU $v0,$t8 | ||
700 | |||
701 | sltu $t9,$t1,$ta1 | ||
702 | $SUBU $ta1,$t1,$ta1 | ||
703 | $SUBU $t1,$ta1,$v0 | ||
704 | sgtu $v0,$t1,$ta1 | ||
705 | $ST $t1,-3*$BNSZ($a0) | ||
706 | $ADDU $v0,$t9 | ||
707 | |||
708 | |||
709 | sltu $t8,$t2,$ta2 | ||
710 | $SUBU $ta2,$t2,$ta2 | ||
711 | $SUBU $t2,$ta2,$v0 | ||
712 | sgtu $v0,$t2,$ta2 | ||
713 | $ST $t2,-2*$BNSZ($a0) | ||
714 | $ADDU $v0,$t8 | ||
715 | |||
716 | sltu $t9,$t3,$ta3 | ||
717 | $SUBU $ta3,$t3,$ta3 | ||
718 | $SUBU $t3,$ta3,$v0 | ||
719 | sgtu $v0,$t3,$ta3 | ||
720 | $ST $t3,-$BNSZ($a0) | ||
721 | |||
722 | .set noreorder | ||
723 | bgtz $at,.L_bn_sub_words_loop | ||
724 | $ADDU $v0,$t9 | ||
725 | |||
726 | beqz $a3,.L_bn_sub_words_return | ||
727 | nop | ||
728 | |||
729 | .L_bn_sub_words_tail: | ||
730 | .set reorder | ||
731 | $LD $t0,0($a1) | ||
732 | $LD $ta0,0($a2) | ||
733 | subu $a3,1 | ||
734 | sltu $t8,$t0,$ta0 | ||
735 | $SUBU $ta0,$t0,$ta0 | ||
736 | $SUBU $t0,$ta0,$v0 | ||
737 | sgtu $v0,$t0,$ta0 | ||
738 | $ST $t0,0($a0) | ||
739 | $ADDU $v0,$t8 | ||
740 | beqz $a3,.L_bn_sub_words_return | ||
741 | |||
742 | $LD $t1,$BNSZ($a1) | ||
743 | subu $a3,1 | ||
744 | $LD $ta1,$BNSZ($a2) | ||
745 | sltu $t9,$t1,$ta1 | ||
746 | $SUBU $ta1,$t1,$ta1 | ||
747 | $SUBU $t1,$ta1,$v0 | ||
748 | sgtu $v0,$t1,$ta1 | ||
749 | $ST $t1,$BNSZ($a0) | ||
750 | $ADDU $v0,$t9 | ||
751 | beqz $a3,.L_bn_sub_words_return | ||
752 | |||
753 | $LD $t2,2*$BNSZ($a1) | ||
754 | $LD $ta2,2*$BNSZ($a2) | ||
755 | sltu $t8,$t2,$ta2 | ||
756 | $SUBU $ta2,$t2,$ta2 | ||
757 | $SUBU $t2,$ta2,$v0 | ||
758 | sgtu $v0,$t2,$ta2 | ||
759 | $ST $t2,2*$BNSZ($a0) | ||
760 | $ADDU $v0,$t8 | ||
761 | |||
762 | .L_bn_sub_words_return: | ||
763 | .set noreorder | ||
764 | ___ | ||
765 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
766 | $REG_L $t3,4*$SZREG($sp) | ||
767 | $REG_L $t2,3*$SZREG($sp) | ||
768 | $REG_L $t1,2*$SZREG($sp) | ||
769 | $REG_L $t0,1*$SZREG($sp) | ||
770 | $REG_L $gp,0*$SZREG($sp) | ||
771 | $PTR_ADD $sp,6*$SZREG | ||
772 | ___ | ||
773 | $code.=<<___; | ||
774 | jr $ra | ||
775 | move $a0,$v0 | ||
776 | .end bn_sub_words_internal | ||
777 | |||
778 | .align 5 | ||
779 | .globl bn_div_3_words | ||
780 | .ent bn_div_3_words | ||
781 | bn_div_3_words: | ||
782 | .set noreorder | ||
783 | move $a3,$a0 # we know that bn_div_words does not | ||
784 | # touch $a3, $ta2, $ta3 and preserves $a2 | ||
785 | # so that we can save two arguments | ||
786 | # and return address in registers | ||
787 | # instead of stack:-) | ||
788 | |||
789 | $LD $a0,($a3) | ||
790 | move $ta2,$a1 | ||
791 | bne $a0,$a2,bn_div_3_words_internal | ||
792 | $LD $a1,-$BNSZ($a3) | ||
793 | li $v0,-1 | ||
794 | jr $ra | ||
795 | move $a0,$v0 | ||
796 | .end bn_div_3_words | ||
797 | |||
798 | .align 5 | ||
799 | .ent bn_div_3_words_internal | ||
800 | bn_div_3_words_internal: | ||
801 | ___ | ||
802 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
803 | .frame $sp,6*$SZREG,$ra | ||
804 | .mask 0x8000f008,-$SZREG | ||
805 | .set noreorder | ||
806 | $PTR_SUB $sp,6*$SZREG | ||
807 | $REG_S $ra,5*$SZREG($sp) | ||
808 | $REG_S $t3,4*$SZREG($sp) | ||
809 | $REG_S $t2,3*$SZREG($sp) | ||
810 | $REG_S $t1,2*$SZREG($sp) | ||
811 | $REG_S $t0,1*$SZREG($sp) | ||
812 | $REG_S $gp,0*$SZREG($sp) | ||
813 | ___ | ||
814 | $code.=<<___; | ||
815 | .set reorder | ||
816 | move $ta3,$ra | ||
817 | bal bn_div_words_internal | ||
818 | move $ra,$ta3 | ||
819 | $MULTU $ta2,$v0 | ||
820 | $LD $t2,-2*$BNSZ($a3) | ||
821 | move $ta0,$zero | ||
822 | mfhi $t1 | ||
823 | mflo $t0 | ||
824 | sltu $t8,$t1,$a1 | ||
825 | .L_bn_div_3_words_inner_loop: | ||
826 | bnez $t8,.L_bn_div_3_words_inner_loop_done | ||
827 | sgeu $at,$t2,$t0 | ||
828 | seq $t9,$t1,$a1 | ||
829 | and $at,$t9 | ||
830 | sltu $t3,$t0,$ta2 | ||
831 | $ADDU $a1,$a2 | ||
832 | $SUBU $t1,$t3 | ||
833 | $SUBU $t0,$ta2 | ||
834 | sltu $t8,$t1,$a1 | ||
835 | sltu $ta0,$a1,$a2 | ||
836 | or $t8,$ta0 | ||
837 | .set noreorder | ||
838 | beqz $at,.L_bn_div_3_words_inner_loop | ||
839 | $SUBU $v0,1 | ||
840 | $ADDU $v0,1 | ||
841 | .set reorder | ||
842 | .L_bn_div_3_words_inner_loop_done: | ||
843 | .set noreorder | ||
844 | ___ | ||
845 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
846 | $REG_L $t3,4*$SZREG($sp) | ||
847 | $REG_L $t2,3*$SZREG($sp) | ||
848 | $REG_L $t1,2*$SZREG($sp) | ||
849 | $REG_L $t0,1*$SZREG($sp) | ||
850 | $REG_L $gp,0*$SZREG($sp) | ||
851 | $PTR_ADD $sp,6*$SZREG | ||
852 | ___ | ||
853 | $code.=<<___; | ||
854 | jr $ra | ||
855 | move $a0,$v0 | ||
856 | .end bn_div_3_words_internal | ||
857 | |||
858 | .align 5 | ||
859 | .globl bn_div_words | ||
860 | .ent bn_div_words | ||
861 | bn_div_words: | ||
862 | .set noreorder | ||
863 | bnez $a2,bn_div_words_internal | ||
864 | li $v0,-1 # I would rather signal div-by-zero | ||
865 | # which can be done with 'break 7' | ||
866 | jr $ra | ||
867 | move $a0,$v0 | ||
868 | .end bn_div_words | ||
869 | |||
870 | .align 5 | ||
871 | .ent bn_div_words_internal | ||
872 | bn_div_words_internal: | ||
873 | ___ | ||
874 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
875 | .frame $sp,6*$SZREG,$ra | ||
876 | .mask 0x8000f008,-$SZREG | ||
877 | .set noreorder | ||
878 | $PTR_SUB $sp,6*$SZREG | ||
879 | $REG_S $ra,5*$SZREG($sp) | ||
880 | $REG_S $t3,4*$SZREG($sp) | ||
881 | $REG_S $t2,3*$SZREG($sp) | ||
882 | $REG_S $t1,2*$SZREG($sp) | ||
883 | $REG_S $t0,1*$SZREG($sp) | ||
884 | $REG_S $gp,0*$SZREG($sp) | ||
885 | ___ | ||
886 | $code.=<<___; | ||
887 | move $v1,$zero | ||
888 | bltz $a2,.L_bn_div_words_body | ||
889 | move $t9,$v1 | ||
890 | $SLL $a2,1 | ||
891 | bgtz $a2,.-4 | ||
892 | addu $t9,1 | ||
893 | |||
894 | .set reorder | ||
895 | negu $t1,$t9 | ||
896 | li $t2,-1 | ||
897 | $SLL $t2,$t1 | ||
898 | and $t2,$a0 | ||
899 | $SRL $at,$a1,$t1 | ||
900 | .set noreorder | ||
901 | beqz $t2,.+12 | ||
902 | nop | ||
903 | break 6 # signal overflow | ||
904 | .set reorder | ||
905 | $SLL $a0,$t9 | ||
906 | $SLL $a1,$t9 | ||
907 | or $a0,$at | ||
908 | ___ | ||
909 | $QT=$ta0; | ||
910 | $HH=$ta1; | ||
911 | $DH=$v1; | ||
912 | $code.=<<___; | ||
913 | .L_bn_div_words_body: | ||
914 | $SRL $DH,$a2,4*$BNSZ # bits | ||
915 | sgeu $at,$a0,$a2 | ||
916 | .set noreorder | ||
917 | beqz $at,.+12 | ||
918 | nop | ||
919 | $SUBU $a0,$a2 | ||
920 | .set reorder | ||
921 | |||
922 | li $QT,-1 | ||
923 | $SRL $HH,$a0,4*$BNSZ # bits | ||
924 | $SRL $QT,4*$BNSZ # q=0xffffffff | ||
925 | beq $DH,$HH,.L_bn_div_words_skip_div1 | ||
926 | $DIVU $zero,$a0,$DH | ||
927 | mflo $QT | ||
928 | .L_bn_div_words_skip_div1: | ||
929 | $MULTU $a2,$QT | ||
930 | $SLL $t3,$a0,4*$BNSZ # bits | ||
931 | $SRL $at,$a1,4*$BNSZ # bits | ||
932 | or $t3,$at | ||
933 | mflo $t0 | ||
934 | mfhi $t1 | ||
935 | .L_bn_div_words_inner_loop1: | ||
936 | sltu $t2,$t3,$t0 | ||
937 | seq $t8,$HH,$t1 | ||
938 | sltu $at,$HH,$t1 | ||
939 | and $t2,$t8 | ||
940 | sltu $v0,$t0,$a2 | ||
941 | or $at,$t2 | ||
942 | .set noreorder | ||
943 | beqz $at,.L_bn_div_words_inner_loop1_done | ||
944 | $SUBU $t1,$v0 | ||
945 | $SUBU $t0,$a2 | ||
946 | b .L_bn_div_words_inner_loop1 | ||
947 | $SUBU $QT,1 | ||
948 | .set reorder | ||
949 | .L_bn_div_words_inner_loop1_done: | ||
950 | |||
951 | $SLL $a1,4*$BNSZ # bits | ||
952 | $SUBU $a0,$t3,$t0 | ||
953 | $SLL $v0,$QT,4*$BNSZ # bits | ||
954 | |||
955 | li $QT,-1 | ||
956 | $SRL $HH,$a0,4*$BNSZ # bits | ||
957 | $SRL $QT,4*$BNSZ # q=0xffffffff | ||
958 | beq $DH,$HH,.L_bn_div_words_skip_div2 | ||
959 | $DIVU $zero,$a0,$DH | ||
960 | mflo $QT | ||
961 | .L_bn_div_words_skip_div2: | ||
962 | $MULTU $a2,$QT | ||
963 | $SLL $t3,$a0,4*$BNSZ # bits | ||
964 | $SRL $at,$a1,4*$BNSZ # bits | ||
965 | or $t3,$at | ||
966 | mflo $t0 | ||
967 | mfhi $t1 | ||
968 | .L_bn_div_words_inner_loop2: | ||
969 | sltu $t2,$t3,$t0 | ||
970 | seq $t8,$HH,$t1 | ||
971 | sltu $at,$HH,$t1 | ||
972 | and $t2,$t8 | ||
973 | sltu $v1,$t0,$a2 | ||
974 | or $at,$t2 | ||
975 | .set noreorder | ||
976 | beqz $at,.L_bn_div_words_inner_loop2_done | ||
977 | $SUBU $t1,$v1 | ||
978 | $SUBU $t0,$a2 | ||
979 | b .L_bn_div_words_inner_loop2 | ||
980 | $SUBU $QT,1 | ||
981 | .set reorder | ||
982 | .L_bn_div_words_inner_loop2_done: | ||
983 | |||
984 | $SUBU $a0,$t3,$t0 | ||
985 | or $v0,$QT | ||
986 | $SRL $v1,$a0,$t9 # $v1 contains remainder if anybody wants it | ||
987 | $SRL $a2,$t9 # restore $a2 | ||
988 | |||
989 | .set noreorder | ||
990 | move $a1,$v1 | ||
991 | ___ | ||
992 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
993 | $REG_L $t3,4*$SZREG($sp) | ||
994 | $REG_L $t2,3*$SZREG($sp) | ||
995 | $REG_L $t1,2*$SZREG($sp) | ||
996 | $REG_L $t0,1*$SZREG($sp) | ||
997 | $REG_L $gp,0*$SZREG($sp) | ||
998 | $PTR_ADD $sp,6*$SZREG | ||
999 | ___ | ||
1000 | $code.=<<___; | ||
1001 | jr $ra | ||
1002 | move $a0,$v0 | ||
1003 | .end bn_div_words_internal | ||
1004 | ___ | ||
1005 | undef $HH; undef $QT; undef $DH; | ||
1006 | |||
1007 | ($a_0,$a_1,$a_2,$a_3)=($t0,$t1,$t2,$t3); | ||
1008 | ($b_0,$b_1,$b_2,$b_3)=($ta0,$ta1,$ta2,$ta3); | ||
1009 | |||
1010 | ($a_4,$a_5,$a_6,$a_7)=($s0,$s2,$s4,$a1); # once we load a[7], no use for $a1 | ||
1011 | ($b_4,$b_5,$b_6,$b_7)=($s1,$s3,$s5,$a2); # once we load b[7], no use for $a2 | ||
1012 | |||
1013 | ($t_1,$t_2,$c_1,$c_2,$c_3)=($t8,$t9,$v0,$v1,$a3); | ||
1014 | |||
1015 | $code.=<<___; | ||
1016 | |||
1017 | .align 5 | ||
1018 | .globl bn_mul_comba8 | ||
1019 | .ent bn_mul_comba8 | ||
1020 | bn_mul_comba8: | ||
1021 | .set noreorder | ||
1022 | ___ | ||
1023 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
1024 | .frame $sp,12*$SZREG,$ra | ||
1025 | .mask 0x803ff008,-$SZREG | ||
1026 | $PTR_SUB $sp,12*$SZREG | ||
1027 | $REG_S $ra,11*$SZREG($sp) | ||
1028 | $REG_S $s5,10*$SZREG($sp) | ||
1029 | $REG_S $s4,9*$SZREG($sp) | ||
1030 | $REG_S $s3,8*$SZREG($sp) | ||
1031 | $REG_S $s2,7*$SZREG($sp) | ||
1032 | $REG_S $s1,6*$SZREG($sp) | ||
1033 | $REG_S $s0,5*$SZREG($sp) | ||
1034 | $REG_S $t3,4*$SZREG($sp) | ||
1035 | $REG_S $t2,3*$SZREG($sp) | ||
1036 | $REG_S $t1,2*$SZREG($sp) | ||
1037 | $REG_S $t0,1*$SZREG($sp) | ||
1038 | $REG_S $gp,0*$SZREG($sp) | ||
1039 | ___ | ||
1040 | $code.=<<___ if ($flavour !~ /nubi/i); | ||
1041 | .frame $sp,6*$SZREG,$ra | ||
1042 | .mask 0x003f0000,-$SZREG | ||
1043 | $PTR_SUB $sp,6*$SZREG | ||
1044 | $REG_S $s5,5*$SZREG($sp) | ||
1045 | $REG_S $s4,4*$SZREG($sp) | ||
1046 | $REG_S $s3,3*$SZREG($sp) | ||
1047 | $REG_S $s2,2*$SZREG($sp) | ||
1048 | $REG_S $s1,1*$SZREG($sp) | ||
1049 | $REG_S $s0,0*$SZREG($sp) | ||
1050 | ___ | ||
1051 | $code.=<<___; | ||
1052 | |||
1053 | .set reorder | ||
1054 | $LD $a_0,0($a1) # If compiled with -mips3 option on | ||
1055 | # R5000 box assembler barks on this | ||
1056 | # 1ine with "should not have mult/div | ||
1057 | # as last instruction in bb (R10K | ||
1058 | # bug)" warning. If anybody out there | ||
1059 | # has a clue about how to circumvent | ||
1060 | # this do send me a note. | ||
1061 | # <appro\@fy.chalmers.se> | ||
1062 | |||
1063 | $LD $b_0,0($a2) | ||
1064 | $LD $a_1,$BNSZ($a1) | ||
1065 | $LD $a_2,2*$BNSZ($a1) | ||
1066 | $MULTU $a_0,$b_0 # mul_add_c(a[0],b[0],c1,c2,c3); | ||
1067 | $LD $a_3,3*$BNSZ($a1) | ||
1068 | $LD $b_1,$BNSZ($a2) | ||
1069 | $LD $b_2,2*$BNSZ($a2) | ||
1070 | $LD $b_3,3*$BNSZ($a2) | ||
1071 | mflo $c_1 | ||
1072 | mfhi $c_2 | ||
1073 | |||
1074 | $LD $a_4,4*$BNSZ($a1) | ||
1075 | $LD $a_5,5*$BNSZ($a1) | ||
1076 | $MULTU $a_0,$b_1 # mul_add_c(a[0],b[1],c2,c3,c1); | ||
1077 | $LD $a_6,6*$BNSZ($a1) | ||
1078 | $LD $a_7,7*$BNSZ($a1) | ||
1079 | $LD $b_4,4*$BNSZ($a2) | ||
1080 | $LD $b_5,5*$BNSZ($a2) | ||
1081 | mflo $t_1 | ||
1082 | mfhi $t_2 | ||
1083 | $ADDU $c_2,$t_1 | ||
1084 | sltu $at,$c_2,$t_1 | ||
1085 | $MULTU $a_1,$b_0 # mul_add_c(a[1],b[0],c2,c3,c1); | ||
1086 | $ADDU $c_3,$t_2,$at | ||
1087 | $LD $b_6,6*$BNSZ($a2) | ||
1088 | $LD $b_7,7*$BNSZ($a2) | ||
1089 | $ST $c_1,0($a0) # r[0]=c1; | ||
1090 | mflo $t_1 | ||
1091 | mfhi $t_2 | ||
1092 | $ADDU $c_2,$t_1 | ||
1093 | sltu $at,$c_2,$t_1 | ||
1094 | $MULTU $a_2,$b_0 # mul_add_c(a[2],b[0],c3,c1,c2); | ||
1095 | $ADDU $t_2,$at | ||
1096 | $ADDU $c_3,$t_2 | ||
1097 | sltu $c_1,$c_3,$t_2 | ||
1098 | $ST $c_2,$BNSZ($a0) # r[1]=c2; | ||
1099 | |||
1100 | mflo $t_1 | ||
1101 | mfhi $t_2 | ||
1102 | $ADDU $c_3,$t_1 | ||
1103 | sltu $at,$c_3,$t_1 | ||
1104 | $MULTU $a_1,$b_1 # mul_add_c(a[1],b[1],c3,c1,c2); | ||
1105 | $ADDU $t_2,$at | ||
1106 | $ADDU $c_1,$t_2 | ||
1107 | mflo $t_1 | ||
1108 | mfhi $t_2 | ||
1109 | $ADDU $c_3,$t_1 | ||
1110 | sltu $at,$c_3,$t_1 | ||
1111 | $MULTU $a_0,$b_2 # mul_add_c(a[0],b[2],c3,c1,c2); | ||
1112 | $ADDU $t_2,$at | ||
1113 | $ADDU $c_1,$t_2 | ||
1114 | sltu $c_2,$c_1,$t_2 | ||
1115 | mflo $t_1 | ||
1116 | mfhi $t_2 | ||
1117 | $ADDU $c_3,$t_1 | ||
1118 | sltu $at,$c_3,$t_1 | ||
1119 | $MULTU $a_0,$b_3 # mul_add_c(a[0],b[3],c1,c2,c3); | ||
1120 | $ADDU $t_2,$at | ||
1121 | $ADDU $c_1,$t_2 | ||
1122 | sltu $at,$c_1,$t_2 | ||
1123 | $ADDU $c_2,$at | ||
1124 | $ST $c_3,2*$BNSZ($a0) # r[2]=c3; | ||
1125 | |||
1126 | mflo $t_1 | ||
1127 | mfhi $t_2 | ||
1128 | $ADDU $c_1,$t_1 | ||
1129 | sltu $at,$c_1,$t_1 | ||
1130 | $MULTU $a_1,$b_2 # mul_add_c(a[1],b[2],c1,c2,c3); | ||
1131 | $ADDU $t_2,$at | ||
1132 | $ADDU $c_2,$t_2 | ||
1133 | sltu $c_3,$c_2,$t_2 | ||
1134 | mflo $t_1 | ||
1135 | mfhi $t_2 | ||
1136 | $ADDU $c_1,$t_1 | ||
1137 | sltu $at,$c_1,$t_1 | ||
1138 | $MULTU $a_2,$b_1 # mul_add_c(a[2],b[1],c1,c2,c3); | ||
1139 | $ADDU $t_2,$at | ||
1140 | $ADDU $c_2,$t_2 | ||
1141 | sltu $at,$c_2,$t_2 | ||
1142 | $ADDU $c_3,$at | ||
1143 | mflo $t_1 | ||
1144 | mfhi $t_2 | ||
1145 | $ADDU $c_1,$t_1 | ||
1146 | sltu $at,$c_1,$t_1 | ||
1147 | $MULTU $a_3,$b_0 # mul_add_c(a[3],b[0],c1,c2,c3); | ||
1148 | $ADDU $t_2,$at | ||
1149 | $ADDU $c_2,$t_2 | ||
1150 | sltu $at,$c_2,$t_2 | ||
1151 | $ADDU $c_3,$at | ||
1152 | mflo $t_1 | ||
1153 | mfhi $t_2 | ||
1154 | $ADDU $c_1,$t_1 | ||
1155 | sltu $at,$c_1,$t_1 | ||
1156 | $MULTU $a_4,$b_0 # mul_add_c(a[4],b[0],c2,c3,c1); | ||
1157 | $ADDU $t_2,$at | ||
1158 | $ADDU $c_2,$t_2 | ||
1159 | sltu $at,$c_2,$t_2 | ||
1160 | $ADDU $c_3,$at | ||
1161 | $ST $c_1,3*$BNSZ($a0) # r[3]=c1; | ||
1162 | |||
1163 | mflo $t_1 | ||
1164 | mfhi $t_2 | ||
1165 | $ADDU $c_2,$t_1 | ||
1166 | sltu $at,$c_2,$t_1 | ||
1167 | $MULTU $a_3,$b_1 # mul_add_c(a[3],b[1],c2,c3,c1); | ||
1168 | $ADDU $t_2,$at | ||
1169 | $ADDU $c_3,$t_2 | ||
1170 | sltu $c_1,$c_3,$t_2 | ||
1171 | mflo $t_1 | ||
1172 | mfhi $t_2 | ||
1173 | $ADDU $c_2,$t_1 | ||
1174 | sltu $at,$c_2,$t_1 | ||
1175 | $MULTU $a_2,$b_2 # mul_add_c(a[2],b[2],c2,c3,c1); | ||
1176 | $ADDU $t_2,$at | ||
1177 | $ADDU $c_3,$t_2 | ||
1178 | sltu $at,$c_3,$t_2 | ||
1179 | $ADDU $c_1,$at | ||
1180 | mflo $t_1 | ||
1181 | mfhi $t_2 | ||
1182 | $ADDU $c_2,$t_1 | ||
1183 | sltu $at,$c_2,$t_1 | ||
1184 | $MULTU $a_1,$b_3 # mul_add_c(a[1],b[3],c2,c3,c1); | ||
1185 | $ADDU $t_2,$at | ||
1186 | $ADDU $c_3,$t_2 | ||
1187 | sltu $at,$c_3,$t_2 | ||
1188 | $ADDU $c_1,$at | ||
1189 | mflo $t_1 | ||
1190 | mfhi $t_2 | ||
1191 | $ADDU $c_2,$t_1 | ||
1192 | sltu $at,$c_2,$t_1 | ||
1193 | $MULTU $a_0,$b_4 # mul_add_c(a[0],b[4],c2,c3,c1); | ||
1194 | $ADDU $t_2,$at | ||
1195 | $ADDU $c_3,$t_2 | ||
1196 | sltu $at,$c_3,$t_2 | ||
1197 | $ADDU $c_1,$at | ||
1198 | mflo $t_1 | ||
1199 | mfhi $t_2 | ||
1200 | $ADDU $c_2,$t_1 | ||
1201 | sltu $at,$c_2,$t_1 | ||
1202 | $MULTU $a_0,$b_5 # mul_add_c(a[0],b[5],c3,c1,c2); | ||
1203 | $ADDU $t_2,$at | ||
1204 | $ADDU $c_3,$t_2 | ||
1205 | sltu $at,$c_3,$t_2 | ||
1206 | $ADDU $c_1,$at | ||
1207 | $ST $c_2,4*$BNSZ($a0) # r[4]=c2; | ||
1208 | |||
1209 | mflo $t_1 | ||
1210 | mfhi $t_2 | ||
1211 | $ADDU $c_3,$t_1 | ||
1212 | sltu $at,$c_3,$t_1 | ||
1213 | $MULTU $a_1,$b_4 # mul_add_c(a[1],b[4],c3,c1,c2); | ||
1214 | $ADDU $t_2,$at | ||
1215 | $ADDU $c_1,$t_2 | ||
1216 | sltu $c_2,$c_1,$t_2 | ||
1217 | mflo $t_1 | ||
1218 | mfhi $t_2 | ||
1219 | $ADDU $c_3,$t_1 | ||
1220 | sltu $at,$c_3,$t_1 | ||
1221 | $MULTU $a_2,$b_3 # mul_add_c(a[2],b[3],c3,c1,c2); | ||
1222 | $ADDU $t_2,$at | ||
1223 | $ADDU $c_1,$t_2 | ||
1224 | sltu $at,$c_1,$t_2 | ||
1225 | $ADDU $c_2,$at | ||
1226 | mflo $t_1 | ||
1227 | mfhi $t_2 | ||
1228 | $ADDU $c_3,$t_1 | ||
1229 | sltu $at,$c_3,$t_1 | ||
1230 | $MULTU $a_3,$b_2 # mul_add_c(a[3],b[2],c3,c1,c2); | ||
1231 | $ADDU $t_2,$at | ||
1232 | $ADDU $c_1,$t_2 | ||
1233 | sltu $at,$c_1,$t_2 | ||
1234 | $ADDU $c_2,$at | ||
1235 | mflo $t_1 | ||
1236 | mfhi $t_2 | ||
1237 | $ADDU $c_3,$t_1 | ||
1238 | sltu $at,$c_3,$t_1 | ||
1239 | $MULTU $a_4,$b_1 # mul_add_c(a[4],b[1],c3,c1,c2); | ||
1240 | $ADDU $t_2,$at | ||
1241 | $ADDU $c_1,$t_2 | ||
1242 | sltu $at,$c_1,$t_2 | ||
1243 | $ADDU $c_2,$at | ||
1244 | mflo $t_1 | ||
1245 | mfhi $t_2 | ||
1246 | $ADDU $c_3,$t_1 | ||
1247 | sltu $at,$c_3,$t_1 | ||
1248 | $MULTU $a_5,$b_0 # mul_add_c(a[5],b[0],c3,c1,c2); | ||
1249 | $ADDU $t_2,$at | ||
1250 | $ADDU $c_1,$t_2 | ||
1251 | sltu $at,$c_1,$t_2 | ||
1252 | $ADDU $c_2,$at | ||
1253 | mflo $t_1 | ||
1254 | mfhi $t_2 | ||
1255 | $ADDU $c_3,$t_1 | ||
1256 | sltu $at,$c_3,$t_1 | ||
1257 | $MULTU $a_6,$b_0 # mul_add_c(a[6],b[0],c1,c2,c3); | ||
1258 | $ADDU $t_2,$at | ||
1259 | $ADDU $c_1,$t_2 | ||
1260 | sltu $at,$c_1,$t_2 | ||
1261 | $ADDU $c_2,$at | ||
1262 | $ST $c_3,5*$BNSZ($a0) # r[5]=c3; | ||
1263 | |||
1264 | mflo $t_1 | ||
1265 | mfhi $t_2 | ||
1266 | $ADDU $c_1,$t_1 | ||
1267 | sltu $at,$c_1,$t_1 | ||
1268 | $MULTU $a_5,$b_1 # mul_add_c(a[5],b[1],c1,c2,c3); | ||
1269 | $ADDU $t_2,$at | ||
1270 | $ADDU $c_2,$t_2 | ||
1271 | sltu $c_3,$c_2,$t_2 | ||
1272 | mflo $t_1 | ||
1273 | mfhi $t_2 | ||
1274 | $ADDU $c_1,$t_1 | ||
1275 | sltu $at,$c_1,$t_1 | ||
1276 | $MULTU $a_4,$b_2 # mul_add_c(a[4],b[2],c1,c2,c3); | ||
1277 | $ADDU $t_2,$at | ||
1278 | $ADDU $c_2,$t_2 | ||
1279 | sltu $at,$c_2,$t_2 | ||
1280 | $ADDU $c_3,$at | ||
1281 | mflo $t_1 | ||
1282 | mfhi $t_2 | ||
1283 | $ADDU $c_1,$t_1 | ||
1284 | sltu $at,$c_1,$t_1 | ||
1285 | $MULTU $a_3,$b_3 # mul_add_c(a[3],b[3],c1,c2,c3); | ||
1286 | $ADDU $t_2,$at | ||
1287 | $ADDU $c_2,$t_2 | ||
1288 | sltu $at,$c_2,$t_2 | ||
1289 | $ADDU $c_3,$at | ||
1290 | mflo $t_1 | ||
1291 | mfhi $t_2 | ||
1292 | $ADDU $c_1,$t_1 | ||
1293 | sltu $at,$c_1,$t_1 | ||
1294 | $MULTU $a_2,$b_4 # mul_add_c(a[2],b[4],c1,c2,c3); | ||
1295 | $ADDU $t_2,$at | ||
1296 | $ADDU $c_2,$t_2 | ||
1297 | sltu $at,$c_2,$t_2 | ||
1298 | $ADDU $c_3,$at | ||
1299 | mflo $t_1 | ||
1300 | mfhi $t_2 | ||
1301 | $ADDU $c_1,$t_1 | ||
1302 | sltu $at,$c_1,$t_1 | ||
1303 | $MULTU $a_1,$b_5 # mul_add_c(a[1],b[5],c1,c2,c3); | ||
1304 | $ADDU $t_2,$at | ||
1305 | $ADDU $c_2,$t_2 | ||
1306 | sltu $at,$c_2,$t_2 | ||
1307 | $ADDU $c_3,$at | ||
1308 | mflo $t_1 | ||
1309 | mfhi $t_2 | ||
1310 | $ADDU $c_1,$t_1 | ||
1311 | sltu $at,$c_1,$t_1 | ||
1312 | $MULTU $a_0,$b_6 # mul_add_c(a[0],b[6],c1,c2,c3); | ||
1313 | $ADDU $t_2,$at | ||
1314 | $ADDU $c_2,$t_2 | ||
1315 | sltu $at,$c_2,$t_2 | ||
1316 | $ADDU $c_3,$at | ||
1317 | mflo $t_1 | ||
1318 | mfhi $t_2 | ||
1319 | $ADDU $c_1,$t_1 | ||
1320 | sltu $at,$c_1,$t_1 | ||
1321 | $MULTU $a_0,$b_7 # mul_add_c(a[0],b[7],c2,c3,c1); | ||
1322 | $ADDU $t_2,$at | ||
1323 | $ADDU $c_2,$t_2 | ||
1324 | sltu $at,$c_2,$t_2 | ||
1325 | $ADDU $c_3,$at | ||
1326 | $ST $c_1,6*$BNSZ($a0) # r[6]=c1; | ||
1327 | |||
1328 | mflo $t_1 | ||
1329 | mfhi $t_2 | ||
1330 | $ADDU $c_2,$t_1 | ||
1331 | sltu $at,$c_2,$t_1 | ||
1332 | $MULTU $a_1,$b_6 # mul_add_c(a[1],b[6],c2,c3,c1); | ||
1333 | $ADDU $t_2,$at | ||
1334 | $ADDU $c_3,$t_2 | ||
1335 | sltu $c_1,$c_3,$t_2 | ||
1336 | mflo $t_1 | ||
1337 | mfhi $t_2 | ||
1338 | $ADDU $c_2,$t_1 | ||
1339 | sltu $at,$c_2,$t_1 | ||
1340 | $MULTU $a_2,$b_5 # mul_add_c(a[2],b[5],c2,c3,c1); | ||
1341 | $ADDU $t_2,$at | ||
1342 | $ADDU $c_3,$t_2 | ||
1343 | sltu $at,$c_3,$t_2 | ||
1344 | $ADDU $c_1,$at | ||
1345 | mflo $t_1 | ||
1346 | mfhi $t_2 | ||
1347 | $ADDU $c_2,$t_1 | ||
1348 | sltu $at,$c_2,$t_1 | ||
1349 | $MULTU $a_3,$b_4 # mul_add_c(a[3],b[4],c2,c3,c1); | ||
1350 | $ADDU $t_2,$at | ||
1351 | $ADDU $c_3,$t_2 | ||
1352 | sltu $at,$c_3,$t_2 | ||
1353 | $ADDU $c_1,$at | ||
1354 | mflo $t_1 | ||
1355 | mfhi $t_2 | ||
1356 | $ADDU $c_2,$t_1 | ||
1357 | sltu $at,$c_2,$t_1 | ||
1358 | $MULTU $a_4,$b_3 # mul_add_c(a[4],b[3],c2,c3,c1); | ||
1359 | $ADDU $t_2,$at | ||
1360 | $ADDU $c_3,$t_2 | ||
1361 | sltu $at,$c_3,$t_2 | ||
1362 | $ADDU $c_1,$at | ||
1363 | mflo $t_1 | ||
1364 | mfhi $t_2 | ||
1365 | $ADDU $c_2,$t_1 | ||
1366 | sltu $at,$c_2,$t_1 | ||
1367 | $MULTU $a_5,$b_2 # mul_add_c(a[5],b[2],c2,c3,c1); | ||
1368 | $ADDU $t_2,$at | ||
1369 | $ADDU $c_3,$t_2 | ||
1370 | sltu $at,$c_3,$t_2 | ||
1371 | $ADDU $c_1,$at | ||
1372 | mflo $t_1 | ||
1373 | mfhi $t_2 | ||
1374 | $ADDU $c_2,$t_1 | ||
1375 | sltu $at,$c_2,$t_1 | ||
1376 | $MULTU $a_6,$b_1 # mul_add_c(a[6],b[1],c2,c3,c1); | ||
1377 | $ADDU $t_2,$at | ||
1378 | $ADDU $c_3,$t_2 | ||
1379 | sltu $at,$c_3,$t_2 | ||
1380 | $ADDU $c_1,$at | ||
1381 | mflo $t_1 | ||
1382 | mfhi $t_2 | ||
1383 | $ADDU $c_2,$t_1 | ||
1384 | sltu $at,$c_2,$t_1 | ||
1385 | $MULTU $a_7,$b_0 # mul_add_c(a[7],b[0],c2,c3,c1); | ||
1386 | $ADDU $t_2,$at | ||
1387 | $ADDU $c_3,$t_2 | ||
1388 | sltu $at,$c_3,$t_2 | ||
1389 | $ADDU $c_1,$at | ||
1390 | mflo $t_1 | ||
1391 | mfhi $t_2 | ||
1392 | $ADDU $c_2,$t_1 | ||
1393 | sltu $at,$c_2,$t_1 | ||
1394 | $MULTU $a_7,$b_1 # mul_add_c(a[7],b[1],c3,c1,c2); | ||
1395 | $ADDU $t_2,$at | ||
1396 | $ADDU $c_3,$t_2 | ||
1397 | sltu $at,$c_3,$t_2 | ||
1398 | $ADDU $c_1,$at | ||
1399 | $ST $c_2,7*$BNSZ($a0) # r[7]=c2; | ||
1400 | |||
1401 | mflo $t_1 | ||
1402 | mfhi $t_2 | ||
1403 | $ADDU $c_3,$t_1 | ||
1404 | sltu $at,$c_3,$t_1 | ||
1405 | $MULTU $a_6,$b_2 # mul_add_c(a[6],b[2],c3,c1,c2); | ||
1406 | $ADDU $t_2,$at | ||
1407 | $ADDU $c_1,$t_2 | ||
1408 | sltu $c_2,$c_1,$t_2 | ||
1409 | mflo $t_1 | ||
1410 | mfhi $t_2 | ||
1411 | $ADDU $c_3,$t_1 | ||
1412 | sltu $at,$c_3,$t_1 | ||
1413 | $MULTU $a_5,$b_3 # mul_add_c(a[5],b[3],c3,c1,c2); | ||
1414 | $ADDU $t_2,$at | ||
1415 | $ADDU $c_1,$t_2 | ||
1416 | sltu $at,$c_1,$t_2 | ||
1417 | $ADDU $c_2,$at | ||
1418 | mflo $t_1 | ||
1419 | mfhi $t_2 | ||
1420 | $ADDU $c_3,$t_1 | ||
1421 | sltu $at,$c_3,$t_1 | ||
1422 | $MULTU $a_4,$b_4 # mul_add_c(a[4],b[4],c3,c1,c2); | ||
1423 | $ADDU $t_2,$at | ||
1424 | $ADDU $c_1,$t_2 | ||
1425 | sltu $at,$c_1,$t_2 | ||
1426 | $ADDU $c_2,$at | ||
1427 | mflo $t_1 | ||
1428 | mfhi $t_2 | ||
1429 | $ADDU $c_3,$t_1 | ||
1430 | sltu $at,$c_3,$t_1 | ||
1431 | $MULTU $a_3,$b_5 # mul_add_c(a[3],b[5],c3,c1,c2); | ||
1432 | $ADDU $t_2,$at | ||
1433 | $ADDU $c_1,$t_2 | ||
1434 | sltu $at,$c_1,$t_2 | ||
1435 | $ADDU $c_2,$at | ||
1436 | mflo $t_1 | ||
1437 | mfhi $t_2 | ||
1438 | $ADDU $c_3,$t_1 | ||
1439 | sltu $at,$c_3,$t_1 | ||
1440 | $MULTU $a_2,$b_6 # mul_add_c(a[2],b[6],c3,c1,c2); | ||
1441 | $ADDU $t_2,$at | ||
1442 | $ADDU $c_1,$t_2 | ||
1443 | sltu $at,$c_1,$t_2 | ||
1444 | $ADDU $c_2,$at | ||
1445 | mflo $t_1 | ||
1446 | mfhi $t_2 | ||
1447 | $ADDU $c_3,$t_1 | ||
1448 | sltu $at,$c_3,$t_1 | ||
1449 | $MULTU $a_1,$b_7 # mul_add_c(a[1],b[7],c3,c1,c2); | ||
1450 | $ADDU $t_2,$at | ||
1451 | $ADDU $c_1,$t_2 | ||
1452 | sltu $at,$c_1,$t_2 | ||
1453 | $ADDU $c_2,$at | ||
1454 | mflo $t_1 | ||
1455 | mfhi $t_2 | ||
1456 | $ADDU $c_3,$t_1 | ||
1457 | sltu $at,$c_3,$t_1 | ||
1458 | $MULTU $a_2,$b_7 # mul_add_c(a[2],b[7],c1,c2,c3); | ||
1459 | $ADDU $t_2,$at | ||
1460 | $ADDU $c_1,$t_2 | ||
1461 | sltu $at,$c_1,$t_2 | ||
1462 | $ADDU $c_2,$at | ||
1463 | $ST $c_3,8*$BNSZ($a0) # r[8]=c3; | ||
1464 | |||
1465 | mflo $t_1 | ||
1466 | mfhi $t_2 | ||
1467 | $ADDU $c_1,$t_1 | ||
1468 | sltu $at,$c_1,$t_1 | ||
1469 | $MULTU $a_3,$b_6 # mul_add_c(a[3],b[6],c1,c2,c3); | ||
1470 | $ADDU $t_2,$at | ||
1471 | $ADDU $c_2,$t_2 | ||
1472 | sltu $c_3,$c_2,$t_2 | ||
1473 | mflo $t_1 | ||
1474 | mfhi $t_2 | ||
1475 | $ADDU $c_1,$t_1 | ||
1476 | sltu $at,$c_1,$t_1 | ||
1477 | $MULTU $a_4,$b_5 # mul_add_c(a[4],b[5],c1,c2,c3); | ||
1478 | $ADDU $t_2,$at | ||
1479 | $ADDU $c_2,$t_2 | ||
1480 | sltu $at,$c_2,$t_2 | ||
1481 | $ADDU $c_3,$at | ||
1482 | mflo $t_1 | ||
1483 | mfhi $t_2 | ||
1484 | $ADDU $c_1,$t_1 | ||
1485 | sltu $at,$c_1,$t_1 | ||
1486 | $MULTU $a_5,$b_4 # mul_add_c(a[5],b[4],c1,c2,c3); | ||
1487 | $ADDU $t_2,$at | ||
1488 | $ADDU $c_2,$t_2 | ||
1489 | sltu $at,$c_2,$t_2 | ||
1490 | $ADDU $c_3,$at | ||
1491 | mflo $t_1 | ||
1492 | mfhi $t_2 | ||
1493 | $ADDU $c_1,$t_1 | ||
1494 | sltu $at,$c_1,$t_1 | ||
1495 | $MULTU $a_6,$b_3 # mul_add_c(a[6],b[3],c1,c2,c3); | ||
1496 | $ADDU $t_2,$at | ||
1497 | $ADDU $c_2,$t_2 | ||
1498 | sltu $at,$c_2,$t_2 | ||
1499 | $ADDU $c_3,$at | ||
1500 | mflo $t_1 | ||
1501 | mfhi $t_2 | ||
1502 | $ADDU $c_1,$t_1 | ||
1503 | sltu $at,$c_1,$t_1 | ||
1504 | $MULTU $a_7,$b_2 # mul_add_c(a[7],b[2],c1,c2,c3); | ||
1505 | $ADDU $t_2,$at | ||
1506 | $ADDU $c_2,$t_2 | ||
1507 | sltu $at,$c_2,$t_2 | ||
1508 | $ADDU $c_3,$at | ||
1509 | mflo $t_1 | ||
1510 | mfhi $t_2 | ||
1511 | $ADDU $c_1,$t_1 | ||
1512 | sltu $at,$c_1,$t_1 | ||
1513 | $MULTU $a_7,$b_3 # mul_add_c(a[7],b[3],c2,c3,c1); | ||
1514 | $ADDU $t_2,$at | ||
1515 | $ADDU $c_2,$t_2 | ||
1516 | sltu $at,$c_2,$t_2 | ||
1517 | $ADDU $c_3,$at | ||
1518 | $ST $c_1,9*$BNSZ($a0) # r[9]=c1; | ||
1519 | |||
1520 | mflo $t_1 | ||
1521 | mfhi $t_2 | ||
1522 | $ADDU $c_2,$t_1 | ||
1523 | sltu $at,$c_2,$t_1 | ||
1524 | $MULTU $a_6,$b_4 # mul_add_c(a[6],b[4],c2,c3,c1); | ||
1525 | $ADDU $t_2,$at | ||
1526 | $ADDU $c_3,$t_2 | ||
1527 | sltu $c_1,$c_3,$t_2 | ||
1528 | mflo $t_1 | ||
1529 | mfhi $t_2 | ||
1530 | $ADDU $c_2,$t_1 | ||
1531 | sltu $at,$c_2,$t_1 | ||
1532 | $MULTU $a_5,$b_5 # mul_add_c(a[5],b[5],c2,c3,c1); | ||
1533 | $ADDU $t_2,$at | ||
1534 | $ADDU $c_3,$t_2 | ||
1535 | sltu $at,$c_3,$t_2 | ||
1536 | $ADDU $c_1,$at | ||
1537 | mflo $t_1 | ||
1538 | mfhi $t_2 | ||
1539 | $ADDU $c_2,$t_1 | ||
1540 | sltu $at,$c_2,$t_1 | ||
1541 | $MULTU $a_4,$b_6 # mul_add_c(a[4],b[6],c2,c3,c1); | ||
1542 | $ADDU $t_2,$at | ||
1543 | $ADDU $c_3,$t_2 | ||
1544 | sltu $at,$c_3,$t_2 | ||
1545 | $ADDU $c_1,$at | ||
1546 | mflo $t_1 | ||
1547 | mfhi $t_2 | ||
1548 | $ADDU $c_2,$t_1 | ||
1549 | sltu $at,$c_2,$t_1 | ||
1550 | $MULTU $a_3,$b_7 # mul_add_c(a[3],b[7],c2,c3,c1); | ||
1551 | $ADDU $t_2,$at | ||
1552 | $ADDU $c_3,$t_2 | ||
1553 | sltu $at,$c_3,$t_2 | ||
1554 | $ADDU $c_1,$at | ||
1555 | mflo $t_1 | ||
1556 | mfhi $t_2 | ||
1557 | $ADDU $c_2,$t_1 | ||
1558 | sltu $at,$c_2,$t_1 | ||
1559 | $MULTU $a_4,$b_7 # mul_add_c(a[4],b[7],c3,c1,c2); | ||
1560 | $ADDU $t_2,$at | ||
1561 | $ADDU $c_3,$t_2 | ||
1562 | sltu $at,$c_3,$t_2 | ||
1563 | $ADDU $c_1,$at | ||
1564 | $ST $c_2,10*$BNSZ($a0) # r[10]=c2; | ||
1565 | |||
1566 | mflo $t_1 | ||
1567 | mfhi $t_2 | ||
1568 | $ADDU $c_3,$t_1 | ||
1569 | sltu $at,$c_3,$t_1 | ||
1570 | $MULTU $a_5,$b_6 # mul_add_c(a[5],b[6],c3,c1,c2); | ||
1571 | $ADDU $t_2,$at | ||
1572 | $ADDU $c_1,$t_2 | ||
1573 | sltu $c_2,$c_1,$t_2 | ||
1574 | mflo $t_1 | ||
1575 | mfhi $t_2 | ||
1576 | $ADDU $c_3,$t_1 | ||
1577 | sltu $at,$c_3,$t_1 | ||
1578 | $MULTU $a_6,$b_5 # mul_add_c(a[6],b[5],c3,c1,c2); | ||
1579 | $ADDU $t_2,$at | ||
1580 | $ADDU $c_1,$t_2 | ||
1581 | sltu $at,$c_1,$t_2 | ||
1582 | $ADDU $c_2,$at | ||
1583 | mflo $t_1 | ||
1584 | mfhi $t_2 | ||
1585 | $ADDU $c_3,$t_1 | ||
1586 | sltu $at,$c_3,$t_1 | ||
1587 | $MULTU $a_7,$b_4 # mul_add_c(a[7],b[4],c3,c1,c2); | ||
1588 | $ADDU $t_2,$at | ||
1589 | $ADDU $c_1,$t_2 | ||
1590 | sltu $at,$c_1,$t_2 | ||
1591 | $ADDU $c_2,$at | ||
1592 | mflo $t_1 | ||
1593 | mfhi $t_2 | ||
1594 | $ADDU $c_3,$t_1 | ||
1595 | sltu $at,$c_3,$t_1 | ||
1596 | $MULTU $a_7,$b_5 # mul_add_c(a[7],b[5],c1,c2,c3); | ||
1597 | $ADDU $t_2,$at | ||
1598 | $ADDU $c_1,$t_2 | ||
1599 | sltu $at,$c_1,$t_2 | ||
1600 | $ADDU $c_2,$at | ||
1601 | $ST $c_3,11*$BNSZ($a0) # r[11]=c3; | ||
1602 | |||
1603 | mflo $t_1 | ||
1604 | mfhi $t_2 | ||
1605 | $ADDU $c_1,$t_1 | ||
1606 | sltu $at,$c_1,$t_1 | ||
1607 | $MULTU $a_6,$b_6 # mul_add_c(a[6],b[6],c1,c2,c3); | ||
1608 | $ADDU $t_2,$at | ||
1609 | $ADDU $c_2,$t_2 | ||
1610 | sltu $c_3,$c_2,$t_2 | ||
1611 | mflo $t_1 | ||
1612 | mfhi $t_2 | ||
1613 | $ADDU $c_1,$t_1 | ||
1614 | sltu $at,$c_1,$t_1 | ||
1615 | $MULTU $a_5,$b_7 # mul_add_c(a[5],b[7],c1,c2,c3); | ||
1616 | $ADDU $t_2,$at | ||
1617 | $ADDU $c_2,$t_2 | ||
1618 | sltu $at,$c_2,$t_2 | ||
1619 | $ADDU $c_3,$at | ||
1620 | mflo $t_1 | ||
1621 | mfhi $t_2 | ||
1622 | $ADDU $c_1,$t_1 | ||
1623 | sltu $at,$c_1,$t_1 | ||
1624 | $MULTU $a_6,$b_7 # mul_add_c(a[6],b[7],c2,c3,c1); | ||
1625 | $ADDU $t_2,$at | ||
1626 | $ADDU $c_2,$t_2 | ||
1627 | sltu $at,$c_2,$t_2 | ||
1628 | $ADDU $c_3,$at | ||
1629 | $ST $c_1,12*$BNSZ($a0) # r[12]=c1; | ||
1630 | |||
1631 | mflo $t_1 | ||
1632 | mfhi $t_2 | ||
1633 | $ADDU $c_2,$t_1 | ||
1634 | sltu $at,$c_2,$t_1 | ||
1635 | $MULTU $a_7,$b_6 # mul_add_c(a[7],b[6],c2,c3,c1); | ||
1636 | $ADDU $t_2,$at | ||
1637 | $ADDU $c_3,$t_2 | ||
1638 | sltu $c_1,$c_3,$t_2 | ||
1639 | mflo $t_1 | ||
1640 | mfhi $t_2 | ||
1641 | $ADDU $c_2,$t_1 | ||
1642 | sltu $at,$c_2,$t_1 | ||
1643 | $MULTU $a_7,$b_7 # mul_add_c(a[7],b[7],c3,c1,c2); | ||
1644 | $ADDU $t_2,$at | ||
1645 | $ADDU $c_3,$t_2 | ||
1646 | sltu $at,$c_3,$t_2 | ||
1647 | $ADDU $c_1,$at | ||
1648 | $ST $c_2,13*$BNSZ($a0) # r[13]=c2; | ||
1649 | |||
1650 | mflo $t_1 | ||
1651 | mfhi $t_2 | ||
1652 | $ADDU $c_3,$t_1 | ||
1653 | sltu $at,$c_3,$t_1 | ||
1654 | $ADDU $t_2,$at | ||
1655 | $ADDU $c_1,$t_2 | ||
1656 | $ST $c_3,14*$BNSZ($a0) # r[14]=c3; | ||
1657 | $ST $c_1,15*$BNSZ($a0) # r[15]=c1; | ||
1658 | |||
1659 | .set noreorder | ||
1660 | ___ | ||
1661 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
1662 | $REG_L $s5,10*$SZREG($sp) | ||
1663 | $REG_L $s4,9*$SZREG($sp) | ||
1664 | $REG_L $s3,8*$SZREG($sp) | ||
1665 | $REG_L $s2,7*$SZREG($sp) | ||
1666 | $REG_L $s1,6*$SZREG($sp) | ||
1667 | $REG_L $s0,5*$SZREG($sp) | ||
1668 | $REG_L $t3,4*$SZREG($sp) | ||
1669 | $REG_L $t2,3*$SZREG($sp) | ||
1670 | $REG_L $t1,2*$SZREG($sp) | ||
1671 | $REG_L $t0,1*$SZREG($sp) | ||
1672 | $REG_L $gp,0*$SZREG($sp) | ||
1673 | jr $ra | ||
1674 | $PTR_ADD $sp,12*$SZREG | ||
1675 | ___ | ||
1676 | $code.=<<___ if ($flavour !~ /nubi/i); | ||
1677 | $REG_L $s5,5*$SZREG($sp) | ||
1678 | $REG_L $s4,4*$SZREG($sp) | ||
1679 | $REG_L $s3,3*$SZREG($sp) | ||
1680 | $REG_L $s2,2*$SZREG($sp) | ||
1681 | $REG_L $s1,1*$SZREG($sp) | ||
1682 | $REG_L $s0,0*$SZREG($sp) | ||
1683 | jr $ra | ||
1684 | $PTR_ADD $sp,6*$SZREG | ||
1685 | ___ | ||
1686 | $code.=<<___; | ||
1687 | .end bn_mul_comba8 | ||
1688 | |||
1689 | .align 5 | ||
1690 | .globl bn_mul_comba4 | ||
1691 | .ent bn_mul_comba4 | ||
1692 | bn_mul_comba4: | ||
1693 | ___ | ||
1694 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
1695 | .frame $sp,6*$SZREG,$ra | ||
1696 | .mask 0x8000f008,-$SZREG | ||
1697 | .set noreorder | ||
1698 | $PTR_SUB $sp,6*$SZREG | ||
1699 | $REG_S $ra,5*$SZREG($sp) | ||
1700 | $REG_S $t3,4*$SZREG($sp) | ||
1701 | $REG_S $t2,3*$SZREG($sp) | ||
1702 | $REG_S $t1,2*$SZREG($sp) | ||
1703 | $REG_S $t0,1*$SZREG($sp) | ||
1704 | $REG_S $gp,0*$SZREG($sp) | ||
1705 | ___ | ||
1706 | $code.=<<___; | ||
1707 | .set reorder | ||
1708 | $LD $a_0,0($a1) | ||
1709 | $LD $b_0,0($a2) | ||
1710 | $LD $a_1,$BNSZ($a1) | ||
1711 | $LD $a_2,2*$BNSZ($a1) | ||
1712 | $MULTU $a_0,$b_0 # mul_add_c(a[0],b[0],c1,c2,c3); | ||
1713 | $LD $a_3,3*$BNSZ($a1) | ||
1714 | $LD $b_1,$BNSZ($a2) | ||
1715 | $LD $b_2,2*$BNSZ($a2) | ||
1716 | $LD $b_3,3*$BNSZ($a2) | ||
1717 | mflo $c_1 | ||
1718 | mfhi $c_2 | ||
1719 | $ST $c_1,0($a0) | ||
1720 | |||
1721 | $MULTU $a_0,$b_1 # mul_add_c(a[0],b[1],c2,c3,c1); | ||
1722 | mflo $t_1 | ||
1723 | mfhi $t_2 | ||
1724 | $ADDU $c_2,$t_1 | ||
1725 | sltu $at,$c_2,$t_1 | ||
1726 | $MULTU $a_1,$b_0 # mul_add_c(a[1],b[0],c2,c3,c1); | ||
1727 | $ADDU $c_3,$t_2,$at | ||
1728 | mflo $t_1 | ||
1729 | mfhi $t_2 | ||
1730 | $ADDU $c_2,$t_1 | ||
1731 | sltu $at,$c_2,$t_1 | ||
1732 | $MULTU $a_2,$b_0 # mul_add_c(a[2],b[0],c3,c1,c2); | ||
1733 | $ADDU $t_2,$at | ||
1734 | $ADDU $c_3,$t_2 | ||
1735 | sltu $c_1,$c_3,$t_2 | ||
1736 | $ST $c_2,$BNSZ($a0) | ||
1737 | |||
1738 | mflo $t_1 | ||
1739 | mfhi $t_2 | ||
1740 | $ADDU $c_3,$t_1 | ||
1741 | sltu $at,$c_3,$t_1 | ||
1742 | $MULTU $a_1,$b_1 # mul_add_c(a[1],b[1],c3,c1,c2); | ||
1743 | $ADDU $t_2,$at | ||
1744 | $ADDU $c_1,$t_2 | ||
1745 | mflo $t_1 | ||
1746 | mfhi $t_2 | ||
1747 | $ADDU $c_3,$t_1 | ||
1748 | sltu $at,$c_3,$t_1 | ||
1749 | $MULTU $a_0,$b_2 # mul_add_c(a[0],b[2],c3,c1,c2); | ||
1750 | $ADDU $t_2,$at | ||
1751 | $ADDU $c_1,$t_2 | ||
1752 | sltu $c_2,$c_1,$t_2 | ||
1753 | mflo $t_1 | ||
1754 | mfhi $t_2 | ||
1755 | $ADDU $c_3,$t_1 | ||
1756 | sltu $at,$c_3,$t_1 | ||
1757 | $MULTU $a_0,$b_3 # mul_add_c(a[0],b[3],c1,c2,c3); | ||
1758 | $ADDU $t_2,$at | ||
1759 | $ADDU $c_1,$t_2 | ||
1760 | sltu $at,$c_1,$t_2 | ||
1761 | $ADDU $c_2,$at | ||
1762 | $ST $c_3,2*$BNSZ($a0) | ||
1763 | |||
1764 | mflo $t_1 | ||
1765 | mfhi $t_2 | ||
1766 | $ADDU $c_1,$t_1 | ||
1767 | sltu $at,$c_1,$t_1 | ||
1768 | $MULTU $a_1,$b_2 # mul_add_c(a[1],b[2],c1,c2,c3); | ||
1769 | $ADDU $t_2,$at | ||
1770 | $ADDU $c_2,$t_2 | ||
1771 | sltu $c_3,$c_2,$t_2 | ||
1772 | mflo $t_1 | ||
1773 | mfhi $t_2 | ||
1774 | $ADDU $c_1,$t_1 | ||
1775 | sltu $at,$c_1,$t_1 | ||
1776 | $MULTU $a_2,$b_1 # mul_add_c(a[2],b[1],c1,c2,c3); | ||
1777 | $ADDU $t_2,$at | ||
1778 | $ADDU $c_2,$t_2 | ||
1779 | sltu $at,$c_2,$t_2 | ||
1780 | $ADDU $c_3,$at | ||
1781 | mflo $t_1 | ||
1782 | mfhi $t_2 | ||
1783 | $ADDU $c_1,$t_1 | ||
1784 | sltu $at,$c_1,$t_1 | ||
1785 | $MULTU $a_3,$b_0 # mul_add_c(a[3],b[0],c1,c2,c3); | ||
1786 | $ADDU $t_2,$at | ||
1787 | $ADDU $c_2,$t_2 | ||
1788 | sltu $at,$c_2,$t_2 | ||
1789 | $ADDU $c_3,$at | ||
1790 | mflo $t_1 | ||
1791 | mfhi $t_2 | ||
1792 | $ADDU $c_1,$t_1 | ||
1793 | sltu $at,$c_1,$t_1 | ||
1794 | $MULTU $a_3,$b_1 # mul_add_c(a[3],b[1],c2,c3,c1); | ||
1795 | $ADDU $t_2,$at | ||
1796 | $ADDU $c_2,$t_2 | ||
1797 | sltu $at,$c_2,$t_2 | ||
1798 | $ADDU $c_3,$at | ||
1799 | $ST $c_1,3*$BNSZ($a0) | ||
1800 | |||
1801 | mflo $t_1 | ||
1802 | mfhi $t_2 | ||
1803 | $ADDU $c_2,$t_1 | ||
1804 | sltu $at,$c_2,$t_1 | ||
1805 | $MULTU $a_2,$b_2 # mul_add_c(a[2],b[2],c2,c3,c1); | ||
1806 | $ADDU $t_2,$at | ||
1807 | $ADDU $c_3,$t_2 | ||
1808 | sltu $c_1,$c_3,$t_2 | ||
1809 | mflo $t_1 | ||
1810 | mfhi $t_2 | ||
1811 | $ADDU $c_2,$t_1 | ||
1812 | sltu $at,$c_2,$t_1 | ||
1813 | $MULTU $a_1,$b_3 # mul_add_c(a[1],b[3],c2,c3,c1); | ||
1814 | $ADDU $t_2,$at | ||
1815 | $ADDU $c_3,$t_2 | ||
1816 | sltu $at,$c_3,$t_2 | ||
1817 | $ADDU $c_1,$at | ||
1818 | mflo $t_1 | ||
1819 | mfhi $t_2 | ||
1820 | $ADDU $c_2,$t_1 | ||
1821 | sltu $at,$c_2,$t_1 | ||
1822 | $MULTU $a_2,$b_3 # mul_add_c(a[2],b[3],c3,c1,c2); | ||
1823 | $ADDU $t_2,$at | ||
1824 | $ADDU $c_3,$t_2 | ||
1825 | sltu $at,$c_3,$t_2 | ||
1826 | $ADDU $c_1,$at | ||
1827 | $ST $c_2,4*$BNSZ($a0) | ||
1828 | |||
1829 | mflo $t_1 | ||
1830 | mfhi $t_2 | ||
1831 | $ADDU $c_3,$t_1 | ||
1832 | sltu $at,$c_3,$t_1 | ||
1833 | $MULTU $a_3,$b_2 # mul_add_c(a[3],b[2],c3,c1,c2); | ||
1834 | $ADDU $t_2,$at | ||
1835 | $ADDU $c_1,$t_2 | ||
1836 | sltu $c_2,$c_1,$t_2 | ||
1837 | mflo $t_1 | ||
1838 | mfhi $t_2 | ||
1839 | $ADDU $c_3,$t_1 | ||
1840 | sltu $at,$c_3,$t_1 | ||
1841 | $MULTU $a_3,$b_3 # mul_add_c(a[3],b[3],c1,c2,c3); | ||
1842 | $ADDU $t_2,$at | ||
1843 | $ADDU $c_1,$t_2 | ||
1844 | sltu $at,$c_1,$t_2 | ||
1845 | $ADDU $c_2,$at | ||
1846 | $ST $c_3,5*$BNSZ($a0) | ||
1847 | |||
1848 | mflo $t_1 | ||
1849 | mfhi $t_2 | ||
1850 | $ADDU $c_1,$t_1 | ||
1851 | sltu $at,$c_1,$t_1 | ||
1852 | $ADDU $t_2,$at | ||
1853 | $ADDU $c_2,$t_2 | ||
1854 | $ST $c_1,6*$BNSZ($a0) | ||
1855 | $ST $c_2,7*$BNSZ($a0) | ||
1856 | |||
1857 | .set noreorder | ||
1858 | ___ | ||
1859 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
1860 | $REG_L $t3,4*$SZREG($sp) | ||
1861 | $REG_L $t2,3*$SZREG($sp) | ||
1862 | $REG_L $t1,2*$SZREG($sp) | ||
1863 | $REG_L $t0,1*$SZREG($sp) | ||
1864 | $REG_L $gp,0*$SZREG($sp) | ||
1865 | $PTR_ADD $sp,6*$SZREG | ||
1866 | ___ | ||
1867 | $code.=<<___; | ||
1868 | jr $ra | ||
1869 | nop | ||
1870 | .end bn_mul_comba4 | ||
1871 | ___ | ||
1872 | |||
1873 | ($a_4,$a_5,$a_6,$a_7)=($b_0,$b_1,$b_2,$b_3); | ||
1874 | |||
1875 | sub add_c2 () { | ||
1876 | my ($hi,$lo,$c0,$c1,$c2, | ||
1877 | $warm, # !$warm denotes first call with specific sequence of | ||
1878 | # $c_[XYZ] when there is no Z-carry to accumulate yet; | ||
1879 | $an,$bn # these two are arguments for multiplication which | ||
1880 | # result is used in *next* step [which is why it's | ||
1881 | # commented as "forward multiplication" below]; | ||
1882 | )=@_; | ||
1883 | $code.=<<___; | ||
1884 | mflo $lo | ||
1885 | mfhi $hi | ||
1886 | $ADDU $c0,$lo | ||
1887 | sltu $at,$c0,$lo | ||
1888 | $MULTU $an,$bn # forward multiplication | ||
1889 | $ADDU $c0,$lo | ||
1890 | $ADDU $at,$hi | ||
1891 | sltu $lo,$c0,$lo | ||
1892 | $ADDU $c1,$at | ||
1893 | $ADDU $hi,$lo | ||
1894 | ___ | ||
1895 | $code.=<<___ if (!$warm); | ||
1896 | sltu $c2,$c1,$at | ||
1897 | $ADDU $c1,$hi | ||
1898 | sltu $hi,$c1,$hi | ||
1899 | $ADDU $c2,$hi | ||
1900 | ___ | ||
1901 | $code.=<<___ if ($warm); | ||
1902 | sltu $at,$c1,$at | ||
1903 | $ADDU $c1,$hi | ||
1904 | $ADDU $c2,$at | ||
1905 | sltu $hi,$c1,$hi | ||
1906 | $ADDU $c2,$hi | ||
1907 | ___ | ||
1908 | } | ||
1909 | |||
1910 | $code.=<<___; | ||
1911 | |||
1912 | .align 5 | ||
1913 | .globl bn_sqr_comba8 | ||
1914 | .ent bn_sqr_comba8 | ||
1915 | bn_sqr_comba8: | ||
1916 | ___ | ||
1917 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
1918 | .frame $sp,6*$SZREG,$ra | ||
1919 | .mask 0x8000f008,-$SZREG | ||
1920 | .set noreorder | ||
1921 | $PTR_SUB $sp,6*$SZREG | ||
1922 | $REG_S $ra,5*$SZREG($sp) | ||
1923 | $REG_S $t3,4*$SZREG($sp) | ||
1924 | $REG_S $t2,3*$SZREG($sp) | ||
1925 | $REG_S $t1,2*$SZREG($sp) | ||
1926 | $REG_S $t0,1*$SZREG($sp) | ||
1927 | $REG_S $gp,0*$SZREG($sp) | ||
1928 | ___ | ||
1929 | $code.=<<___; | ||
1930 | .set reorder | ||
1931 | $LD $a_0,0($a1) | ||
1932 | $LD $a_1,$BNSZ($a1) | ||
1933 | $LD $a_2,2*$BNSZ($a1) | ||
1934 | $LD $a_3,3*$BNSZ($a1) | ||
1935 | |||
1936 | $MULTU $a_0,$a_0 # mul_add_c(a[0],b[0],c1,c2,c3); | ||
1937 | $LD $a_4,4*$BNSZ($a1) | ||
1938 | $LD $a_5,5*$BNSZ($a1) | ||
1939 | $LD $a_6,6*$BNSZ($a1) | ||
1940 | $LD $a_7,7*$BNSZ($a1) | ||
1941 | mflo $c_1 | ||
1942 | mfhi $c_2 | ||
1943 | $ST $c_1,0($a0) | ||
1944 | |||
1945 | $MULTU $a_0,$a_1 # mul_add_c2(a[0],b[1],c2,c3,c1); | ||
1946 | mflo $t_1 | ||
1947 | mfhi $t_2 | ||
1948 | slt $c_1,$t_2,$zero | ||
1949 | $SLL $t_2,1 | ||
1950 | $MULTU $a_2,$a_0 # mul_add_c2(a[2],b[0],c3,c1,c2); | ||
1951 | slt $a2,$t_1,$zero | ||
1952 | $ADDU $t_2,$a2 | ||
1953 | $SLL $t_1,1 | ||
1954 | $ADDU $c_2,$t_1 | ||
1955 | sltu $at,$c_2,$t_1 | ||
1956 | $ADDU $c_3,$t_2,$at | ||
1957 | $ST $c_2,$BNSZ($a0) | ||
1958 | ___ | ||
1959 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, | ||
1960 | $a_1,$a_1); # mul_add_c(a[1],b[1],c3,c1,c2); | ||
1961 | $code.=<<___; | ||
1962 | mflo $t_1 | ||
1963 | mfhi $t_2 | ||
1964 | $ADDU $c_3,$t_1 | ||
1965 | sltu $at,$c_3,$t_1 | ||
1966 | $MULTU $a_0,$a_3 # mul_add_c2(a[0],b[3],c1,c2,c3); | ||
1967 | $ADDU $t_2,$at | ||
1968 | $ADDU $c_1,$t_2 | ||
1969 | sltu $at,$c_1,$t_2 | ||
1970 | $ADDU $c_2,$at | ||
1971 | $ST $c_3,2*$BNSZ($a0) | ||
1972 | ___ | ||
1973 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,0, | ||
1974 | $a_1,$a_2); # mul_add_c2(a[1],b[2],c1,c2,c3); | ||
1975 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, | ||
1976 | $a_4,$a_0); # mul_add_c2(a[4],b[0],c2,c3,c1); | ||
1977 | $code.=<<___; | ||
1978 | $ST $c_1,3*$BNSZ($a0) | ||
1979 | ___ | ||
1980 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,0, | ||
1981 | $a_3,$a_1); # mul_add_c2(a[3],b[1],c2,c3,c1); | ||
1982 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,1, | ||
1983 | $a_2,$a_2); # mul_add_c(a[2],b[2],c2,c3,c1); | ||
1984 | $code.=<<___; | ||
1985 | mflo $t_1 | ||
1986 | mfhi $t_2 | ||
1987 | $ADDU $c_2,$t_1 | ||
1988 | sltu $at,$c_2,$t_1 | ||
1989 | $MULTU $a_0,$a_5 # mul_add_c2(a[0],b[5],c3,c1,c2); | ||
1990 | $ADDU $t_2,$at | ||
1991 | $ADDU $c_3,$t_2 | ||
1992 | sltu $at,$c_3,$t_2 | ||
1993 | $ADDU $c_1,$at | ||
1994 | $ST $c_2,4*$BNSZ($a0) | ||
1995 | ___ | ||
1996 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, | ||
1997 | $a_1,$a_4); # mul_add_c2(a[1],b[4],c3,c1,c2); | ||
1998 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,1, | ||
1999 | $a_2,$a_3); # mul_add_c2(a[2],b[3],c3,c1,c2); | ||
2000 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,1, | ||
2001 | $a_6,$a_0); # mul_add_c2(a[6],b[0],c1,c2,c3); | ||
2002 | $code.=<<___; | ||
2003 | $ST $c_3,5*$BNSZ($a0) | ||
2004 | ___ | ||
2005 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,0, | ||
2006 | $a_5,$a_1); # mul_add_c2(a[5],b[1],c1,c2,c3); | ||
2007 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, | ||
2008 | $a_4,$a_2); # mul_add_c2(a[4],b[2],c1,c2,c3); | ||
2009 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, | ||
2010 | $a_3,$a_3); # mul_add_c(a[3],b[3],c1,c2,c3); | ||
2011 | $code.=<<___; | ||
2012 | mflo $t_1 | ||
2013 | mfhi $t_2 | ||
2014 | $ADDU $c_1,$t_1 | ||
2015 | sltu $at,$c_1,$t_1 | ||
2016 | $MULTU $a_0,$a_7 # mul_add_c2(a[0],b[7],c2,c3,c1); | ||
2017 | $ADDU $t_2,$at | ||
2018 | $ADDU $c_2,$t_2 | ||
2019 | sltu $at,$c_2,$t_2 | ||
2020 | $ADDU $c_3,$at | ||
2021 | $ST $c_1,6*$BNSZ($a0) | ||
2022 | ___ | ||
2023 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,0, | ||
2024 | $a_1,$a_6); # mul_add_c2(a[1],b[6],c2,c3,c1); | ||
2025 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,1, | ||
2026 | $a_2,$a_5); # mul_add_c2(a[2],b[5],c2,c3,c1); | ||
2027 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,1, | ||
2028 | $a_3,$a_4); # mul_add_c2(a[3],b[4],c2,c3,c1); | ||
2029 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,1, | ||
2030 | $a_7,$a_1); # mul_add_c2(a[7],b[1],c3,c1,c2); | ||
2031 | $code.=<<___; | ||
2032 | $ST $c_2,7*$BNSZ($a0) | ||
2033 | ___ | ||
2034 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, | ||
2035 | $a_6,$a_2); # mul_add_c2(a[6],b[2],c3,c1,c2); | ||
2036 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,1, | ||
2037 | $a_5,$a_3); # mul_add_c2(a[5],b[3],c3,c1,c2); | ||
2038 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,1, | ||
2039 | $a_4,$a_4); # mul_add_c(a[4],b[4],c3,c1,c2); | ||
2040 | $code.=<<___; | ||
2041 | mflo $t_1 | ||
2042 | mfhi $t_2 | ||
2043 | $ADDU $c_3,$t_1 | ||
2044 | sltu $at,$c_3,$t_1 | ||
2045 | $MULTU $a_2,$a_7 # mul_add_c2(a[2],b[7],c1,c2,c3); | ||
2046 | $ADDU $t_2,$at | ||
2047 | $ADDU $c_1,$t_2 | ||
2048 | sltu $at,$c_1,$t_2 | ||
2049 | $ADDU $c_2,$at | ||
2050 | $ST $c_3,8*$BNSZ($a0) | ||
2051 | ___ | ||
2052 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,0, | ||
2053 | $a_3,$a_6); # mul_add_c2(a[3],b[6],c1,c2,c3); | ||
2054 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, | ||
2055 | $a_4,$a_5); # mul_add_c2(a[4],b[5],c1,c2,c3); | ||
2056 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, | ||
2057 | $a_7,$a_3); # mul_add_c2(a[7],b[3],c2,c3,c1); | ||
2058 | $code.=<<___; | ||
2059 | $ST $c_1,9*$BNSZ($a0) | ||
2060 | ___ | ||
2061 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,0, | ||
2062 | $a_6,$a_4); # mul_add_c2(a[6],b[4],c2,c3,c1); | ||
2063 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,1, | ||
2064 | $a_5,$a_5); # mul_add_c(a[5],b[5],c2,c3,c1); | ||
2065 | $code.=<<___; | ||
2066 | mflo $t_1 | ||
2067 | mfhi $t_2 | ||
2068 | $ADDU $c_2,$t_1 | ||
2069 | sltu $at,$c_2,$t_1 | ||
2070 | $MULTU $a_4,$a_7 # mul_add_c2(a[4],b[7],c3,c1,c2); | ||
2071 | $ADDU $t_2,$at | ||
2072 | $ADDU $c_3,$t_2 | ||
2073 | sltu $at,$c_3,$t_2 | ||
2074 | $ADDU $c_1,$at | ||
2075 | $ST $c_2,10*$BNSZ($a0) | ||
2076 | ___ | ||
2077 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, | ||
2078 | $a_5,$a_6); # mul_add_c2(a[5],b[6],c3,c1,c2); | ||
2079 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,1, | ||
2080 | $a_7,$a_5); # mul_add_c2(a[7],b[5],c1,c2,c3); | ||
2081 | $code.=<<___; | ||
2082 | $ST $c_3,11*$BNSZ($a0) | ||
2083 | ___ | ||
2084 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,0, | ||
2085 | $a_6,$a_6); # mul_add_c(a[6],b[6],c1,c2,c3); | ||
2086 | $code.=<<___; | ||
2087 | mflo $t_1 | ||
2088 | mfhi $t_2 | ||
2089 | $ADDU $c_1,$t_1 | ||
2090 | sltu $at,$c_1,$t_1 | ||
2091 | $MULTU $a_6,$a_7 # mul_add_c2(a[6],b[7],c2,c3,c1); | ||
2092 | $ADDU $t_2,$at | ||
2093 | $ADDU $c_2,$t_2 | ||
2094 | sltu $at,$c_2,$t_2 | ||
2095 | $ADDU $c_3,$at | ||
2096 | $ST $c_1,12*$BNSZ($a0) | ||
2097 | ___ | ||
2098 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,0, | ||
2099 | $a_7,$a_7); # mul_add_c(a[7],b[7],c3,c1,c2); | ||
2100 | $code.=<<___; | ||
2101 | $ST $c_2,13*$BNSZ($a0) | ||
2102 | |||
2103 | mflo $t_1 | ||
2104 | mfhi $t_2 | ||
2105 | $ADDU $c_3,$t_1 | ||
2106 | sltu $at,$c_3,$t_1 | ||
2107 | $ADDU $t_2,$at | ||
2108 | $ADDU $c_1,$t_2 | ||
2109 | $ST $c_3,14*$BNSZ($a0) | ||
2110 | $ST $c_1,15*$BNSZ($a0) | ||
2111 | |||
2112 | .set noreorder | ||
2113 | ___ | ||
2114 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
2115 | $REG_L $t3,4*$SZREG($sp) | ||
2116 | $REG_L $t2,3*$SZREG($sp) | ||
2117 | $REG_L $t1,2*$SZREG($sp) | ||
2118 | $REG_L $t0,1*$SZREG($sp) | ||
2119 | $REG_L $gp,0*$SZREG($sp) | ||
2120 | $PTR_ADD $sp,6*$SZREG | ||
2121 | ___ | ||
2122 | $code.=<<___; | ||
2123 | jr $ra | ||
2124 | nop | ||
2125 | .end bn_sqr_comba8 | ||
2126 | |||
2127 | .align 5 | ||
2128 | .globl bn_sqr_comba4 | ||
2129 | .ent bn_sqr_comba4 | ||
2130 | bn_sqr_comba4: | ||
2131 | ___ | ||
2132 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
2133 | .frame $sp,6*$SZREG,$ra | ||
2134 | .mask 0x8000f008,-$SZREG | ||
2135 | .set noreorder | ||
2136 | $PTR_SUB $sp,6*$SZREG | ||
2137 | $REG_S $ra,5*$SZREG($sp) | ||
2138 | $REG_S $t3,4*$SZREG($sp) | ||
2139 | $REG_S $t2,3*$SZREG($sp) | ||
2140 | $REG_S $t1,2*$SZREG($sp) | ||
2141 | $REG_S $t0,1*$SZREG($sp) | ||
2142 | $REG_S $gp,0*$SZREG($sp) | ||
2143 | ___ | ||
2144 | $code.=<<___; | ||
2145 | .set reorder | ||
2146 | $LD $a_0,0($a1) | ||
2147 | $LD $a_1,$BNSZ($a1) | ||
2148 | $MULTU $a_0,$a_0 # mul_add_c(a[0],b[0],c1,c2,c3); | ||
2149 | $LD $a_2,2*$BNSZ($a1) | ||
2150 | $LD $a_3,3*$BNSZ($a1) | ||
2151 | mflo $c_1 | ||
2152 | mfhi $c_2 | ||
2153 | $ST $c_1,0($a0) | ||
2154 | |||
2155 | $MULTU $a_0,$a_1 # mul_add_c2(a[0],b[1],c2,c3,c1); | ||
2156 | mflo $t_1 | ||
2157 | mfhi $t_2 | ||
2158 | slt $c_1,$t_2,$zero | ||
2159 | $SLL $t_2,1 | ||
2160 | $MULTU $a_2,$a_0 # mul_add_c2(a[2],b[0],c3,c1,c2); | ||
2161 | slt $a2,$t_1,$zero | ||
2162 | $ADDU $t_2,$a2 | ||
2163 | $SLL $t_1,1 | ||
2164 | $ADDU $c_2,$t_1 | ||
2165 | sltu $at,$c_2,$t_1 | ||
2166 | $ADDU $c_3,$t_2,$at | ||
2167 | $ST $c_2,$BNSZ($a0) | ||
2168 | ___ | ||
2169 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, | ||
2170 | $a_1,$a_1); # mul_add_c(a[1],b[1],c3,c1,c2); | ||
2171 | $code.=<<___; | ||
2172 | mflo $t_1 | ||
2173 | mfhi $t_2 | ||
2174 | $ADDU $c_3,$t_1 | ||
2175 | sltu $at,$c_3,$t_1 | ||
2176 | $MULTU $a_0,$a_3 # mul_add_c2(a[0],b[3],c1,c2,c3); | ||
2177 | $ADDU $t_2,$at | ||
2178 | $ADDU $c_1,$t_2 | ||
2179 | sltu $at,$c_1,$t_2 | ||
2180 | $ADDU $c_2,$at | ||
2181 | $ST $c_3,2*$BNSZ($a0) | ||
2182 | ___ | ||
2183 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,0, | ||
2184 | $a_1,$a_2); # mul_add_c2(a2[1],b[2],c1,c2,c3); | ||
2185 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, | ||
2186 | $a_3,$a_1); # mul_add_c2(a[3],b[1],c2,c3,c1); | ||
2187 | $code.=<<___; | ||
2188 | $ST $c_1,3*$BNSZ($a0) | ||
2189 | ___ | ||
2190 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,0, | ||
2191 | $a_2,$a_2); # mul_add_c(a[2],b[2],c2,c3,c1); | ||
2192 | $code.=<<___; | ||
2193 | mflo $t_1 | ||
2194 | mfhi $t_2 | ||
2195 | $ADDU $c_2,$t_1 | ||
2196 | sltu $at,$c_2,$t_1 | ||
2197 | $MULTU $a_2,$a_3 # mul_add_c2(a[2],b[3],c3,c1,c2); | ||
2198 | $ADDU $t_2,$at | ||
2199 | $ADDU $c_3,$t_2 | ||
2200 | sltu $at,$c_3,$t_2 | ||
2201 | $ADDU $c_1,$at | ||
2202 | $ST $c_2,4*$BNSZ($a0) | ||
2203 | ___ | ||
2204 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, | ||
2205 | $a_3,$a_3); # mul_add_c(a[3],b[3],c1,c2,c3); | ||
2206 | $code.=<<___; | ||
2207 | $ST $c_3,5*$BNSZ($a0) | ||
2208 | |||
2209 | mflo $t_1 | ||
2210 | mfhi $t_2 | ||
2211 | $ADDU $c_1,$t_1 | ||
2212 | sltu $at,$c_1,$t_1 | ||
2213 | $ADDU $t_2,$at | ||
2214 | $ADDU $c_2,$t_2 | ||
2215 | $ST $c_1,6*$BNSZ($a0) | ||
2216 | $ST $c_2,7*$BNSZ($a0) | ||
2217 | |||
2218 | .set noreorder | ||
2219 | ___ | ||
2220 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
2221 | $REG_L $t3,4*$SZREG($sp) | ||
2222 | $REG_L $t2,3*$SZREG($sp) | ||
2223 | $REG_L $t1,2*$SZREG($sp) | ||
2224 | $REG_L $t0,1*$SZREG($sp) | ||
2225 | $REG_L $gp,0*$SZREG($sp) | ||
2226 | $PTR_ADD $sp,6*$SZREG | ||
2227 | ___ | ||
2228 | $code.=<<___; | ||
2229 | jr $ra | ||
2230 | nop | ||
2231 | .end bn_sqr_comba4 | ||
2232 | ___ | ||
2233 | print $code; | ||
2234 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/modexp512-x86_64.pl b/src/lib/libcrypto/bn/asm/modexp512-x86_64.pl deleted file mode 100644 index 8645d5adcc..0000000000 --- a/src/lib/libcrypto/bn/asm/modexp512-x86_64.pl +++ /dev/null | |||
@@ -1,1393 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # Copyright (c) 2010-2011 Intel Corp. | ||
4 | # Author: Vinodh.Gopal@intel.com | ||
5 | # Jim Guilford | ||
6 | # Erdinc.Ozturk@intel.com | ||
7 | # Maxim.Perminov@intel.com | ||
8 | # | ||
9 | # More information about algorithm used can be found at: | ||
10 | # http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf | ||
11 | # | ||
12 | # ==================================================================== | ||
13 | # Copyright (c) 2011 The OpenSSL Project. All rights reserved. | ||
14 | # | ||
15 | # Redistribution and use in source and binary forms, with or without | ||
16 | # modification, are permitted provided that the following conditions | ||
17 | # are met: | ||
18 | # | ||
19 | # 1. Redistributions of source code must retain the above copyright | ||
20 | # notice, this list of conditions and the following disclaimer. | ||
21 | # | ||
22 | # 2. Redistributions in binary form must reproduce the above copyright | ||
23 | # notice, this list of conditions and the following disclaimer in | ||
24 | # the documentation and/or other materials provided with the | ||
25 | # distribution. | ||
26 | # | ||
27 | # 3. All advertising materials mentioning features or use of this | ||
28 | # software must display the following acknowledgment: | ||
29 | # "This product includes software developed by the OpenSSL Project | ||
30 | # for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
31 | # | ||
32 | # 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
33 | # endorse or promote products derived from this software without | ||
34 | # prior written permission. For written permission, please contact | ||
35 | # licensing@OpenSSL.org. | ||
36 | # | ||
37 | # 5. Products derived from this software may not be called "OpenSSL" | ||
38 | # nor may "OpenSSL" appear in their names without prior written | ||
39 | # permission of the OpenSSL Project. | ||
40 | # | ||
41 | # 6. Redistributions of any form whatsoever must retain the following | ||
42 | # acknowledgment: | ||
43 | # "This product includes software developed by the OpenSSL Project | ||
44 | # for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
45 | # | ||
46 | # THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
47 | # EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
48 | # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
49 | # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
50 | # ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
51 | # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
52 | # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
53 | # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
54 | # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
55 | # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
56 | # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
57 | # OF THE POSSIBILITY OF SUCH DAMAGE. | ||
58 | # ==================================================================== | ||
59 | |||
60 | $flavour = shift; | ||
61 | $output = shift; | ||
62 | if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } | ||
63 | |||
64 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
65 | ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or | ||
66 | ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or | ||
67 | die "can't locate x86_64-xlate.pl"; | ||
68 | |||
69 | open OUT,"| \"$^X\" $xlate $flavour $output"; | ||
70 | *STDOUT=*OUT; | ||
71 | |||
72 | use strict; | ||
73 | my $code=".text\n\n"; | ||
74 | my $m=0; | ||
75 | |||
76 | # | ||
77 | # Define x512 macros | ||
78 | # | ||
79 | |||
80 | #MULSTEP_512_ADD MACRO x7, x6, x5, x4, x3, x2, x1, x0, dst, src1, src2, add_src, tmp1, tmp2 | ||
81 | # | ||
82 | # uses rax, rdx, and args | ||
83 | sub MULSTEP_512_ADD | ||
84 | { | ||
85 | my ($x, $DST, $SRC2, $ASRC, $OP, $TMP)=@_; | ||
86 | my @X=@$x; # make a copy | ||
87 | $code.=<<___; | ||
88 | mov (+8*0)($SRC2), %rax | ||
89 | mul $OP # rdx:rax = %OP * [0] | ||
90 | mov ($ASRC), $X[0] | ||
91 | add %rax, $X[0] | ||
92 | adc \$0, %rdx | ||
93 | mov $X[0], $DST | ||
94 | ___ | ||
95 | for(my $i=1;$i<8;$i++) { | ||
96 | $code.=<<___; | ||
97 | mov %rdx, $TMP | ||
98 | |||
99 | mov (+8*$i)($SRC2), %rax | ||
100 | mul $OP # rdx:rax = %OP * [$i] | ||
101 | mov (+8*$i)($ASRC), $X[$i] | ||
102 | add %rax, $X[$i] | ||
103 | adc \$0, %rdx | ||
104 | add $TMP, $X[$i] | ||
105 | adc \$0, %rdx | ||
106 | ___ | ||
107 | } | ||
108 | $code.=<<___; | ||
109 | mov %rdx, $X[0] | ||
110 | ___ | ||
111 | } | ||
112 | |||
113 | #MULSTEP_512 MACRO x7, x6, x5, x4, x3, x2, x1, x0, dst, src2, src1_val, tmp | ||
114 | # | ||
115 | # uses rax, rdx, and args | ||
116 | sub MULSTEP_512 | ||
117 | { | ||
118 | my ($x, $DST, $SRC2, $OP, $TMP)=@_; | ||
119 | my @X=@$x; # make a copy | ||
120 | $code.=<<___; | ||
121 | mov (+8*0)($SRC2), %rax | ||
122 | mul $OP # rdx:rax = %OP * [0] | ||
123 | add %rax, $X[0] | ||
124 | adc \$0, %rdx | ||
125 | mov $X[0], $DST | ||
126 | ___ | ||
127 | for(my $i=1;$i<8;$i++) { | ||
128 | $code.=<<___; | ||
129 | mov %rdx, $TMP | ||
130 | |||
131 | mov (+8*$i)($SRC2), %rax | ||
132 | mul $OP # rdx:rax = %OP * [$i] | ||
133 | add %rax, $X[$i] | ||
134 | adc \$0, %rdx | ||
135 | add $TMP, $X[$i] | ||
136 | adc \$0, %rdx | ||
137 | ___ | ||
138 | } | ||
139 | $code.=<<___; | ||
140 | mov %rdx, $X[0] | ||
141 | ___ | ||
142 | } | ||
143 | |||
144 | # | ||
145 | # Swizzle Macros | ||
146 | # | ||
147 | |||
148 | # macro to copy data from flat space to swizzled table | ||
149 | #MACRO swizzle pDst, pSrc, tmp1, tmp2 | ||
150 | # pDst and pSrc are modified | ||
151 | sub swizzle | ||
152 | { | ||
153 | my ($pDst, $pSrc, $cnt, $d0)=@_; | ||
154 | $code.=<<___; | ||
155 | mov \$8, $cnt | ||
156 | loop_$m: | ||
157 | mov ($pSrc), $d0 | ||
158 | mov $d0#w, ($pDst) | ||
159 | shr \$16, $d0 | ||
160 | mov $d0#w, (+64*1)($pDst) | ||
161 | shr \$16, $d0 | ||
162 | mov $d0#w, (+64*2)($pDst) | ||
163 | shr \$16, $d0 | ||
164 | mov $d0#w, (+64*3)($pDst) | ||
165 | lea 8($pSrc), $pSrc | ||
166 | lea 64*4($pDst), $pDst | ||
167 | dec $cnt | ||
168 | jnz loop_$m | ||
169 | ___ | ||
170 | |||
171 | $m++; | ||
172 | } | ||
173 | |||
174 | # macro to copy data from swizzled table to flat space | ||
175 | #MACRO unswizzle pDst, pSrc, tmp*3 | ||
176 | sub unswizzle | ||
177 | { | ||
178 | my ($pDst, $pSrc, $cnt, $d0, $d1)=@_; | ||
179 | $code.=<<___; | ||
180 | mov \$4, $cnt | ||
181 | loop_$m: | ||
182 | movzxw (+64*3+256*0)($pSrc), $d0 | ||
183 | movzxw (+64*3+256*1)($pSrc), $d1 | ||
184 | shl \$16, $d0 | ||
185 | shl \$16, $d1 | ||
186 | mov (+64*2+256*0)($pSrc), $d0#w | ||
187 | mov (+64*2+256*1)($pSrc), $d1#w | ||
188 | shl \$16, $d0 | ||
189 | shl \$16, $d1 | ||
190 | mov (+64*1+256*0)($pSrc), $d0#w | ||
191 | mov (+64*1+256*1)($pSrc), $d1#w | ||
192 | shl \$16, $d0 | ||
193 | shl \$16, $d1 | ||
194 | mov (+64*0+256*0)($pSrc), $d0#w | ||
195 | mov (+64*0+256*1)($pSrc), $d1#w | ||
196 | mov $d0, (+8*0)($pDst) | ||
197 | mov $d1, (+8*1)($pDst) | ||
198 | lea 256*2($pSrc), $pSrc | ||
199 | lea 8*2($pDst), $pDst | ||
200 | sub \$1, $cnt | ||
201 | jnz loop_$m | ||
202 | ___ | ||
203 | |||
204 | $m++; | ||
205 | } | ||
206 | |||
207 | # | ||
208 | # Data Structures | ||
209 | # | ||
210 | |||
211 | # Reduce Data | ||
212 | # | ||
213 | # | ||
214 | # Offset Value | ||
215 | # 0C0 Carries | ||
216 | # 0B8 X2[10] | ||
217 | # 0B0 X2[9] | ||
218 | # 0A8 X2[8] | ||
219 | # 0A0 X2[7] | ||
220 | # 098 X2[6] | ||
221 | # 090 X2[5] | ||
222 | # 088 X2[4] | ||
223 | # 080 X2[3] | ||
224 | # 078 X2[2] | ||
225 | # 070 X2[1] | ||
226 | # 068 X2[0] | ||
227 | # 060 X1[12] P[10] | ||
228 | # 058 X1[11] P[9] Z[8] | ||
229 | # 050 X1[10] P[8] Z[7] | ||
230 | # 048 X1[9] P[7] Z[6] | ||
231 | # 040 X1[8] P[6] Z[5] | ||
232 | # 038 X1[7] P[5] Z[4] | ||
233 | # 030 X1[6] P[4] Z[3] | ||
234 | # 028 X1[5] P[3] Z[2] | ||
235 | # 020 X1[4] P[2] Z[1] | ||
236 | # 018 X1[3] P[1] Z[0] | ||
237 | # 010 X1[2] P[0] Y[2] | ||
238 | # 008 X1[1] Q[1] Y[1] | ||
239 | # 000 X1[0] Q[0] Y[0] | ||
240 | |||
241 | my $X1_offset = 0; # 13 qwords | ||
242 | my $X2_offset = $X1_offset + 13*8; # 11 qwords | ||
243 | my $Carries_offset = $X2_offset + 11*8; # 1 qword | ||
244 | my $Q_offset = 0; # 2 qwords | ||
245 | my $P_offset = $Q_offset + 2*8; # 11 qwords | ||
246 | my $Y_offset = 0; # 3 qwords | ||
247 | my $Z_offset = $Y_offset + 3*8; # 9 qwords | ||
248 | |||
249 | my $Red_Data_Size = $Carries_offset + 1*8; # (25 qwords) | ||
250 | |||
251 | # | ||
252 | # Stack Frame | ||
253 | # | ||
254 | # | ||
255 | # offset value | ||
256 | # ... <old stack contents> | ||
257 | # ... | ||
258 | # 280 Garray | ||
259 | |||
260 | # 278 tmp16[15] | ||
261 | # ... ... | ||
262 | # 200 tmp16[0] | ||
263 | |||
264 | # 1F8 tmp[7] | ||
265 | # ... ... | ||
266 | # 1C0 tmp[0] | ||
267 | |||
268 | # 1B8 GT[7] | ||
269 | # ... ... | ||
270 | # 180 GT[0] | ||
271 | |||
272 | # 178 Reduce Data | ||
273 | # ... ... | ||
274 | # 0B8 Reduce Data | ||
275 | # 0B0 reserved | ||
276 | # 0A8 reserved | ||
277 | # 0A0 reserved | ||
278 | # 098 reserved | ||
279 | # 090 reserved | ||
280 | # 088 reduce result addr | ||
281 | # 080 exp[8] | ||
282 | |||
283 | # ... | ||
284 | # 048 exp[1] | ||
285 | # 040 exp[0] | ||
286 | |||
287 | # 038 reserved | ||
288 | # 030 loop_idx | ||
289 | # 028 pg | ||
290 | # 020 i | ||
291 | # 018 pData ; arg 4 | ||
292 | # 010 pG ; arg 2 | ||
293 | # 008 pResult ; arg 1 | ||
294 | # 000 rsp ; stack pointer before subtract | ||
295 | |||
296 | my $rsp_offset = 0; | ||
297 | my $pResult_offset = 8*1 + $rsp_offset; | ||
298 | my $pG_offset = 8*1 + $pResult_offset; | ||
299 | my $pData_offset = 8*1 + $pG_offset; | ||
300 | my $i_offset = 8*1 + $pData_offset; | ||
301 | my $pg_offset = 8*1 + $i_offset; | ||
302 | my $loop_idx_offset = 8*1 + $pg_offset; | ||
303 | my $reserved1_offset = 8*1 + $loop_idx_offset; | ||
304 | my $exp_offset = 8*1 + $reserved1_offset; | ||
305 | my $red_result_addr_offset= 8*9 + $exp_offset; | ||
306 | my $reserved2_offset = 8*1 + $red_result_addr_offset; | ||
307 | my $Reduce_Data_offset = 8*5 + $reserved2_offset; | ||
308 | my $GT_offset = $Red_Data_Size + $Reduce_Data_offset; | ||
309 | my $tmp_offset = 8*8 + $GT_offset; | ||
310 | my $tmp16_offset = 8*8 + $tmp_offset; | ||
311 | my $garray_offset = 8*16 + $tmp16_offset; | ||
312 | my $mem_size = 8*8*32 + $garray_offset; | ||
313 | |||
314 | # | ||
315 | # Offsets within Reduce Data | ||
316 | # | ||
317 | # | ||
318 | # struct MODF_2FOLD_MONT_512_C1_DATA { | ||
319 | # UINT64 t[8][8]; | ||
320 | # UINT64 m[8]; | ||
321 | # UINT64 m1[8]; /* 2^768 % m */ | ||
322 | # UINT64 m2[8]; /* 2^640 % m */ | ||
323 | # UINT64 k1[2]; /* (- 1/m) % 2^128 */ | ||
324 | # }; | ||
325 | |||
326 | my $T = 0; | ||
327 | my $M = 512; # = 8 * 8 * 8 | ||
328 | my $M1 = 576; # = 8 * 8 * 9 /* += 8 * 8 */ | ||
329 | my $M2 = 640; # = 8 * 8 * 10 /* += 8 * 8 */ | ||
330 | my $K1 = 704; # = 8 * 8 * 11 /* += 8 * 8 */ | ||
331 | |||
332 | # | ||
333 | # FUNCTIONS | ||
334 | # | ||
335 | |||
336 | {{{ | ||
337 | # | ||
338 | # MULADD_128x512 : Function to multiply 128-bits (2 qwords) by 512-bits (8 qwords) | ||
339 | # and add 512-bits (8 qwords) | ||
340 | # to get 640 bits (10 qwords) | ||
341 | # Input: 128-bit mul source: [rdi+8*1], rbp | ||
342 | # 512-bit mul source: [rsi+8*n] | ||
343 | # 512-bit add source: r15, r14, ..., r9, r8 | ||
344 | # Output: r9, r8, r15, r14, r13, r12, r11, r10, [rcx+8*1], [rcx+8*0] | ||
345 | # Clobbers all regs except: rcx, rsi, rdi | ||
346 | $code.=<<___; | ||
347 | .type MULADD_128x512,\@abi-omnipotent | ||
348 | .align 16 | ||
349 | MULADD_128x512: | ||
350 | _CET_ENDBR | ||
351 | ___ | ||
352 | &MULSTEP_512([map("%r$_",(8..15))], "(+8*0)(%rcx)", "%rsi", "%rbp", "%rbx"); | ||
353 | $code.=<<___; | ||
354 | mov (+8*1)(%rdi), %rbp | ||
355 | ___ | ||
356 | &MULSTEP_512([map("%r$_",(9..15,8))], "(+8*1)(%rcx)", "%rsi", "%rbp", "%rbx"); | ||
357 | $code.=<<___; | ||
358 | ret | ||
359 | .size MULADD_128x512,.-MULADD_128x512 | ||
360 | ___ | ||
361 | }}} | ||
362 | |||
363 | {{{ | ||
364 | #MULADD_256x512 MACRO pDst, pA, pB, OP, TMP, X7, X6, X5, X4, X3, X2, X1, X0 | ||
365 | # | ||
366 | # Inputs: pDst: Destination (768 bits, 12 qwords) | ||
367 | # pA: Multiplicand (1024 bits, 16 qwords) | ||
368 | # pB: Multiplicand (512 bits, 8 qwords) | ||
369 | # Dst = Ah * B + Al | ||
370 | # where Ah is (in qwords) A[15:12] (256 bits) and Al is A[7:0] (512 bits) | ||
371 | # Results in X3 X2 X1 X0 X7 X6 X5 X4 Dst[3:0] | ||
372 | # Uses registers: arguments, RAX, RDX | ||
373 | sub MULADD_256x512 | ||
374 | { | ||
375 | my ($pDst, $pA, $pB, $OP, $TMP, $X)=@_; | ||
376 | $code.=<<___; | ||
377 | mov (+8*12)($pA), $OP | ||
378 | ___ | ||
379 | &MULSTEP_512_ADD($X, "(+8*0)($pDst)", $pB, $pA, $OP, $TMP); | ||
380 | push(@$X,shift(@$X)); | ||
381 | |||
382 | $code.=<<___; | ||
383 | mov (+8*13)($pA), $OP | ||
384 | ___ | ||
385 | &MULSTEP_512($X, "(+8*1)($pDst)", $pB, $OP, $TMP); | ||
386 | push(@$X,shift(@$X)); | ||
387 | |||
388 | $code.=<<___; | ||
389 | mov (+8*14)($pA), $OP | ||
390 | ___ | ||
391 | &MULSTEP_512($X, "(+8*2)($pDst)", $pB, $OP, $TMP); | ||
392 | push(@$X,shift(@$X)); | ||
393 | |||
394 | $code.=<<___; | ||
395 | mov (+8*15)($pA), $OP | ||
396 | ___ | ||
397 | &MULSTEP_512($X, "(+8*3)($pDst)", $pB, $OP, $TMP); | ||
398 | push(@$X,shift(@$X)); | ||
399 | } | ||
400 | |||
401 | # | ||
402 | # mont_reduce(UINT64 *x, /* 1024 bits, 16 qwords */ | ||
403 | # UINT64 *m, /* 512 bits, 8 qwords */ | ||
404 | # MODF_2FOLD_MONT_512_C1_DATA *data, | ||
405 | # UINT64 *r) /* 512 bits, 8 qwords */ | ||
406 | # Input: x (number to be reduced): tmp16 (Implicit) | ||
407 | # m (modulus): [pM] (Implicit) | ||
408 | # data (reduce data): [pData] (Implicit) | ||
409 | # Output: r (result): Address in [red_res_addr] | ||
410 | # result also in: r9, r8, r15, r14, r13, r12, r11, r10 | ||
411 | |||
412 | my @X=map("%r$_",(8..15)); | ||
413 | |||
414 | $code.=<<___; | ||
415 | .type mont_reduce,\@abi-omnipotent | ||
416 | .align 16 | ||
417 | mont_reduce: | ||
418 | _CET_ENDBR | ||
419 | ___ | ||
420 | |||
421 | my $STACK_DEPTH = 8; | ||
422 | # | ||
423 | # X1 = Xh * M1 + Xl | ||
424 | $code.=<<___; | ||
425 | lea (+$Reduce_Data_offset+$X1_offset+$STACK_DEPTH)(%rsp), %rdi # pX1 (Dst) 769 bits, 13 qwords | ||
426 | mov (+$pData_offset+$STACK_DEPTH)(%rsp), %rsi # pM1 (Bsrc) 512 bits, 8 qwords | ||
427 | add \$$M1, %rsi | ||
428 | lea (+$tmp16_offset+$STACK_DEPTH)(%rsp), %rcx # X (Asrc) 1024 bits, 16 qwords | ||
429 | |||
430 | ___ | ||
431 | |||
432 | &MULADD_256x512("%rdi", "%rcx", "%rsi", "%rbp", "%rbx", \@X); # rotates @X 4 times | ||
433 | # results in r11, r10, r9, r8, r15, r14, r13, r12, X1[3:0] | ||
434 | |||
435 | $code.=<<___; | ||
436 | xor %rax, %rax | ||
437 | # X1 += xl | ||
438 | add (+8*8)(%rcx), $X[4] | ||
439 | adc (+8*9)(%rcx), $X[5] | ||
440 | adc (+8*10)(%rcx), $X[6] | ||
441 | adc (+8*11)(%rcx), $X[7] | ||
442 | adc \$0, %rax | ||
443 | # X1 is now rax, r11-r8, r15-r12, tmp16[3:0] | ||
444 | |||
445 | # | ||
446 | # check for carry ;; carry stored in rax | ||
447 | mov $X[4], (+8*8)(%rdi) # rdi points to X1 | ||
448 | mov $X[5], (+8*9)(%rdi) | ||
449 | mov $X[6], %rbp | ||
450 | mov $X[7], (+8*11)(%rdi) | ||
451 | |||
452 | mov %rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp) | ||
453 | |||
454 | mov (+8*0)(%rdi), $X[4] | ||
455 | mov (+8*1)(%rdi), $X[5] | ||
456 | mov (+8*2)(%rdi), $X[6] | ||
457 | mov (+8*3)(%rdi), $X[7] | ||
458 | |||
459 | # X1 is now stored in: X1[11], rbp, X1[9:8], r15-r8 | ||
460 | # rdi -> X1 | ||
461 | # rsi -> M1 | ||
462 | |||
463 | # | ||
464 | # X2 = Xh * M2 + Xl | ||
465 | # do first part (X2 = Xh * M2) | ||
466 | add \$8*10, %rdi # rdi -> pXh ; 128 bits, 2 qwords | ||
467 | # Xh is actually { [rdi+8*1], rbp } | ||
468 | add \$`$M2-$M1`, %rsi # rsi -> M2 | ||
469 | lea (+$Reduce_Data_offset+$X2_offset+$STACK_DEPTH)(%rsp), %rcx # rcx -> pX2 ; 641 bits, 11 qwords | ||
470 | ___ | ||
471 | unshift(@X,pop(@X)); unshift(@X,pop(@X)); | ||
472 | $code.=<<___; | ||
473 | |||
474 | call MULADD_128x512 # args in rcx, rdi / rbp, rsi, r15-r8 | ||
475 | # result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0] | ||
476 | mov (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rax | ||
477 | |||
478 | # X2 += Xl | ||
479 | add (+8*8-8*10)(%rdi), $X[6] # (-8*10) is to adjust rdi -> Xh to Xl | ||
480 | adc (+8*9-8*10)(%rdi), $X[7] | ||
481 | mov $X[6], (+8*8)(%rcx) | ||
482 | mov $X[7], (+8*9)(%rcx) | ||
483 | |||
484 | adc %rax, %rax | ||
485 | mov %rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp) | ||
486 | |||
487 | lea (+$Reduce_Data_offset+$Q_offset+$STACK_DEPTH)(%rsp), %rdi # rdi -> pQ ; 128 bits, 2 qwords | ||
488 | add \$`$K1-$M2`, %rsi # rsi -> pK1 ; 128 bits, 2 qwords | ||
489 | |||
490 | # MUL_128x128t128 rdi, rcx, rsi ; Q = X2 * K1 (bottom half) | ||
491 | # B1:B0 = rsi[1:0] = K1[1:0] | ||
492 | # A1:A0 = rcx[1:0] = X2[1:0] | ||
493 | # Result = rdi[1],rbp = Q[1],rbp | ||
494 | mov (%rsi), %r8 # B0 | ||
495 | mov (+8*1)(%rsi), %rbx # B1 | ||
496 | |||
497 | mov (%rcx), %rax # A0 | ||
498 | mul %r8 # B0 | ||
499 | mov %rax, %rbp | ||
500 | mov %rdx, %r9 | ||
501 | |||
502 | mov (+8*1)(%rcx), %rax # A1 | ||
503 | mul %r8 # B0 | ||
504 | add %rax, %r9 | ||
505 | |||
506 | mov (%rcx), %rax # A0 | ||
507 | mul %rbx # B1 | ||
508 | add %rax, %r9 | ||
509 | |||
510 | mov %r9, (+8*1)(%rdi) | ||
511 | # end MUL_128x128t128 | ||
512 | |||
513 | sub \$`$K1-$M`, %rsi | ||
514 | |||
515 | mov (%rcx), $X[6] | ||
516 | mov (+8*1)(%rcx), $X[7] # r9:r8 = X2[1:0] | ||
517 | |||
518 | call MULADD_128x512 # args in rcx, rdi / rbp, rsi, r15-r8 | ||
519 | # result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0] | ||
520 | |||
521 | # load first half of m to rdx, rdi, rbx, rax | ||
522 | # moved this here for efficiency | ||
523 | mov (+8*0)(%rsi), %rax | ||
524 | mov (+8*1)(%rsi), %rbx | ||
525 | mov (+8*2)(%rsi), %rdi | ||
526 | mov (+8*3)(%rsi), %rdx | ||
527 | |||
528 | # continue with reduction | ||
529 | mov (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rbp | ||
530 | |||
531 | add (+8*8)(%rcx), $X[6] | ||
532 | adc (+8*9)(%rcx), $X[7] | ||
533 | |||
534 | #accumulate the final carry to rbp | ||
535 | adc %rbp, %rbp | ||
536 | |||
537 | # Add in overflow corrections: R = (X2>>128) += T[overflow] | ||
538 | # R = {r9, r8, r15, r14, ..., r10} | ||
539 | shl \$3, %rbp | ||
540 | mov (+$pData_offset+$STACK_DEPTH)(%rsp), %rcx # rsi -> Data (and points to T) | ||
541 | add %rcx, %rbp # pT ; 512 bits, 8 qwords, spread out | ||
542 | |||
543 | # rsi will be used to generate a mask after the addition | ||
544 | xor %rsi, %rsi | ||
545 | |||
546 | add (+8*8*0)(%rbp), $X[0] | ||
547 | adc (+8*8*1)(%rbp), $X[1] | ||
548 | adc (+8*8*2)(%rbp), $X[2] | ||
549 | adc (+8*8*3)(%rbp), $X[3] | ||
550 | adc (+8*8*4)(%rbp), $X[4] | ||
551 | adc (+8*8*5)(%rbp), $X[5] | ||
552 | adc (+8*8*6)(%rbp), $X[6] | ||
553 | adc (+8*8*7)(%rbp), $X[7] | ||
554 | |||
555 | # if there is a carry: rsi = 0xFFFFFFFFFFFFFFFF | ||
556 | # if carry is clear: rsi = 0x0000000000000000 | ||
557 | sbb \$0, %rsi | ||
558 | |||
559 | # if carry is clear, subtract 0. Otherwise, subtract 256 bits of m | ||
560 | and %rsi, %rax | ||
561 | and %rsi, %rbx | ||
562 | and %rsi, %rdi | ||
563 | and %rsi, %rdx | ||
564 | |||
565 | mov \$1, %rbp | ||
566 | sub %rax, $X[0] | ||
567 | sbb %rbx, $X[1] | ||
568 | sbb %rdi, $X[2] | ||
569 | sbb %rdx, $X[3] | ||
570 | |||
571 | # if there is a borrow: rbp = 0 | ||
572 | # if there is no borrow: rbp = 1 | ||
573 | # this is used to save the borrows in between the first half and the 2nd half of the subtraction of m | ||
574 | sbb \$0, %rbp | ||
575 | |||
576 | #load second half of m to rdx, rdi, rbx, rax | ||
577 | |||
578 | add \$$M, %rcx | ||
579 | mov (+8*4)(%rcx), %rax | ||
580 | mov (+8*5)(%rcx), %rbx | ||
581 | mov (+8*6)(%rcx), %rdi | ||
582 | mov (+8*7)(%rcx), %rdx | ||
583 | |||
584 | # use the rsi mask as before | ||
585 | # if carry is clear, subtract 0. Otherwise, subtract 256 bits of m | ||
586 | and %rsi, %rax | ||
587 | and %rsi, %rbx | ||
588 | and %rsi, %rdi | ||
589 | and %rsi, %rdx | ||
590 | |||
591 | # if rbp = 0, there was a borrow before, it is moved to the carry flag | ||
592 | # if rbp = 1, there was not a borrow before, carry flag is cleared | ||
593 | sub \$1, %rbp | ||
594 | |||
595 | sbb %rax, $X[4] | ||
596 | sbb %rbx, $X[5] | ||
597 | sbb %rdi, $X[6] | ||
598 | sbb %rdx, $X[7] | ||
599 | |||
600 | # write R back to memory | ||
601 | |||
602 | mov (+$red_result_addr_offset+$STACK_DEPTH)(%rsp), %rsi | ||
603 | mov $X[0], (+8*0)(%rsi) | ||
604 | mov $X[1], (+8*1)(%rsi) | ||
605 | mov $X[2], (+8*2)(%rsi) | ||
606 | mov $X[3], (+8*3)(%rsi) | ||
607 | mov $X[4], (+8*4)(%rsi) | ||
608 | mov $X[5], (+8*5)(%rsi) | ||
609 | mov $X[6], (+8*6)(%rsi) | ||
610 | mov $X[7], (+8*7)(%rsi) | ||
611 | |||
612 | ret | ||
613 | .size mont_reduce,.-mont_reduce | ||
614 | ___ | ||
615 | }}} | ||
616 | |||
617 | {{{ | ||
618 | #MUL_512x512 MACRO pDst, pA, pB, x7, x6, x5, x4, x3, x2, x1, x0, tmp*2 | ||
619 | # | ||
620 | # Inputs: pDst: Destination (1024 bits, 16 qwords) | ||
621 | # pA: Multiplicand (512 bits, 8 qwords) | ||
622 | # pB: Multiplicand (512 bits, 8 qwords) | ||
623 | # Uses registers rax, rdx, args | ||
624 | # B operand in [pB] and also in x7...x0 | ||
625 | sub MUL_512x512 | ||
626 | { | ||
627 | my ($pDst, $pA, $pB, $x, $OP, $TMP, $pDst_o)=@_; | ||
628 | my ($pDst, $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/); | ||
629 | my @X=@$x; # make a copy | ||
630 | |||
631 | $code.=<<___; | ||
632 | mov (+8*0)($pA), $OP | ||
633 | |||
634 | mov $X[0], %rax | ||
635 | mul $OP # rdx:rax = %OP * [0] | ||
636 | mov %rax, (+$pDst_o+8*0)($pDst) | ||
637 | mov %rdx, $X[0] | ||
638 | ___ | ||
639 | for(my $i=1;$i<8;$i++) { | ||
640 | $code.=<<___; | ||
641 | mov $X[$i], %rax | ||
642 | mul $OP # rdx:rax = %OP * [$i] | ||
643 | add %rax, $X[$i-1] | ||
644 | adc \$0, %rdx | ||
645 | mov %rdx, $X[$i] | ||
646 | ___ | ||
647 | } | ||
648 | |||
649 | for(my $i=1;$i<8;$i++) { | ||
650 | $code.=<<___; | ||
651 | mov (+8*$i)($pA), $OP | ||
652 | ___ | ||
653 | |||
654 | &MULSTEP_512(\@X, "(+$pDst_o+8*$i)($pDst)", $pB, $OP, $TMP); | ||
655 | push(@X,shift(@X)); | ||
656 | } | ||
657 | |||
658 | $code.=<<___; | ||
659 | mov $X[0], (+$pDst_o+8*8)($pDst) | ||
660 | mov $X[1], (+$pDst_o+8*9)($pDst) | ||
661 | mov $X[2], (+$pDst_o+8*10)($pDst) | ||
662 | mov $X[3], (+$pDst_o+8*11)($pDst) | ||
663 | mov $X[4], (+$pDst_o+8*12)($pDst) | ||
664 | mov $X[5], (+$pDst_o+8*13)($pDst) | ||
665 | mov $X[6], (+$pDst_o+8*14)($pDst) | ||
666 | mov $X[7], (+$pDst_o+8*15)($pDst) | ||
667 | ___ | ||
668 | } | ||
669 | |||
670 | # | ||
671 | # mont_mul_a3b : subroutine to compute (Src1 * Src2) % M (all 512-bits) | ||
672 | # Input: src1: Address of source 1: rdi | ||
673 | # src2: Address of source 2: rsi | ||
674 | # Output: dst: Address of destination: [red_res_addr] | ||
675 | # src2 and result also in: r9, r8, r15, r14, r13, r12, r11, r10 | ||
676 | # Temp: Clobbers [tmp16], all registers | ||
677 | $code.=<<___; | ||
678 | .type mont_mul_a3b,\@abi-omnipotent | ||
679 | .align 16 | ||
680 | mont_mul_a3b: | ||
681 | _CET_ENDBR | ||
682 | # | ||
683 | # multiply tmp = src1 * src2 | ||
684 | # For multiply: dst = rcx, src1 = rdi, src2 = rsi | ||
685 | # stack depth is extra 8 from call | ||
686 | ___ | ||
687 | &MUL_512x512("%rsp+$tmp16_offset+8", "%rdi", "%rsi", [map("%r$_",(10..15,8..9))], "%rbp", "%rbx"); | ||
688 | $code.=<<___; | ||
689 | # | ||
690 | # Dst = tmp % m | ||
691 | # Call reduce(tmp, m, data, dst) | ||
692 | |||
693 | # tail recursion optimization: jmp to mont_reduce and return from there | ||
694 | jmp mont_reduce | ||
695 | # call mont_reduce | ||
696 | # ret | ||
697 | .size mont_mul_a3b,.-mont_mul_a3b | ||
698 | ___ | ||
699 | }}} | ||
700 | |||
701 | {{{ | ||
702 | #SQR_512 MACRO pDest, pA, x7, x6, x5, x4, x3, x2, x1, x0, tmp*4 | ||
703 | # | ||
704 | # Input in memory [pA] and also in x7...x0 | ||
705 | # Uses all argument registers plus rax and rdx | ||
706 | # | ||
707 | # This version computes all of the off-diagonal terms into memory, | ||
708 | # and then it adds in the diagonal terms | ||
709 | |||
710 | sub SQR_512 | ||
711 | { | ||
712 | my ($pDst, $pA, $x, $A, $tmp, $x7, $x6, $pDst_o)=@_; | ||
713 | my ($pDst, $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/); | ||
714 | my @X=@$x; # make a copy | ||
715 | $code.=<<___; | ||
716 | # ------------------ | ||
717 | # first pass 01...07 | ||
718 | # ------------------ | ||
719 | mov $X[0], $A | ||
720 | |||
721 | mov $X[1],%rax | ||
722 | mul $A | ||
723 | mov %rax, (+$pDst_o+8*1)($pDst) | ||
724 | ___ | ||
725 | for(my $i=2;$i<8;$i++) { | ||
726 | $code.=<<___; | ||
727 | mov %rdx, $X[$i-2] | ||
728 | mov $X[$i],%rax | ||
729 | mul $A | ||
730 | add %rax, $X[$i-2] | ||
731 | adc \$0, %rdx | ||
732 | ___ | ||
733 | } | ||
734 | $code.=<<___; | ||
735 | mov %rdx, $x7 | ||
736 | |||
737 | mov $X[0], (+$pDst_o+8*2)($pDst) | ||
738 | |||
739 | # ------------------ | ||
740 | # second pass 12...17 | ||
741 | # ------------------ | ||
742 | |||
743 | mov (+8*1)($pA), $A | ||
744 | |||
745 | mov (+8*2)($pA),%rax | ||
746 | mul $A | ||
747 | add %rax, $X[1] | ||
748 | adc \$0, %rdx | ||
749 | mov $X[1], (+$pDst_o+8*3)($pDst) | ||
750 | |||
751 | mov %rdx, $X[0] | ||
752 | mov (+8*3)($pA),%rax | ||
753 | mul $A | ||
754 | add %rax, $X[2] | ||
755 | adc \$0, %rdx | ||
756 | add $X[0], $X[2] | ||
757 | adc \$0, %rdx | ||
758 | mov $X[2], (+$pDst_o+8*4)($pDst) | ||
759 | |||
760 | mov %rdx, $X[0] | ||
761 | mov (+8*4)($pA),%rax | ||
762 | mul $A | ||
763 | add %rax, $X[3] | ||
764 | adc \$0, %rdx | ||
765 | add $X[0], $X[3] | ||
766 | adc \$0, %rdx | ||
767 | |||
768 | mov %rdx, $X[0] | ||
769 | mov (+8*5)($pA),%rax | ||
770 | mul $A | ||
771 | add %rax, $X[4] | ||
772 | adc \$0, %rdx | ||
773 | add $X[0], $X[4] | ||
774 | adc \$0, %rdx | ||
775 | |||
776 | mov %rdx, $X[0] | ||
777 | mov $X[6],%rax | ||
778 | mul $A | ||
779 | add %rax, $X[5] | ||
780 | adc \$0, %rdx | ||
781 | add $X[0], $X[5] | ||
782 | adc \$0, %rdx | ||
783 | |||
784 | mov %rdx, $X[0] | ||
785 | mov $X[7],%rax | ||
786 | mul $A | ||
787 | add %rax, $x7 | ||
788 | adc \$0, %rdx | ||
789 | add $X[0], $x7 | ||
790 | adc \$0, %rdx | ||
791 | |||
792 | mov %rdx, $X[1] | ||
793 | |||
794 | # ------------------ | ||
795 | # third pass 23...27 | ||
796 | # ------------------ | ||
797 | mov (+8*2)($pA), $A | ||
798 | |||
799 | mov (+8*3)($pA),%rax | ||
800 | mul $A | ||
801 | add %rax, $X[3] | ||
802 | adc \$0, %rdx | ||
803 | mov $X[3], (+$pDst_o+8*5)($pDst) | ||
804 | |||
805 | mov %rdx, $X[0] | ||
806 | mov (+8*4)($pA),%rax | ||
807 | mul $A | ||
808 | add %rax, $X[4] | ||
809 | adc \$0, %rdx | ||
810 | add $X[0], $X[4] | ||
811 | adc \$0, %rdx | ||
812 | mov $X[4], (+$pDst_o+8*6)($pDst) | ||
813 | |||
814 | mov %rdx, $X[0] | ||
815 | mov (+8*5)($pA),%rax | ||
816 | mul $A | ||
817 | add %rax, $X[5] | ||
818 | adc \$0, %rdx | ||
819 | add $X[0], $X[5] | ||
820 | adc \$0, %rdx | ||
821 | |||
822 | mov %rdx, $X[0] | ||
823 | mov $X[6],%rax | ||
824 | mul $A | ||
825 | add %rax, $x7 | ||
826 | adc \$0, %rdx | ||
827 | add $X[0], $x7 | ||
828 | adc \$0, %rdx | ||
829 | |||
830 | mov %rdx, $X[0] | ||
831 | mov $X[7],%rax | ||
832 | mul $A | ||
833 | add %rax, $X[1] | ||
834 | adc \$0, %rdx | ||
835 | add $X[0], $X[1] | ||
836 | adc \$0, %rdx | ||
837 | |||
838 | mov %rdx, $X[2] | ||
839 | |||
840 | # ------------------ | ||
841 | # fourth pass 34...37 | ||
842 | # ------------------ | ||
843 | |||
844 | mov (+8*3)($pA), $A | ||
845 | |||
846 | mov (+8*4)($pA),%rax | ||
847 | mul $A | ||
848 | add %rax, $X[5] | ||
849 | adc \$0, %rdx | ||
850 | mov $X[5], (+$pDst_o+8*7)($pDst) | ||
851 | |||
852 | mov %rdx, $X[0] | ||
853 | mov (+8*5)($pA),%rax | ||
854 | mul $A | ||
855 | add %rax, $x7 | ||
856 | adc \$0, %rdx | ||
857 | add $X[0], $x7 | ||
858 | adc \$0, %rdx | ||
859 | mov $x7, (+$pDst_o+8*8)($pDst) | ||
860 | |||
861 | mov %rdx, $X[0] | ||
862 | mov $X[6],%rax | ||
863 | mul $A | ||
864 | add %rax, $X[1] | ||
865 | adc \$0, %rdx | ||
866 | add $X[0], $X[1] | ||
867 | adc \$0, %rdx | ||
868 | |||
869 | mov %rdx, $X[0] | ||
870 | mov $X[7],%rax | ||
871 | mul $A | ||
872 | add %rax, $X[2] | ||
873 | adc \$0, %rdx | ||
874 | add $X[0], $X[2] | ||
875 | adc \$0, %rdx | ||
876 | |||
877 | mov %rdx, $X[5] | ||
878 | |||
879 | # ------------------ | ||
880 | # fifth pass 45...47 | ||
881 | # ------------------ | ||
882 | mov (+8*4)($pA), $A | ||
883 | |||
884 | mov (+8*5)($pA),%rax | ||
885 | mul $A | ||
886 | add %rax, $X[1] | ||
887 | adc \$0, %rdx | ||
888 | mov $X[1], (+$pDst_o+8*9)($pDst) | ||
889 | |||
890 | mov %rdx, $X[0] | ||
891 | mov $X[6],%rax | ||
892 | mul $A | ||
893 | add %rax, $X[2] | ||
894 | adc \$0, %rdx | ||
895 | add $X[0], $X[2] | ||
896 | adc \$0, %rdx | ||
897 | mov $X[2], (+$pDst_o+8*10)($pDst) | ||
898 | |||
899 | mov %rdx, $X[0] | ||
900 | mov $X[7],%rax | ||
901 | mul $A | ||
902 | add %rax, $X[5] | ||
903 | adc \$0, %rdx | ||
904 | add $X[0], $X[5] | ||
905 | adc \$0, %rdx | ||
906 | |||
907 | mov %rdx, $X[1] | ||
908 | |||
909 | # ------------------ | ||
910 | # sixth pass 56...57 | ||
911 | # ------------------ | ||
912 | mov (+8*5)($pA), $A | ||
913 | |||
914 | mov $X[6],%rax | ||
915 | mul $A | ||
916 | add %rax, $X[5] | ||
917 | adc \$0, %rdx | ||
918 | mov $X[5], (+$pDst_o+8*11)($pDst) | ||
919 | |||
920 | mov %rdx, $X[0] | ||
921 | mov $X[7],%rax | ||
922 | mul $A | ||
923 | add %rax, $X[1] | ||
924 | adc \$0, %rdx | ||
925 | add $X[0], $X[1] | ||
926 | adc \$0, %rdx | ||
927 | mov $X[1], (+$pDst_o+8*12)($pDst) | ||
928 | |||
929 | mov %rdx, $X[2] | ||
930 | |||
931 | # ------------------ | ||
932 | # seventh pass 67 | ||
933 | # ------------------ | ||
934 | mov $X[6], $A | ||
935 | |||
936 | mov $X[7],%rax | ||
937 | mul $A | ||
938 | add %rax, $X[2] | ||
939 | adc \$0, %rdx | ||
940 | mov $X[2], (+$pDst_o+8*13)($pDst) | ||
941 | |||
942 | mov %rdx, (+$pDst_o+8*14)($pDst) | ||
943 | |||
944 | # start finalize (add in squares, and double off-terms) | ||
945 | mov (+$pDst_o+8*1)($pDst), $X[0] | ||
946 | mov (+$pDst_o+8*2)($pDst), $X[1] | ||
947 | mov (+$pDst_o+8*3)($pDst), $X[2] | ||
948 | mov (+$pDst_o+8*4)($pDst), $X[3] | ||
949 | mov (+$pDst_o+8*5)($pDst), $X[4] | ||
950 | mov (+$pDst_o+8*6)($pDst), $X[5] | ||
951 | |||
952 | mov (+8*3)($pA), %rax | ||
953 | mul %rax | ||
954 | mov %rax, $x6 | ||
955 | mov %rdx, $X[6] | ||
956 | |||
957 | add $X[0], $X[0] | ||
958 | adc $X[1], $X[1] | ||
959 | adc $X[2], $X[2] | ||
960 | adc $X[3], $X[3] | ||
961 | adc $X[4], $X[4] | ||
962 | adc $X[5], $X[5] | ||
963 | adc \$0, $X[6] | ||
964 | |||
965 | mov (+8*0)($pA), %rax | ||
966 | mul %rax | ||
967 | mov %rax, (+$pDst_o+8*0)($pDst) | ||
968 | mov %rdx, $A | ||
969 | |||
970 | mov (+8*1)($pA), %rax | ||
971 | mul %rax | ||
972 | |||
973 | add $A, $X[0] | ||
974 | adc %rax, $X[1] | ||
975 | adc \$0, %rdx | ||
976 | |||
977 | mov %rdx, $A | ||
978 | mov $X[0], (+$pDst_o+8*1)($pDst) | ||
979 | mov $X[1], (+$pDst_o+8*2)($pDst) | ||
980 | |||
981 | mov (+8*2)($pA), %rax | ||
982 | mul %rax | ||
983 | |||
984 | add $A, $X[2] | ||
985 | adc %rax, $X[3] | ||
986 | adc \$0, %rdx | ||
987 | |||
988 | mov %rdx, $A | ||
989 | |||
990 | mov $X[2], (+$pDst_o+8*3)($pDst) | ||
991 | mov $X[3], (+$pDst_o+8*4)($pDst) | ||
992 | |||
993 | xor $tmp, $tmp | ||
994 | add $A, $X[4] | ||
995 | adc $x6, $X[5] | ||
996 | adc \$0, $tmp | ||
997 | |||
998 | mov $X[4], (+$pDst_o+8*5)($pDst) | ||
999 | mov $X[5], (+$pDst_o+8*6)($pDst) | ||
1000 | |||
1001 | # %%tmp has 0/1 in column 7 | ||
1002 | # %%A6 has a full value in column 7 | ||
1003 | |||
1004 | mov (+$pDst_o+8*7)($pDst), $X[0] | ||
1005 | mov (+$pDst_o+8*8)($pDst), $X[1] | ||
1006 | mov (+$pDst_o+8*9)($pDst), $X[2] | ||
1007 | mov (+$pDst_o+8*10)($pDst), $X[3] | ||
1008 | mov (+$pDst_o+8*11)($pDst), $X[4] | ||
1009 | mov (+$pDst_o+8*12)($pDst), $X[5] | ||
1010 | mov (+$pDst_o+8*13)($pDst), $x6 | ||
1011 | mov (+$pDst_o+8*14)($pDst), $x7 | ||
1012 | |||
1013 | mov $X[7], %rax | ||
1014 | mul %rax | ||
1015 | mov %rax, $X[7] | ||
1016 | mov %rdx, $A | ||
1017 | |||
1018 | add $X[0], $X[0] | ||
1019 | adc $X[1], $X[1] | ||
1020 | adc $X[2], $X[2] | ||
1021 | adc $X[3], $X[3] | ||
1022 | adc $X[4], $X[4] | ||
1023 | adc $X[5], $X[5] | ||
1024 | adc $x6, $x6 | ||
1025 | adc $x7, $x7 | ||
1026 | adc \$0, $A | ||
1027 | |||
1028 | add $tmp, $X[0] | ||
1029 | |||
1030 | mov (+8*4)($pA), %rax | ||
1031 | mul %rax | ||
1032 | |||
1033 | add $X[6], $X[0] | ||
1034 | adc %rax, $X[1] | ||
1035 | adc \$0, %rdx | ||
1036 | |||
1037 | mov %rdx, $tmp | ||
1038 | |||
1039 | mov $X[0], (+$pDst_o+8*7)($pDst) | ||
1040 | mov $X[1], (+$pDst_o+8*8)($pDst) | ||
1041 | |||
1042 | mov (+8*5)($pA), %rax | ||
1043 | mul %rax | ||
1044 | |||
1045 | add $tmp, $X[2] | ||
1046 | adc %rax, $X[3] | ||
1047 | adc \$0, %rdx | ||
1048 | |||
1049 | mov %rdx, $tmp | ||
1050 | |||
1051 | mov $X[2], (+$pDst_o+8*9)($pDst) | ||
1052 | mov $X[3], (+$pDst_o+8*10)($pDst) | ||
1053 | |||
1054 | mov (+8*6)($pA), %rax | ||
1055 | mul %rax | ||
1056 | |||
1057 | add $tmp, $X[4] | ||
1058 | adc %rax, $X[5] | ||
1059 | adc \$0, %rdx | ||
1060 | |||
1061 | mov $X[4], (+$pDst_o+8*11)($pDst) | ||
1062 | mov $X[5], (+$pDst_o+8*12)($pDst) | ||
1063 | |||
1064 | add %rdx, $x6 | ||
1065 | adc $X[7], $x7 | ||
1066 | adc \$0, $A | ||
1067 | |||
1068 | mov $x6, (+$pDst_o+8*13)($pDst) | ||
1069 | mov $x7, (+$pDst_o+8*14)($pDst) | ||
1070 | mov $A, (+$pDst_o+8*15)($pDst) | ||
1071 | ___ | ||
1072 | } | ||
1073 | |||
1074 | # | ||
1075 | # sqr_reduce: subroutine to compute Result = reduce(Result * Result) | ||
1076 | # | ||
1077 | # input and result also in: r9, r8, r15, r14, r13, r12, r11, r10 | ||
1078 | # | ||
1079 | $code.=<<___; | ||
1080 | .type sqr_reduce,\@abi-omnipotent | ||
1081 | .align 16 | ||
1082 | sqr_reduce: | ||
1083 | _CET_ENDBR | ||
1084 | mov (+$pResult_offset+8)(%rsp), %rcx | ||
1085 | ___ | ||
1086 | &SQR_512("%rsp+$tmp16_offset+8", "%rcx", [map("%r$_",(10..15,8..9))], "%rbx", "%rbp", "%rsi", "%rdi"); | ||
1087 | $code.=<<___; | ||
1088 | # tail recursion optimization: jmp to mont_reduce and return from there | ||
1089 | jmp mont_reduce | ||
1090 | # call mont_reduce | ||
1091 | # ret | ||
1092 | .size sqr_reduce,.-sqr_reduce | ||
1093 | ___ | ||
1094 | }}} | ||
1095 | |||
1096 | # | ||
1097 | # MAIN FUNCTION | ||
1098 | # | ||
1099 | |||
1100 | #mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */ | ||
1101 | # UINT64 *g, /* 512 bits, 8 qwords */ | ||
1102 | # UINT64 *exp, /* 512 bits, 8 qwords */ | ||
1103 | # struct mod_ctx_512 *data) | ||
1104 | |||
1105 | # window size = 5 | ||
1106 | # table size = 2^5 = 32 | ||
1107 | #table_entries equ 32 | ||
1108 | #table_size equ table_entries * 8 | ||
1109 | $code.=<<___; | ||
1110 | .globl mod_exp_512 | ||
1111 | .type mod_exp_512,\@function,4 | ||
1112 | mod_exp_512: | ||
1113 | _CET_ENDBR | ||
1114 | push %rbp | ||
1115 | push %rbx | ||
1116 | push %r12 | ||
1117 | push %r13 | ||
1118 | push %r14 | ||
1119 | push %r15 | ||
1120 | |||
1121 | # adjust stack down and then align it with cache boundary | ||
1122 | mov %rsp, %r8 | ||
1123 | sub \$$mem_size, %rsp | ||
1124 | and \$-64, %rsp | ||
1125 | |||
1126 | # store previous stack pointer and arguments | ||
1127 | mov %r8, (+$rsp_offset)(%rsp) | ||
1128 | mov %rdi, (+$pResult_offset)(%rsp) | ||
1129 | mov %rsi, (+$pG_offset)(%rsp) | ||
1130 | mov %rcx, (+$pData_offset)(%rsp) | ||
1131 | .Lbody: | ||
1132 | # transform g into montgomery space | ||
1133 | # GT = reduce(g * C2) = reduce(g * (2^256)) | ||
1134 | # reduce expects to have the input in [tmp16] | ||
1135 | pxor %xmm4, %xmm4 | ||
1136 | movdqu (+16*0)(%rsi), %xmm0 | ||
1137 | movdqu (+16*1)(%rsi), %xmm1 | ||
1138 | movdqu (+16*2)(%rsi), %xmm2 | ||
1139 | movdqu (+16*3)(%rsi), %xmm3 | ||
1140 | movdqa %xmm4, (+$tmp16_offset+16*0)(%rsp) | ||
1141 | movdqa %xmm4, (+$tmp16_offset+16*1)(%rsp) | ||
1142 | movdqa %xmm4, (+$tmp16_offset+16*6)(%rsp) | ||
1143 | movdqa %xmm4, (+$tmp16_offset+16*7)(%rsp) | ||
1144 | movdqa %xmm0, (+$tmp16_offset+16*2)(%rsp) | ||
1145 | movdqa %xmm1, (+$tmp16_offset+16*3)(%rsp) | ||
1146 | movdqa %xmm2, (+$tmp16_offset+16*4)(%rsp) | ||
1147 | movdqa %xmm3, (+$tmp16_offset+16*5)(%rsp) | ||
1148 | |||
1149 | # load pExp before rdx gets blown away | ||
1150 | movdqu (+16*0)(%rdx), %xmm0 | ||
1151 | movdqu (+16*1)(%rdx), %xmm1 | ||
1152 | movdqu (+16*2)(%rdx), %xmm2 | ||
1153 | movdqu (+16*3)(%rdx), %xmm3 | ||
1154 | |||
1155 | lea (+$GT_offset)(%rsp), %rbx | ||
1156 | mov %rbx, (+$red_result_addr_offset)(%rsp) | ||
1157 | call mont_reduce | ||
1158 | |||
1159 | # Initialize tmp = C | ||
1160 | lea (+$tmp_offset)(%rsp), %rcx | ||
1161 | xor %rax, %rax | ||
1162 | mov %rax, (+8*0)(%rcx) | ||
1163 | mov %rax, (+8*1)(%rcx) | ||
1164 | mov %rax, (+8*3)(%rcx) | ||
1165 | mov %rax, (+8*4)(%rcx) | ||
1166 | mov %rax, (+8*5)(%rcx) | ||
1167 | mov %rax, (+8*6)(%rcx) | ||
1168 | mov %rax, (+8*7)(%rcx) | ||
1169 | mov %rax, (+$exp_offset+8*8)(%rsp) | ||
1170 | movq \$1, (+8*2)(%rcx) | ||
1171 | |||
1172 | lea (+$garray_offset)(%rsp), %rbp | ||
1173 | mov %rcx, %rsi # pTmp | ||
1174 | mov %rbp, %rdi # Garray[][0] | ||
1175 | ___ | ||
1176 | |||
1177 | &swizzle("%rdi", "%rcx", "%rax", "%rbx"); | ||
1178 | |||
1179 | # for (rax = 31; rax != 0; rax--) { | ||
1180 | # tmp = reduce(tmp * G) | ||
1181 | # swizzle(pg, tmp); | ||
1182 | # pg += 2; } | ||
1183 | $code.=<<___; | ||
1184 | mov \$31, %rax | ||
1185 | mov %rax, (+$i_offset)(%rsp) | ||
1186 | mov %rbp, (+$pg_offset)(%rsp) | ||
1187 | # rsi -> pTmp | ||
1188 | mov %rsi, (+$red_result_addr_offset)(%rsp) | ||
1189 | mov (+8*0)(%rsi), %r10 | ||
1190 | mov (+8*1)(%rsi), %r11 | ||
1191 | mov (+8*2)(%rsi), %r12 | ||
1192 | mov (+8*3)(%rsi), %r13 | ||
1193 | mov (+8*4)(%rsi), %r14 | ||
1194 | mov (+8*5)(%rsi), %r15 | ||
1195 | mov (+8*6)(%rsi), %r8 | ||
1196 | mov (+8*7)(%rsi), %r9 | ||
1197 | init_loop: | ||
1198 | lea (+$GT_offset)(%rsp), %rdi | ||
1199 | call mont_mul_a3b | ||
1200 | lea (+$tmp_offset)(%rsp), %rsi | ||
1201 | mov (+$pg_offset)(%rsp), %rbp | ||
1202 | add \$2, %rbp | ||
1203 | mov %rbp, (+$pg_offset)(%rsp) | ||
1204 | mov %rsi, %rcx # rcx = rsi = addr of tmp | ||
1205 | ___ | ||
1206 | |||
1207 | &swizzle("%rbp", "%rcx", "%rax", "%rbx"); | ||
1208 | $code.=<<___; | ||
1209 | mov (+$i_offset)(%rsp), %rax | ||
1210 | sub \$1, %rax | ||
1211 | mov %rax, (+$i_offset)(%rsp) | ||
1212 | jne init_loop | ||
1213 | |||
1214 | # | ||
1215 | # Copy exponent onto stack | ||
1216 | movdqa %xmm0, (+$exp_offset+16*0)(%rsp) | ||
1217 | movdqa %xmm1, (+$exp_offset+16*1)(%rsp) | ||
1218 | movdqa %xmm2, (+$exp_offset+16*2)(%rsp) | ||
1219 | movdqa %xmm3, (+$exp_offset+16*3)(%rsp) | ||
1220 | |||
1221 | |||
1222 | # | ||
1223 | # Do exponentiation | ||
1224 | # Initialize result to G[exp{511:507}] | ||
1225 | mov (+$exp_offset+62)(%rsp), %eax | ||
1226 | mov %rax, %rdx | ||
1227 | shr \$11, %rax | ||
1228 | and \$0x07FF, %edx | ||
1229 | mov %edx, (+$exp_offset+62)(%rsp) | ||
1230 | lea (+$garray_offset)(%rsp,%rax,2), %rsi | ||
1231 | mov (+$pResult_offset)(%rsp), %rdx | ||
1232 | ___ | ||
1233 | |||
1234 | &unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax"); | ||
1235 | |||
1236 | # | ||
1237 | # Loop variables | ||
1238 | # rcx = [loop_idx] = index: 510-5 to 0 by 5 | ||
1239 | $code.=<<___; | ||
1240 | movq \$505, (+$loop_idx_offset)(%rsp) | ||
1241 | |||
1242 | mov (+$pResult_offset)(%rsp), %rcx | ||
1243 | mov %rcx, (+$red_result_addr_offset)(%rsp) | ||
1244 | mov (+8*0)(%rcx), %r10 | ||
1245 | mov (+8*1)(%rcx), %r11 | ||
1246 | mov (+8*2)(%rcx), %r12 | ||
1247 | mov (+8*3)(%rcx), %r13 | ||
1248 | mov (+8*4)(%rcx), %r14 | ||
1249 | mov (+8*5)(%rcx), %r15 | ||
1250 | mov (+8*6)(%rcx), %r8 | ||
1251 | mov (+8*7)(%rcx), %r9 | ||
1252 | jmp sqr_2 | ||
1253 | |||
1254 | main_loop_a3b: | ||
1255 | call sqr_reduce | ||
1256 | call sqr_reduce | ||
1257 | call sqr_reduce | ||
1258 | sqr_2: | ||
1259 | call sqr_reduce | ||
1260 | call sqr_reduce | ||
1261 | |||
1262 | # | ||
1263 | # Do multiply, first look up proper value in Garray | ||
1264 | mov (+$loop_idx_offset)(%rsp), %rcx # bit index | ||
1265 | mov %rcx, %rax | ||
1266 | shr \$4, %rax # rax is word pointer | ||
1267 | mov (+$exp_offset)(%rsp,%rax,2), %edx | ||
1268 | and \$15, %rcx | ||
1269 | shrq %cl, %rdx | ||
1270 | and \$0x1F, %rdx | ||
1271 | |||
1272 | lea (+$garray_offset)(%rsp,%rdx,2), %rsi | ||
1273 | lea (+$tmp_offset)(%rsp), %rdx | ||
1274 | mov %rdx, %rdi | ||
1275 | ___ | ||
1276 | |||
1277 | &unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax"); | ||
1278 | # rdi = tmp = pG | ||
1279 | |||
1280 | # | ||
1281 | # Call mod_mul_a1(pDst, pSrc1, pSrc2, pM, pData) | ||
1282 | # result result pG M Data | ||
1283 | $code.=<<___; | ||
1284 | mov (+$pResult_offset)(%rsp), %rsi | ||
1285 | call mont_mul_a3b | ||
1286 | |||
1287 | # | ||
1288 | # finish loop | ||
1289 | mov (+$loop_idx_offset)(%rsp), %rcx | ||
1290 | sub \$5, %rcx | ||
1291 | mov %rcx, (+$loop_idx_offset)(%rsp) | ||
1292 | jge main_loop_a3b | ||
1293 | |||
1294 | # | ||
1295 | |||
1296 | end_main_loop_a3b: | ||
1297 | # transform result out of Montgomery space | ||
1298 | # result = reduce(result) | ||
1299 | mov (+$pResult_offset)(%rsp), %rdx | ||
1300 | pxor %xmm4, %xmm4 | ||
1301 | movdqu (+16*0)(%rdx), %xmm0 | ||
1302 | movdqu (+16*1)(%rdx), %xmm1 | ||
1303 | movdqu (+16*2)(%rdx), %xmm2 | ||
1304 | movdqu (+16*3)(%rdx), %xmm3 | ||
1305 | movdqa %xmm4, (+$tmp16_offset+16*4)(%rsp) | ||
1306 | movdqa %xmm4, (+$tmp16_offset+16*5)(%rsp) | ||
1307 | movdqa %xmm4, (+$tmp16_offset+16*6)(%rsp) | ||
1308 | movdqa %xmm4, (+$tmp16_offset+16*7)(%rsp) | ||
1309 | movdqa %xmm0, (+$tmp16_offset+16*0)(%rsp) | ||
1310 | movdqa %xmm1, (+$tmp16_offset+16*1)(%rsp) | ||
1311 | movdqa %xmm2, (+$tmp16_offset+16*2)(%rsp) | ||
1312 | movdqa %xmm3, (+$tmp16_offset+16*3)(%rsp) | ||
1313 | call mont_reduce | ||
1314 | |||
1315 | # If result > m, subtract m | ||
1316 | # load result into r15:r8 | ||
1317 | mov (+$pResult_offset)(%rsp), %rax | ||
1318 | mov (+8*0)(%rax), %r8 | ||
1319 | mov (+8*1)(%rax), %r9 | ||
1320 | mov (+8*2)(%rax), %r10 | ||
1321 | mov (+8*3)(%rax), %r11 | ||
1322 | mov (+8*4)(%rax), %r12 | ||
1323 | mov (+8*5)(%rax), %r13 | ||
1324 | mov (+8*6)(%rax), %r14 | ||
1325 | mov (+8*7)(%rax), %r15 | ||
1326 | |||
1327 | # subtract m | ||
1328 | mov (+$pData_offset)(%rsp), %rbx | ||
1329 | add \$$M, %rbx | ||
1330 | |||
1331 | sub (+8*0)(%rbx), %r8 | ||
1332 | sbb (+8*1)(%rbx), %r9 | ||
1333 | sbb (+8*2)(%rbx), %r10 | ||
1334 | sbb (+8*3)(%rbx), %r11 | ||
1335 | sbb (+8*4)(%rbx), %r12 | ||
1336 | sbb (+8*5)(%rbx), %r13 | ||
1337 | sbb (+8*6)(%rbx), %r14 | ||
1338 | sbb (+8*7)(%rbx), %r15 | ||
1339 | |||
1340 | # if Carry is clear, replace result with difference | ||
1341 | mov (+8*0)(%rax), %rsi | ||
1342 | mov (+8*1)(%rax), %rdi | ||
1343 | mov (+8*2)(%rax), %rcx | ||
1344 | mov (+8*3)(%rax), %rdx | ||
1345 | cmovnc %r8, %rsi | ||
1346 | cmovnc %r9, %rdi | ||
1347 | cmovnc %r10, %rcx | ||
1348 | cmovnc %r11, %rdx | ||
1349 | mov %rsi, (+8*0)(%rax) | ||
1350 | mov %rdi, (+8*1)(%rax) | ||
1351 | mov %rcx, (+8*2)(%rax) | ||
1352 | mov %rdx, (+8*3)(%rax) | ||
1353 | |||
1354 | mov (+8*4)(%rax), %rsi | ||
1355 | mov (+8*5)(%rax), %rdi | ||
1356 | mov (+8*6)(%rax), %rcx | ||
1357 | mov (+8*7)(%rax), %rdx | ||
1358 | cmovnc %r12, %rsi | ||
1359 | cmovnc %r13, %rdi | ||
1360 | cmovnc %r14, %rcx | ||
1361 | cmovnc %r15, %rdx | ||
1362 | mov %rsi, (+8*4)(%rax) | ||
1363 | mov %rdi, (+8*5)(%rax) | ||
1364 | mov %rcx, (+8*6)(%rax) | ||
1365 | mov %rdx, (+8*7)(%rax) | ||
1366 | |||
1367 | mov (+$rsp_offset)(%rsp), %rsi | ||
1368 | mov 0(%rsi),%r15 | ||
1369 | mov 8(%rsi),%r14 | ||
1370 | mov 16(%rsi),%r13 | ||
1371 | mov 24(%rsi),%r12 | ||
1372 | mov 32(%rsi),%rbx | ||
1373 | mov 40(%rsi),%rbp | ||
1374 | lea 48(%rsi),%rsp | ||
1375 | .Lepilogue: | ||
1376 | ret | ||
1377 | .size mod_exp_512, . - mod_exp_512 | ||
1378 | ___ | ||
1379 | |||
1380 | sub reg_part { | ||
1381 | my ($reg,$conv)=@_; | ||
1382 | if ($reg =~ /%r[0-9]+/) { $reg .= $conv; } | ||
1383 | elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; } | ||
1384 | elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; } | ||
1385 | elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; } | ||
1386 | return $reg; | ||
1387 | } | ||
1388 | |||
1389 | $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem; | ||
1390 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
1391 | $code =~ s/(\(\+[^)]+\))/eval $1/gem; | ||
1392 | print $code; | ||
1393 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/parisc-mont.pl b/src/lib/libcrypto/bn/asm/parisc-mont.pl deleted file mode 100644 index 0c7aff93b9..0000000000 --- a/src/lib/libcrypto/bn/asm/parisc-mont.pl +++ /dev/null | |||
@@ -1,985 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # On PA-7100LC this module performs ~90-50% better, less for longer | ||
11 | # keys, than code generated by gcc 3.2 for PA-RISC 1.1. Latter means | ||
12 | # that compiler utilized xmpyu instruction to perform 32x32=64-bit | ||
13 | # multiplication, which in turn means that "baseline" performance was | ||
14 | # optimal in respect to instruction set capabilities. Fair comparison | ||
15 | # with vendor compiler is problematic, because OpenSSL doesn't define | ||
16 | # BN_LLONG [presumably] for historical reasons, which drives compiler | ||
17 | # toward 4 times 16x16=32-bit multiplicatons [plus complementary | ||
18 | # shifts and additions] instead. This means that you should observe | ||
19 | # several times improvement over code generated by vendor compiler | ||
20 | # for PA-RISC 1.1, but the "baseline" is far from optimal. The actual | ||
21 | # improvement coefficient was never collected on PA-7100LC, or any | ||
22 | # other 1.1 CPU, because I don't have access to such machine with | ||
23 | # vendor compiler. But to give you a taste, PA-RISC 1.1 code path | ||
24 | # reportedly outperformed code generated by cc +DA1.1 +O3 by factor | ||
25 | # of ~5x on PA-8600. | ||
26 | # | ||
27 | # On PA-RISC 2.0 it has to compete with pa-risc2[W].s, which is | ||
28 | # reportedly ~2x faster than vendor compiler generated code [according | ||
29 | # to comment in pa-risc2[W].s]. Here comes a catch. Execution core of | ||
30 | # this implementation is actually 32-bit one, in the sense that it | ||
31 | # operates on 32-bit values. But pa-risc2[W].s operates on arrays of | ||
32 | # 64-bit BN_LONGs... How do they interoperate then? No problem. This | ||
33 | # module picks halves of 64-bit values in reverse order and pretends | ||
34 | # they were 32-bit BN_LONGs. But can 32-bit core compete with "pure" | ||
35 | # 64-bit code such as pa-risc2[W].s then? Well, the thing is that | ||
36 | # 32x32=64-bit multiplication is the best even PA-RISC 2.0 can do, | ||
37 | # i.e. there is no "wider" multiplication like on most other 64-bit | ||
38 | # platforms. This means that even being effectively 32-bit, this | ||
39 | # implementation performs "64-bit" computational task in same amount | ||
40 | # of arithmetic operations, most notably multiplications. It requires | ||
41 | # more memory references, most notably to tp[num], but this doesn't | ||
42 | # seem to exhaust memory port capacity. And indeed, dedicated PA-RISC | ||
43 | # 2.0 code path provides virtually same performance as pa-risc2[W].s: | ||
44 | # it's ~10% better for shortest key length and ~10% worse for longest | ||
45 | # one. | ||
46 | # | ||
47 | # In case it wasn't clear. The module has two distinct code paths: | ||
48 | # PA-RISC 1.1 and PA-RISC 2.0 ones. Latter features carry-free 64-bit | ||
49 | # additions and 64-bit integer loads, not to mention specific | ||
50 | # instruction scheduling. In 64-bit build naturally only 2.0 code path | ||
51 | # is assembled. In 32-bit application context both code paths are | ||
52 | # assembled, PA-RISC 2.0 CPU is detected at run-time and proper path | ||
53 | # is taken automatically. Also, in 32-bit build the module imposes | ||
54 | # couple of limitations: vector lengths has to be even and vector | ||
55 | # addresses has to be 64-bit aligned. Normally neither is a problem: | ||
56 | # most common key lengths are even and vectors are commonly malloc-ed, | ||
57 | # which ensures alignment. | ||
58 | # | ||
59 | # Special thanks to polarhome.com for providing HP-UX account on | ||
60 | # PA-RISC 1.1 machine, and to correspondent who chose to remain | ||
61 | # anonymous for testing the code on PA-RISC 2.0 machine. | ||
62 | |||
63 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
64 | |||
65 | $flavour = shift; | ||
66 | $output = shift; | ||
67 | |||
68 | open STDOUT,">$output"; | ||
69 | |||
70 | if ($flavour =~ /64/) { | ||
71 | $LEVEL ="2.0W"; | ||
72 | $SIZE_T =8; | ||
73 | $FRAME_MARKER =80; | ||
74 | $SAVED_RP =16; | ||
75 | $PUSH ="std"; | ||
76 | $PUSHMA ="std,ma"; | ||
77 | $POP ="ldd"; | ||
78 | $POPMB ="ldd,mb"; | ||
79 | $BN_SZ =$SIZE_T; | ||
80 | } else { | ||
81 | $LEVEL ="1.1"; #$LEVEL.="\n\t.ALLOW\t2.0"; | ||
82 | $SIZE_T =4; | ||
83 | $FRAME_MARKER =48; | ||
84 | $SAVED_RP =20; | ||
85 | $PUSH ="stw"; | ||
86 | $PUSHMA ="stwm"; | ||
87 | $POP ="ldw"; | ||
88 | $POPMB ="ldwm"; | ||
89 | $BN_SZ =$SIZE_T; | ||
90 | } | ||
91 | |||
92 | $FRAME=8*$SIZE_T+$FRAME_MARKER; # 8 saved regs + frame marker | ||
93 | # [+ argument transfer] | ||
94 | $LOCALS=$FRAME-$FRAME_MARKER; | ||
95 | $FRAME+=32; # local variables | ||
96 | |||
97 | $tp="%r31"; | ||
98 | $ti1="%r29"; | ||
99 | $ti0="%r28"; | ||
100 | |||
101 | $rp="%r26"; | ||
102 | $ap="%r25"; | ||
103 | $bp="%r24"; | ||
104 | $np="%r23"; | ||
105 | $n0="%r22"; # passed through stack in 32-bit | ||
106 | $num="%r21"; # passed through stack in 32-bit | ||
107 | $idx="%r20"; | ||
108 | $arrsz="%r19"; | ||
109 | |||
110 | $nm1="%r7"; | ||
111 | $nm0="%r6"; | ||
112 | $ab1="%r5"; | ||
113 | $ab0="%r4"; | ||
114 | |||
115 | $fp="%r3"; | ||
116 | $hi1="%r2"; | ||
117 | $hi0="%r1"; | ||
118 | |||
119 | $xfer=$n0; # accommodates [-16..15] offset in fld[dw]s | ||
120 | |||
121 | $fm0="%fr4"; $fti=$fm0; | ||
122 | $fbi="%fr5L"; | ||
123 | $fn0="%fr5R"; | ||
124 | $fai="%fr6"; $fab0="%fr7"; $fab1="%fr8"; | ||
125 | $fni="%fr9"; $fnm0="%fr10"; $fnm1="%fr11"; | ||
126 | |||
127 | $code=<<___; | ||
128 | .LEVEL $LEVEL | ||
129 | .text | ||
130 | |||
131 | .EXPORT bn_mul_mont,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR | ||
132 | .ALIGN 64 | ||
133 | bn_mul_mont | ||
134 | .PROC | ||
135 | .CALLINFO FRAME=`$FRAME-8*$SIZE_T`,NO_CALLS,SAVE_RP,SAVE_SP,ENTRY_GR=6 | ||
136 | .ENTRY | ||
137 | $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue | ||
138 | $PUSHMA %r3,$FRAME(%sp) | ||
139 | $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp) | ||
140 | $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp) | ||
141 | $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp) | ||
142 | $PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp) | ||
143 | $PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp) | ||
144 | $PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp) | ||
145 | $PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp) | ||
146 | ldo -$FRAME(%sp),$fp | ||
147 | ___ | ||
148 | $code.=<<___ if ($SIZE_T==4); | ||
149 | ldw `-$FRAME_MARKER-4`($fp),$n0 | ||
150 | ldw `-$FRAME_MARKER-8`($fp),$num | ||
151 | nop | ||
152 | nop ; alignment | ||
153 | ___ | ||
154 | $code.=<<___ if ($BN_SZ==4); | ||
155 | comiclr,<= 6,$num,%r0 ; are vectors long enough? | ||
156 | b L\$abort | ||
157 | ldi 0,%r28 ; signal "unhandled" | ||
158 | add,ev %r0,$num,$num ; is $num even? | ||
159 | b L\$abort | ||
160 | nop | ||
161 | or $ap,$np,$ti1 | ||
162 | extru,= $ti1,31,3,%r0 ; are ap and np 64-bit aligned? | ||
163 | b L\$abort | ||
164 | nop | ||
165 | nop ; alignment | ||
166 | nop | ||
167 | |||
168 | fldws 0($n0),${fn0} | ||
169 | fldws,ma 4($bp),${fbi} ; bp[0] | ||
170 | ___ | ||
171 | $code.=<<___ if ($BN_SZ==8); | ||
172 | comib,> 3,$num,L\$abort ; are vectors long enough? | ||
173 | ldi 0,%r28 ; signal "unhandled" | ||
174 | addl $num,$num,$num ; I operate on 32-bit values | ||
175 | |||
176 | fldws 4($n0),${fn0} ; only low part of n0 | ||
177 | fldws 4($bp),${fbi} ; bp[0] in flipped word order | ||
178 | ___ | ||
179 | $code.=<<___; | ||
180 | fldds 0($ap),${fai} ; ap[0,1] | ||
181 | fldds 0($np),${fni} ; np[0,1] | ||
182 | |||
183 | sh2addl $num,%r0,$arrsz | ||
184 | ldi 31,$hi0 | ||
185 | ldo 36($arrsz),$hi1 ; space for tp[num+1] | ||
186 | andcm $hi1,$hi0,$hi1 ; align | ||
187 | addl $hi1,%sp,%sp | ||
188 | $PUSH $fp,-$SIZE_T(%sp) | ||
189 | |||
190 | ldo `$LOCALS+16`($fp),$xfer | ||
191 | ldo `$LOCALS+32+4`($fp),$tp | ||
192 | |||
193 | xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[0] | ||
194 | xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[0] | ||
195 | xmpyu ${fn0},${fab0}R,${fm0} | ||
196 | |||
197 | addl $arrsz,$ap,$ap ; point at the end | ||
198 | addl $arrsz,$np,$np | ||
199 | subi 0,$arrsz,$idx ; j=0 | ||
200 | ldo 8($idx),$idx ; j++++ | ||
201 | |||
202 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m | ||
203 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m | ||
204 | fstds ${fab0},-16($xfer) | ||
205 | fstds ${fnm0},-8($xfer) | ||
206 | fstds ${fab1},0($xfer) | ||
207 | fstds ${fnm1},8($xfer) | ||
208 | flddx $idx($ap),${fai} ; ap[2,3] | ||
209 | flddx $idx($np),${fni} ; np[2,3] | ||
210 | ___ | ||
211 | $code.=<<___ if ($BN_SZ==4); | ||
212 | #ifdef __LP64__ | ||
213 | mtctl $hi0,%cr11 ; $hi0 still holds 31 | ||
214 | extrd,u,*= $hi0,%sar,1,$hi0 ; executes on PA-RISC 1.0 | ||
215 | b L\$parisc11 | ||
216 | nop | ||
217 | ___ | ||
218 | $code.=<<___; # PA-RISC 2.0 code-path | ||
219 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] | ||
220 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
221 | ldd -16($xfer),$ab0 | ||
222 | fstds ${fab0},-16($xfer) | ||
223 | |||
224 | extrd,u $ab0,31,32,$hi0 | ||
225 | extrd,u $ab0,63,32,$ab0 | ||
226 | ldd -8($xfer),$nm0 | ||
227 | fstds ${fnm0},-8($xfer) | ||
228 | ldo 8($idx),$idx ; j++++ | ||
229 | addl $ab0,$nm0,$nm0 ; low part is discarded | ||
230 | extrd,u $nm0,31,32,$hi1 | ||
231 | |||
232 | L\$1st | ||
233 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[0] | ||
234 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m | ||
235 | ldd 0($xfer),$ab1 | ||
236 | fstds ${fab1},0($xfer) | ||
237 | addl $hi0,$ab1,$ab1 | ||
238 | extrd,u $ab1,31,32,$hi0 | ||
239 | ldd 8($xfer),$nm1 | ||
240 | fstds ${fnm1},8($xfer) | ||
241 | extrd,u $ab1,63,32,$ab1 | ||
242 | addl $hi1,$nm1,$nm1 | ||
243 | flddx $idx($ap),${fai} ; ap[j,j+1] | ||
244 | flddx $idx($np),${fni} ; np[j,j+1] | ||
245 | addl $ab1,$nm1,$nm1 | ||
246 | extrd,u $nm1,31,32,$hi1 | ||
247 | |||
248 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] | ||
249 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
250 | ldd -16($xfer),$ab0 | ||
251 | fstds ${fab0},-16($xfer) | ||
252 | addl $hi0,$ab0,$ab0 | ||
253 | extrd,u $ab0,31,32,$hi0 | ||
254 | ldd -8($xfer),$nm0 | ||
255 | fstds ${fnm0},-8($xfer) | ||
256 | extrd,u $ab0,63,32,$ab0 | ||
257 | addl $hi1,$nm0,$nm0 | ||
258 | stw $nm1,-4($tp) ; tp[j-1] | ||
259 | addl $ab0,$nm0,$nm0 | ||
260 | stw,ma $nm0,8($tp) ; tp[j-1] | ||
261 | addib,<> 8,$idx,L\$1st ; j++++ | ||
262 | extrd,u $nm0,31,32,$hi1 | ||
263 | |||
264 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[0] | ||
265 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m | ||
266 | ldd 0($xfer),$ab1 | ||
267 | fstds ${fab1},0($xfer) | ||
268 | addl $hi0,$ab1,$ab1 | ||
269 | extrd,u $ab1,31,32,$hi0 | ||
270 | ldd 8($xfer),$nm1 | ||
271 | fstds ${fnm1},8($xfer) | ||
272 | extrd,u $ab1,63,32,$ab1 | ||
273 | addl $hi1,$nm1,$nm1 | ||
274 | ldd -16($xfer),$ab0 | ||
275 | addl $ab1,$nm1,$nm1 | ||
276 | ldd -8($xfer),$nm0 | ||
277 | extrd,u $nm1,31,32,$hi1 | ||
278 | |||
279 | addl $hi0,$ab0,$ab0 | ||
280 | extrd,u $ab0,31,32,$hi0 | ||
281 | stw $nm1,-4($tp) ; tp[j-1] | ||
282 | extrd,u $ab0,63,32,$ab0 | ||
283 | addl $hi1,$nm0,$nm0 | ||
284 | ldd 0($xfer),$ab1 | ||
285 | addl $ab0,$nm0,$nm0 | ||
286 | ldd,mb 8($xfer),$nm1 | ||
287 | extrd,u $nm0,31,32,$hi1 | ||
288 | stw,ma $nm0,8($tp) ; tp[j-1] | ||
289 | |||
290 | ldo -1($num),$num ; i-- | ||
291 | subi 0,$arrsz,$idx ; j=0 | ||
292 | ___ | ||
293 | $code.=<<___ if ($BN_SZ==4); | ||
294 | fldws,ma 4($bp),${fbi} ; bp[1] | ||
295 | ___ | ||
296 | $code.=<<___ if ($BN_SZ==8); | ||
297 | fldws 0($bp),${fbi} ; bp[1] in flipped word order | ||
298 | ___ | ||
299 | $code.=<<___; | ||
300 | flddx $idx($ap),${fai} ; ap[0,1] | ||
301 | flddx $idx($np),${fni} ; np[0,1] | ||
302 | fldws 8($xfer),${fti}R ; tp[0] | ||
303 | addl $hi0,$ab1,$ab1 | ||
304 | extrd,u $ab1,31,32,$hi0 | ||
305 | extrd,u $ab1,63,32,$ab1 | ||
306 | ldo 8($idx),$idx ; j++++ | ||
307 | xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[1] | ||
308 | xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[1] | ||
309 | addl $hi1,$nm1,$nm1 | ||
310 | addl $ab1,$nm1,$nm1 | ||
311 | extrd,u $nm1,31,32,$hi1 | ||
312 | fstws,mb ${fab0}L,-8($xfer) ; save high part | ||
313 | stw $nm1,-4($tp) ; tp[j-1] | ||
314 | |||
315 | fcpy,sgl %fr0,${fti}L ; zero high part | ||
316 | fcpy,sgl %fr0,${fab0}L | ||
317 | addl $hi1,$hi0,$hi0 | ||
318 | extrd,u $hi0,31,32,$hi1 | ||
319 | fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double | ||
320 | fcnvxf,dbl,dbl ${fab0},${fab0} | ||
321 | stw $hi0,0($tp) | ||
322 | stw $hi1,4($tp) | ||
323 | |||
324 | fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] | ||
325 | fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int | ||
326 | xmpyu ${fn0},${fab0}R,${fm0} | ||
327 | ldo `$LOCALS+32+4`($fp),$tp | ||
328 | L\$outer | ||
329 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m | ||
330 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m | ||
331 | fstds ${fab0},-16($xfer) ; 33-bit value | ||
332 | fstds ${fnm0},-8($xfer) | ||
333 | flddx $idx($ap),${fai} ; ap[2] | ||
334 | flddx $idx($np),${fni} ; np[2] | ||
335 | ldo 8($idx),$idx ; j++++ | ||
336 | ldd -16($xfer),$ab0 ; 33-bit value | ||
337 | ldd -8($xfer),$nm0 | ||
338 | ldw 0($xfer),$hi0 ; high part | ||
339 | |||
340 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] | ||
341 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
342 | extrd,u $ab0,31,32,$ti0 ; carry bit | ||
343 | extrd,u $ab0,63,32,$ab0 | ||
344 | fstds ${fab1},0($xfer) | ||
345 | addl $ti0,$hi0,$hi0 ; account carry bit | ||
346 | fstds ${fnm1},8($xfer) | ||
347 | addl $ab0,$nm0,$nm0 ; low part is discarded | ||
348 | ldw 0($tp),$ti1 ; tp[1] | ||
349 | extrd,u $nm0,31,32,$hi1 | ||
350 | fstds ${fab0},-16($xfer) | ||
351 | fstds ${fnm0},-8($xfer) | ||
352 | |||
353 | L\$inner | ||
354 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[i] | ||
355 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m | ||
356 | ldd 0($xfer),$ab1 | ||
357 | fstds ${fab1},0($xfer) | ||
358 | addl $hi0,$ti1,$ti1 | ||
359 | addl $ti1,$ab1,$ab1 | ||
360 | ldd 8($xfer),$nm1 | ||
361 | fstds ${fnm1},8($xfer) | ||
362 | extrd,u $ab1,31,32,$hi0 | ||
363 | extrd,u $ab1,63,32,$ab1 | ||
364 | flddx $idx($ap),${fai} ; ap[j,j+1] | ||
365 | flddx $idx($np),${fni} ; np[j,j+1] | ||
366 | addl $hi1,$nm1,$nm1 | ||
367 | addl $ab1,$nm1,$nm1 | ||
368 | ldw 4($tp),$ti0 ; tp[j] | ||
369 | stw $nm1,-4($tp) ; tp[j-1] | ||
370 | |||
371 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] | ||
372 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
373 | ldd -16($xfer),$ab0 | ||
374 | fstds ${fab0},-16($xfer) | ||
375 | addl $hi0,$ti0,$ti0 | ||
376 | addl $ti0,$ab0,$ab0 | ||
377 | ldd -8($xfer),$nm0 | ||
378 | fstds ${fnm0},-8($xfer) | ||
379 | extrd,u $ab0,31,32,$hi0 | ||
380 | extrd,u $nm1,31,32,$hi1 | ||
381 | ldw 8($tp),$ti1 ; tp[j] | ||
382 | extrd,u $ab0,63,32,$ab0 | ||
383 | addl $hi1,$nm0,$nm0 | ||
384 | addl $ab0,$nm0,$nm0 | ||
385 | stw,ma $nm0,8($tp) ; tp[j-1] | ||
386 | addib,<> 8,$idx,L\$inner ; j++++ | ||
387 | extrd,u $nm0,31,32,$hi1 | ||
388 | |||
389 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[i] | ||
390 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m | ||
391 | ldd 0($xfer),$ab1 | ||
392 | fstds ${fab1},0($xfer) | ||
393 | addl $hi0,$ti1,$ti1 | ||
394 | addl $ti1,$ab1,$ab1 | ||
395 | ldd 8($xfer),$nm1 | ||
396 | fstds ${fnm1},8($xfer) | ||
397 | extrd,u $ab1,31,32,$hi0 | ||
398 | extrd,u $ab1,63,32,$ab1 | ||
399 | ldw 4($tp),$ti0 ; tp[j] | ||
400 | addl $hi1,$nm1,$nm1 | ||
401 | addl $ab1,$nm1,$nm1 | ||
402 | ldd -16($xfer),$ab0 | ||
403 | ldd -8($xfer),$nm0 | ||
404 | extrd,u $nm1,31,32,$hi1 | ||
405 | |||
406 | addl $hi0,$ab0,$ab0 | ||
407 | addl $ti0,$ab0,$ab0 | ||
408 | stw $nm1,-4($tp) ; tp[j-1] | ||
409 | extrd,u $ab0,31,32,$hi0 | ||
410 | ldw 8($tp),$ti1 ; tp[j] | ||
411 | extrd,u $ab0,63,32,$ab0 | ||
412 | addl $hi1,$nm0,$nm0 | ||
413 | ldd 0($xfer),$ab1 | ||
414 | addl $ab0,$nm0,$nm0 | ||
415 | ldd,mb 8($xfer),$nm1 | ||
416 | extrd,u $nm0,31,32,$hi1 | ||
417 | stw,ma $nm0,8($tp) ; tp[j-1] | ||
418 | |||
419 | addib,= -1,$num,L\$outerdone ; i-- | ||
420 | subi 0,$arrsz,$idx ; j=0 | ||
421 | ___ | ||
422 | $code.=<<___ if ($BN_SZ==4); | ||
423 | fldws,ma 4($bp),${fbi} ; bp[i] | ||
424 | ___ | ||
425 | $code.=<<___ if ($BN_SZ==8); | ||
426 | ldi 12,$ti0 ; bp[i] in flipped word order | ||
427 | addl,ev %r0,$num,$num | ||
428 | ldi -4,$ti0 | ||
429 | addl $ti0,$bp,$bp | ||
430 | fldws 0($bp),${fbi} | ||
431 | ___ | ||
432 | $code.=<<___; | ||
433 | flddx $idx($ap),${fai} ; ap[0] | ||
434 | addl $hi0,$ab1,$ab1 | ||
435 | flddx $idx($np),${fni} ; np[0] | ||
436 | fldws 8($xfer),${fti}R ; tp[0] | ||
437 | addl $ti1,$ab1,$ab1 | ||
438 | extrd,u $ab1,31,32,$hi0 | ||
439 | extrd,u $ab1,63,32,$ab1 | ||
440 | |||
441 | ldo 8($idx),$idx ; j++++ | ||
442 | xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[i] | ||
443 | xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[i] | ||
444 | ldw 4($tp),$ti0 ; tp[j] | ||
445 | |||
446 | addl $hi1,$nm1,$nm1 | ||
447 | fstws,mb ${fab0}L,-8($xfer) ; save high part | ||
448 | addl $ab1,$nm1,$nm1 | ||
449 | extrd,u $nm1,31,32,$hi1 | ||
450 | fcpy,sgl %fr0,${fti}L ; zero high part | ||
451 | fcpy,sgl %fr0,${fab0}L | ||
452 | stw $nm1,-4($tp) ; tp[j-1] | ||
453 | |||
454 | fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double | ||
455 | fcnvxf,dbl,dbl ${fab0},${fab0} | ||
456 | addl $hi1,$hi0,$hi0 | ||
457 | fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] | ||
458 | addl $ti0,$hi0,$hi0 | ||
459 | extrd,u $hi0,31,32,$hi1 | ||
460 | fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int | ||
461 | stw $hi0,0($tp) | ||
462 | stw $hi1,4($tp) | ||
463 | xmpyu ${fn0},${fab0}R,${fm0} | ||
464 | |||
465 | b L\$outer | ||
466 | ldo `$LOCALS+32+4`($fp),$tp | ||
467 | |||
468 | L\$outerdone | ||
469 | addl $hi0,$ab1,$ab1 | ||
470 | addl $ti1,$ab1,$ab1 | ||
471 | extrd,u $ab1,31,32,$hi0 | ||
472 | extrd,u $ab1,63,32,$ab1 | ||
473 | |||
474 | ldw 4($tp),$ti0 ; tp[j] | ||
475 | |||
476 | addl $hi1,$nm1,$nm1 | ||
477 | addl $ab1,$nm1,$nm1 | ||
478 | extrd,u $nm1,31,32,$hi1 | ||
479 | stw $nm1,-4($tp) ; tp[j-1] | ||
480 | |||
481 | addl $hi1,$hi0,$hi0 | ||
482 | addl $ti0,$hi0,$hi0 | ||
483 | extrd,u $hi0,31,32,$hi1 | ||
484 | stw $hi0,0($tp) | ||
485 | stw $hi1,4($tp) | ||
486 | |||
487 | ldo `$LOCALS+32`($fp),$tp | ||
488 | sub %r0,%r0,%r0 ; clear borrow | ||
489 | ___ | ||
490 | $code.=<<___ if ($BN_SZ==4); | ||
491 | ldws,ma 4($tp),$ti0 | ||
492 | extru,= $rp,31,3,%r0 ; is rp 64-bit aligned? | ||
493 | b L\$sub_pa11 | ||
494 | addl $tp,$arrsz,$tp | ||
495 | L\$sub | ||
496 | ldwx $idx($np),$hi0 | ||
497 | subb $ti0,$hi0,$hi1 | ||
498 | ldwx $idx($tp),$ti0 | ||
499 | addib,<> 4,$idx,L\$sub | ||
500 | stws,ma $hi1,4($rp) | ||
501 | |||
502 | subb $ti0,%r0,$hi1 | ||
503 | ldo -4($tp),$tp | ||
504 | ___ | ||
505 | $code.=<<___ if ($BN_SZ==8); | ||
506 | ldd,ma 8($tp),$ti0 | ||
507 | L\$sub | ||
508 | ldd $idx($np),$hi0 | ||
509 | shrpd $ti0,$ti0,32,$ti0 ; flip word order | ||
510 | std $ti0,-8($tp) ; save flipped value | ||
511 | sub,db $ti0,$hi0,$hi1 | ||
512 | ldd,ma 8($tp),$ti0 | ||
513 | addib,<> 8,$idx,L\$sub | ||
514 | std,ma $hi1,8($rp) | ||
515 | |||
516 | extrd,u $ti0,31,32,$ti0 ; carry in flipped word order | ||
517 | sub,db $ti0,%r0,$hi1 | ||
518 | ldo -8($tp),$tp | ||
519 | ___ | ||
520 | $code.=<<___; | ||
521 | and $tp,$hi1,$ap | ||
522 | andcm $rp,$hi1,$bp | ||
523 | or $ap,$bp,$np | ||
524 | |||
525 | sub $rp,$arrsz,$rp ; rewind rp | ||
526 | subi 0,$arrsz,$idx | ||
527 | ldo `$LOCALS+32`($fp),$tp | ||
528 | L\$copy | ||
529 | ldd $idx($np),$hi0 | ||
530 | std,ma %r0,8($tp) | ||
531 | addib,<> 8,$idx,.-8 ; L\$copy | ||
532 | std,ma $hi0,8($rp) | ||
533 | ___ | ||
534 | |||
535 | if ($BN_SZ==4) { # PA-RISC 1.1 code-path | ||
536 | $ablo=$ab0; | ||
537 | $abhi=$ab1; | ||
538 | $nmlo0=$nm0; | ||
539 | $nmhi0=$nm1; | ||
540 | $nmlo1="%r9"; | ||
541 | $nmhi1="%r8"; | ||
542 | |||
543 | $code.=<<___; | ||
544 | b L\$done | ||
545 | nop | ||
546 | |||
547 | .ALIGN 8 | ||
548 | L\$parisc11 | ||
549 | #endif | ||
550 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] | ||
551 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
552 | ldw -12($xfer),$ablo | ||
553 | ldw -16($xfer),$hi0 | ||
554 | ldw -4($xfer),$nmlo0 | ||
555 | ldw -8($xfer),$nmhi0 | ||
556 | fstds ${fab0},-16($xfer) | ||
557 | fstds ${fnm0},-8($xfer) | ||
558 | |||
559 | ldo 8($idx),$idx ; j++++ | ||
560 | add $ablo,$nmlo0,$nmlo0 ; discarded | ||
561 | addc %r0,$nmhi0,$hi1 | ||
562 | ldw 4($xfer),$ablo | ||
563 | ldw 0($xfer),$abhi | ||
564 | nop | ||
565 | |||
566 | L\$1st_pa11 | ||
567 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[0] | ||
568 | flddx $idx($ap),${fai} ; ap[j,j+1] | ||
569 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m | ||
570 | flddx $idx($np),${fni} ; np[j,j+1] | ||
571 | add $hi0,$ablo,$ablo | ||
572 | ldw 12($xfer),$nmlo1 | ||
573 | addc %r0,$abhi,$hi0 | ||
574 | ldw 8($xfer),$nmhi1 | ||
575 | add $ablo,$nmlo1,$nmlo1 | ||
576 | fstds ${fab1},0($xfer) | ||
577 | addc %r0,$nmhi1,$nmhi1 | ||
578 | fstds ${fnm1},8($xfer) | ||
579 | add $hi1,$nmlo1,$nmlo1 | ||
580 | ldw -12($xfer),$ablo | ||
581 | addc %r0,$nmhi1,$hi1 | ||
582 | ldw -16($xfer),$abhi | ||
583 | |||
584 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] | ||
585 | ldw -4($xfer),$nmlo0 | ||
586 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
587 | ldw -8($xfer),$nmhi0 | ||
588 | add $hi0,$ablo,$ablo | ||
589 | stw $nmlo1,-4($tp) ; tp[j-1] | ||
590 | addc %r0,$abhi,$hi0 | ||
591 | fstds ${fab0},-16($xfer) | ||
592 | add $ablo,$nmlo0,$nmlo0 | ||
593 | fstds ${fnm0},-8($xfer) | ||
594 | addc %r0,$nmhi0,$nmhi0 | ||
595 | ldw 0($xfer),$abhi | ||
596 | add $hi1,$nmlo0,$nmlo0 | ||
597 | ldw 4($xfer),$ablo | ||
598 | stws,ma $nmlo0,8($tp) ; tp[j-1] | ||
599 | addib,<> 8,$idx,L\$1st_pa11 ; j++++ | ||
600 | addc %r0,$nmhi0,$hi1 | ||
601 | |||
602 | ldw 8($xfer),$nmhi1 | ||
603 | ldw 12($xfer),$nmlo1 | ||
604 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[0] | ||
605 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m | ||
606 | add $hi0,$ablo,$ablo | ||
607 | fstds ${fab1},0($xfer) | ||
608 | addc %r0,$abhi,$hi0 | ||
609 | fstds ${fnm1},8($xfer) | ||
610 | add $ablo,$nmlo1,$nmlo1 | ||
611 | ldw -16($xfer),$abhi | ||
612 | addc %r0,$nmhi1,$nmhi1 | ||
613 | ldw -12($xfer),$ablo | ||
614 | add $hi1,$nmlo1,$nmlo1 | ||
615 | ldw -8($xfer),$nmhi0 | ||
616 | addc %r0,$nmhi1,$hi1 | ||
617 | ldw -4($xfer),$nmlo0 | ||
618 | |||
619 | add $hi0,$ablo,$ablo | ||
620 | stw $nmlo1,-4($tp) ; tp[j-1] | ||
621 | addc %r0,$abhi,$hi0 | ||
622 | ldw 0($xfer),$abhi | ||
623 | add $ablo,$nmlo0,$nmlo0 | ||
624 | ldw 4($xfer),$ablo | ||
625 | addc %r0,$nmhi0,$nmhi0 | ||
626 | ldws,mb 8($xfer),$nmhi1 | ||
627 | add $hi1,$nmlo0,$nmlo0 | ||
628 | ldw 4($xfer),$nmlo1 | ||
629 | addc %r0,$nmhi0,$hi1 | ||
630 | stws,ma $nmlo0,8($tp) ; tp[j-1] | ||
631 | |||
632 | ldo -1($num),$num ; i-- | ||
633 | subi 0,$arrsz,$idx ; j=0 | ||
634 | |||
635 | fldws,ma 4($bp),${fbi} ; bp[1] | ||
636 | flddx $idx($ap),${fai} ; ap[0,1] | ||
637 | flddx $idx($np),${fni} ; np[0,1] | ||
638 | fldws 8($xfer),${fti}R ; tp[0] | ||
639 | add $hi0,$ablo,$ablo | ||
640 | addc %r0,$abhi,$hi0 | ||
641 | ldo 8($idx),$idx ; j++++ | ||
642 | xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[1] | ||
643 | xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[1] | ||
644 | add $hi1,$nmlo1,$nmlo1 | ||
645 | addc %r0,$nmhi1,$nmhi1 | ||
646 | add $ablo,$nmlo1,$nmlo1 | ||
647 | addc %r0,$nmhi1,$hi1 | ||
648 | fstws,mb ${fab0}L,-8($xfer) ; save high part | ||
649 | stw $nmlo1,-4($tp) ; tp[j-1] | ||
650 | |||
651 | fcpy,sgl %fr0,${fti}L ; zero high part | ||
652 | fcpy,sgl %fr0,${fab0}L | ||
653 | add $hi1,$hi0,$hi0 | ||
654 | addc %r0,%r0,$hi1 | ||
655 | fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double | ||
656 | fcnvxf,dbl,dbl ${fab0},${fab0} | ||
657 | stw $hi0,0($tp) | ||
658 | stw $hi1,4($tp) | ||
659 | |||
660 | fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] | ||
661 | fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int | ||
662 | xmpyu ${fn0},${fab0}R,${fm0} | ||
663 | ldo `$LOCALS+32+4`($fp),$tp | ||
664 | L\$outer_pa11 | ||
665 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m | ||
666 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m | ||
667 | fstds ${fab0},-16($xfer) ; 33-bit value | ||
668 | fstds ${fnm0},-8($xfer) | ||
669 | flddx $idx($ap),${fai} ; ap[2,3] | ||
670 | flddx $idx($np),${fni} ; np[2,3] | ||
671 | ldw -16($xfer),$abhi ; carry bit actually | ||
672 | ldo 8($idx),$idx ; j++++ | ||
673 | ldw -12($xfer),$ablo | ||
674 | ldw -8($xfer),$nmhi0 | ||
675 | ldw -4($xfer),$nmlo0 | ||
676 | ldw 0($xfer),$hi0 ; high part | ||
677 | |||
678 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] | ||
679 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
680 | fstds ${fab1},0($xfer) | ||
681 | addl $abhi,$hi0,$hi0 ; account carry bit | ||
682 | fstds ${fnm1},8($xfer) | ||
683 | add $ablo,$nmlo0,$nmlo0 ; discarded | ||
684 | ldw 0($tp),$ti1 ; tp[1] | ||
685 | addc %r0,$nmhi0,$hi1 | ||
686 | fstds ${fab0},-16($xfer) | ||
687 | fstds ${fnm0},-8($xfer) | ||
688 | ldw 4($xfer),$ablo | ||
689 | ldw 0($xfer),$abhi | ||
690 | |||
691 | L\$inner_pa11 | ||
692 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[i] | ||
693 | flddx $idx($ap),${fai} ; ap[j,j+1] | ||
694 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m | ||
695 | flddx $idx($np),${fni} ; np[j,j+1] | ||
696 | add $hi0,$ablo,$ablo | ||
697 | ldw 4($tp),$ti0 ; tp[j] | ||
698 | addc %r0,$abhi,$abhi | ||
699 | ldw 12($xfer),$nmlo1 | ||
700 | add $ti1,$ablo,$ablo | ||
701 | ldw 8($xfer),$nmhi1 | ||
702 | addc %r0,$abhi,$hi0 | ||
703 | fstds ${fab1},0($xfer) | ||
704 | add $ablo,$nmlo1,$nmlo1 | ||
705 | fstds ${fnm1},8($xfer) | ||
706 | addc %r0,$nmhi1,$nmhi1 | ||
707 | ldw -12($xfer),$ablo | ||
708 | add $hi1,$nmlo1,$nmlo1 | ||
709 | ldw -16($xfer),$abhi | ||
710 | addc %r0,$nmhi1,$hi1 | ||
711 | |||
712 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] | ||
713 | ldw 8($tp),$ti1 ; tp[j] | ||
714 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
715 | ldw -4($xfer),$nmlo0 | ||
716 | add $hi0,$ablo,$ablo | ||
717 | ldw -8($xfer),$nmhi0 | ||
718 | addc %r0,$abhi,$abhi | ||
719 | stw $nmlo1,-4($tp) ; tp[j-1] | ||
720 | add $ti0,$ablo,$ablo | ||
721 | fstds ${fab0},-16($xfer) | ||
722 | addc %r0,$abhi,$hi0 | ||
723 | fstds ${fnm0},-8($xfer) | ||
724 | add $ablo,$nmlo0,$nmlo0 | ||
725 | ldw 4($xfer),$ablo | ||
726 | addc %r0,$nmhi0,$nmhi0 | ||
727 | ldw 0($xfer),$abhi | ||
728 | add $hi1,$nmlo0,$nmlo0 | ||
729 | stws,ma $nmlo0,8($tp) ; tp[j-1] | ||
730 | addib,<> 8,$idx,L\$inner_pa11 ; j++++ | ||
731 | addc %r0,$nmhi0,$hi1 | ||
732 | |||
733 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[i] | ||
734 | ldw 12($xfer),$nmlo1 | ||
735 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m | ||
736 | ldw 8($xfer),$nmhi1 | ||
737 | add $hi0,$ablo,$ablo | ||
738 | ldw 4($tp),$ti0 ; tp[j] | ||
739 | addc %r0,$abhi,$abhi | ||
740 | fstds ${fab1},0($xfer) | ||
741 | add $ti1,$ablo,$ablo | ||
742 | fstds ${fnm1},8($xfer) | ||
743 | addc %r0,$abhi,$hi0 | ||
744 | ldw -16($xfer),$abhi | ||
745 | add $ablo,$nmlo1,$nmlo1 | ||
746 | ldw -12($xfer),$ablo | ||
747 | addc %r0,$nmhi1,$nmhi1 | ||
748 | ldw -8($xfer),$nmhi0 | ||
749 | add $hi1,$nmlo1,$nmlo1 | ||
750 | ldw -4($xfer),$nmlo0 | ||
751 | addc %r0,$nmhi1,$hi1 | ||
752 | |||
753 | add $hi0,$ablo,$ablo | ||
754 | stw $nmlo1,-4($tp) ; tp[j-1] | ||
755 | addc %r0,$abhi,$abhi | ||
756 | add $ti0,$ablo,$ablo | ||
757 | ldw 8($tp),$ti1 ; tp[j] | ||
758 | addc %r0,$abhi,$hi0 | ||
759 | ldw 0($xfer),$abhi | ||
760 | add $ablo,$nmlo0,$nmlo0 | ||
761 | ldw 4($xfer),$ablo | ||
762 | addc %r0,$nmhi0,$nmhi0 | ||
763 | ldws,mb 8($xfer),$nmhi1 | ||
764 | add $hi1,$nmlo0,$nmlo0 | ||
765 | ldw 4($xfer),$nmlo1 | ||
766 | addc %r0,$nmhi0,$hi1 | ||
767 | stws,ma $nmlo0,8($tp) ; tp[j-1] | ||
768 | |||
769 | addib,= -1,$num,L\$outerdone_pa11; i-- | ||
770 | subi 0,$arrsz,$idx ; j=0 | ||
771 | |||
772 | fldws,ma 4($bp),${fbi} ; bp[i] | ||
773 | flddx $idx($ap),${fai} ; ap[0] | ||
774 | add $hi0,$ablo,$ablo | ||
775 | addc %r0,$abhi,$abhi | ||
776 | flddx $idx($np),${fni} ; np[0] | ||
777 | fldws 8($xfer),${fti}R ; tp[0] | ||
778 | add $ti1,$ablo,$ablo | ||
779 | addc %r0,$abhi,$hi0 | ||
780 | |||
781 | ldo 8($idx),$idx ; j++++ | ||
782 | xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[i] | ||
783 | xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[i] | ||
784 | ldw 4($tp),$ti0 ; tp[j] | ||
785 | |||
786 | add $hi1,$nmlo1,$nmlo1 | ||
787 | addc %r0,$nmhi1,$nmhi1 | ||
788 | fstws,mb ${fab0}L,-8($xfer) ; save high part | ||
789 | add $ablo,$nmlo1,$nmlo1 | ||
790 | addc %r0,$nmhi1,$hi1 | ||
791 | fcpy,sgl %fr0,${fti}L ; zero high part | ||
792 | fcpy,sgl %fr0,${fab0}L | ||
793 | stw $nmlo1,-4($tp) ; tp[j-1] | ||
794 | |||
795 | fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double | ||
796 | fcnvxf,dbl,dbl ${fab0},${fab0} | ||
797 | add $hi1,$hi0,$hi0 | ||
798 | addc %r0,%r0,$hi1 | ||
799 | fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] | ||
800 | add $ti0,$hi0,$hi0 | ||
801 | addc %r0,$hi1,$hi1 | ||
802 | fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int | ||
803 | stw $hi0,0($tp) | ||
804 | stw $hi1,4($tp) | ||
805 | xmpyu ${fn0},${fab0}R,${fm0} | ||
806 | |||
807 | b L\$outer_pa11 | ||
808 | ldo `$LOCALS+32+4`($fp),$tp | ||
809 | |||
810 | L\$outerdone_pa11 | ||
811 | add $hi0,$ablo,$ablo | ||
812 | addc %r0,$abhi,$abhi | ||
813 | add $ti1,$ablo,$ablo | ||
814 | addc %r0,$abhi,$hi0 | ||
815 | |||
816 | ldw 4($tp),$ti0 ; tp[j] | ||
817 | |||
818 | add $hi1,$nmlo1,$nmlo1 | ||
819 | addc %r0,$nmhi1,$nmhi1 | ||
820 | add $ablo,$nmlo1,$nmlo1 | ||
821 | addc %r0,$nmhi1,$hi1 | ||
822 | stw $nmlo1,-4($tp) ; tp[j-1] | ||
823 | |||
824 | add $hi1,$hi0,$hi0 | ||
825 | addc %r0,%r0,$hi1 | ||
826 | add $ti0,$hi0,$hi0 | ||
827 | addc %r0,$hi1,$hi1 | ||
828 | stw $hi0,0($tp) | ||
829 | stw $hi1,4($tp) | ||
830 | |||
831 | ldo `$LOCALS+32+4`($fp),$tp | ||
832 | sub %r0,%r0,%r0 ; clear borrow | ||
833 | ldw -4($tp),$ti0 | ||
834 | addl $tp,$arrsz,$tp | ||
835 | L\$sub_pa11 | ||
836 | ldwx $idx($np),$hi0 | ||
837 | subb $ti0,$hi0,$hi1 | ||
838 | ldwx $idx($tp),$ti0 | ||
839 | addib,<> 4,$idx,L\$sub_pa11 | ||
840 | stws,ma $hi1,4($rp) | ||
841 | |||
842 | subb $ti0,%r0,$hi1 | ||
843 | ldo -4($tp),$tp | ||
844 | and $tp,$hi1,$ap | ||
845 | andcm $rp,$hi1,$bp | ||
846 | or $ap,$bp,$np | ||
847 | |||
848 | sub $rp,$arrsz,$rp ; rewind rp | ||
849 | subi 0,$arrsz,$idx | ||
850 | ldo `$LOCALS+32`($fp),$tp | ||
851 | L\$copy_pa11 | ||
852 | ldwx $idx($np),$hi0 | ||
853 | stws,ma %r0,4($tp) | ||
854 | addib,<> 4,$idx,L\$copy_pa11 | ||
855 | stws,ma $hi0,4($rp) | ||
856 | |||
857 | nop ; alignment | ||
858 | L\$done | ||
859 | ___ | ||
860 | } | ||
861 | |||
862 | $code.=<<___; | ||
863 | ldi 1,%r28 ; signal "handled" | ||
864 | ldo $FRAME($fp),%sp ; destroy tp[num+1] | ||
865 | |||
866 | $POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue | ||
867 | $POP `-$FRAME+1*$SIZE_T`(%sp),%r4 | ||
868 | $POP `-$FRAME+2*$SIZE_T`(%sp),%r5 | ||
869 | $POP `-$FRAME+3*$SIZE_T`(%sp),%r6 | ||
870 | $POP `-$FRAME+4*$SIZE_T`(%sp),%r7 | ||
871 | $POP `-$FRAME+5*$SIZE_T`(%sp),%r8 | ||
872 | $POP `-$FRAME+6*$SIZE_T`(%sp),%r9 | ||
873 | $POP `-$FRAME+7*$SIZE_T`(%sp),%r10 | ||
874 | L\$abort | ||
875 | bv (%r2) | ||
876 | .EXIT | ||
877 | $POPMB -$FRAME(%sp),%r3 | ||
878 | .PROCEND | ||
879 | ___ | ||
880 | |||
881 | # Explicitly encode PA-RISC 2.0 instructions used in this module, so | ||
882 | # that it can be compiled with .LEVEL 1.0. It should be noted that I | ||
883 | # wouldn't have to do this, if GNU assembler understood .ALLOW 2.0 | ||
884 | # directive... | ||
885 | |||
886 | my $ldd = sub { | ||
887 | my ($mod,$args) = @_; | ||
888 | my $orig = "ldd$mod\t$args"; | ||
889 | |||
890 | if ($args =~ /%r([0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 4 | ||
891 | { my $opcode=(0x03<<26)|($2<<21)|($1<<16)|(3<<6)|$3; | ||
892 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
893 | } | ||
894 | elsif ($args =~ /(\-?[0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 5 | ||
895 | { my $opcode=(0x03<<26)|($2<<21)|(1<<12)|(3<<6)|$3; | ||
896 | $opcode|=(($1&0xF)<<17)|(($1&0x10)<<12); # encode offset | ||
897 | $opcode|=(1<<5) if ($mod =~ /^,m/); | ||
898 | $opcode|=(1<<13) if ($mod =~ /^,mb/); | ||
899 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
900 | } | ||
901 | else { "\t".$orig; } | ||
902 | }; | ||
903 | |||
904 | my $std = sub { | ||
905 | my ($mod,$args) = @_; | ||
906 | my $orig = "std$mod\t$args"; | ||
907 | |||
908 | if ($args =~ /%r([0-9]+),(\-?[0-9]+)\(%r([0-9]+)\)/) # format 6 | ||
909 | { my $opcode=(0x03<<26)|($3<<21)|($1<<16)|(1<<12)|(0xB<<6); | ||
910 | $opcode|=(($2&0xF)<<1)|(($2&0x10)>>4); # encode offset | ||
911 | $opcode|=(1<<5) if ($mod =~ /^,m/); | ||
912 | $opcode|=(1<<13) if ($mod =~ /^,mb/); | ||
913 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
914 | } | ||
915 | else { "\t".$orig; } | ||
916 | }; | ||
917 | |||
918 | my $extrd = sub { | ||
919 | my ($mod,$args) = @_; | ||
920 | my $orig = "extrd$mod\t$args"; | ||
921 | |||
922 | # I only have ",u" completer, it's implicitly encoded... | ||
923 | if ($args =~ /%r([0-9]+),([0-9]+),([0-9]+),%r([0-9]+)/) # format 15 | ||
924 | { my $opcode=(0x36<<26)|($1<<21)|($4<<16); | ||
925 | my $len=32-$3; | ||
926 | $opcode |= (($2&0x20)<<6)|(($2&0x1f)<<5); # encode pos | ||
927 | $opcode |= (($len&0x20)<<7)|($len&0x1f); # encode len | ||
928 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
929 | } | ||
930 | elsif ($args =~ /%r([0-9]+),%sar,([0-9]+),%r([0-9]+)/) # format 12 | ||
931 | { my $opcode=(0x34<<26)|($1<<21)|($3<<16)|(2<<11)|(1<<9); | ||
932 | my $len=32-$2; | ||
933 | $opcode |= (($len&0x20)<<3)|($len&0x1f); # encode len | ||
934 | $opcode |= (1<<13) if ($mod =~ /,\**=/); | ||
935 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
936 | } | ||
937 | else { "\t".$orig; } | ||
938 | }; | ||
939 | |||
940 | my $shrpd = sub { | ||
941 | my ($mod,$args) = @_; | ||
942 | my $orig = "shrpd$mod\t$args"; | ||
943 | |||
944 | if ($args =~ /%r([0-9]+),%r([0-9]+),([0-9]+),%r([0-9]+)/) # format 14 | ||
945 | { my $opcode=(0x34<<26)|($2<<21)|($1<<16)|(1<<10)|$4; | ||
946 | my $cpos=63-$3; | ||
947 | $opcode |= (($cpos&0x20)<<6)|(($cpos&0x1f)<<5); # encode sa | ||
948 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
949 | } | ||
950 | else { "\t".$orig; } | ||
951 | }; | ||
952 | |||
953 | my $sub = sub { | ||
954 | my ($mod,$args) = @_; | ||
955 | my $orig = "sub$mod\t$args"; | ||
956 | |||
957 | if ($mod eq ",db" && $args =~ /%r([0-9]+),%r([0-9]+),%r([0-9]+)/) { | ||
958 | my $opcode=(0x02<<26)|($2<<21)|($1<<16)|$3; | ||
959 | $opcode|=(1<<10); # e1 | ||
960 | $opcode|=(1<<8); # e2 | ||
961 | $opcode|=(1<<5); # d | ||
962 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig | ||
963 | } | ||
964 | else { "\t".$orig; } | ||
965 | }; | ||
966 | |||
967 | sub assemble { | ||
968 | my ($mnemonic,$mod,$args)=@_; | ||
969 | my $opcode = eval("\$$mnemonic"); | ||
970 | |||
971 | ref($opcode) eq 'CODE' ? &$opcode($mod,$args) : "\t$mnemonic$mod\t$args"; | ||
972 | } | ||
973 | |||
974 | foreach (split("\n",$code)) { | ||
975 | s/\`([^\`]*)\`/eval $1/ge; | ||
976 | # flip word order in 64-bit mode... | ||
977 | s/(xmpyu\s+)($fai|$fni)([LR])/$1.$2.($3 eq "L"?"R":"L")/e if ($BN_SZ==8); | ||
978 | # assemble 2.0 instructions in 32-bit mode... | ||
979 | s/^\s+([a-z]+)([\S]*)\s+([\S]*)/&assemble($1,$2,$3)/e if ($BN_SZ==4); | ||
980 | |||
981 | s/\bbv\b/bve/gm if ($SIZE_T==8); | ||
982 | |||
983 | print $_,"\n"; | ||
984 | } | ||
985 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/ppc-mont.pl b/src/lib/libcrypto/bn/asm/ppc-mont.pl deleted file mode 100644 index 68320a87f7..0000000000 --- a/src/lib/libcrypto/bn/asm/ppc-mont.pl +++ /dev/null | |||
@@ -1,329 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # April 2006 | ||
11 | |||
12 | # "Teaser" Montgomery multiplication module for PowerPC. It's possible | ||
13 | # to gain a bit more by modulo-scheduling outer loop, then dedicated | ||
14 | # squaring procedure should give further 20% and code can be adapted | ||
15 | # for 32-bit application running on 64-bit CPU. As for the latter. | ||
16 | # It won't be able to achieve "native" 64-bit performance, because in | ||
17 | # 32-bit application context every addc instruction will have to be | ||
18 | # expanded as addc, twice right shift by 32 and finally adde, etc. | ||
19 | # So far RSA *sign* performance improvement over pre-bn_mul_mont asm | ||
20 | # for 64-bit application running on PPC970/G5 is: | ||
21 | # | ||
22 | # 512-bit +65% | ||
23 | # 1024-bit +35% | ||
24 | # 2048-bit +18% | ||
25 | # 4096-bit +4% | ||
26 | |||
27 | $flavour = shift; | ||
28 | |||
29 | if ($flavour =~ /32/) { | ||
30 | $BITS= 32; | ||
31 | $BNSZ= $BITS/8; | ||
32 | $SIZE_T=4; | ||
33 | $RZONE= 224; | ||
34 | |||
35 | $LD= "lwz"; # load | ||
36 | $LDU= "lwzu"; # load and update | ||
37 | $LDX= "lwzx"; # load indexed | ||
38 | $ST= "stw"; # store | ||
39 | $STU= "stwu"; # store and update | ||
40 | $STX= "stwx"; # store indexed | ||
41 | $STUX= "stwux"; # store indexed and update | ||
42 | $UMULL= "mullw"; # unsigned multiply low | ||
43 | $UMULH= "mulhwu"; # unsigned multiply high | ||
44 | $UCMP= "cmplw"; # unsigned compare | ||
45 | $SHRI= "srwi"; # unsigned shift right by immediate | ||
46 | $PUSH= $ST; | ||
47 | $POP= $LD; | ||
48 | } elsif ($flavour =~ /64/) { | ||
49 | $BITS= 64; | ||
50 | $BNSZ= $BITS/8; | ||
51 | $SIZE_T=8; | ||
52 | $RZONE= 288; | ||
53 | |||
54 | # same as above, but 64-bit mnemonics... | ||
55 | $LD= "ld"; # load | ||
56 | $LDU= "ldu"; # load and update | ||
57 | $LDX= "ldx"; # load indexed | ||
58 | $ST= "std"; # store | ||
59 | $STU= "stdu"; # store and update | ||
60 | $STX= "stdx"; # store indexed | ||
61 | $STUX= "stdux"; # store indexed and update | ||
62 | $UMULL= "mulld"; # unsigned multiply low | ||
63 | $UMULH= "mulhdu"; # unsigned multiply high | ||
64 | $UCMP= "cmpld"; # unsigned compare | ||
65 | $SHRI= "srdi"; # unsigned shift right by immediate | ||
66 | $PUSH= $ST; | ||
67 | $POP= $LD; | ||
68 | } else { die "nonsense $flavour"; } | ||
69 | |||
70 | $FRAME=8*$SIZE_T+$RZONE; | ||
71 | $LOCALS=8*$SIZE_T; | ||
72 | |||
73 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
74 | ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or | ||
75 | ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or | ||
76 | die "can't locate ppc-xlate.pl"; | ||
77 | |||
78 | open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; | ||
79 | |||
80 | $sp="r1"; | ||
81 | $toc="r2"; | ||
82 | $rp="r3"; $ovf="r3"; | ||
83 | $ap="r4"; | ||
84 | $bp="r5"; | ||
85 | $np="r6"; | ||
86 | $n0="r7"; | ||
87 | $num="r8"; | ||
88 | $rp="r9"; # $rp is reassigned | ||
89 | $aj="r10"; | ||
90 | $nj="r11"; | ||
91 | $tj="r12"; | ||
92 | # non-volatile registers | ||
93 | $i="r20"; | ||
94 | $j="r21"; | ||
95 | $tp="r22"; | ||
96 | $m0="r23"; | ||
97 | $m1="r24"; | ||
98 | $lo0="r25"; | ||
99 | $hi0="r26"; | ||
100 | $lo1="r27"; | ||
101 | $hi1="r28"; | ||
102 | $alo="r29"; | ||
103 | $ahi="r30"; | ||
104 | $nlo="r31"; | ||
105 | # | ||
106 | $nhi="r0"; | ||
107 | |||
108 | $code=<<___; | ||
109 | .machine "any" | ||
110 | .text | ||
111 | |||
112 | .globl .bn_mul_mont | ||
113 | .align 4 | ||
114 | .bn_mul_mont: | ||
115 | cmpwi $num,4 | ||
116 | mr $rp,r3 ; $rp is reassigned | ||
117 | li r3,0 | ||
118 | bltlr | ||
119 | ___ | ||
120 | $code.=<<___ if ($BNSZ==4); | ||
121 | cmpwi $num,32 ; longer key performance is not better | ||
122 | bgelr | ||
123 | ___ | ||
124 | $code.=<<___; | ||
125 | slwi $num,$num,`log($BNSZ)/log(2)` | ||
126 | li $tj,-4096 | ||
127 | addi $ovf,$num,$FRAME | ||
128 | subf $ovf,$ovf,$sp ; $sp-$ovf | ||
129 | and $ovf,$ovf,$tj ; minimize TLB usage | ||
130 | subf $ovf,$sp,$ovf ; $ovf-$sp | ||
131 | mr $tj,$sp | ||
132 | srwi $num,$num,`log($BNSZ)/log(2)` | ||
133 | $STUX $sp,$sp,$ovf | ||
134 | |||
135 | $PUSH r20,`-12*$SIZE_T`($tj) | ||
136 | $PUSH r21,`-11*$SIZE_T`($tj) | ||
137 | $PUSH r22,`-10*$SIZE_T`($tj) | ||
138 | $PUSH r23,`-9*$SIZE_T`($tj) | ||
139 | $PUSH r24,`-8*$SIZE_T`($tj) | ||
140 | $PUSH r25,`-7*$SIZE_T`($tj) | ||
141 | $PUSH r26,`-6*$SIZE_T`($tj) | ||
142 | $PUSH r27,`-5*$SIZE_T`($tj) | ||
143 | $PUSH r28,`-4*$SIZE_T`($tj) | ||
144 | $PUSH r29,`-3*$SIZE_T`($tj) | ||
145 | $PUSH r30,`-2*$SIZE_T`($tj) | ||
146 | $PUSH r31,`-1*$SIZE_T`($tj) | ||
147 | |||
148 | $LD $n0,0($n0) ; pull n0[0] value | ||
149 | addi $num,$num,-2 ; adjust $num for counter register | ||
150 | |||
151 | $LD $m0,0($bp) ; m0=bp[0] | ||
152 | $LD $aj,0($ap) ; ap[0] | ||
153 | addi $tp,$sp,$LOCALS | ||
154 | $UMULL $lo0,$aj,$m0 ; ap[0]*bp[0] | ||
155 | $UMULH $hi0,$aj,$m0 | ||
156 | |||
157 | $LD $aj,$BNSZ($ap) ; ap[1] | ||
158 | $LD $nj,0($np) ; np[0] | ||
159 | |||
160 | $UMULL $m1,$lo0,$n0 ; "tp[0]"*n0 | ||
161 | |||
162 | $UMULL $alo,$aj,$m0 ; ap[1]*bp[0] | ||
163 | $UMULH $ahi,$aj,$m0 | ||
164 | |||
165 | $UMULL $lo1,$nj,$m1 ; np[0]*m1 | ||
166 | $UMULH $hi1,$nj,$m1 | ||
167 | $LD $nj,$BNSZ($np) ; np[1] | ||
168 | addc $lo1,$lo1,$lo0 | ||
169 | addze $hi1,$hi1 | ||
170 | |||
171 | $UMULL $nlo,$nj,$m1 ; np[1]*m1 | ||
172 | $UMULH $nhi,$nj,$m1 | ||
173 | |||
174 | mtctr $num | ||
175 | li $j,`2*$BNSZ` | ||
176 | .align 4 | ||
177 | L1st: | ||
178 | $LDX $aj,$ap,$j ; ap[j] | ||
179 | addc $lo0,$alo,$hi0 | ||
180 | $LDX $nj,$np,$j ; np[j] | ||
181 | addze $hi0,$ahi | ||
182 | $UMULL $alo,$aj,$m0 ; ap[j]*bp[0] | ||
183 | addc $lo1,$nlo,$hi1 | ||
184 | $UMULH $ahi,$aj,$m0 | ||
185 | addze $hi1,$nhi | ||
186 | $UMULL $nlo,$nj,$m1 ; np[j]*m1 | ||
187 | addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[0] | ||
188 | $UMULH $nhi,$nj,$m1 | ||
189 | addze $hi1,$hi1 | ||
190 | $ST $lo1,0($tp) ; tp[j-1] | ||
191 | |||
192 | addi $j,$j,$BNSZ ; j++ | ||
193 | addi $tp,$tp,$BNSZ ; tp++ | ||
194 | bdnz- L1st | ||
195 | ;L1st | ||
196 | addc $lo0,$alo,$hi0 | ||
197 | addze $hi0,$ahi | ||
198 | |||
199 | addc $lo1,$nlo,$hi1 | ||
200 | addze $hi1,$nhi | ||
201 | addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[0] | ||
202 | addze $hi1,$hi1 | ||
203 | $ST $lo1,0($tp) ; tp[j-1] | ||
204 | |||
205 | li $ovf,0 | ||
206 | addc $hi1,$hi1,$hi0 | ||
207 | addze $ovf,$ovf ; upmost overflow bit | ||
208 | $ST $hi1,$BNSZ($tp) | ||
209 | |||
210 | li $i,$BNSZ | ||
211 | .align 4 | ||
212 | Louter: | ||
213 | $LDX $m0,$bp,$i ; m0=bp[i] | ||
214 | $LD $aj,0($ap) ; ap[0] | ||
215 | addi $tp,$sp,$LOCALS | ||
216 | $LD $tj,$LOCALS($sp); tp[0] | ||
217 | $UMULL $lo0,$aj,$m0 ; ap[0]*bp[i] | ||
218 | $UMULH $hi0,$aj,$m0 | ||
219 | $LD $aj,$BNSZ($ap) ; ap[1] | ||
220 | $LD $nj,0($np) ; np[0] | ||
221 | addc $lo0,$lo0,$tj ; ap[0]*bp[i]+tp[0] | ||
222 | $UMULL $alo,$aj,$m0 ; ap[j]*bp[i] | ||
223 | addze $hi0,$hi0 | ||
224 | $UMULL $m1,$lo0,$n0 ; tp[0]*n0 | ||
225 | $UMULH $ahi,$aj,$m0 | ||
226 | $UMULL $lo1,$nj,$m1 ; np[0]*m1 | ||
227 | $UMULH $hi1,$nj,$m1 | ||
228 | $LD $nj,$BNSZ($np) ; np[1] | ||
229 | addc $lo1,$lo1,$lo0 | ||
230 | $UMULL $nlo,$nj,$m1 ; np[1]*m1 | ||
231 | addze $hi1,$hi1 | ||
232 | $UMULH $nhi,$nj,$m1 | ||
233 | |||
234 | mtctr $num | ||
235 | li $j,`2*$BNSZ` | ||
236 | .align 4 | ||
237 | Linner: | ||
238 | $LDX $aj,$ap,$j ; ap[j] | ||
239 | addc $lo0,$alo,$hi0 | ||
240 | $LD $tj,$BNSZ($tp) ; tp[j] | ||
241 | addze $hi0,$ahi | ||
242 | $LDX $nj,$np,$j ; np[j] | ||
243 | addc $lo1,$nlo,$hi1 | ||
244 | $UMULL $alo,$aj,$m0 ; ap[j]*bp[i] | ||
245 | addze $hi1,$nhi | ||
246 | $UMULH $ahi,$aj,$m0 | ||
247 | addc $lo0,$lo0,$tj ; ap[j]*bp[i]+tp[j] | ||
248 | $UMULL $nlo,$nj,$m1 ; np[j]*m1 | ||
249 | addze $hi0,$hi0 | ||
250 | $UMULH $nhi,$nj,$m1 | ||
251 | addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[i]+tp[j] | ||
252 | addi $j,$j,$BNSZ ; j++ | ||
253 | addze $hi1,$hi1 | ||
254 | $ST $lo1,0($tp) ; tp[j-1] | ||
255 | addi $tp,$tp,$BNSZ ; tp++ | ||
256 | bdnz- Linner | ||
257 | ;Linner | ||
258 | $LD $tj,$BNSZ($tp) ; tp[j] | ||
259 | addc $lo0,$alo,$hi0 | ||
260 | addze $hi0,$ahi | ||
261 | addc $lo0,$lo0,$tj ; ap[j]*bp[i]+tp[j] | ||
262 | addze $hi0,$hi0 | ||
263 | |||
264 | addc $lo1,$nlo,$hi1 | ||
265 | addze $hi1,$nhi | ||
266 | addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[i]+tp[j] | ||
267 | addze $hi1,$hi1 | ||
268 | $ST $lo1,0($tp) ; tp[j-1] | ||
269 | |||
270 | addic $ovf,$ovf,-1 ; move upmost overflow to XER[CA] | ||
271 | li $ovf,0 | ||
272 | adde $hi1,$hi1,$hi0 | ||
273 | addze $ovf,$ovf | ||
274 | $ST $hi1,$BNSZ($tp) | ||
275 | ; | ||
276 | slwi $tj,$num,`log($BNSZ)/log(2)` | ||
277 | $UCMP $i,$tj | ||
278 | addi $i,$i,$BNSZ | ||
279 | ble- Louter | ||
280 | |||
281 | addi $num,$num,2 ; restore $num | ||
282 | subfc $j,$j,$j ; j=0 and "clear" XER[CA] | ||
283 | addi $tp,$sp,$LOCALS | ||
284 | mtctr $num | ||
285 | |||
286 | .align 4 | ||
287 | Lsub: $LDX $tj,$tp,$j | ||
288 | $LDX $nj,$np,$j | ||
289 | subfe $aj,$nj,$tj ; tp[j]-np[j] | ||
290 | $STX $aj,$rp,$j | ||
291 | addi $j,$j,$BNSZ | ||
292 | bdnz- Lsub | ||
293 | |||
294 | li $j,0 | ||
295 | mtctr $num | ||
296 | subfe $ovf,$j,$ovf ; handle upmost overflow bit | ||
297 | and $ap,$tp,$ovf | ||
298 | andc $np,$rp,$ovf | ||
299 | or $ap,$ap,$np ; ap=borrow?tp:rp | ||
300 | |||
301 | .align 4 | ||
302 | Lcopy: ; copy or in-place refresh | ||
303 | $LDX $tj,$ap,$j | ||
304 | $STX $tj,$rp,$j | ||
305 | $STX $j,$tp,$j ; zap at once | ||
306 | addi $j,$j,$BNSZ | ||
307 | bdnz- Lcopy | ||
308 | |||
309 | $POP $tj,0($sp) | ||
310 | li r3,1 | ||
311 | $POP r20,`-12*$SIZE_T`($tj) | ||
312 | $POP r21,`-11*$SIZE_T`($tj) | ||
313 | $POP r22,`-10*$SIZE_T`($tj) | ||
314 | $POP r23,`-9*$SIZE_T`($tj) | ||
315 | $POP r24,`-8*$SIZE_T`($tj) | ||
316 | $POP r25,`-7*$SIZE_T`($tj) | ||
317 | $POP r26,`-6*$SIZE_T`($tj) | ||
318 | $POP r27,`-5*$SIZE_T`($tj) | ||
319 | $POP r28,`-4*$SIZE_T`($tj) | ||
320 | $POP r29,`-3*$SIZE_T`($tj) | ||
321 | $POP r30,`-2*$SIZE_T`($tj) | ||
322 | $POP r31,`-1*$SIZE_T`($tj) | ||
323 | mr $sp,$tj | ||
324 | blr | ||
325 | ___ | ||
326 | |||
327 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
328 | print $code; | ||
329 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/ppc.pl b/src/lib/libcrypto/bn/asm/ppc.pl deleted file mode 100644 index c9b7f9477d..0000000000 --- a/src/lib/libcrypto/bn/asm/ppc.pl +++ /dev/null | |||
@@ -1,1968 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # Implemented as a Perl wrapper as we want to support several different | ||
4 | # architectures with single file. We pick up the target based on the | ||
5 | # file name we are asked to generate. | ||
6 | # | ||
7 | # It should be noted though that this perl code is nothing like | ||
8 | # <openssl>/crypto/perlasm/x86*. In this case perl is used pretty much | ||
9 | # as pre-processor to cover for platform differences in name decoration, | ||
10 | # linker tables, 32-/64-bit instruction sets... | ||
11 | # | ||
12 | # As you might know there're several PowerPC ABI in use. Most notably | ||
13 | # Linux and AIX use different 32-bit ABIs. Good news are that these ABIs | ||
14 | # are similar enough to implement leaf(!) functions, which would be ABI | ||
15 | # neutral. And that's what you find here: ABI neutral leaf functions. | ||
16 | # In case you wonder what that is... | ||
17 | # | ||
18 | # AIX performance | ||
19 | # | ||
20 | # MEASUREMENTS WITH cc ON a 200 MhZ PowerPC 604e. | ||
21 | # | ||
22 | # The following is the performance of 32-bit compiler | ||
23 | # generated code: | ||
24 | # | ||
25 | # OpenSSL 0.9.6c 21 dec 2001 | ||
26 | # built on: Tue Jun 11 11:06:51 EDT 2002 | ||
27 | # options:bn(64,32) ... | ||
28 | #compiler: cc -DTHREADS -DAIX -DB_ENDIAN -DBN_LLONG -O3 | ||
29 | # sign verify sign/s verify/s | ||
30 | #rsa 512 bits 0.0098s 0.0009s 102.0 1170.6 | ||
31 | #rsa 1024 bits 0.0507s 0.0026s 19.7 387.5 | ||
32 | #rsa 2048 bits 0.3036s 0.0085s 3.3 117.1 | ||
33 | #rsa 4096 bits 2.0040s 0.0299s 0.5 33.4 | ||
34 | #dsa 512 bits 0.0087s 0.0106s 114.3 94.5 | ||
35 | #dsa 1024 bits 0.0256s 0.0313s 39.0 32.0 | ||
36 | # | ||
37 | # Same benchmark with this assembler code: | ||
38 | # | ||
39 | #rsa 512 bits 0.0056s 0.0005s 178.6 2049.2 | ||
40 | #rsa 1024 bits 0.0283s 0.0015s 35.3 674.1 | ||
41 | #rsa 2048 bits 0.1744s 0.0050s 5.7 201.2 | ||
42 | #rsa 4096 bits 1.1644s 0.0179s 0.9 55.7 | ||
43 | #dsa 512 bits 0.0052s 0.0062s 191.6 162.0 | ||
44 | #dsa 1024 bits 0.0149s 0.0180s 67.0 55.5 | ||
45 | # | ||
46 | # Number of operations increases by at almost 75% | ||
47 | # | ||
48 | # Here are performance numbers for 64-bit compiler | ||
49 | # generated code: | ||
50 | # | ||
51 | # OpenSSL 0.9.6g [engine] 9 Aug 2002 | ||
52 | # built on: Fri Apr 18 16:59:20 EDT 2003 | ||
53 | # options:bn(64,64) ... | ||
54 | # compiler: cc -DTHREADS -D_REENTRANT -q64 -DB_ENDIAN -O3 | ||
55 | # sign verify sign/s verify/s | ||
56 | #rsa 512 bits 0.0028s 0.0003s 357.1 3844.4 | ||
57 | #rsa 1024 bits 0.0148s 0.0008s 67.5 1239.7 | ||
58 | #rsa 2048 bits 0.0963s 0.0028s 10.4 353.0 | ||
59 | #rsa 4096 bits 0.6538s 0.0102s 1.5 98.1 | ||
60 | #dsa 512 bits 0.0026s 0.0032s 382.5 313.7 | ||
61 | #dsa 1024 bits 0.0081s 0.0099s 122.8 100.6 | ||
62 | # | ||
63 | # Same benchmark with this assembler code: | ||
64 | # | ||
65 | #rsa 512 bits 0.0020s 0.0002s 510.4 6273.7 | ||
66 | #rsa 1024 bits 0.0088s 0.0005s 114.1 2128.3 | ||
67 | #rsa 2048 bits 0.0540s 0.0016s 18.5 622.5 | ||
68 | #rsa 4096 bits 0.3700s 0.0058s 2.7 171.0 | ||
69 | #dsa 512 bits 0.0016s 0.0020s 610.7 507.1 | ||
70 | #dsa 1024 bits 0.0047s 0.0058s 212.5 173.2 | ||
71 | # | ||
72 | # Again, performance increases by at about 75% | ||
73 | # | ||
74 | # Mac OS X, Apple G5 1.8GHz (Note this is 32 bit code) | ||
75 | # OpenSSL 0.9.7c 30 Sep 2003 | ||
76 | # | ||
77 | # Original code. | ||
78 | # | ||
79 | #rsa 512 bits 0.0011s 0.0001s 906.1 11012.5 | ||
80 | #rsa 1024 bits 0.0060s 0.0003s 166.6 3363.1 | ||
81 | #rsa 2048 bits 0.0370s 0.0010s 27.1 982.4 | ||
82 | #rsa 4096 bits 0.2426s 0.0036s 4.1 280.4 | ||
83 | #dsa 512 bits 0.0010s 0.0012s 1038.1 841.5 | ||
84 | #dsa 1024 bits 0.0030s 0.0037s 329.6 269.7 | ||
85 | #dsa 2048 bits 0.0101s 0.0127s 98.9 78.6 | ||
86 | # | ||
87 | # Same benchmark with this assembler code: | ||
88 | # | ||
89 | #rsa 512 bits 0.0007s 0.0001s 1416.2 16645.9 | ||
90 | #rsa 1024 bits 0.0036s 0.0002s 274.4 5380.6 | ||
91 | #rsa 2048 bits 0.0222s 0.0006s 45.1 1589.5 | ||
92 | #rsa 4096 bits 0.1469s 0.0022s 6.8 449.6 | ||
93 | #dsa 512 bits 0.0006s 0.0007s 1664.2 1376.2 | ||
94 | #dsa 1024 bits 0.0018s 0.0023s 545.0 442.2 | ||
95 | #dsa 2048 bits 0.0061s 0.0075s 163.5 132.8 | ||
96 | # | ||
97 | # Performance increase of ~60% | ||
98 | # | ||
99 | # If you have comments or suggestions to improve code send | ||
100 | # me a note at schari@us.ibm.com | ||
101 | # | ||
102 | |||
103 | $flavour = shift; | ||
104 | |||
105 | if ($flavour =~ /32/) { | ||
106 | $BITS= 32; | ||
107 | $BNSZ= $BITS/8; | ||
108 | $ISA= "\"ppc\""; | ||
109 | |||
110 | $LD= "lwz"; # load | ||
111 | $LDU= "lwzu"; # load and update | ||
112 | $ST= "stw"; # store | ||
113 | $STU= "stwu"; # store and update | ||
114 | $UMULL= "mullw"; # unsigned multiply low | ||
115 | $UMULH= "mulhwu"; # unsigned multiply high | ||
116 | $UDIV= "divwu"; # unsigned divide | ||
117 | $UCMPI= "cmplwi"; # unsigned compare with immediate | ||
118 | $UCMP= "cmplw"; # unsigned compare | ||
119 | $CNTLZ= "cntlzw"; # count leading zeros | ||
120 | $SHL= "slw"; # shift left | ||
121 | $SHR= "srw"; # unsigned shift right | ||
122 | $SHRI= "srwi"; # unsigned shift right by immediate | ||
123 | $SHLI= "slwi"; # shift left by immediate | ||
124 | $CLRU= "clrlwi"; # clear upper bits | ||
125 | $INSR= "insrwi"; # insert right | ||
126 | $ROTL= "rotlwi"; # rotate left by immediate | ||
127 | $TR= "tw"; # conditional trap | ||
128 | } elsif ($flavour =~ /64/) { | ||
129 | $BITS= 64; | ||
130 | $BNSZ= $BITS/8; | ||
131 | $ISA= "\"ppc64\""; | ||
132 | |||
133 | # same as above, but 64-bit mnemonics... | ||
134 | $LD= "ld"; # load | ||
135 | $LDU= "ldu"; # load and update | ||
136 | $ST= "std"; # store | ||
137 | $STU= "stdu"; # store and update | ||
138 | $UMULL= "mulld"; # unsigned multiply low | ||
139 | $UMULH= "mulhdu"; # unsigned multiply high | ||
140 | $UDIV= "divdu"; # unsigned divide | ||
141 | $UCMPI= "cmpldi"; # unsigned compare with immediate | ||
142 | $UCMP= "cmpld"; # unsigned compare | ||
143 | $CNTLZ= "cntlzd"; # count leading zeros | ||
144 | $SHL= "sld"; # shift left | ||
145 | $SHR= "srd"; # unsigned shift right | ||
146 | $SHRI= "srdi"; # unsigned shift right by immediate | ||
147 | $SHLI= "sldi"; # shift left by immediate | ||
148 | $CLRU= "clrldi"; # clear upper bits | ||
149 | $INSR= "insrdi"; # insert right | ||
150 | $ROTL= "rotldi"; # rotate left by immediate | ||
151 | $TR= "td"; # conditional trap | ||
152 | } else { die "nonsense $flavour"; } | ||
153 | |||
154 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
155 | ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or | ||
156 | ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or | ||
157 | die "can't locate ppc-xlate.pl"; | ||
158 | |||
159 | open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; | ||
160 | |||
161 | $data=<<EOF; | ||
162 | #-------------------------------------------------------------------- | ||
163 | # | ||
164 | # | ||
165 | # | ||
166 | # | ||
167 | # File: ppc32.s | ||
168 | # | ||
169 | # Created by: Suresh Chari | ||
170 | # IBM Thomas J. Watson Research Library | ||
171 | # Hawthorne, NY | ||
172 | # | ||
173 | # | ||
174 | # Description: Optimized assembly routines for OpenSSL crypto | ||
175 | # on the 32 bitPowerPC platform. | ||
176 | # | ||
177 | # | ||
178 | # Version History | ||
179 | # | ||
180 | # 2. Fixed bn_add,bn_sub and bn_div_words, added comments, | ||
181 | # cleaned up code. Also made a single version which can | ||
182 | # be used for both the AIX and Linux compilers. See NOTE | ||
183 | # below. | ||
184 | # 12/05/03 Suresh Chari | ||
185 | # (with lots of help from) Andy Polyakov | ||
186 | ## | ||
187 | # 1. Initial version 10/20/02 Suresh Chari | ||
188 | # | ||
189 | # | ||
190 | # The following file works for the xlc,cc | ||
191 | # and gcc compilers. | ||
192 | # | ||
193 | # NOTE: To get the file to link correctly with the gcc compiler | ||
194 | # you have to change the names of the routines and remove | ||
195 | # the first .(dot) character. This should automatically | ||
196 | # be done in the build process. | ||
197 | # | ||
198 | # Hand optimized assembly code for the following routines | ||
199 | # | ||
200 | # bn_sqr_comba4 | ||
201 | # bn_sqr_comba8 | ||
202 | # bn_mul_comba4 | ||
203 | # bn_mul_comba8 | ||
204 | # bn_sub_words | ||
205 | # bn_add_words | ||
206 | # bn_div_words | ||
207 | # bn_sqr_words | ||
208 | # bn_mul_words | ||
209 | # bn_mul_add_words | ||
210 | # | ||
211 | # NOTE: It is possible to optimize this code more for | ||
212 | # specific PowerPC or Power architectures. On the Northstar | ||
213 | # architecture the optimizations in this file do | ||
214 | # NOT provide much improvement. | ||
215 | # | ||
216 | # If you have comments or suggestions to improve code send | ||
217 | # me a note at schari\@us.ibm.com | ||
218 | # | ||
219 | #-------------------------------------------------------------------------- | ||
220 | # | ||
221 | # Defines to be used in the assembly code. | ||
222 | # | ||
223 | #.set r0,0 # we use it as storage for value of 0 | ||
224 | #.set SP,1 # preserved | ||
225 | #.set RTOC,2 # preserved | ||
226 | #.set r3,3 # 1st argument/return value | ||
227 | #.set r4,4 # 2nd argument/volatile register | ||
228 | #.set r5,5 # 3rd argument/volatile register | ||
229 | #.set r6,6 # ... | ||
230 | #.set r7,7 | ||
231 | #.set r8,8 | ||
232 | #.set r9,9 | ||
233 | #.set r10,10 | ||
234 | #.set r11,11 | ||
235 | #.set r12,12 | ||
236 | #.set r13,13 # not used, nor any other "below" it... | ||
237 | |||
238 | # Declare function names to be global | ||
239 | # NOTE: For gcc these names MUST be changed to remove | ||
240 | # the first . i.e. for example change ".bn_sqr_comba4" | ||
241 | # to "bn_sqr_comba4". This should be automatically done | ||
242 | # in the build. | ||
243 | |||
244 | .globl .bn_sqr_comba4 | ||
245 | .globl .bn_sqr_comba8 | ||
246 | .globl .bn_mul_comba4 | ||
247 | .globl .bn_mul_comba8 | ||
248 | .globl .bn_sub_words | ||
249 | .globl .bn_add_words | ||
250 | .globl .bn_div_words | ||
251 | .globl .bn_sqr_words | ||
252 | .globl .bn_mul_words | ||
253 | .globl .bn_mul_add_words | ||
254 | |||
255 | # .text section | ||
256 | |||
257 | .machine "any" | ||
258 | |||
259 | # | ||
260 | # NOTE: The following label name should be changed to | ||
261 | # "bn_sqr_comba4" i.e. remove the first dot | ||
262 | # for the gcc compiler. This should be automatically | ||
263 | # done in the build | ||
264 | # | ||
265 | |||
266 | .align 4 | ||
267 | .bn_sqr_comba4: | ||
268 | # | ||
269 | # Optimized version of bn_sqr_comba4. | ||
270 | # | ||
271 | # void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a) | ||
272 | # r3 contains r | ||
273 | # r4 contains a | ||
274 | # | ||
275 | # Freely use registers r5,r6,r7,r8,r9,r10,r11 as follows: | ||
276 | # | ||
277 | # r5,r6 are the two BN_ULONGs being multiplied. | ||
278 | # r7,r8 are the results of the 32x32 giving 64 bit multiply. | ||
279 | # r9,r10, r11 are the equivalents of c1,c2, c3. | ||
280 | # Here's the assembly | ||
281 | # | ||
282 | # | ||
283 | xor r0,r0,r0 # set r0 = 0. Used in the addze | ||
284 | # instructions below | ||
285 | |||
286 | #sqr_add_c(a,0,c1,c2,c3) | ||
287 | $LD r5,`0*$BNSZ`(r4) | ||
288 | $UMULL r9,r5,r5 | ||
289 | $UMULH r10,r5,r5 #in first iteration. No need | ||
290 | #to add since c1=c2=c3=0. | ||
291 | # Note c3(r11) is NOT set to 0 | ||
292 | # but will be. | ||
293 | |||
294 | $ST r9,`0*$BNSZ`(r3) # r[0]=c1; | ||
295 | # sqr_add_c2(a,1,0,c2,c3,c1); | ||
296 | $LD r6,`1*$BNSZ`(r4) | ||
297 | $UMULL r7,r5,r6 | ||
298 | $UMULH r8,r5,r6 | ||
299 | |||
300 | addc r7,r7,r7 # compute (r7,r8)=2*(r7,r8) | ||
301 | adde r8,r8,r8 | ||
302 | addze r9,r0 # catch carry if any. | ||
303 | # r9= r0(=0) and carry | ||
304 | |||
305 | addc r10,r7,r10 # now add to temp result. | ||
306 | addze r11,r8 # r8 added to r11 which is 0 | ||
307 | addze r9,r9 | ||
308 | |||
309 | $ST r10,`1*$BNSZ`(r3) #r[1]=c2; | ||
310 | #sqr_add_c(a,1,c3,c1,c2) | ||
311 | $UMULL r7,r6,r6 | ||
312 | $UMULH r8,r6,r6 | ||
313 | addc r11,r7,r11 | ||
314 | adde r9,r8,r9 | ||
315 | addze r10,r0 | ||
316 | #sqr_add_c2(a,2,0,c3,c1,c2) | ||
317 | $LD r6,`2*$BNSZ`(r4) | ||
318 | $UMULL r7,r5,r6 | ||
319 | $UMULH r8,r5,r6 | ||
320 | |||
321 | addc r7,r7,r7 | ||
322 | adde r8,r8,r8 | ||
323 | addze r10,r10 | ||
324 | |||
325 | addc r11,r7,r11 | ||
326 | adde r9,r8,r9 | ||
327 | addze r10,r10 | ||
328 | $ST r11,`2*$BNSZ`(r3) #r[2]=c3 | ||
329 | #sqr_add_c2(a,3,0,c1,c2,c3); | ||
330 | $LD r6,`3*$BNSZ`(r4) | ||
331 | $UMULL r7,r5,r6 | ||
332 | $UMULH r8,r5,r6 | ||
333 | addc r7,r7,r7 | ||
334 | adde r8,r8,r8 | ||
335 | addze r11,r0 | ||
336 | |||
337 | addc r9,r7,r9 | ||
338 | adde r10,r8,r10 | ||
339 | addze r11,r11 | ||
340 | #sqr_add_c2(a,2,1,c1,c2,c3); | ||
341 | $LD r5,`1*$BNSZ`(r4) | ||
342 | $LD r6,`2*$BNSZ`(r4) | ||
343 | $UMULL r7,r5,r6 | ||
344 | $UMULH r8,r5,r6 | ||
345 | |||
346 | addc r7,r7,r7 | ||
347 | adde r8,r8,r8 | ||
348 | addze r11,r11 | ||
349 | addc r9,r7,r9 | ||
350 | adde r10,r8,r10 | ||
351 | addze r11,r11 | ||
352 | $ST r9,`3*$BNSZ`(r3) #r[3]=c1 | ||
353 | #sqr_add_c(a,2,c2,c3,c1); | ||
354 | $UMULL r7,r6,r6 | ||
355 | $UMULH r8,r6,r6 | ||
356 | addc r10,r7,r10 | ||
357 | adde r11,r8,r11 | ||
358 | addze r9,r0 | ||
359 | #sqr_add_c2(a,3,1,c2,c3,c1); | ||
360 | $LD r6,`3*$BNSZ`(r4) | ||
361 | $UMULL r7,r5,r6 | ||
362 | $UMULH r8,r5,r6 | ||
363 | addc r7,r7,r7 | ||
364 | adde r8,r8,r8 | ||
365 | addze r9,r9 | ||
366 | |||
367 | addc r10,r7,r10 | ||
368 | adde r11,r8,r11 | ||
369 | addze r9,r9 | ||
370 | $ST r10,`4*$BNSZ`(r3) #r[4]=c2 | ||
371 | #sqr_add_c2(a,3,2,c3,c1,c2); | ||
372 | $LD r5,`2*$BNSZ`(r4) | ||
373 | $UMULL r7,r5,r6 | ||
374 | $UMULH r8,r5,r6 | ||
375 | addc r7,r7,r7 | ||
376 | adde r8,r8,r8 | ||
377 | addze r10,r0 | ||
378 | |||
379 | addc r11,r7,r11 | ||
380 | adde r9,r8,r9 | ||
381 | addze r10,r10 | ||
382 | $ST r11,`5*$BNSZ`(r3) #r[5] = c3 | ||
383 | #sqr_add_c(a,3,c1,c2,c3); | ||
384 | $UMULL r7,r6,r6 | ||
385 | $UMULH r8,r6,r6 | ||
386 | addc r9,r7,r9 | ||
387 | adde r10,r8,r10 | ||
388 | |||
389 | $ST r9,`6*$BNSZ`(r3) #r[6]=c1 | ||
390 | $ST r10,`7*$BNSZ`(r3) #r[7]=c2 | ||
391 | blr | ||
392 | |||
393 | # | ||
394 | # NOTE: The following label name should be changed to | ||
395 | # "bn_sqr_comba8" i.e. remove the first dot | ||
396 | # for the gcc compiler. This should be automatically | ||
397 | # done in the build | ||
398 | # | ||
399 | |||
400 | .align 4 | ||
401 | .bn_sqr_comba8: | ||
402 | # | ||
403 | # This is an optimized version of the bn_sqr_comba8 routine. | ||
404 | # Tightly uses the adde instruction | ||
405 | # | ||
406 | # | ||
407 | # void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a) | ||
408 | # r3 contains r | ||
409 | # r4 contains a | ||
410 | # | ||
411 | # Freely use registers r5,r6,r7,r8,r9,r10,r11 as follows: | ||
412 | # | ||
413 | # r5,r6 are the two BN_ULONGs being multiplied. | ||
414 | # r7,r8 are the results of the 32x32 giving 64 bit multiply. | ||
415 | # r9,r10, r11 are the equivalents of c1,c2, c3. | ||
416 | # | ||
417 | # Possible optimization of loading all 8 longs of a into registers | ||
418 | # doesnt provide any speedup | ||
419 | # | ||
420 | |||
421 | xor r0,r0,r0 #set r0 = 0.Used in addze | ||
422 | #instructions below. | ||
423 | |||
424 | #sqr_add_c(a,0,c1,c2,c3); | ||
425 | $LD r5,`0*$BNSZ`(r4) | ||
426 | $UMULL r9,r5,r5 #1st iteration: no carries. | ||
427 | $UMULH r10,r5,r5 | ||
428 | $ST r9,`0*$BNSZ`(r3) # r[0]=c1; | ||
429 | #sqr_add_c2(a,1,0,c2,c3,c1); | ||
430 | $LD r6,`1*$BNSZ`(r4) | ||
431 | $UMULL r7,r5,r6 | ||
432 | $UMULH r8,r5,r6 | ||
433 | |||
434 | addc r10,r7,r10 #add the two register number | ||
435 | adde r11,r8,r0 # (r8,r7) to the three register | ||
436 | addze r9,r0 # number (r9,r11,r10).NOTE:r0=0 | ||
437 | |||
438 | addc r10,r7,r10 #add the two register number | ||
439 | adde r11,r8,r11 # (r8,r7) to the three register | ||
440 | addze r9,r9 # number (r9,r11,r10). | ||
441 | |||
442 | $ST r10,`1*$BNSZ`(r3) # r[1]=c2 | ||
443 | |||
444 | #sqr_add_c(a,1,c3,c1,c2); | ||
445 | $UMULL r7,r6,r6 | ||
446 | $UMULH r8,r6,r6 | ||
447 | addc r11,r7,r11 | ||
448 | adde r9,r8,r9 | ||
449 | addze r10,r0 | ||
450 | #sqr_add_c2(a,2,0,c3,c1,c2); | ||
451 | $LD r6,`2*$BNSZ`(r4) | ||
452 | $UMULL r7,r5,r6 | ||
453 | $UMULH r8,r5,r6 | ||
454 | |||
455 | addc r11,r7,r11 | ||
456 | adde r9,r8,r9 | ||
457 | addze r10,r10 | ||
458 | |||
459 | addc r11,r7,r11 | ||
460 | adde r9,r8,r9 | ||
461 | addze r10,r10 | ||
462 | |||
463 | $ST r11,`2*$BNSZ`(r3) #r[2]=c3 | ||
464 | #sqr_add_c2(a,3,0,c1,c2,c3); | ||
465 | $LD r6,`3*$BNSZ`(r4) #r6 = a[3]. r5 is already a[0]. | ||
466 | $UMULL r7,r5,r6 | ||
467 | $UMULH r8,r5,r6 | ||
468 | |||
469 | addc r9,r7,r9 | ||
470 | adde r10,r8,r10 | ||
471 | addze r11,r0 | ||
472 | |||
473 | addc r9,r7,r9 | ||
474 | adde r10,r8,r10 | ||
475 | addze r11,r11 | ||
476 | #sqr_add_c2(a,2,1,c1,c2,c3); | ||
477 | $LD r5,`1*$BNSZ`(r4) | ||
478 | $LD r6,`2*$BNSZ`(r4) | ||
479 | $UMULL r7,r5,r6 | ||
480 | $UMULH r8,r5,r6 | ||
481 | |||
482 | addc r9,r7,r9 | ||
483 | adde r10,r8,r10 | ||
484 | addze r11,r11 | ||
485 | |||
486 | addc r9,r7,r9 | ||
487 | adde r10,r8,r10 | ||
488 | addze r11,r11 | ||
489 | |||
490 | $ST r9,`3*$BNSZ`(r3) #r[3]=c1; | ||
491 | #sqr_add_c(a,2,c2,c3,c1); | ||
492 | $UMULL r7,r6,r6 | ||
493 | $UMULH r8,r6,r6 | ||
494 | |||
495 | addc r10,r7,r10 | ||
496 | adde r11,r8,r11 | ||
497 | addze r9,r0 | ||
498 | #sqr_add_c2(a,3,1,c2,c3,c1); | ||
499 | $LD r6,`3*$BNSZ`(r4) | ||
500 | $UMULL r7,r5,r6 | ||
501 | $UMULH r8,r5,r6 | ||
502 | |||
503 | addc r10,r7,r10 | ||
504 | adde r11,r8,r11 | ||
505 | addze r9,r9 | ||
506 | |||
507 | addc r10,r7,r10 | ||
508 | adde r11,r8,r11 | ||
509 | addze r9,r9 | ||
510 | #sqr_add_c2(a,4,0,c2,c3,c1); | ||
511 | $LD r5,`0*$BNSZ`(r4) | ||
512 | $LD r6,`4*$BNSZ`(r4) | ||
513 | $UMULL r7,r5,r6 | ||
514 | $UMULH r8,r5,r6 | ||
515 | |||
516 | addc r10,r7,r10 | ||
517 | adde r11,r8,r11 | ||
518 | addze r9,r9 | ||
519 | |||
520 | addc r10,r7,r10 | ||
521 | adde r11,r8,r11 | ||
522 | addze r9,r9 | ||
523 | $ST r10,`4*$BNSZ`(r3) #r[4]=c2; | ||
524 | #sqr_add_c2(a,5,0,c3,c1,c2); | ||
525 | $LD r6,`5*$BNSZ`(r4) | ||
526 | $UMULL r7,r5,r6 | ||
527 | $UMULH r8,r5,r6 | ||
528 | |||
529 | addc r11,r7,r11 | ||
530 | adde r9,r8,r9 | ||
531 | addze r10,r0 | ||
532 | |||
533 | addc r11,r7,r11 | ||
534 | adde r9,r8,r9 | ||
535 | addze r10,r10 | ||
536 | #sqr_add_c2(a,4,1,c3,c1,c2); | ||
537 | $LD r5,`1*$BNSZ`(r4) | ||
538 | $LD r6,`4*$BNSZ`(r4) | ||
539 | $UMULL r7,r5,r6 | ||
540 | $UMULH r8,r5,r6 | ||
541 | |||
542 | addc r11,r7,r11 | ||
543 | adde r9,r8,r9 | ||
544 | addze r10,r10 | ||
545 | |||
546 | addc r11,r7,r11 | ||
547 | adde r9,r8,r9 | ||
548 | addze r10,r10 | ||
549 | #sqr_add_c2(a,3,2,c3,c1,c2); | ||
550 | $LD r5,`2*$BNSZ`(r4) | ||
551 | $LD r6,`3*$BNSZ`(r4) | ||
552 | $UMULL r7,r5,r6 | ||
553 | $UMULH r8,r5,r6 | ||
554 | |||
555 | addc r11,r7,r11 | ||
556 | adde r9,r8,r9 | ||
557 | addze r10,r10 | ||
558 | |||
559 | addc r11,r7,r11 | ||
560 | adde r9,r8,r9 | ||
561 | addze r10,r10 | ||
562 | $ST r11,`5*$BNSZ`(r3) #r[5]=c3; | ||
563 | #sqr_add_c(a,3,c1,c2,c3); | ||
564 | $UMULL r7,r6,r6 | ||
565 | $UMULH r8,r6,r6 | ||
566 | addc r9,r7,r9 | ||
567 | adde r10,r8,r10 | ||
568 | addze r11,r0 | ||
569 | #sqr_add_c2(a,4,2,c1,c2,c3); | ||
570 | $LD r6,`4*$BNSZ`(r4) | ||
571 | $UMULL r7,r5,r6 | ||
572 | $UMULH r8,r5,r6 | ||
573 | |||
574 | addc r9,r7,r9 | ||
575 | adde r10,r8,r10 | ||
576 | addze r11,r11 | ||
577 | |||
578 | addc r9,r7,r9 | ||
579 | adde r10,r8,r10 | ||
580 | addze r11,r11 | ||
581 | #sqr_add_c2(a,5,1,c1,c2,c3); | ||
582 | $LD r5,`1*$BNSZ`(r4) | ||
583 | $LD r6,`5*$BNSZ`(r4) | ||
584 | $UMULL r7,r5,r6 | ||
585 | $UMULH r8,r5,r6 | ||
586 | |||
587 | addc r9,r7,r9 | ||
588 | adde r10,r8,r10 | ||
589 | addze r11,r11 | ||
590 | |||
591 | addc r9,r7,r9 | ||
592 | adde r10,r8,r10 | ||
593 | addze r11,r11 | ||
594 | #sqr_add_c2(a,6,0,c1,c2,c3); | ||
595 | $LD r5,`0*$BNSZ`(r4) | ||
596 | $LD r6,`6*$BNSZ`(r4) | ||
597 | $UMULL r7,r5,r6 | ||
598 | $UMULH r8,r5,r6 | ||
599 | addc r9,r7,r9 | ||
600 | adde r10,r8,r10 | ||
601 | addze r11,r11 | ||
602 | addc r9,r7,r9 | ||
603 | adde r10,r8,r10 | ||
604 | addze r11,r11 | ||
605 | $ST r9,`6*$BNSZ`(r3) #r[6]=c1; | ||
606 | #sqr_add_c2(a,7,0,c2,c3,c1); | ||
607 | $LD r6,`7*$BNSZ`(r4) | ||
608 | $UMULL r7,r5,r6 | ||
609 | $UMULH r8,r5,r6 | ||
610 | |||
611 | addc r10,r7,r10 | ||
612 | adde r11,r8,r11 | ||
613 | addze r9,r0 | ||
614 | addc r10,r7,r10 | ||
615 | adde r11,r8,r11 | ||
616 | addze r9,r9 | ||
617 | #sqr_add_c2(a,6,1,c2,c3,c1); | ||
618 | $LD r5,`1*$BNSZ`(r4) | ||
619 | $LD r6,`6*$BNSZ`(r4) | ||
620 | $UMULL r7,r5,r6 | ||
621 | $UMULH r8,r5,r6 | ||
622 | |||
623 | addc r10,r7,r10 | ||
624 | adde r11,r8,r11 | ||
625 | addze r9,r9 | ||
626 | addc r10,r7,r10 | ||
627 | adde r11,r8,r11 | ||
628 | addze r9,r9 | ||
629 | #sqr_add_c2(a,5,2,c2,c3,c1); | ||
630 | $LD r5,`2*$BNSZ`(r4) | ||
631 | $LD r6,`5*$BNSZ`(r4) | ||
632 | $UMULL r7,r5,r6 | ||
633 | $UMULH r8,r5,r6 | ||
634 | addc r10,r7,r10 | ||
635 | adde r11,r8,r11 | ||
636 | addze r9,r9 | ||
637 | addc r10,r7,r10 | ||
638 | adde r11,r8,r11 | ||
639 | addze r9,r9 | ||
640 | #sqr_add_c2(a,4,3,c2,c3,c1); | ||
641 | $LD r5,`3*$BNSZ`(r4) | ||
642 | $LD r6,`4*$BNSZ`(r4) | ||
643 | $UMULL r7,r5,r6 | ||
644 | $UMULH r8,r5,r6 | ||
645 | |||
646 | addc r10,r7,r10 | ||
647 | adde r11,r8,r11 | ||
648 | addze r9,r9 | ||
649 | addc r10,r7,r10 | ||
650 | adde r11,r8,r11 | ||
651 | addze r9,r9 | ||
652 | $ST r10,`7*$BNSZ`(r3) #r[7]=c2; | ||
653 | #sqr_add_c(a,4,c3,c1,c2); | ||
654 | $UMULL r7,r6,r6 | ||
655 | $UMULH r8,r6,r6 | ||
656 | addc r11,r7,r11 | ||
657 | adde r9,r8,r9 | ||
658 | addze r10,r0 | ||
659 | #sqr_add_c2(a,5,3,c3,c1,c2); | ||
660 | $LD r6,`5*$BNSZ`(r4) | ||
661 | $UMULL r7,r5,r6 | ||
662 | $UMULH r8,r5,r6 | ||
663 | addc r11,r7,r11 | ||
664 | adde r9,r8,r9 | ||
665 | addze r10,r10 | ||
666 | addc r11,r7,r11 | ||
667 | adde r9,r8,r9 | ||
668 | addze r10,r10 | ||
669 | #sqr_add_c2(a,6,2,c3,c1,c2); | ||
670 | $LD r5,`2*$BNSZ`(r4) | ||
671 | $LD r6,`6*$BNSZ`(r4) | ||
672 | $UMULL r7,r5,r6 | ||
673 | $UMULH r8,r5,r6 | ||
674 | addc r11,r7,r11 | ||
675 | adde r9,r8,r9 | ||
676 | addze r10,r10 | ||
677 | |||
678 | addc r11,r7,r11 | ||
679 | adde r9,r8,r9 | ||
680 | addze r10,r10 | ||
681 | #sqr_add_c2(a,7,1,c3,c1,c2); | ||
682 | $LD r5,`1*$BNSZ`(r4) | ||
683 | $LD r6,`7*$BNSZ`(r4) | ||
684 | $UMULL r7,r5,r6 | ||
685 | $UMULH r8,r5,r6 | ||
686 | addc r11,r7,r11 | ||
687 | adde r9,r8,r9 | ||
688 | addze r10,r10 | ||
689 | addc r11,r7,r11 | ||
690 | adde r9,r8,r9 | ||
691 | addze r10,r10 | ||
692 | $ST r11,`8*$BNSZ`(r3) #r[8]=c3; | ||
693 | #sqr_add_c2(a,7,2,c1,c2,c3); | ||
694 | $LD r5,`2*$BNSZ`(r4) | ||
695 | $UMULL r7,r5,r6 | ||
696 | $UMULH r8,r5,r6 | ||
697 | |||
698 | addc r9,r7,r9 | ||
699 | adde r10,r8,r10 | ||
700 | addze r11,r0 | ||
701 | addc r9,r7,r9 | ||
702 | adde r10,r8,r10 | ||
703 | addze r11,r11 | ||
704 | #sqr_add_c2(a,6,3,c1,c2,c3); | ||
705 | $LD r5,`3*$BNSZ`(r4) | ||
706 | $LD r6,`6*$BNSZ`(r4) | ||
707 | $UMULL r7,r5,r6 | ||
708 | $UMULH r8,r5,r6 | ||
709 | addc r9,r7,r9 | ||
710 | adde r10,r8,r10 | ||
711 | addze r11,r11 | ||
712 | addc r9,r7,r9 | ||
713 | adde r10,r8,r10 | ||
714 | addze r11,r11 | ||
715 | #sqr_add_c2(a,5,4,c1,c2,c3); | ||
716 | $LD r5,`4*$BNSZ`(r4) | ||
717 | $LD r6,`5*$BNSZ`(r4) | ||
718 | $UMULL r7,r5,r6 | ||
719 | $UMULH r8,r5,r6 | ||
720 | addc r9,r7,r9 | ||
721 | adde r10,r8,r10 | ||
722 | addze r11,r11 | ||
723 | addc r9,r7,r9 | ||
724 | adde r10,r8,r10 | ||
725 | addze r11,r11 | ||
726 | $ST r9,`9*$BNSZ`(r3) #r[9]=c1; | ||
727 | #sqr_add_c(a,5,c2,c3,c1); | ||
728 | $UMULL r7,r6,r6 | ||
729 | $UMULH r8,r6,r6 | ||
730 | addc r10,r7,r10 | ||
731 | adde r11,r8,r11 | ||
732 | addze r9,r0 | ||
733 | #sqr_add_c2(a,6,4,c2,c3,c1); | ||
734 | $LD r6,`6*$BNSZ`(r4) | ||
735 | $UMULL r7,r5,r6 | ||
736 | $UMULH r8,r5,r6 | ||
737 | addc r10,r7,r10 | ||
738 | adde r11,r8,r11 | ||
739 | addze r9,r9 | ||
740 | addc r10,r7,r10 | ||
741 | adde r11,r8,r11 | ||
742 | addze r9,r9 | ||
743 | #sqr_add_c2(a,7,3,c2,c3,c1); | ||
744 | $LD r5,`3*$BNSZ`(r4) | ||
745 | $LD r6,`7*$BNSZ`(r4) | ||
746 | $UMULL r7,r5,r6 | ||
747 | $UMULH r8,r5,r6 | ||
748 | addc r10,r7,r10 | ||
749 | adde r11,r8,r11 | ||
750 | addze r9,r9 | ||
751 | addc r10,r7,r10 | ||
752 | adde r11,r8,r11 | ||
753 | addze r9,r9 | ||
754 | $ST r10,`10*$BNSZ`(r3) #r[10]=c2; | ||
755 | #sqr_add_c2(a,7,4,c3,c1,c2); | ||
756 | $LD r5,`4*$BNSZ`(r4) | ||
757 | $UMULL r7,r5,r6 | ||
758 | $UMULH r8,r5,r6 | ||
759 | addc r11,r7,r11 | ||
760 | adde r9,r8,r9 | ||
761 | addze r10,r0 | ||
762 | addc r11,r7,r11 | ||
763 | adde r9,r8,r9 | ||
764 | addze r10,r10 | ||
765 | #sqr_add_c2(a,6,5,c3,c1,c2); | ||
766 | $LD r5,`5*$BNSZ`(r4) | ||
767 | $LD r6,`6*$BNSZ`(r4) | ||
768 | $UMULL r7,r5,r6 | ||
769 | $UMULH r8,r5,r6 | ||
770 | addc r11,r7,r11 | ||
771 | adde r9,r8,r9 | ||
772 | addze r10,r10 | ||
773 | addc r11,r7,r11 | ||
774 | adde r9,r8,r9 | ||
775 | addze r10,r10 | ||
776 | $ST r11,`11*$BNSZ`(r3) #r[11]=c3; | ||
777 | #sqr_add_c(a,6,c1,c2,c3); | ||
778 | $UMULL r7,r6,r6 | ||
779 | $UMULH r8,r6,r6 | ||
780 | addc r9,r7,r9 | ||
781 | adde r10,r8,r10 | ||
782 | addze r11,r0 | ||
783 | #sqr_add_c2(a,7,5,c1,c2,c3) | ||
784 | $LD r6,`7*$BNSZ`(r4) | ||
785 | $UMULL r7,r5,r6 | ||
786 | $UMULH r8,r5,r6 | ||
787 | addc r9,r7,r9 | ||
788 | adde r10,r8,r10 | ||
789 | addze r11,r11 | ||
790 | addc r9,r7,r9 | ||
791 | adde r10,r8,r10 | ||
792 | addze r11,r11 | ||
793 | $ST r9,`12*$BNSZ`(r3) #r[12]=c1; | ||
794 | |||
795 | #sqr_add_c2(a,7,6,c2,c3,c1) | ||
796 | $LD r5,`6*$BNSZ`(r4) | ||
797 | $UMULL r7,r5,r6 | ||
798 | $UMULH r8,r5,r6 | ||
799 | addc r10,r7,r10 | ||
800 | adde r11,r8,r11 | ||
801 | addze r9,r0 | ||
802 | addc r10,r7,r10 | ||
803 | adde r11,r8,r11 | ||
804 | addze r9,r9 | ||
805 | $ST r10,`13*$BNSZ`(r3) #r[13]=c2; | ||
806 | #sqr_add_c(a,7,c3,c1,c2); | ||
807 | $UMULL r7,r6,r6 | ||
808 | $UMULH r8,r6,r6 | ||
809 | addc r11,r7,r11 | ||
810 | adde r9,r8,r9 | ||
811 | $ST r11,`14*$BNSZ`(r3) #r[14]=c3; | ||
812 | $ST r9, `15*$BNSZ`(r3) #r[15]=c1; | ||
813 | |||
814 | |||
815 | blr | ||
816 | |||
817 | # | ||
818 | # NOTE: The following label name should be changed to | ||
819 | # "bn_mul_comba4" i.e. remove the first dot | ||
820 | # for the gcc compiler. This should be automatically | ||
821 | # done in the build | ||
822 | # | ||
823 | |||
824 | .align 4 | ||
825 | .bn_mul_comba4: | ||
826 | # | ||
827 | # This is an optimized version of the bn_mul_comba4 routine. | ||
828 | # | ||
829 | # void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
830 | # r3 contains r | ||
831 | # r4 contains a | ||
832 | # r5 contains b | ||
833 | # r6, r7 are the 2 BN_ULONGs being multiplied. | ||
834 | # r8, r9 are the results of the 32x32 giving 64 multiply. | ||
835 | # r10, r11, r12 are the equivalents of c1, c2, and c3. | ||
836 | # | ||
837 | xor r0,r0,r0 #r0=0. Used in addze below. | ||
838 | #mul_add_c(a[0],b[0],c1,c2,c3); | ||
839 | $LD r6,`0*$BNSZ`(r4) | ||
840 | $LD r7,`0*$BNSZ`(r5) | ||
841 | $UMULL r10,r6,r7 | ||
842 | $UMULH r11,r6,r7 | ||
843 | $ST r10,`0*$BNSZ`(r3) #r[0]=c1 | ||
844 | #mul_add_c(a[0],b[1],c2,c3,c1); | ||
845 | $LD r7,`1*$BNSZ`(r5) | ||
846 | $UMULL r8,r6,r7 | ||
847 | $UMULH r9,r6,r7 | ||
848 | addc r11,r8,r11 | ||
849 | adde r12,r9,r0 | ||
850 | addze r10,r0 | ||
851 | #mul_add_c(a[1],b[0],c2,c3,c1); | ||
852 | $LD r6, `1*$BNSZ`(r4) | ||
853 | $LD r7, `0*$BNSZ`(r5) | ||
854 | $UMULL r8,r6,r7 | ||
855 | $UMULH r9,r6,r7 | ||
856 | addc r11,r8,r11 | ||
857 | adde r12,r9,r12 | ||
858 | addze r10,r10 | ||
859 | $ST r11,`1*$BNSZ`(r3) #r[1]=c2 | ||
860 | #mul_add_c(a[2],b[0],c3,c1,c2); | ||
861 | $LD r6,`2*$BNSZ`(r4) | ||
862 | $UMULL r8,r6,r7 | ||
863 | $UMULH r9,r6,r7 | ||
864 | addc r12,r8,r12 | ||
865 | adde r10,r9,r10 | ||
866 | addze r11,r0 | ||
867 | #mul_add_c(a[1],b[1],c3,c1,c2); | ||
868 | $LD r6,`1*$BNSZ`(r4) | ||
869 | $LD r7,`1*$BNSZ`(r5) | ||
870 | $UMULL r8,r6,r7 | ||
871 | $UMULH r9,r6,r7 | ||
872 | addc r12,r8,r12 | ||
873 | adde r10,r9,r10 | ||
874 | addze r11,r11 | ||
875 | #mul_add_c(a[0],b[2],c3,c1,c2); | ||
876 | $LD r6,`0*$BNSZ`(r4) | ||
877 | $LD r7,`2*$BNSZ`(r5) | ||
878 | $UMULL r8,r6,r7 | ||
879 | $UMULH r9,r6,r7 | ||
880 | addc r12,r8,r12 | ||
881 | adde r10,r9,r10 | ||
882 | addze r11,r11 | ||
883 | $ST r12,`2*$BNSZ`(r3) #r[2]=c3 | ||
884 | #mul_add_c(a[0],b[3],c1,c2,c3); | ||
885 | $LD r7,`3*$BNSZ`(r5) | ||
886 | $UMULL r8,r6,r7 | ||
887 | $UMULH r9,r6,r7 | ||
888 | addc r10,r8,r10 | ||
889 | adde r11,r9,r11 | ||
890 | addze r12,r0 | ||
891 | #mul_add_c(a[1],b[2],c1,c2,c3); | ||
892 | $LD r6,`1*$BNSZ`(r4) | ||
893 | $LD r7,`2*$BNSZ`(r5) | ||
894 | $UMULL r8,r6,r7 | ||
895 | $UMULH r9,r6,r7 | ||
896 | addc r10,r8,r10 | ||
897 | adde r11,r9,r11 | ||
898 | addze r12,r12 | ||
899 | #mul_add_c(a[2],b[1],c1,c2,c3); | ||
900 | $LD r6,`2*$BNSZ`(r4) | ||
901 | $LD r7,`1*$BNSZ`(r5) | ||
902 | $UMULL r8,r6,r7 | ||
903 | $UMULH r9,r6,r7 | ||
904 | addc r10,r8,r10 | ||
905 | adde r11,r9,r11 | ||
906 | addze r12,r12 | ||
907 | #mul_add_c(a[3],b[0],c1,c2,c3); | ||
908 | $LD r6,`3*$BNSZ`(r4) | ||
909 | $LD r7,`0*$BNSZ`(r5) | ||
910 | $UMULL r8,r6,r7 | ||
911 | $UMULH r9,r6,r7 | ||
912 | addc r10,r8,r10 | ||
913 | adde r11,r9,r11 | ||
914 | addze r12,r12 | ||
915 | $ST r10,`3*$BNSZ`(r3) #r[3]=c1 | ||
916 | #mul_add_c(a[3],b[1],c2,c3,c1); | ||
917 | $LD r7,`1*$BNSZ`(r5) | ||
918 | $UMULL r8,r6,r7 | ||
919 | $UMULH r9,r6,r7 | ||
920 | addc r11,r8,r11 | ||
921 | adde r12,r9,r12 | ||
922 | addze r10,r0 | ||
923 | #mul_add_c(a[2],b[2],c2,c3,c1); | ||
924 | $LD r6,`2*$BNSZ`(r4) | ||
925 | $LD r7,`2*$BNSZ`(r5) | ||
926 | $UMULL r8,r6,r7 | ||
927 | $UMULH r9,r6,r7 | ||
928 | addc r11,r8,r11 | ||
929 | adde r12,r9,r12 | ||
930 | addze r10,r10 | ||
931 | #mul_add_c(a[1],b[3],c2,c3,c1); | ||
932 | $LD r6,`1*$BNSZ`(r4) | ||
933 | $LD r7,`3*$BNSZ`(r5) | ||
934 | $UMULL r8,r6,r7 | ||
935 | $UMULH r9,r6,r7 | ||
936 | addc r11,r8,r11 | ||
937 | adde r12,r9,r12 | ||
938 | addze r10,r10 | ||
939 | $ST r11,`4*$BNSZ`(r3) #r[4]=c2 | ||
940 | #mul_add_c(a[2],b[3],c3,c1,c2); | ||
941 | $LD r6,`2*$BNSZ`(r4) | ||
942 | $UMULL r8,r6,r7 | ||
943 | $UMULH r9,r6,r7 | ||
944 | addc r12,r8,r12 | ||
945 | adde r10,r9,r10 | ||
946 | addze r11,r0 | ||
947 | #mul_add_c(a[3],b[2],c3,c1,c2); | ||
948 | $LD r6,`3*$BNSZ`(r4) | ||
949 | $LD r7,`2*$BNSZ`(r5) | ||
950 | $UMULL r8,r6,r7 | ||
951 | $UMULH r9,r6,r7 | ||
952 | addc r12,r8,r12 | ||
953 | adde r10,r9,r10 | ||
954 | addze r11,r11 | ||
955 | $ST r12,`5*$BNSZ`(r3) #r[5]=c3 | ||
956 | #mul_add_c(a[3],b[3],c1,c2,c3); | ||
957 | $LD r7,`3*$BNSZ`(r5) | ||
958 | $UMULL r8,r6,r7 | ||
959 | $UMULH r9,r6,r7 | ||
960 | addc r10,r8,r10 | ||
961 | adde r11,r9,r11 | ||
962 | |||
963 | $ST r10,`6*$BNSZ`(r3) #r[6]=c1 | ||
964 | $ST r11,`7*$BNSZ`(r3) #r[7]=c2 | ||
965 | blr | ||
966 | |||
967 | # | ||
968 | # NOTE: The following label name should be changed to | ||
969 | # "bn_mul_comba8" i.e. remove the first dot | ||
970 | # for the gcc compiler. This should be automatically | ||
971 | # done in the build | ||
972 | # | ||
973 | |||
974 | .align 4 | ||
975 | .bn_mul_comba8: | ||
976 | # | ||
977 | # Optimized version of the bn_mul_comba8 routine. | ||
978 | # | ||
979 | # void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
980 | # r3 contains r | ||
981 | # r4 contains a | ||
982 | # r5 contains b | ||
983 | # r6, r7 are the 2 BN_ULONGs being multiplied. | ||
984 | # r8, r9 are the results of the 32x32 giving 64 multiply. | ||
985 | # r10, r11, r12 are the equivalents of c1, c2, and c3. | ||
986 | # | ||
987 | xor r0,r0,r0 #r0=0. Used in addze below. | ||
988 | |||
989 | #mul_add_c(a[0],b[0],c1,c2,c3); | ||
990 | $LD r6,`0*$BNSZ`(r4) #a[0] | ||
991 | $LD r7,`0*$BNSZ`(r5) #b[0] | ||
992 | $UMULL r10,r6,r7 | ||
993 | $UMULH r11,r6,r7 | ||
994 | $ST r10,`0*$BNSZ`(r3) #r[0]=c1; | ||
995 | #mul_add_c(a[0],b[1],c2,c3,c1); | ||
996 | $LD r7,`1*$BNSZ`(r5) | ||
997 | $UMULL r8,r6,r7 | ||
998 | $UMULH r9,r6,r7 | ||
999 | addc r11,r11,r8 | ||
1000 | addze r12,r9 # since we didnt set r12 to zero before. | ||
1001 | addze r10,r0 | ||
1002 | #mul_add_c(a[1],b[0],c2,c3,c1); | ||
1003 | $LD r6,`1*$BNSZ`(r4) | ||
1004 | $LD r7,`0*$BNSZ`(r5) | ||
1005 | $UMULL r8,r6,r7 | ||
1006 | $UMULH r9,r6,r7 | ||
1007 | addc r11,r11,r8 | ||
1008 | adde r12,r12,r9 | ||
1009 | addze r10,r10 | ||
1010 | $ST r11,`1*$BNSZ`(r3) #r[1]=c2; | ||
1011 | #mul_add_c(a[2],b[0],c3,c1,c2); | ||
1012 | $LD r6,`2*$BNSZ`(r4) | ||
1013 | $UMULL r8,r6,r7 | ||
1014 | $UMULH r9,r6,r7 | ||
1015 | addc r12,r12,r8 | ||
1016 | adde r10,r10,r9 | ||
1017 | addze r11,r0 | ||
1018 | #mul_add_c(a[1],b[1],c3,c1,c2); | ||
1019 | $LD r6,`1*$BNSZ`(r4) | ||
1020 | $LD r7,`1*$BNSZ`(r5) | ||
1021 | $UMULL r8,r6,r7 | ||
1022 | $UMULH r9,r6,r7 | ||
1023 | addc r12,r12,r8 | ||
1024 | adde r10,r10,r9 | ||
1025 | addze r11,r11 | ||
1026 | #mul_add_c(a[0],b[2],c3,c1,c2); | ||
1027 | $LD r6,`0*$BNSZ`(r4) | ||
1028 | $LD r7,`2*$BNSZ`(r5) | ||
1029 | $UMULL r8,r6,r7 | ||
1030 | $UMULH r9,r6,r7 | ||
1031 | addc r12,r12,r8 | ||
1032 | adde r10,r10,r9 | ||
1033 | addze r11,r11 | ||
1034 | $ST r12,`2*$BNSZ`(r3) #r[2]=c3; | ||
1035 | #mul_add_c(a[0],b[3],c1,c2,c3); | ||
1036 | $LD r7,`3*$BNSZ`(r5) | ||
1037 | $UMULL r8,r6,r7 | ||
1038 | $UMULH r9,r6,r7 | ||
1039 | addc r10,r10,r8 | ||
1040 | adde r11,r11,r9 | ||
1041 | addze r12,r0 | ||
1042 | #mul_add_c(a[1],b[2],c1,c2,c3); | ||
1043 | $LD r6,`1*$BNSZ`(r4) | ||
1044 | $LD r7,`2*$BNSZ`(r5) | ||
1045 | $UMULL r8,r6,r7 | ||
1046 | $UMULH r9,r6,r7 | ||
1047 | addc r10,r10,r8 | ||
1048 | adde r11,r11,r9 | ||
1049 | addze r12,r12 | ||
1050 | |||
1051 | #mul_add_c(a[2],b[1],c1,c2,c3); | ||
1052 | $LD r6,`2*$BNSZ`(r4) | ||
1053 | $LD r7,`1*$BNSZ`(r5) | ||
1054 | $UMULL r8,r6,r7 | ||
1055 | $UMULH r9,r6,r7 | ||
1056 | addc r10,r10,r8 | ||
1057 | adde r11,r11,r9 | ||
1058 | addze r12,r12 | ||
1059 | #mul_add_c(a[3],b[0],c1,c2,c3); | ||
1060 | $LD r6,`3*$BNSZ`(r4) | ||
1061 | $LD r7,`0*$BNSZ`(r5) | ||
1062 | $UMULL r8,r6,r7 | ||
1063 | $UMULH r9,r6,r7 | ||
1064 | addc r10,r10,r8 | ||
1065 | adde r11,r11,r9 | ||
1066 | addze r12,r12 | ||
1067 | $ST r10,`3*$BNSZ`(r3) #r[3]=c1; | ||
1068 | #mul_add_c(a[4],b[0],c2,c3,c1); | ||
1069 | $LD r6,`4*$BNSZ`(r4) | ||
1070 | $UMULL r8,r6,r7 | ||
1071 | $UMULH r9,r6,r7 | ||
1072 | addc r11,r11,r8 | ||
1073 | adde r12,r12,r9 | ||
1074 | addze r10,r0 | ||
1075 | #mul_add_c(a[3],b[1],c2,c3,c1); | ||
1076 | $LD r6,`3*$BNSZ`(r4) | ||
1077 | $LD r7,`1*$BNSZ`(r5) | ||
1078 | $UMULL r8,r6,r7 | ||
1079 | $UMULH r9,r6,r7 | ||
1080 | addc r11,r11,r8 | ||
1081 | adde r12,r12,r9 | ||
1082 | addze r10,r10 | ||
1083 | #mul_add_c(a[2],b[2],c2,c3,c1); | ||
1084 | $LD r6,`2*$BNSZ`(r4) | ||
1085 | $LD r7,`2*$BNSZ`(r5) | ||
1086 | $UMULL r8,r6,r7 | ||
1087 | $UMULH r9,r6,r7 | ||
1088 | addc r11,r11,r8 | ||
1089 | adde r12,r12,r9 | ||
1090 | addze r10,r10 | ||
1091 | #mul_add_c(a[1],b[3],c2,c3,c1); | ||
1092 | $LD r6,`1*$BNSZ`(r4) | ||
1093 | $LD r7,`3*$BNSZ`(r5) | ||
1094 | $UMULL r8,r6,r7 | ||
1095 | $UMULH r9,r6,r7 | ||
1096 | addc r11,r11,r8 | ||
1097 | adde r12,r12,r9 | ||
1098 | addze r10,r10 | ||
1099 | #mul_add_c(a[0],b[4],c2,c3,c1); | ||
1100 | $LD r6,`0*$BNSZ`(r4) | ||
1101 | $LD r7,`4*$BNSZ`(r5) | ||
1102 | $UMULL r8,r6,r7 | ||
1103 | $UMULH r9,r6,r7 | ||
1104 | addc r11,r11,r8 | ||
1105 | adde r12,r12,r9 | ||
1106 | addze r10,r10 | ||
1107 | $ST r11,`4*$BNSZ`(r3) #r[4]=c2; | ||
1108 | #mul_add_c(a[0],b[5],c3,c1,c2); | ||
1109 | $LD r7,`5*$BNSZ`(r5) | ||
1110 | $UMULL r8,r6,r7 | ||
1111 | $UMULH r9,r6,r7 | ||
1112 | addc r12,r12,r8 | ||
1113 | adde r10,r10,r9 | ||
1114 | addze r11,r0 | ||
1115 | #mul_add_c(a[1],b[4],c3,c1,c2); | ||
1116 | $LD r6,`1*$BNSZ`(r4) | ||
1117 | $LD r7,`4*$BNSZ`(r5) | ||
1118 | $UMULL r8,r6,r7 | ||
1119 | $UMULH r9,r6,r7 | ||
1120 | addc r12,r12,r8 | ||
1121 | adde r10,r10,r9 | ||
1122 | addze r11,r11 | ||
1123 | #mul_add_c(a[2],b[3],c3,c1,c2); | ||
1124 | $LD r6,`2*$BNSZ`(r4) | ||
1125 | $LD r7,`3*$BNSZ`(r5) | ||
1126 | $UMULL r8,r6,r7 | ||
1127 | $UMULH r9,r6,r7 | ||
1128 | addc r12,r12,r8 | ||
1129 | adde r10,r10,r9 | ||
1130 | addze r11,r11 | ||
1131 | #mul_add_c(a[3],b[2],c3,c1,c2); | ||
1132 | $LD r6,`3*$BNSZ`(r4) | ||
1133 | $LD r7,`2*$BNSZ`(r5) | ||
1134 | $UMULL r8,r6,r7 | ||
1135 | $UMULH r9,r6,r7 | ||
1136 | addc r12,r12,r8 | ||
1137 | adde r10,r10,r9 | ||
1138 | addze r11,r11 | ||
1139 | #mul_add_c(a[4],b[1],c3,c1,c2); | ||
1140 | $LD r6,`4*$BNSZ`(r4) | ||
1141 | $LD r7,`1*$BNSZ`(r5) | ||
1142 | $UMULL r8,r6,r7 | ||
1143 | $UMULH r9,r6,r7 | ||
1144 | addc r12,r12,r8 | ||
1145 | adde r10,r10,r9 | ||
1146 | addze r11,r11 | ||
1147 | #mul_add_c(a[5],b[0],c3,c1,c2); | ||
1148 | $LD r6,`5*$BNSZ`(r4) | ||
1149 | $LD r7,`0*$BNSZ`(r5) | ||
1150 | $UMULL r8,r6,r7 | ||
1151 | $UMULH r9,r6,r7 | ||
1152 | addc r12,r12,r8 | ||
1153 | adde r10,r10,r9 | ||
1154 | addze r11,r11 | ||
1155 | $ST r12,`5*$BNSZ`(r3) #r[5]=c3; | ||
1156 | #mul_add_c(a[6],b[0],c1,c2,c3); | ||
1157 | $LD r6,`6*$BNSZ`(r4) | ||
1158 | $UMULL r8,r6,r7 | ||
1159 | $UMULH r9,r6,r7 | ||
1160 | addc r10,r10,r8 | ||
1161 | adde r11,r11,r9 | ||
1162 | addze r12,r0 | ||
1163 | #mul_add_c(a[5],b[1],c1,c2,c3); | ||
1164 | $LD r6,`5*$BNSZ`(r4) | ||
1165 | $LD r7,`1*$BNSZ`(r5) | ||
1166 | $UMULL r8,r6,r7 | ||
1167 | $UMULH r9,r6,r7 | ||
1168 | addc r10,r10,r8 | ||
1169 | adde r11,r11,r9 | ||
1170 | addze r12,r12 | ||
1171 | #mul_add_c(a[4],b[2],c1,c2,c3); | ||
1172 | $LD r6,`4*$BNSZ`(r4) | ||
1173 | $LD r7,`2*$BNSZ`(r5) | ||
1174 | $UMULL r8,r6,r7 | ||
1175 | $UMULH r9,r6,r7 | ||
1176 | addc r10,r10,r8 | ||
1177 | adde r11,r11,r9 | ||
1178 | addze r12,r12 | ||
1179 | #mul_add_c(a[3],b[3],c1,c2,c3); | ||
1180 | $LD r6,`3*$BNSZ`(r4) | ||
1181 | $LD r7,`3*$BNSZ`(r5) | ||
1182 | $UMULL r8,r6,r7 | ||
1183 | $UMULH r9,r6,r7 | ||
1184 | addc r10,r10,r8 | ||
1185 | adde r11,r11,r9 | ||
1186 | addze r12,r12 | ||
1187 | #mul_add_c(a[2],b[4],c1,c2,c3); | ||
1188 | $LD r6,`2*$BNSZ`(r4) | ||
1189 | $LD r7,`4*$BNSZ`(r5) | ||
1190 | $UMULL r8,r6,r7 | ||
1191 | $UMULH r9,r6,r7 | ||
1192 | addc r10,r10,r8 | ||
1193 | adde r11,r11,r9 | ||
1194 | addze r12,r12 | ||
1195 | #mul_add_c(a[1],b[5],c1,c2,c3); | ||
1196 | $LD r6,`1*$BNSZ`(r4) | ||
1197 | $LD r7,`5*$BNSZ`(r5) | ||
1198 | $UMULL r8,r6,r7 | ||
1199 | $UMULH r9,r6,r7 | ||
1200 | addc r10,r10,r8 | ||
1201 | adde r11,r11,r9 | ||
1202 | addze r12,r12 | ||
1203 | #mul_add_c(a[0],b[6],c1,c2,c3); | ||
1204 | $LD r6,`0*$BNSZ`(r4) | ||
1205 | $LD r7,`6*$BNSZ`(r5) | ||
1206 | $UMULL r8,r6,r7 | ||
1207 | $UMULH r9,r6,r7 | ||
1208 | addc r10,r10,r8 | ||
1209 | adde r11,r11,r9 | ||
1210 | addze r12,r12 | ||
1211 | $ST r10,`6*$BNSZ`(r3) #r[6]=c1; | ||
1212 | #mul_add_c(a[0],b[7],c2,c3,c1); | ||
1213 | $LD r7,`7*$BNSZ`(r5) | ||
1214 | $UMULL r8,r6,r7 | ||
1215 | $UMULH r9,r6,r7 | ||
1216 | addc r11,r11,r8 | ||
1217 | adde r12,r12,r9 | ||
1218 | addze r10,r0 | ||
1219 | #mul_add_c(a[1],b[6],c2,c3,c1); | ||
1220 | $LD r6,`1*$BNSZ`(r4) | ||
1221 | $LD r7,`6*$BNSZ`(r5) | ||
1222 | $UMULL r8,r6,r7 | ||
1223 | $UMULH r9,r6,r7 | ||
1224 | addc r11,r11,r8 | ||
1225 | adde r12,r12,r9 | ||
1226 | addze r10,r10 | ||
1227 | #mul_add_c(a[2],b[5],c2,c3,c1); | ||
1228 | $LD r6,`2*$BNSZ`(r4) | ||
1229 | $LD r7,`5*$BNSZ`(r5) | ||
1230 | $UMULL r8,r6,r7 | ||
1231 | $UMULH r9,r6,r7 | ||
1232 | addc r11,r11,r8 | ||
1233 | adde r12,r12,r9 | ||
1234 | addze r10,r10 | ||
1235 | #mul_add_c(a[3],b[4],c2,c3,c1); | ||
1236 | $LD r6,`3*$BNSZ`(r4) | ||
1237 | $LD r7,`4*$BNSZ`(r5) | ||
1238 | $UMULL r8,r6,r7 | ||
1239 | $UMULH r9,r6,r7 | ||
1240 | addc r11,r11,r8 | ||
1241 | adde r12,r12,r9 | ||
1242 | addze r10,r10 | ||
1243 | #mul_add_c(a[4],b[3],c2,c3,c1); | ||
1244 | $LD r6,`4*$BNSZ`(r4) | ||
1245 | $LD r7,`3*$BNSZ`(r5) | ||
1246 | $UMULL r8,r6,r7 | ||
1247 | $UMULH r9,r6,r7 | ||
1248 | addc r11,r11,r8 | ||
1249 | adde r12,r12,r9 | ||
1250 | addze r10,r10 | ||
1251 | #mul_add_c(a[5],b[2],c2,c3,c1); | ||
1252 | $LD r6,`5*$BNSZ`(r4) | ||
1253 | $LD r7,`2*$BNSZ`(r5) | ||
1254 | $UMULL r8,r6,r7 | ||
1255 | $UMULH r9,r6,r7 | ||
1256 | addc r11,r11,r8 | ||
1257 | adde r12,r12,r9 | ||
1258 | addze r10,r10 | ||
1259 | #mul_add_c(a[6],b[1],c2,c3,c1); | ||
1260 | $LD r6,`6*$BNSZ`(r4) | ||
1261 | $LD r7,`1*$BNSZ`(r5) | ||
1262 | $UMULL r8,r6,r7 | ||
1263 | $UMULH r9,r6,r7 | ||
1264 | addc r11,r11,r8 | ||
1265 | adde r12,r12,r9 | ||
1266 | addze r10,r10 | ||
1267 | #mul_add_c(a[7],b[0],c2,c3,c1); | ||
1268 | $LD r6,`7*$BNSZ`(r4) | ||
1269 | $LD r7,`0*$BNSZ`(r5) | ||
1270 | $UMULL r8,r6,r7 | ||
1271 | $UMULH r9,r6,r7 | ||
1272 | addc r11,r11,r8 | ||
1273 | adde r12,r12,r9 | ||
1274 | addze r10,r10 | ||
1275 | $ST r11,`7*$BNSZ`(r3) #r[7]=c2; | ||
1276 | #mul_add_c(a[7],b[1],c3,c1,c2); | ||
1277 | $LD r7,`1*$BNSZ`(r5) | ||
1278 | $UMULL r8,r6,r7 | ||
1279 | $UMULH r9,r6,r7 | ||
1280 | addc r12,r12,r8 | ||
1281 | adde r10,r10,r9 | ||
1282 | addze r11,r0 | ||
1283 | #mul_add_c(a[6],b[2],c3,c1,c2); | ||
1284 | $LD r6,`6*$BNSZ`(r4) | ||
1285 | $LD r7,`2*$BNSZ`(r5) | ||
1286 | $UMULL r8,r6,r7 | ||
1287 | $UMULH r9,r6,r7 | ||
1288 | addc r12,r12,r8 | ||
1289 | adde r10,r10,r9 | ||
1290 | addze r11,r11 | ||
1291 | #mul_add_c(a[5],b[3],c3,c1,c2); | ||
1292 | $LD r6,`5*$BNSZ`(r4) | ||
1293 | $LD r7,`3*$BNSZ`(r5) | ||
1294 | $UMULL r8,r6,r7 | ||
1295 | $UMULH r9,r6,r7 | ||
1296 | addc r12,r12,r8 | ||
1297 | adde r10,r10,r9 | ||
1298 | addze r11,r11 | ||
1299 | #mul_add_c(a[4],b[4],c3,c1,c2); | ||
1300 | $LD r6,`4*$BNSZ`(r4) | ||
1301 | $LD r7,`4*$BNSZ`(r5) | ||
1302 | $UMULL r8,r6,r7 | ||
1303 | $UMULH r9,r6,r7 | ||
1304 | addc r12,r12,r8 | ||
1305 | adde r10,r10,r9 | ||
1306 | addze r11,r11 | ||
1307 | #mul_add_c(a[3],b[5],c3,c1,c2); | ||
1308 | $LD r6,`3*$BNSZ`(r4) | ||
1309 | $LD r7,`5*$BNSZ`(r5) | ||
1310 | $UMULL r8,r6,r7 | ||
1311 | $UMULH r9,r6,r7 | ||
1312 | addc r12,r12,r8 | ||
1313 | adde r10,r10,r9 | ||
1314 | addze r11,r11 | ||
1315 | #mul_add_c(a[2],b[6],c3,c1,c2); | ||
1316 | $LD r6,`2*$BNSZ`(r4) | ||
1317 | $LD r7,`6*$BNSZ`(r5) | ||
1318 | $UMULL r8,r6,r7 | ||
1319 | $UMULH r9,r6,r7 | ||
1320 | addc r12,r12,r8 | ||
1321 | adde r10,r10,r9 | ||
1322 | addze r11,r11 | ||
1323 | #mul_add_c(a[1],b[7],c3,c1,c2); | ||
1324 | $LD r6,`1*$BNSZ`(r4) | ||
1325 | $LD r7,`7*$BNSZ`(r5) | ||
1326 | $UMULL r8,r6,r7 | ||
1327 | $UMULH r9,r6,r7 | ||
1328 | addc r12,r12,r8 | ||
1329 | adde r10,r10,r9 | ||
1330 | addze r11,r11 | ||
1331 | $ST r12,`8*$BNSZ`(r3) #r[8]=c3; | ||
1332 | #mul_add_c(a[2],b[7],c1,c2,c3); | ||
1333 | $LD r6,`2*$BNSZ`(r4) | ||
1334 | $UMULL r8,r6,r7 | ||
1335 | $UMULH r9,r6,r7 | ||
1336 | addc r10,r10,r8 | ||
1337 | adde r11,r11,r9 | ||
1338 | addze r12,r0 | ||
1339 | #mul_add_c(a[3],b[6],c1,c2,c3); | ||
1340 | $LD r6,`3*$BNSZ`(r4) | ||
1341 | $LD r7,`6*$BNSZ`(r5) | ||
1342 | $UMULL r8,r6,r7 | ||
1343 | $UMULH r9,r6,r7 | ||
1344 | addc r10,r10,r8 | ||
1345 | adde r11,r11,r9 | ||
1346 | addze r12,r12 | ||
1347 | #mul_add_c(a[4],b[5],c1,c2,c3); | ||
1348 | $LD r6,`4*$BNSZ`(r4) | ||
1349 | $LD r7,`5*$BNSZ`(r5) | ||
1350 | $UMULL r8,r6,r7 | ||
1351 | $UMULH r9,r6,r7 | ||
1352 | addc r10,r10,r8 | ||
1353 | adde r11,r11,r9 | ||
1354 | addze r12,r12 | ||
1355 | #mul_add_c(a[5],b[4],c1,c2,c3); | ||
1356 | $LD r6,`5*$BNSZ`(r4) | ||
1357 | $LD r7,`4*$BNSZ`(r5) | ||
1358 | $UMULL r8,r6,r7 | ||
1359 | $UMULH r9,r6,r7 | ||
1360 | addc r10,r10,r8 | ||
1361 | adde r11,r11,r9 | ||
1362 | addze r12,r12 | ||
1363 | #mul_add_c(a[6],b[3],c1,c2,c3); | ||
1364 | $LD r6,`6*$BNSZ`(r4) | ||
1365 | $LD r7,`3*$BNSZ`(r5) | ||
1366 | $UMULL r8,r6,r7 | ||
1367 | $UMULH r9,r6,r7 | ||
1368 | addc r10,r10,r8 | ||
1369 | adde r11,r11,r9 | ||
1370 | addze r12,r12 | ||
1371 | #mul_add_c(a[7],b[2],c1,c2,c3); | ||
1372 | $LD r6,`7*$BNSZ`(r4) | ||
1373 | $LD r7,`2*$BNSZ`(r5) | ||
1374 | $UMULL r8,r6,r7 | ||
1375 | $UMULH r9,r6,r7 | ||
1376 | addc r10,r10,r8 | ||
1377 | adde r11,r11,r9 | ||
1378 | addze r12,r12 | ||
1379 | $ST r10,`9*$BNSZ`(r3) #r[9]=c1; | ||
1380 | #mul_add_c(a[7],b[3],c2,c3,c1); | ||
1381 | $LD r7,`3*$BNSZ`(r5) | ||
1382 | $UMULL r8,r6,r7 | ||
1383 | $UMULH r9,r6,r7 | ||
1384 | addc r11,r11,r8 | ||
1385 | adde r12,r12,r9 | ||
1386 | addze r10,r0 | ||
1387 | #mul_add_c(a[6],b[4],c2,c3,c1); | ||
1388 | $LD r6,`6*$BNSZ`(r4) | ||
1389 | $LD r7,`4*$BNSZ`(r5) | ||
1390 | $UMULL r8,r6,r7 | ||
1391 | $UMULH r9,r6,r7 | ||
1392 | addc r11,r11,r8 | ||
1393 | adde r12,r12,r9 | ||
1394 | addze r10,r10 | ||
1395 | #mul_add_c(a[5],b[5],c2,c3,c1); | ||
1396 | $LD r6,`5*$BNSZ`(r4) | ||
1397 | $LD r7,`5*$BNSZ`(r5) | ||
1398 | $UMULL r8,r6,r7 | ||
1399 | $UMULH r9,r6,r7 | ||
1400 | addc r11,r11,r8 | ||
1401 | adde r12,r12,r9 | ||
1402 | addze r10,r10 | ||
1403 | #mul_add_c(a[4],b[6],c2,c3,c1); | ||
1404 | $LD r6,`4*$BNSZ`(r4) | ||
1405 | $LD r7,`6*$BNSZ`(r5) | ||
1406 | $UMULL r8,r6,r7 | ||
1407 | $UMULH r9,r6,r7 | ||
1408 | addc r11,r11,r8 | ||
1409 | adde r12,r12,r9 | ||
1410 | addze r10,r10 | ||
1411 | #mul_add_c(a[3],b[7],c2,c3,c1); | ||
1412 | $LD r6,`3*$BNSZ`(r4) | ||
1413 | $LD r7,`7*$BNSZ`(r5) | ||
1414 | $UMULL r8,r6,r7 | ||
1415 | $UMULH r9,r6,r7 | ||
1416 | addc r11,r11,r8 | ||
1417 | adde r12,r12,r9 | ||
1418 | addze r10,r10 | ||
1419 | $ST r11,`10*$BNSZ`(r3) #r[10]=c2; | ||
1420 | #mul_add_c(a[4],b[7],c3,c1,c2); | ||
1421 | $LD r6,`4*$BNSZ`(r4) | ||
1422 | $UMULL r8,r6,r7 | ||
1423 | $UMULH r9,r6,r7 | ||
1424 | addc r12,r12,r8 | ||
1425 | adde r10,r10,r9 | ||
1426 | addze r11,r0 | ||
1427 | #mul_add_c(a[5],b[6],c3,c1,c2); | ||
1428 | $LD r6,`5*$BNSZ`(r4) | ||
1429 | $LD r7,`6*$BNSZ`(r5) | ||
1430 | $UMULL r8,r6,r7 | ||
1431 | $UMULH r9,r6,r7 | ||
1432 | addc r12,r12,r8 | ||
1433 | adde r10,r10,r9 | ||
1434 | addze r11,r11 | ||
1435 | #mul_add_c(a[6],b[5],c3,c1,c2); | ||
1436 | $LD r6,`6*$BNSZ`(r4) | ||
1437 | $LD r7,`5*$BNSZ`(r5) | ||
1438 | $UMULL r8,r6,r7 | ||
1439 | $UMULH r9,r6,r7 | ||
1440 | addc r12,r12,r8 | ||
1441 | adde r10,r10,r9 | ||
1442 | addze r11,r11 | ||
1443 | #mul_add_c(a[7],b[4],c3,c1,c2); | ||
1444 | $LD r6,`7*$BNSZ`(r4) | ||
1445 | $LD r7,`4*$BNSZ`(r5) | ||
1446 | $UMULL r8,r6,r7 | ||
1447 | $UMULH r9,r6,r7 | ||
1448 | addc r12,r12,r8 | ||
1449 | adde r10,r10,r9 | ||
1450 | addze r11,r11 | ||
1451 | $ST r12,`11*$BNSZ`(r3) #r[11]=c3; | ||
1452 | #mul_add_c(a[7],b[5],c1,c2,c3); | ||
1453 | $LD r7,`5*$BNSZ`(r5) | ||
1454 | $UMULL r8,r6,r7 | ||
1455 | $UMULH r9,r6,r7 | ||
1456 | addc r10,r10,r8 | ||
1457 | adde r11,r11,r9 | ||
1458 | addze r12,r0 | ||
1459 | #mul_add_c(a[6],b[6],c1,c2,c3); | ||
1460 | $LD r6,`6*$BNSZ`(r4) | ||
1461 | $LD r7,`6*$BNSZ`(r5) | ||
1462 | $UMULL r8,r6,r7 | ||
1463 | $UMULH r9,r6,r7 | ||
1464 | addc r10,r10,r8 | ||
1465 | adde r11,r11,r9 | ||
1466 | addze r12,r12 | ||
1467 | #mul_add_c(a[5],b[7],c1,c2,c3); | ||
1468 | $LD r6,`5*$BNSZ`(r4) | ||
1469 | $LD r7,`7*$BNSZ`(r5) | ||
1470 | $UMULL r8,r6,r7 | ||
1471 | $UMULH r9,r6,r7 | ||
1472 | addc r10,r10,r8 | ||
1473 | adde r11,r11,r9 | ||
1474 | addze r12,r12 | ||
1475 | $ST r10,`12*$BNSZ`(r3) #r[12]=c1; | ||
1476 | #mul_add_c(a[6],b[7],c2,c3,c1); | ||
1477 | $LD r6,`6*$BNSZ`(r4) | ||
1478 | $UMULL r8,r6,r7 | ||
1479 | $UMULH r9,r6,r7 | ||
1480 | addc r11,r11,r8 | ||
1481 | adde r12,r12,r9 | ||
1482 | addze r10,r0 | ||
1483 | #mul_add_c(a[7],b[6],c2,c3,c1); | ||
1484 | $LD r6,`7*$BNSZ`(r4) | ||
1485 | $LD r7,`6*$BNSZ`(r5) | ||
1486 | $UMULL r8,r6,r7 | ||
1487 | $UMULH r9,r6,r7 | ||
1488 | addc r11,r11,r8 | ||
1489 | adde r12,r12,r9 | ||
1490 | addze r10,r10 | ||
1491 | $ST r11,`13*$BNSZ`(r3) #r[13]=c2; | ||
1492 | #mul_add_c(a[7],b[7],c3,c1,c2); | ||
1493 | $LD r7,`7*$BNSZ`(r5) | ||
1494 | $UMULL r8,r6,r7 | ||
1495 | $UMULH r9,r6,r7 | ||
1496 | addc r12,r12,r8 | ||
1497 | adde r10,r10,r9 | ||
1498 | $ST r12,`14*$BNSZ`(r3) #r[14]=c3; | ||
1499 | $ST r10,`15*$BNSZ`(r3) #r[15]=c1; | ||
1500 | blr | ||
1501 | |||
1502 | # | ||
1503 | # NOTE: The following label name should be changed to | ||
1504 | # "bn_sub_words" i.e. remove the first dot | ||
1505 | # for the gcc compiler. This should be automatically | ||
1506 | # done in the build | ||
1507 | # | ||
1508 | # | ||
1509 | .align 4 | ||
1510 | .bn_sub_words: | ||
1511 | # | ||
1512 | # Handcoded version of bn_sub_words | ||
1513 | # | ||
1514 | #BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
1515 | # | ||
1516 | # r3 = r | ||
1517 | # r4 = a | ||
1518 | # r5 = b | ||
1519 | # r6 = n | ||
1520 | # | ||
1521 | # Note: No loop unrolling done since this is not a performance | ||
1522 | # critical loop. | ||
1523 | |||
1524 | xor r0,r0,r0 #set r0 = 0 | ||
1525 | # | ||
1526 | # check for r6 = 0 AND set carry bit. | ||
1527 | # | ||
1528 | subfc. r7,r0,r6 # If r6 is 0 then result is 0. | ||
1529 | # if r6 > 0 then result !=0 | ||
1530 | # In either case carry bit is set. | ||
1531 | beq Lppcasm_sub_adios | ||
1532 | addi r4,r4,-$BNSZ | ||
1533 | addi r3,r3,-$BNSZ | ||
1534 | addi r5,r5,-$BNSZ | ||
1535 | mtctr r6 | ||
1536 | Lppcasm_sub_mainloop: | ||
1537 | $LDU r7,$BNSZ(r4) | ||
1538 | $LDU r8,$BNSZ(r5) | ||
1539 | subfe r6,r8,r7 # r6 = r7+carry bit + onescomplement(r8) | ||
1540 | # if carry = 1 this is r7-r8. Else it | ||
1541 | # is r7-r8 -1 as we need. | ||
1542 | $STU r6,$BNSZ(r3) | ||
1543 | bdnz- Lppcasm_sub_mainloop | ||
1544 | Lppcasm_sub_adios: | ||
1545 | subfze r3,r0 # if carry bit is set then r3 = 0 else -1 | ||
1546 | andi. r3,r3,1 # keep only last bit. | ||
1547 | blr | ||
1548 | |||
1549 | # | ||
1550 | # NOTE: The following label name should be changed to | ||
1551 | # "bn_add_words" i.e. remove the first dot | ||
1552 | # for the gcc compiler. This should be automatically | ||
1553 | # done in the build | ||
1554 | # | ||
1555 | |||
1556 | .align 4 | ||
1557 | .bn_add_words: | ||
1558 | # | ||
1559 | # Handcoded version of bn_add_words | ||
1560 | # | ||
1561 | #BN_ULONG bn_add_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
1562 | # | ||
1563 | # r3 = r | ||
1564 | # r4 = a | ||
1565 | # r5 = b | ||
1566 | # r6 = n | ||
1567 | # | ||
1568 | # Note: No loop unrolling done since this is not a performance | ||
1569 | # critical loop. | ||
1570 | |||
1571 | xor r0,r0,r0 | ||
1572 | # | ||
1573 | # check for r6 = 0. Is this needed? | ||
1574 | # | ||
1575 | addic. r6,r6,0 #test r6 and clear carry bit. | ||
1576 | beq Lppcasm_add_adios | ||
1577 | addi r4,r4,-$BNSZ | ||
1578 | addi r3,r3,-$BNSZ | ||
1579 | addi r5,r5,-$BNSZ | ||
1580 | mtctr r6 | ||
1581 | Lppcasm_add_mainloop: | ||
1582 | $LDU r7,$BNSZ(r4) | ||
1583 | $LDU r8,$BNSZ(r5) | ||
1584 | adde r8,r7,r8 | ||
1585 | $STU r8,$BNSZ(r3) | ||
1586 | bdnz- Lppcasm_add_mainloop | ||
1587 | Lppcasm_add_adios: | ||
1588 | addze r3,r0 #return carry bit. | ||
1589 | blr | ||
1590 | |||
1591 | # | ||
1592 | # NOTE: The following label name should be changed to | ||
1593 | # "bn_div_words" i.e. remove the first dot | ||
1594 | # for the gcc compiler. This should be automatically | ||
1595 | # done in the build | ||
1596 | # | ||
1597 | |||
1598 | .align 4 | ||
1599 | .bn_div_words: | ||
1600 | # | ||
1601 | # This is a cleaned up version of code generated by | ||
1602 | # the AIX compiler. The only optimization is to use | ||
1603 | # the PPC instruction to count leading zeros instead | ||
1604 | # of call to num_bits_word. Since this was compiled | ||
1605 | # only at level -O2 we can possibly squeeze it more? | ||
1606 | # | ||
1607 | # r3 = h | ||
1608 | # r4 = l | ||
1609 | # r5 = d | ||
1610 | |||
1611 | $UCMPI 0,r5,0 # compare r5 and 0 | ||
1612 | bne Lppcasm_div1 # proceed if d!=0 | ||
1613 | li r3,-1 # d=0 return -1 | ||
1614 | blr | ||
1615 | Lppcasm_div1: | ||
1616 | xor r0,r0,r0 #r0=0 | ||
1617 | li r8,$BITS | ||
1618 | $CNTLZ. r7,r5 #r7 = num leading 0s in d. | ||
1619 | beq Lppcasm_div2 #proceed if no leading zeros | ||
1620 | subf r8,r7,r8 #r8 = BN_num_bits_word(d) | ||
1621 | $SHR. r9,r3,r8 #are there any bits above r8'th? | ||
1622 | $TR 16,r9,r0 #if there're, signal to dump core... | ||
1623 | Lppcasm_div2: | ||
1624 | $UCMP 0,r3,r5 #h>=d? | ||
1625 | blt Lppcasm_div3 #goto Lppcasm_div3 if not | ||
1626 | subf r3,r5,r3 #h-=d ; | ||
1627 | Lppcasm_div3: #r7 = BN_BITS2-i. so r7=i | ||
1628 | cmpi 0,0,r7,0 # is (i == 0)? | ||
1629 | beq Lppcasm_div4 | ||
1630 | $SHL r3,r3,r7 # h = (h<< i) | ||
1631 | $SHR r8,r4,r8 # r8 = (l >> BN_BITS2 -i) | ||
1632 | $SHL r5,r5,r7 # d<<=i | ||
1633 | or r3,r3,r8 # h = (h<<i)|(l>>(BN_BITS2-i)) | ||
1634 | $SHL r4,r4,r7 # l <<=i | ||
1635 | Lppcasm_div4: | ||
1636 | $SHRI r9,r5,`$BITS/2` # r9 = dh | ||
1637 | # dl will be computed when needed | ||
1638 | # as it saves registers. | ||
1639 | li r6,2 #r6=2 | ||
1640 | mtctr r6 #counter will be in count. | ||
1641 | Lppcasm_divouterloop: | ||
1642 | $SHRI r8,r3,`$BITS/2` #r8 = (h>>BN_BITS4) | ||
1643 | $SHRI r11,r4,`$BITS/2` #r11= (l&BN_MASK2h)>>BN_BITS4 | ||
1644 | # compute here for innerloop. | ||
1645 | $UCMP 0,r8,r9 # is (h>>BN_BITS4)==dh | ||
1646 | bne Lppcasm_div5 # goto Lppcasm_div5 if not | ||
1647 | |||
1648 | li r8,-1 | ||
1649 | $CLRU r8,r8,`$BITS/2` #q = BN_MASK2l | ||
1650 | b Lppcasm_div6 | ||
1651 | Lppcasm_div5: | ||
1652 | $UDIV r8,r3,r9 #q = h/dh | ||
1653 | Lppcasm_div6: | ||
1654 | $UMULL r12,r9,r8 #th = q*dh | ||
1655 | $CLRU r10,r5,`$BITS/2` #r10=dl | ||
1656 | $UMULL r6,r8,r10 #tl = q*dl | ||
1657 | |||
1658 | Lppcasm_divinnerloop: | ||
1659 | subf r10,r12,r3 #t = h -th | ||
1660 | $SHRI r7,r10,`$BITS/2` #r7= (t &BN_MASK2H), sort of... | ||
1661 | addic. r7,r7,0 #test if r7 == 0. used below. | ||
1662 | # now want to compute | ||
1663 | # r7 = (t<<BN_BITS4)|((l&BN_MASK2h)>>BN_BITS4) | ||
1664 | # the following 2 instructions do that | ||
1665 | $SHLI r7,r10,`$BITS/2` # r7 = (t<<BN_BITS4) | ||
1666 | or r7,r7,r11 # r7|=((l&BN_MASK2h)>>BN_BITS4) | ||
1667 | $UCMP cr1,r6,r7 # compare (tl <= r7) | ||
1668 | bne Lppcasm_divinnerexit | ||
1669 | ble cr1,Lppcasm_divinnerexit | ||
1670 | addi r8,r8,-1 #q-- | ||
1671 | subf r12,r9,r12 #th -=dh | ||
1672 | $CLRU r10,r5,`$BITS/2` #r10=dl. t is no longer needed in loop. | ||
1673 | subf r6,r10,r6 #tl -=dl | ||
1674 | b Lppcasm_divinnerloop | ||
1675 | Lppcasm_divinnerexit: | ||
1676 | $SHRI r10,r6,`$BITS/2` #t=(tl>>BN_BITS4) | ||
1677 | $SHLI r11,r6,`$BITS/2` #tl=(tl<<BN_BITS4)&BN_MASK2h; | ||
1678 | $UCMP cr1,r4,r11 # compare l and tl | ||
1679 | add r12,r12,r10 # th+=t | ||
1680 | bge cr1,Lppcasm_div7 # if (l>=tl) goto Lppcasm_div7 | ||
1681 | addi r12,r12,1 # th++ | ||
1682 | Lppcasm_div7: | ||
1683 | subf r11,r11,r4 #r11=l-tl | ||
1684 | $UCMP cr1,r3,r12 #compare h and th | ||
1685 | bge cr1,Lppcasm_div8 #if (h>=th) goto Lppcasm_div8 | ||
1686 | addi r8,r8,-1 # q-- | ||
1687 | add r3,r5,r3 # h+=d | ||
1688 | Lppcasm_div8: | ||
1689 | subf r12,r12,r3 #r12 = h-th | ||
1690 | $SHLI r4,r11,`$BITS/2` #l=(l&BN_MASK2l)<<BN_BITS4 | ||
1691 | # want to compute | ||
1692 | # h = ((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2 | ||
1693 | # the following 2 instructions will do this. | ||
1694 | $INSR r11,r12,`$BITS/2`,`$BITS/2` # r11 is the value we want rotated $BITS/2. | ||
1695 | $ROTL r3,r11,`$BITS/2` # rotate by $BITS/2 and store in r3 | ||
1696 | bdz Lppcasm_div9 #if (count==0) break ; | ||
1697 | $SHLI r0,r8,`$BITS/2` #ret =q<<BN_BITS4 | ||
1698 | b Lppcasm_divouterloop | ||
1699 | Lppcasm_div9: | ||
1700 | or r3,r8,r0 | ||
1701 | blr | ||
1702 | |||
1703 | # | ||
1704 | # NOTE: The following label name should be changed to | ||
1705 | # "bn_sqr_words" i.e. remove the first dot | ||
1706 | # for the gcc compiler. This should be automatically | ||
1707 | # done in the build | ||
1708 | # | ||
1709 | .align 4 | ||
1710 | .bn_sqr_words: | ||
1711 | # | ||
1712 | # Optimized version of bn_sqr_words | ||
1713 | # | ||
1714 | # void bn_sqr_words(BN_ULONG *r, BN_ULONG *a, int n) | ||
1715 | # | ||
1716 | # r3 = r | ||
1717 | # r4 = a | ||
1718 | # r5 = n | ||
1719 | # | ||
1720 | # r6 = a[i]. | ||
1721 | # r7,r8 = product. | ||
1722 | # | ||
1723 | # No unrolling done here. Not performance critical. | ||
1724 | |||
1725 | addic. r5,r5,0 #test r5. | ||
1726 | beq Lppcasm_sqr_adios | ||
1727 | addi r4,r4,-$BNSZ | ||
1728 | addi r3,r3,-$BNSZ | ||
1729 | mtctr r5 | ||
1730 | Lppcasm_sqr_mainloop: | ||
1731 | #sqr(r[0],r[1],a[0]); | ||
1732 | $LDU r6,$BNSZ(r4) | ||
1733 | $UMULL r7,r6,r6 | ||
1734 | $UMULH r8,r6,r6 | ||
1735 | $STU r7,$BNSZ(r3) | ||
1736 | $STU r8,$BNSZ(r3) | ||
1737 | bdnz- Lppcasm_sqr_mainloop | ||
1738 | Lppcasm_sqr_adios: | ||
1739 | blr | ||
1740 | |||
1741 | # | ||
1742 | # NOTE: The following label name should be changed to | ||
1743 | # "bn_mul_words" i.e. remove the first dot | ||
1744 | # for the gcc compiler. This should be automatically | ||
1745 | # done in the build | ||
1746 | # | ||
1747 | |||
1748 | .align 4 | ||
1749 | .bn_mul_words: | ||
1750 | # | ||
1751 | # BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) | ||
1752 | # | ||
1753 | # r3 = rp | ||
1754 | # r4 = ap | ||
1755 | # r5 = num | ||
1756 | # r6 = w | ||
1757 | xor r0,r0,r0 | ||
1758 | xor r12,r12,r12 # used for carry | ||
1759 | rlwinm. r7,r5,30,2,31 # num >> 2 | ||
1760 | beq Lppcasm_mw_REM | ||
1761 | mtctr r7 | ||
1762 | Lppcasm_mw_LOOP: | ||
1763 | #mul(rp[0],ap[0],w,c1); | ||
1764 | $LD r8,`0*$BNSZ`(r4) | ||
1765 | $UMULL r9,r6,r8 | ||
1766 | $UMULH r10,r6,r8 | ||
1767 | addc r9,r9,r12 | ||
1768 | #addze r10,r10 #carry is NOT ignored. | ||
1769 | #will be taken care of | ||
1770 | #in second spin below | ||
1771 | #using adde. | ||
1772 | $ST r9,`0*$BNSZ`(r3) | ||
1773 | #mul(rp[1],ap[1],w,c1); | ||
1774 | $LD r8,`1*$BNSZ`(r4) | ||
1775 | $UMULL r11,r6,r8 | ||
1776 | $UMULH r12,r6,r8 | ||
1777 | adde r11,r11,r10 | ||
1778 | #addze r12,r12 | ||
1779 | $ST r11,`1*$BNSZ`(r3) | ||
1780 | #mul(rp[2],ap[2],w,c1); | ||
1781 | $LD r8,`2*$BNSZ`(r4) | ||
1782 | $UMULL r9,r6,r8 | ||
1783 | $UMULH r10,r6,r8 | ||
1784 | adde r9,r9,r12 | ||
1785 | #addze r10,r10 | ||
1786 | $ST r9,`2*$BNSZ`(r3) | ||
1787 | #mul_add(rp[3],ap[3],w,c1); | ||
1788 | $LD r8,`3*$BNSZ`(r4) | ||
1789 | $UMULL r11,r6,r8 | ||
1790 | $UMULH r12,r6,r8 | ||
1791 | adde r11,r11,r10 | ||
1792 | addze r12,r12 #this spin we collect carry into | ||
1793 | #r12 | ||
1794 | $ST r11,`3*$BNSZ`(r3) | ||
1795 | |||
1796 | addi r3,r3,`4*$BNSZ` | ||
1797 | addi r4,r4,`4*$BNSZ` | ||
1798 | bdnz- Lppcasm_mw_LOOP | ||
1799 | |||
1800 | Lppcasm_mw_REM: | ||
1801 | andi. r5,r5,0x3 | ||
1802 | beq Lppcasm_mw_OVER | ||
1803 | #mul(rp[0],ap[0],w,c1); | ||
1804 | $LD r8,`0*$BNSZ`(r4) | ||
1805 | $UMULL r9,r6,r8 | ||
1806 | $UMULH r10,r6,r8 | ||
1807 | addc r9,r9,r12 | ||
1808 | addze r10,r10 | ||
1809 | $ST r9,`0*$BNSZ`(r3) | ||
1810 | addi r12,r10,0 | ||
1811 | |||
1812 | addi r5,r5,-1 | ||
1813 | cmpli 0,0,r5,0 | ||
1814 | beq Lppcasm_mw_OVER | ||
1815 | |||
1816 | |||
1817 | #mul(rp[1],ap[1],w,c1); | ||
1818 | $LD r8,`1*$BNSZ`(r4) | ||
1819 | $UMULL r9,r6,r8 | ||
1820 | $UMULH r10,r6,r8 | ||
1821 | addc r9,r9,r12 | ||
1822 | addze r10,r10 | ||
1823 | $ST r9,`1*$BNSZ`(r3) | ||
1824 | addi r12,r10,0 | ||
1825 | |||
1826 | addi r5,r5,-1 | ||
1827 | cmpli 0,0,r5,0 | ||
1828 | beq Lppcasm_mw_OVER | ||
1829 | |||
1830 | #mul_add(rp[2],ap[2],w,c1); | ||
1831 | $LD r8,`2*$BNSZ`(r4) | ||
1832 | $UMULL r9,r6,r8 | ||
1833 | $UMULH r10,r6,r8 | ||
1834 | addc r9,r9,r12 | ||
1835 | addze r10,r10 | ||
1836 | $ST r9,`2*$BNSZ`(r3) | ||
1837 | addi r12,r10,0 | ||
1838 | |||
1839 | Lppcasm_mw_OVER: | ||
1840 | addi r3,r12,0 | ||
1841 | blr | ||
1842 | |||
1843 | # | ||
1844 | # NOTE: The following label name should be changed to | ||
1845 | # "bn_mul_add_words" i.e. remove the first dot | ||
1846 | # for the gcc compiler. This should be automatically | ||
1847 | # done in the build | ||
1848 | # | ||
1849 | |||
1850 | .align 4 | ||
1851 | .bn_mul_add_words: | ||
1852 | # | ||
1853 | # BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) | ||
1854 | # | ||
1855 | # r3 = rp | ||
1856 | # r4 = ap | ||
1857 | # r5 = num | ||
1858 | # r6 = w | ||
1859 | # | ||
1860 | # empirical evidence suggests that unrolled version performs best!! | ||
1861 | # | ||
1862 | xor r0,r0,r0 #r0 = 0 | ||
1863 | xor r12,r12,r12 #r12 = 0 . used for carry | ||
1864 | rlwinm. r7,r5,30,2,31 # num >> 2 | ||
1865 | beq Lppcasm_maw_leftover # if (num < 4) go LPPCASM_maw_leftover | ||
1866 | mtctr r7 | ||
1867 | Lppcasm_maw_mainloop: | ||
1868 | #mul_add(rp[0],ap[0],w,c1); | ||
1869 | $LD r8,`0*$BNSZ`(r4) | ||
1870 | $LD r11,`0*$BNSZ`(r3) | ||
1871 | $UMULL r9,r6,r8 | ||
1872 | $UMULH r10,r6,r8 | ||
1873 | addc r9,r9,r12 #r12 is carry. | ||
1874 | addze r10,r10 | ||
1875 | addc r9,r9,r11 | ||
1876 | #addze r10,r10 | ||
1877 | #the above instruction addze | ||
1878 | #is NOT needed. Carry will NOT | ||
1879 | #be ignored. It's not affected | ||
1880 | #by multiply and will be collected | ||
1881 | #in the next spin | ||
1882 | $ST r9,`0*$BNSZ`(r3) | ||
1883 | |||
1884 | #mul_add(rp[1],ap[1],w,c1); | ||
1885 | $LD r8,`1*$BNSZ`(r4) | ||
1886 | $LD r9,`1*$BNSZ`(r3) | ||
1887 | $UMULL r11,r6,r8 | ||
1888 | $UMULH r12,r6,r8 | ||
1889 | adde r11,r11,r10 #r10 is carry. | ||
1890 | addze r12,r12 | ||
1891 | addc r11,r11,r9 | ||
1892 | #addze r12,r12 | ||
1893 | $ST r11,`1*$BNSZ`(r3) | ||
1894 | |||
1895 | #mul_add(rp[2],ap[2],w,c1); | ||
1896 | $LD r8,`2*$BNSZ`(r4) | ||
1897 | $UMULL r9,r6,r8 | ||
1898 | $LD r11,`2*$BNSZ`(r3) | ||
1899 | $UMULH r10,r6,r8 | ||
1900 | adde r9,r9,r12 | ||
1901 | addze r10,r10 | ||
1902 | addc r9,r9,r11 | ||
1903 | #addze r10,r10 | ||
1904 | $ST r9,`2*$BNSZ`(r3) | ||
1905 | |||
1906 | #mul_add(rp[3],ap[3],w,c1); | ||
1907 | $LD r8,`3*$BNSZ`(r4) | ||
1908 | $UMULL r11,r6,r8 | ||
1909 | $LD r9,`3*$BNSZ`(r3) | ||
1910 | $UMULH r12,r6,r8 | ||
1911 | adde r11,r11,r10 | ||
1912 | addze r12,r12 | ||
1913 | addc r11,r11,r9 | ||
1914 | addze r12,r12 | ||
1915 | $ST r11,`3*$BNSZ`(r3) | ||
1916 | addi r3,r3,`4*$BNSZ` | ||
1917 | addi r4,r4,`4*$BNSZ` | ||
1918 | bdnz- Lppcasm_maw_mainloop | ||
1919 | |||
1920 | Lppcasm_maw_leftover: | ||
1921 | andi. r5,r5,0x3 | ||
1922 | beq Lppcasm_maw_adios | ||
1923 | addi r3,r3,-$BNSZ | ||
1924 | addi r4,r4,-$BNSZ | ||
1925 | #mul_add(rp[0],ap[0],w,c1); | ||
1926 | mtctr r5 | ||
1927 | $LDU r8,$BNSZ(r4) | ||
1928 | $UMULL r9,r6,r8 | ||
1929 | $UMULH r10,r6,r8 | ||
1930 | $LDU r11,$BNSZ(r3) | ||
1931 | addc r9,r9,r11 | ||
1932 | addze r10,r10 | ||
1933 | addc r9,r9,r12 | ||
1934 | addze r12,r10 | ||
1935 | $ST r9,0(r3) | ||
1936 | |||
1937 | bdz Lppcasm_maw_adios | ||
1938 | #mul_add(rp[1],ap[1],w,c1); | ||
1939 | $LDU r8,$BNSZ(r4) | ||
1940 | $UMULL r9,r6,r8 | ||
1941 | $UMULH r10,r6,r8 | ||
1942 | $LDU r11,$BNSZ(r3) | ||
1943 | addc r9,r9,r11 | ||
1944 | addze r10,r10 | ||
1945 | addc r9,r9,r12 | ||
1946 | addze r12,r10 | ||
1947 | $ST r9,0(r3) | ||
1948 | |||
1949 | bdz Lppcasm_maw_adios | ||
1950 | #mul_add(rp[2],ap[2],w,c1); | ||
1951 | $LDU r8,$BNSZ(r4) | ||
1952 | $UMULL r9,r6,r8 | ||
1953 | $UMULH r10,r6,r8 | ||
1954 | $LDU r11,$BNSZ(r3) | ||
1955 | addc r9,r9,r11 | ||
1956 | addze r10,r10 | ||
1957 | addc r9,r9,r12 | ||
1958 | addze r12,r10 | ||
1959 | $ST r9,0(r3) | ||
1960 | |||
1961 | Lppcasm_maw_adios: | ||
1962 | addi r3,r12,0 | ||
1963 | blr | ||
1964 | .align 4 | ||
1965 | EOF | ||
1966 | $data =~ s/\`([^\`]*)\`/eval $1/gem; | ||
1967 | print $data; | ||
1968 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86-mont.pl b/src/lib/libcrypto/bn/asm/x86-mont.pl deleted file mode 100755 index 6524651748..0000000000 --- a/src/lib/libcrypto/bn/asm/x86-mont.pl +++ /dev/null | |||
@@ -1,592 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # October 2005 | ||
11 | # | ||
12 | # This is a "teaser" code, as it can be improved in several ways... | ||
13 | # First of all non-SSE2 path should be implemented (yes, for now it | ||
14 | # performs Montgomery multiplication/convolution only on SSE2-capable | ||
15 | # CPUs such as P4, others fall down to original code). Then inner loop | ||
16 | # can be unrolled and modulo-scheduled to improve ILP and possibly | ||
17 | # moved to 128-bit XMM register bank (though it would require input | ||
18 | # rearrangement and/or increase bus bandwidth utilization). Dedicated | ||
19 | # squaring procedure should give further performance improvement... | ||
20 | # Yet, for being draft, the code improves rsa512 *sign* benchmark by | ||
21 | # 110%(!), rsa1024 one - by 70% and rsa4096 - by 20%:-) | ||
22 | |||
23 | # December 2006 | ||
24 | # | ||
25 | # Modulo-scheduling SSE2 loops results in further 15-20% improvement. | ||
26 | # Integer-only code [being equipped with dedicated squaring procedure] | ||
27 | # gives ~40% on rsa512 sign benchmark... | ||
28 | |||
29 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
30 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
31 | require "x86asm.pl"; | ||
32 | |||
33 | &asm_init($ARGV[0],$0); | ||
34 | |||
35 | $sse2=0; | ||
36 | for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } | ||
37 | |||
38 | &external_label("OPENSSL_ia32cap_P") if ($sse2); | ||
39 | |||
40 | &function_begin("bn_mul_mont"); | ||
41 | |||
42 | $i="edx"; | ||
43 | $j="ecx"; | ||
44 | $ap="esi"; $tp="esi"; # overlapping variables!!! | ||
45 | $rp="edi"; $bp="edi"; # overlapping variables!!! | ||
46 | $np="ebp"; | ||
47 | $num="ebx"; | ||
48 | |||
49 | $_num=&DWP(4*0,"esp"); # stack top layout | ||
50 | $_rp=&DWP(4*1,"esp"); | ||
51 | $_ap=&DWP(4*2,"esp"); | ||
52 | $_bp=&DWP(4*3,"esp"); | ||
53 | $_np=&DWP(4*4,"esp"); | ||
54 | $_n0=&DWP(4*5,"esp"); $_n0q=&QWP(4*5,"esp"); | ||
55 | $_sp=&DWP(4*6,"esp"); | ||
56 | $_bpend=&DWP(4*7,"esp"); | ||
57 | $frame=32; # size of above frame rounded up to 16n | ||
58 | |||
59 | &xor ("eax","eax"); | ||
60 | &mov ("edi",&wparam(5)); # int num | ||
61 | &cmp ("edi",4); | ||
62 | &jl (&label("just_leave")); | ||
63 | |||
64 | &lea ("esi",&wparam(0)); # put aside pointer to argument block | ||
65 | &lea ("edx",&wparam(1)); # load ap | ||
66 | &mov ("ebp","esp"); # saved stack pointer! | ||
67 | &add ("edi",2); # extra two words on top of tp | ||
68 | &neg ("edi"); | ||
69 | &lea ("esp",&DWP(-$frame,"esp","edi",4)); # alloca($frame+4*(num+2)) | ||
70 | &neg ("edi"); | ||
71 | |||
72 | # minimize cache contention by arranging 2K window between stack | ||
73 | # pointer and ap argument [np is also position sensitive vector, | ||
74 | # but it's assumed to be near ap, as it's allocated at ~same | ||
75 | # time]. | ||
76 | &mov ("eax","esp"); | ||
77 | &sub ("eax","edx"); | ||
78 | &and ("eax",2047); | ||
79 | &sub ("esp","eax"); # this aligns sp and ap modulo 2048 | ||
80 | |||
81 | &xor ("edx","esp"); | ||
82 | &and ("edx",2048); | ||
83 | &xor ("edx",2048); | ||
84 | &sub ("esp","edx"); # this splits them apart modulo 4096 | ||
85 | |||
86 | &and ("esp",-64); # align to cache line | ||
87 | |||
88 | ################################# load argument block... | ||
89 | &mov ("eax",&DWP(0*4,"esi"));# BN_ULONG *rp | ||
90 | &mov ("ebx",&DWP(1*4,"esi"));# const BN_ULONG *ap | ||
91 | &mov ("ecx",&DWP(2*4,"esi"));# const BN_ULONG *bp | ||
92 | &mov ("edx",&DWP(3*4,"esi"));# const BN_ULONG *np | ||
93 | &mov ("esi",&DWP(4*4,"esi"));# const BN_ULONG *n0 | ||
94 | #&mov ("edi",&DWP(5*4,"esi"));# int num | ||
95 | |||
96 | &mov ("esi",&DWP(0,"esi")); # pull n0[0] | ||
97 | &mov ($_rp,"eax"); # ... save a copy of argument block | ||
98 | &mov ($_ap,"ebx"); | ||
99 | &mov ($_bp,"ecx"); | ||
100 | &mov ($_np,"edx"); | ||
101 | &mov ($_n0,"esi"); | ||
102 | &lea ($num,&DWP(-3,"edi")); # num=num-1 to assist modulo-scheduling | ||
103 | #&mov ($_num,$num); # redundant as $num is not reused | ||
104 | &mov ($_sp,"ebp"); # saved stack pointer! | ||
105 | |||
106 | if($sse2) { | ||
107 | $acc0="mm0"; # mmx register bank layout | ||
108 | $acc1="mm1"; | ||
109 | $car0="mm2"; | ||
110 | $car1="mm3"; | ||
111 | $mul0="mm4"; | ||
112 | $mul1="mm5"; | ||
113 | $temp="mm6"; | ||
114 | $mask="mm7"; | ||
115 | |||
116 | &picsetup("eax"); | ||
117 | &picsymbol("eax", "OPENSSL_ia32cap_P", "eax"); | ||
118 | &bt (&DWP(0,"eax"),"\$IA32CAP_BIT0_SSE2"); | ||
119 | &jnc (&label("non_sse2")); | ||
120 | |||
121 | &mov ("eax",-1); | ||
122 | &movd ($mask,"eax"); # mask 32 lower bits | ||
123 | |||
124 | &mov ($ap,$_ap); # load input pointers | ||
125 | &mov ($bp,$_bp); | ||
126 | &mov ($np,$_np); | ||
127 | |||
128 | &xor ($i,$i); # i=0 | ||
129 | &xor ($j,$j); # j=0 | ||
130 | |||
131 | &movd ($mul0,&DWP(0,$bp)); # bp[0] | ||
132 | &movd ($mul1,&DWP(0,$ap)); # ap[0] | ||
133 | &movd ($car1,&DWP(0,$np)); # np[0] | ||
134 | |||
135 | &pmuludq($mul1,$mul0); # ap[0]*bp[0] | ||
136 | &movq ($car0,$mul1); | ||
137 | &movq ($acc0,$mul1); # I wish movd worked for | ||
138 | &pand ($acc0,$mask); # inter-register transfers | ||
139 | |||
140 | &pmuludq($mul1,$_n0q); # *=n0 | ||
141 | |||
142 | &pmuludq($car1,$mul1); # "t[0]"*np[0]*n0 | ||
143 | &paddq ($car1,$acc0); | ||
144 | |||
145 | &movd ($acc1,&DWP(4,$np)); # np[1] | ||
146 | &movd ($acc0,&DWP(4,$ap)); # ap[1] | ||
147 | |||
148 | &psrlq ($car0,32); | ||
149 | &psrlq ($car1,32); | ||
150 | |||
151 | &inc ($j); # j++ | ||
152 | &set_label("1st",16); | ||
153 | &pmuludq($acc0,$mul0); # ap[j]*bp[0] | ||
154 | &pmuludq($acc1,$mul1); # np[j]*m1 | ||
155 | &paddq ($car0,$acc0); # +=c0 | ||
156 | &paddq ($car1,$acc1); # +=c1 | ||
157 | |||
158 | &movq ($acc0,$car0); | ||
159 | &pand ($acc0,$mask); | ||
160 | &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1] | ||
161 | &paddq ($car1,$acc0); # +=ap[j]*bp[0]; | ||
162 | &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1] | ||
163 | &psrlq ($car0,32); | ||
164 | &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[j-1]= | ||
165 | &psrlq ($car1,32); | ||
166 | |||
167 | &lea ($j,&DWP(1,$j)); | ||
168 | &cmp ($j,$num); | ||
169 | &jl (&label("1st")); | ||
170 | |||
171 | &pmuludq($acc0,$mul0); # ap[num-1]*bp[0] | ||
172 | &pmuludq($acc1,$mul1); # np[num-1]*m1 | ||
173 | &paddq ($car0,$acc0); # +=c0 | ||
174 | &paddq ($car1,$acc1); # +=c1 | ||
175 | |||
176 | &movq ($acc0,$car0); | ||
177 | &pand ($acc0,$mask); | ||
178 | &paddq ($car1,$acc0); # +=ap[num-1]*bp[0]; | ||
179 | &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]= | ||
180 | |||
181 | &psrlq ($car0,32); | ||
182 | &psrlq ($car1,32); | ||
183 | |||
184 | &paddq ($car1,$car0); | ||
185 | &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1] | ||
186 | |||
187 | &inc ($i); # i++ | ||
188 | &set_label("outer"); | ||
189 | &xor ($j,$j); # j=0 | ||
190 | |||
191 | &movd ($mul0,&DWP(0,$bp,$i,4)); # bp[i] | ||
192 | &movd ($mul1,&DWP(0,$ap)); # ap[0] | ||
193 | &movd ($temp,&DWP($frame,"esp")); # tp[0] | ||
194 | &movd ($car1,&DWP(0,$np)); # np[0] | ||
195 | &pmuludq($mul1,$mul0); # ap[0]*bp[i] | ||
196 | |||
197 | &paddq ($mul1,$temp); # +=tp[0] | ||
198 | &movq ($acc0,$mul1); | ||
199 | &movq ($car0,$mul1); | ||
200 | &pand ($acc0,$mask); | ||
201 | |||
202 | &pmuludq($mul1,$_n0q); # *=n0 | ||
203 | |||
204 | &pmuludq($car1,$mul1); | ||
205 | &paddq ($car1,$acc0); | ||
206 | |||
207 | &movd ($temp,&DWP($frame+4,"esp")); # tp[1] | ||
208 | &movd ($acc1,&DWP(4,$np)); # np[1] | ||
209 | &movd ($acc0,&DWP(4,$ap)); # ap[1] | ||
210 | |||
211 | &psrlq ($car0,32); | ||
212 | &psrlq ($car1,32); | ||
213 | &paddq ($car0,$temp); # +=tp[1] | ||
214 | |||
215 | &inc ($j); # j++ | ||
216 | &dec ($num); | ||
217 | &set_label("inner"); | ||
218 | &pmuludq($acc0,$mul0); # ap[j]*bp[i] | ||
219 | &pmuludq($acc1,$mul1); # np[j]*m1 | ||
220 | &paddq ($car0,$acc0); # +=c0 | ||
221 | &paddq ($car1,$acc1); # +=c1 | ||
222 | |||
223 | &movq ($acc0,$car0); | ||
224 | &movd ($temp,&DWP($frame+4,"esp",$j,4));# tp[j+1] | ||
225 | &pand ($acc0,$mask); | ||
226 | &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1] | ||
227 | &paddq ($car1,$acc0); # +=ap[j]*bp[i]+tp[j] | ||
228 | &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1] | ||
229 | &psrlq ($car0,32); | ||
230 | &movd (&DWP($frame-4,"esp",$j,4),$car1);# tp[j-1]= | ||
231 | &psrlq ($car1,32); | ||
232 | &paddq ($car0,$temp); # +=tp[j+1] | ||
233 | |||
234 | &dec ($num); | ||
235 | &lea ($j,&DWP(1,$j)); # j++ | ||
236 | &jnz (&label("inner")); | ||
237 | |||
238 | &mov ($num,$j); | ||
239 | &pmuludq($acc0,$mul0); # ap[num-1]*bp[i] | ||
240 | &pmuludq($acc1,$mul1); # np[num-1]*m1 | ||
241 | &paddq ($car0,$acc0); # +=c0 | ||
242 | &paddq ($car1,$acc1); # +=c1 | ||
243 | |||
244 | &movq ($acc0,$car0); | ||
245 | &pand ($acc0,$mask); | ||
246 | &paddq ($car1,$acc0); # +=ap[num-1]*bp[i]+tp[num-1] | ||
247 | &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]= | ||
248 | &psrlq ($car0,32); | ||
249 | &psrlq ($car1,32); | ||
250 | |||
251 | &movd ($temp,&DWP($frame+4,"esp",$num,4)); # += tp[num] | ||
252 | &paddq ($car1,$car0); | ||
253 | &paddq ($car1,$temp); | ||
254 | &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1] | ||
255 | |||
256 | &lea ($i,&DWP(1,$i)); # i++ | ||
257 | &cmp ($i,$num); | ||
258 | &jle (&label("outer")); | ||
259 | |||
260 | &emms (); # done with mmx bank | ||
261 | &jmp (&label("common_tail")); | ||
262 | |||
263 | &set_label("non_sse2",16); | ||
264 | } | ||
265 | |||
266 | if (0) { | ||
267 | &mov ("esp",$_sp); | ||
268 | &xor ("eax","eax"); # signal "not fast enough [yet]" | ||
269 | &jmp (&label("just_leave")); | ||
270 | # While the below code provides competitive performance for | ||
271 | # all key lengths on modern Intel cores, it's still more | ||
272 | # than 10% slower for 4096-bit key elsewhere:-( "Competitive" | ||
273 | # means compared to the original integer-only assembler. | ||
274 | # 512-bit RSA sign is better by ~40%, but that's about all | ||
275 | # one can say about all CPUs... | ||
276 | } else { | ||
277 | $inp="esi"; # integer path uses these registers differently | ||
278 | $word="edi"; | ||
279 | $carry="ebp"; | ||
280 | |||
281 | &mov ($inp,$_ap); | ||
282 | &lea ($carry,&DWP(1,$num)); | ||
283 | &mov ($word,$_bp); | ||
284 | &xor ($j,$j); # j=0 | ||
285 | &mov ("edx",$inp); | ||
286 | &and ($carry,1); # see if num is even | ||
287 | &sub ("edx",$word); # see if ap==bp | ||
288 | &lea ("eax",&DWP(4,$word,$num,4)); # &bp[num] | ||
289 | &or ($carry,"edx"); | ||
290 | &mov ($word,&DWP(0,$word)); # bp[0] | ||
291 | &jz (&label("bn_sqr_mont")); | ||
292 | &mov ($_bpend,"eax"); | ||
293 | &mov ("eax",&DWP(0,$inp)); | ||
294 | &xor ("edx","edx"); | ||
295 | |||
296 | &set_label("mull",16); | ||
297 | &mov ($carry,"edx"); | ||
298 | &mul ($word); # ap[j]*bp[0] | ||
299 | &add ($carry,"eax"); | ||
300 | &lea ($j,&DWP(1,$j)); | ||
301 | &adc ("edx",0); | ||
302 | &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1] | ||
303 | &cmp ($j,$num); | ||
304 | &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= | ||
305 | &jl (&label("mull")); | ||
306 | |||
307 | &mov ($carry,"edx"); | ||
308 | &mul ($word); # ap[num-1]*bp[0] | ||
309 | &mov ($word,$_n0); | ||
310 | &add ("eax",$carry); | ||
311 | &mov ($inp,$_np); | ||
312 | &adc ("edx",0); | ||
313 | &imul ($word,&DWP($frame,"esp")); # n0*tp[0] | ||
314 | |||
315 | &mov (&DWP($frame,"esp",$num,4),"eax"); # tp[num-1]= | ||
316 | &xor ($j,$j); | ||
317 | &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]= | ||
318 | &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]= | ||
319 | |||
320 | &mov ("eax",&DWP(0,$inp)); # np[0] | ||
321 | &mul ($word); # np[0]*m | ||
322 | &add ("eax",&DWP($frame,"esp")); # +=tp[0] | ||
323 | &mov ("eax",&DWP(4,$inp)); # np[1] | ||
324 | &adc ("edx",0); | ||
325 | &inc ($j); | ||
326 | |||
327 | &jmp (&label("2ndmadd")); | ||
328 | |||
329 | &set_label("1stmadd",16); | ||
330 | &mov ($carry,"edx"); | ||
331 | &mul ($word); # ap[j]*bp[i] | ||
332 | &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] | ||
333 | &lea ($j,&DWP(1,$j)); | ||
334 | &adc ("edx",0); | ||
335 | &add ($carry,"eax"); | ||
336 | &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1] | ||
337 | &adc ("edx",0); | ||
338 | &cmp ($j,$num); | ||
339 | &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= | ||
340 | &jl (&label("1stmadd")); | ||
341 | |||
342 | &mov ($carry,"edx"); | ||
343 | &mul ($word); # ap[num-1]*bp[i] | ||
344 | &add ("eax",&DWP($frame,"esp",$num,4)); # +=tp[num-1] | ||
345 | &mov ($word,$_n0); | ||
346 | &adc ("edx",0); | ||
347 | &mov ($inp,$_np); | ||
348 | &add ($carry,"eax"); | ||
349 | &adc ("edx",0); | ||
350 | &imul ($word,&DWP($frame,"esp")); # n0*tp[0] | ||
351 | |||
352 | &xor ($j,$j); | ||
353 | &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num] | ||
354 | &mov (&DWP($frame,"esp",$num,4),$carry); # tp[num-1]= | ||
355 | &adc ($j,0); | ||
356 | &mov ("eax",&DWP(0,$inp)); # np[0] | ||
357 | &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]= | ||
358 | &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]= | ||
359 | |||
360 | &mul ($word); # np[0]*m | ||
361 | &add ("eax",&DWP($frame,"esp")); # +=tp[0] | ||
362 | &mov ("eax",&DWP(4,$inp)); # np[1] | ||
363 | &adc ("edx",0); | ||
364 | &mov ($j,1); | ||
365 | |||
366 | &set_label("2ndmadd",16); | ||
367 | &mov ($carry,"edx"); | ||
368 | &mul ($word); # np[j]*m | ||
369 | &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] | ||
370 | &lea ($j,&DWP(1,$j)); | ||
371 | &adc ("edx",0); | ||
372 | &add ($carry,"eax"); | ||
373 | &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+1] | ||
374 | &adc ("edx",0); | ||
375 | &cmp ($j,$num); | ||
376 | &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j-1]= | ||
377 | &jl (&label("2ndmadd")); | ||
378 | |||
379 | &mov ($carry,"edx"); | ||
380 | &mul ($word); # np[j]*m | ||
381 | &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1] | ||
382 | &adc ("edx",0); | ||
383 | &add ($carry,"eax"); | ||
384 | &adc ("edx",0); | ||
385 | &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]= | ||
386 | |||
387 | &xor ("eax","eax"); | ||
388 | &mov ($j,$_bp); # &bp[i] | ||
389 | &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num] | ||
390 | &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1] | ||
391 | &lea ($j,&DWP(4,$j)); | ||
392 | &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]= | ||
393 | &cmp ($j,$_bpend); | ||
394 | &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]= | ||
395 | &je (&label("common_tail")); | ||
396 | |||
397 | &mov ($word,&DWP(0,$j)); # bp[i+1] | ||
398 | &mov ($inp,$_ap); | ||
399 | &mov ($_bp,$j); # &bp[++i] | ||
400 | &xor ($j,$j); | ||
401 | &xor ("edx","edx"); | ||
402 | &mov ("eax",&DWP(0,$inp)); | ||
403 | &jmp (&label("1stmadd")); | ||
404 | |||
405 | &set_label("bn_sqr_mont",16); | ||
406 | $sbit=$num; | ||
407 | &mov ($_num,$num); | ||
408 | &mov ($_bp,$j); # i=0 | ||
409 | |||
410 | &mov ("eax",$word); # ap[0] | ||
411 | &mul ($word); # ap[0]*ap[0] | ||
412 | &mov (&DWP($frame,"esp"),"eax"); # tp[0]= | ||
413 | &mov ($sbit,"edx"); | ||
414 | &shr ("edx",1); | ||
415 | &and ($sbit,1); | ||
416 | &inc ($j); | ||
417 | &set_label("sqr",16); | ||
418 | &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j] | ||
419 | &mov ($carry,"edx"); | ||
420 | &mul ($word); # ap[j]*ap[0] | ||
421 | &add ("eax",$carry); | ||
422 | &lea ($j,&DWP(1,$j)); | ||
423 | &adc ("edx",0); | ||
424 | &lea ($carry,&DWP(0,$sbit,"eax",2)); | ||
425 | &shr ("eax",31); | ||
426 | &cmp ($j,$_num); | ||
427 | &mov ($sbit,"eax"); | ||
428 | &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= | ||
429 | &jl (&label("sqr")); | ||
430 | |||
431 | &mov ("eax",&DWP(0,$inp,$j,4)); # ap[num-1] | ||
432 | &mov ($carry,"edx"); | ||
433 | &mul ($word); # ap[num-1]*ap[0] | ||
434 | &add ("eax",$carry); | ||
435 | &mov ($word,$_n0); | ||
436 | &adc ("edx",0); | ||
437 | &mov ($inp,$_np); | ||
438 | &lea ($carry,&DWP(0,$sbit,"eax",2)); | ||
439 | &imul ($word,&DWP($frame,"esp")); # n0*tp[0] | ||
440 | &shr ("eax",31); | ||
441 | &mov (&DWP($frame,"esp",$j,4),$carry); # tp[num-1]= | ||
442 | |||
443 | &lea ($carry,&DWP(0,"eax","edx",2)); | ||
444 | &mov ("eax",&DWP(0,$inp)); # np[0] | ||
445 | &shr ("edx",31); | ||
446 | &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num]= | ||
447 | &mov (&DWP($frame+8,"esp",$j,4),"edx"); # tp[num+1]= | ||
448 | |||
449 | &mul ($word); # np[0]*m | ||
450 | &add ("eax",&DWP($frame,"esp")); # +=tp[0] | ||
451 | &mov ($num,$j); | ||
452 | &adc ("edx",0); | ||
453 | &mov ("eax",&DWP(4,$inp)); # np[1] | ||
454 | &mov ($j,1); | ||
455 | |||
456 | &set_label("3rdmadd",16); | ||
457 | &mov ($carry,"edx"); | ||
458 | &mul ($word); # np[j]*m | ||
459 | &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] | ||
460 | &adc ("edx",0); | ||
461 | &add ($carry,"eax"); | ||
462 | &mov ("eax",&DWP(4,$inp,$j,4)); # np[j+1] | ||
463 | &adc ("edx",0); | ||
464 | &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j-1]= | ||
465 | |||
466 | &mov ($carry,"edx"); | ||
467 | &mul ($word); # np[j+1]*m | ||
468 | &add ($carry,&DWP($frame+4,"esp",$j,4)); # +=tp[j+1] | ||
469 | &lea ($j,&DWP(2,$j)); | ||
470 | &adc ("edx",0); | ||
471 | &add ($carry,"eax"); | ||
472 | &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+2] | ||
473 | &adc ("edx",0); | ||
474 | &cmp ($j,$num); | ||
475 | &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j]= | ||
476 | &jl (&label("3rdmadd")); | ||
477 | |||
478 | &mov ($carry,"edx"); | ||
479 | &mul ($word); # np[j]*m | ||
480 | &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1] | ||
481 | &adc ("edx",0); | ||
482 | &add ($carry,"eax"); | ||
483 | &adc ("edx",0); | ||
484 | &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]= | ||
485 | |||
486 | &mov ($j,$_bp); # i | ||
487 | &xor ("eax","eax"); | ||
488 | &mov ($inp,$_ap); | ||
489 | &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num] | ||
490 | &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1] | ||
491 | &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]= | ||
492 | &cmp ($j,$num); | ||
493 | &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]= | ||
494 | &je (&label("common_tail")); | ||
495 | |||
496 | &mov ($word,&DWP(4,$inp,$j,4)); # ap[i] | ||
497 | &lea ($j,&DWP(1,$j)); | ||
498 | &mov ("eax",$word); | ||
499 | &mov ($_bp,$j); # ++i | ||
500 | &mul ($word); # ap[i]*ap[i] | ||
501 | &add ("eax",&DWP($frame,"esp",$j,4)); # +=tp[i] | ||
502 | &adc ("edx",0); | ||
503 | &mov (&DWP($frame,"esp",$j,4),"eax"); # tp[i]= | ||
504 | &xor ($carry,$carry); | ||
505 | &cmp ($j,$num); | ||
506 | &lea ($j,&DWP(1,$j)); | ||
507 | &je (&label("sqrlast")); | ||
508 | |||
509 | &mov ($sbit,"edx"); # zaps $num | ||
510 | &shr ("edx",1); | ||
511 | &and ($sbit,1); | ||
512 | &set_label("sqradd",16); | ||
513 | &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j] | ||
514 | &mov ($carry,"edx"); | ||
515 | &mul ($word); # ap[j]*ap[i] | ||
516 | &add ("eax",$carry); | ||
517 | &lea ($carry,&DWP(0,"eax","eax")); | ||
518 | &adc ("edx",0); | ||
519 | &shr ("eax",31); | ||
520 | &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] | ||
521 | &lea ($j,&DWP(1,$j)); | ||
522 | &adc ("eax",0); | ||
523 | &add ($carry,$sbit); | ||
524 | &adc ("eax",0); | ||
525 | &cmp ($j,$_num); | ||
526 | &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= | ||
527 | &mov ($sbit,"eax"); | ||
528 | &jle (&label("sqradd")); | ||
529 | |||
530 | &mov ($carry,"edx"); | ||
531 | &add ("edx","edx"); | ||
532 | &shr ($carry,31); | ||
533 | &add ("edx",$sbit); | ||
534 | &adc ($carry,0); | ||
535 | &set_label("sqrlast"); | ||
536 | &mov ($word,$_n0); | ||
537 | &mov ($inp,$_np); | ||
538 | &imul ($word,&DWP($frame,"esp")); # n0*tp[0] | ||
539 | |||
540 | &add ("edx",&DWP($frame,"esp",$j,4)); # +=tp[num] | ||
541 | &mov ("eax",&DWP(0,$inp)); # np[0] | ||
542 | &adc ($carry,0); | ||
543 | &mov (&DWP($frame,"esp",$j,4),"edx"); # tp[num]= | ||
544 | &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num+1]= | ||
545 | |||
546 | &mul ($word); # np[0]*m | ||
547 | &add ("eax",&DWP($frame,"esp")); # +=tp[0] | ||
548 | &lea ($num,&DWP(-1,$j)); | ||
549 | &adc ("edx",0); | ||
550 | &mov ($j,1); | ||
551 | &mov ("eax",&DWP(4,$inp)); # np[1] | ||
552 | |||
553 | &jmp (&label("3rdmadd")); | ||
554 | } | ||
555 | |||
556 | &set_label("common_tail",16); | ||
557 | &mov ($np,$_np); # load modulus pointer | ||
558 | &mov ($rp,$_rp); # load result pointer | ||
559 | &lea ($tp,&DWP($frame,"esp")); # [$ap and $bp are zapped] | ||
560 | |||
561 | &mov ("eax",&DWP(0,$tp)); # tp[0] | ||
562 | &mov ($j,$num); # j=num-1 | ||
563 | &xor ($i,$i); # i=0 and clear CF! | ||
564 | |||
565 | &set_label("sub",16); | ||
566 | &sbb ("eax",&DWP(0,$np,$i,4)); | ||
567 | &mov (&DWP(0,$rp,$i,4),"eax"); # rp[i]=tp[i]-np[i] | ||
568 | &dec ($j); # doesn't affect CF! | ||
569 | &mov ("eax",&DWP(4,$tp,$i,4)); # tp[i+1] | ||
570 | &lea ($i,&DWP(1,$i)); # i++ | ||
571 | &jge (&label("sub")); | ||
572 | |||
573 | &sbb ("eax",0); # handle upmost overflow bit | ||
574 | &and ($tp,"eax"); | ||
575 | ¬ ("eax"); | ||
576 | &mov ($np,$rp); | ||
577 | &and ($np,"eax"); | ||
578 | &or ($tp,$np); # tp=carry?tp:rp | ||
579 | |||
580 | &set_label("copy",16); # copy or in-place refresh | ||
581 | &mov ("eax",&DWP(0,$tp,$num,4)); | ||
582 | &mov (&DWP(0,$rp,$num,4),"eax"); # rp[i]=tp[i] | ||
583 | &mov (&DWP($frame,"esp",$num,4),$j); # zap temporary vector | ||
584 | &dec ($num); | ||
585 | &jge (&label("copy")); | ||
586 | |||
587 | &mov ("esp",$_sp); # pull saved stack pointer | ||
588 | &mov ("eax",1); | ||
589 | &set_label("just_leave"); | ||
590 | &function_end("bn_mul_mont"); | ||
591 | |||
592 | &asm_finish(); | ||
diff --git a/src/lib/libcrypto/bn/asm/x86_64-mont.pl b/src/lib/libcrypto/bn/asm/x86_64-mont.pl deleted file mode 100755 index 30cfab4fce..0000000000 --- a/src/lib/libcrypto/bn/asm/x86_64-mont.pl +++ /dev/null | |||
@@ -1,1503 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # October 2005. | ||
11 | # | ||
12 | # Montgomery multiplication routine for x86_64. While it gives modest | ||
13 | # 9% improvement of rsa4096 sign on Opteron, rsa512 sign runs more | ||
14 | # than twice, >2x, as fast. Most common rsa1024 sign is improved by | ||
15 | # respectful 50%. It remains to be seen if loop unrolling and | ||
16 | # dedicated squaring routine can provide further improvement... | ||
17 | |||
18 | # July 2011. | ||
19 | # | ||
20 | # Add dedicated squaring procedure. Performance improvement varies | ||
21 | # from platform to platform, but in average it's ~5%/15%/25%/33% | ||
22 | # for 512-/1024-/2048-/4096-bit RSA *sign* benchmarks respectively. | ||
23 | |||
24 | # August 2011. | ||
25 | # | ||
26 | # Unroll and modulo-schedule inner loops in such manner that they | ||
27 | # are "fallen through" for input lengths of 8, which is critical for | ||
28 | # 1024-bit RSA *sign*. Average performance improvement in comparison | ||
29 | # to *initial* version of this module from 2005 is ~0%/30%/40%/45% | ||
30 | # for 512-/1024-/2048-/4096-bit RSA *sign* benchmarks respectively. | ||
31 | |||
32 | $flavour = shift; | ||
33 | $output = shift; | ||
34 | if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } | ||
35 | |||
36 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
37 | ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or | ||
38 | ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or | ||
39 | die "can't locate x86_64-xlate.pl"; | ||
40 | |||
41 | open OUT,"| \"$^X\" $xlate $flavour $output"; | ||
42 | *STDOUT=*OUT; | ||
43 | |||
44 | # int bn_mul_mont( | ||
45 | $rp="%rdi"; # BN_ULONG *rp, | ||
46 | $ap="%rsi"; # const BN_ULONG *ap, | ||
47 | $bp="%rdx"; # const BN_ULONG *bp, | ||
48 | $np="%rcx"; # const BN_ULONG *np, | ||
49 | $n0="%r8"; # const BN_ULONG *n0, | ||
50 | $num="%r9"; # int num); | ||
51 | $lo0="%r10"; | ||
52 | $hi0="%r11"; | ||
53 | $hi1="%r13"; | ||
54 | $i="%r14"; | ||
55 | $j="%r15"; | ||
56 | $m0="%rbx"; | ||
57 | $m1="%rbp"; | ||
58 | |||
59 | $code=<<___; | ||
60 | .text | ||
61 | |||
62 | .globl bn_mul_mont | ||
63 | .type bn_mul_mont,\@function,6 | ||
64 | .align 16 | ||
65 | bn_mul_mont: | ||
66 | _CET_ENDBR | ||
67 | test \$3,${num}d | ||
68 | jnz .Lmul_enter | ||
69 | cmp \$8,${num}d | ||
70 | jb .Lmul_enter | ||
71 | cmp $ap,$bp | ||
72 | jne .Lmul4x_enter | ||
73 | jmp .Lsqr4x_enter | ||
74 | |||
75 | .align 16 | ||
76 | .Lmul_enter: | ||
77 | push %rbx | ||
78 | push %rbp | ||
79 | push %r12 | ||
80 | push %r13 | ||
81 | push %r14 | ||
82 | push %r15 | ||
83 | |||
84 | mov ${num}d,${num}d | ||
85 | lea 2($num),%r10 | ||
86 | mov %rsp,%r11 | ||
87 | neg %r10 | ||
88 | lea (%rsp,%r10,8),%rsp # tp=alloca(8*(num+2)) | ||
89 | and \$-1024,%rsp # minimize TLB usage | ||
90 | |||
91 | mov %r11,8(%rsp,$num,8) # tp[num+1]=%rsp | ||
92 | .Lmul_body: | ||
93 | mov $bp,%r12 # reassign $bp | ||
94 | ___ | ||
95 | $bp="%r12"; | ||
96 | $code.=<<___; | ||
97 | mov ($n0),$n0 # pull n0[0] value | ||
98 | mov ($bp),$m0 # m0=bp[0] | ||
99 | mov ($ap),%rax | ||
100 | |||
101 | xor $i,$i # i=0 | ||
102 | xor $j,$j # j=0 | ||
103 | |||
104 | mov $n0,$m1 | ||
105 | mulq $m0 # ap[0]*bp[0] | ||
106 | mov %rax,$lo0 | ||
107 | mov ($np),%rax | ||
108 | |||
109 | imulq $lo0,$m1 # "tp[0]"*n0 | ||
110 | mov %rdx,$hi0 | ||
111 | |||
112 | mulq $m1 # np[0]*m1 | ||
113 | add %rax,$lo0 # discarded | ||
114 | mov 8($ap),%rax | ||
115 | adc \$0,%rdx | ||
116 | mov %rdx,$hi1 | ||
117 | |||
118 | lea 1($j),$j # j++ | ||
119 | jmp .L1st_enter | ||
120 | |||
121 | .align 16 | ||
122 | .L1st: | ||
123 | add %rax,$hi1 | ||
124 | mov ($ap,$j,8),%rax | ||
125 | adc \$0,%rdx | ||
126 | add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] | ||
127 | mov $lo0,$hi0 | ||
128 | adc \$0,%rdx | ||
129 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
130 | mov %rdx,$hi1 | ||
131 | |||
132 | .L1st_enter: | ||
133 | mulq $m0 # ap[j]*bp[0] | ||
134 | add %rax,$hi0 | ||
135 | mov ($np,$j,8),%rax | ||
136 | adc \$0,%rdx | ||
137 | lea 1($j),$j # j++ | ||
138 | mov %rdx,$lo0 | ||
139 | |||
140 | mulq $m1 # np[j]*m1 | ||
141 | cmp $num,$j | ||
142 | jl .L1st | ||
143 | |||
144 | add %rax,$hi1 | ||
145 | mov ($ap),%rax # ap[0] | ||
146 | adc \$0,%rdx | ||
147 | add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] | ||
148 | adc \$0,%rdx | ||
149 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
150 | mov %rdx,$hi1 | ||
151 | mov $lo0,$hi0 | ||
152 | |||
153 | xor %rdx,%rdx | ||
154 | add $hi0,$hi1 | ||
155 | adc \$0,%rdx | ||
156 | mov $hi1,-8(%rsp,$num,8) | ||
157 | mov %rdx,(%rsp,$num,8) # store upmost overflow bit | ||
158 | |||
159 | lea 1($i),$i # i++ | ||
160 | jmp .Louter | ||
161 | .align 16 | ||
162 | .Louter: | ||
163 | mov ($bp,$i,8),$m0 # m0=bp[i] | ||
164 | xor $j,$j # j=0 | ||
165 | mov $n0,$m1 | ||
166 | mov (%rsp),$lo0 | ||
167 | mulq $m0 # ap[0]*bp[i] | ||
168 | add %rax,$lo0 # ap[0]*bp[i]+tp[0] | ||
169 | mov ($np),%rax | ||
170 | adc \$0,%rdx | ||
171 | |||
172 | imulq $lo0,$m1 # tp[0]*n0 | ||
173 | mov %rdx,$hi0 | ||
174 | |||
175 | mulq $m1 # np[0]*m1 | ||
176 | add %rax,$lo0 # discarded | ||
177 | mov 8($ap),%rax | ||
178 | adc \$0,%rdx | ||
179 | mov 8(%rsp),$lo0 # tp[1] | ||
180 | mov %rdx,$hi1 | ||
181 | |||
182 | lea 1($j),$j # j++ | ||
183 | jmp .Linner_enter | ||
184 | |||
185 | .align 16 | ||
186 | .Linner: | ||
187 | add %rax,$hi1 | ||
188 | mov ($ap,$j,8),%rax | ||
189 | adc \$0,%rdx | ||
190 | add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] | ||
191 | mov (%rsp,$j,8),$lo0 | ||
192 | adc \$0,%rdx | ||
193 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
194 | mov %rdx,$hi1 | ||
195 | |||
196 | .Linner_enter: | ||
197 | mulq $m0 # ap[j]*bp[i] | ||
198 | add %rax,$hi0 | ||
199 | mov ($np,$j,8),%rax | ||
200 | adc \$0,%rdx | ||
201 | add $hi0,$lo0 # ap[j]*bp[i]+tp[j] | ||
202 | mov %rdx,$hi0 | ||
203 | adc \$0,$hi0 | ||
204 | lea 1($j),$j # j++ | ||
205 | |||
206 | mulq $m1 # np[j]*m1 | ||
207 | cmp $num,$j | ||
208 | jl .Linner | ||
209 | |||
210 | add %rax,$hi1 | ||
211 | mov ($ap),%rax # ap[0] | ||
212 | adc \$0,%rdx | ||
213 | add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] | ||
214 | mov (%rsp,$j,8),$lo0 | ||
215 | adc \$0,%rdx | ||
216 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
217 | mov %rdx,$hi1 | ||
218 | |||
219 | xor %rdx,%rdx | ||
220 | add $hi0,$hi1 | ||
221 | adc \$0,%rdx | ||
222 | add $lo0,$hi1 # pull upmost overflow bit | ||
223 | adc \$0,%rdx | ||
224 | mov $hi1,-8(%rsp,$num,8) | ||
225 | mov %rdx,(%rsp,$num,8) # store upmost overflow bit | ||
226 | |||
227 | lea 1($i),$i # i++ | ||
228 | cmp $num,$i | ||
229 | jl .Louter | ||
230 | |||
231 | xor $i,$i # i=0 and clear CF! | ||
232 | mov (%rsp),%rax # tp[0] | ||
233 | lea (%rsp),$ap # borrow ap for tp | ||
234 | mov $num,$j # j=num | ||
235 | jmp .Lsub | ||
236 | .align 16 | ||
237 | .Lsub: sbb ($np,$i,8),%rax | ||
238 | mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
239 | mov 8($ap,$i,8),%rax # tp[i+1] | ||
240 | lea 1($i),$i # i++ | ||
241 | dec $j # doesnn't affect CF! | ||
242 | jnz .Lsub | ||
243 | |||
244 | sbb \$0,%rax # handle upmost overflow bit | ||
245 | xor $i,$i | ||
246 | and %rax,$ap | ||
247 | not %rax | ||
248 | mov $rp,$np | ||
249 | and %rax,$np | ||
250 | mov $num,$j # j=num | ||
251 | or $np,$ap # ap=borrow?tp:rp | ||
252 | .align 16 | ||
253 | .Lcopy: # copy or in-place refresh | ||
254 | mov ($ap,$i,8),%rax | ||
255 | mov $i,(%rsp,$i,8) # zap temporary vector | ||
256 | mov %rax,($rp,$i,8) # rp[i]=tp[i] | ||
257 | lea 1($i),$i | ||
258 | sub \$1,$j | ||
259 | jnz .Lcopy | ||
260 | |||
261 | mov 8(%rsp,$num,8),%rsi # restore %rsp | ||
262 | mov \$1,%rax | ||
263 | mov (%rsi),%r15 | ||
264 | mov 8(%rsi),%r14 | ||
265 | mov 16(%rsi),%r13 | ||
266 | mov 24(%rsi),%r12 | ||
267 | mov 32(%rsi),%rbp | ||
268 | mov 40(%rsi),%rbx | ||
269 | lea 48(%rsi),%rsp | ||
270 | .Lmul_epilogue: | ||
271 | ret | ||
272 | .size bn_mul_mont,.-bn_mul_mont | ||
273 | ___ | ||
274 | {{{ | ||
275 | my @A=("%r10","%r11"); | ||
276 | my @N=("%r13","%rdi"); | ||
277 | $code.=<<___; | ||
278 | .type bn_mul4x_mont,\@function,6 | ||
279 | .align 16 | ||
280 | bn_mul4x_mont: | ||
281 | .Lmul4x_enter: | ||
282 | _CET_ENDBR | ||
283 | push %rbx | ||
284 | push %rbp | ||
285 | push %r12 | ||
286 | push %r13 | ||
287 | push %r14 | ||
288 | push %r15 | ||
289 | |||
290 | mov ${num}d,${num}d | ||
291 | lea 4($num),%r10 | ||
292 | mov %rsp,%r11 | ||
293 | neg %r10 | ||
294 | lea (%rsp,%r10,8),%rsp # tp=alloca(8*(num+4)) | ||
295 | and \$-1024,%rsp # minimize TLB usage | ||
296 | |||
297 | mov %r11,8(%rsp,$num,8) # tp[num+1]=%rsp | ||
298 | .Lmul4x_body: | ||
299 | mov $rp,16(%rsp,$num,8) # tp[num+2]=$rp | ||
300 | mov %rdx,%r12 # reassign $bp | ||
301 | ___ | ||
302 | $bp="%r12"; | ||
303 | $code.=<<___; | ||
304 | mov ($n0),$n0 # pull n0[0] value | ||
305 | mov ($bp),$m0 # m0=bp[0] | ||
306 | mov ($ap),%rax | ||
307 | |||
308 | xor $i,$i # i=0 | ||
309 | xor $j,$j # j=0 | ||
310 | |||
311 | mov $n0,$m1 | ||
312 | mulq $m0 # ap[0]*bp[0] | ||
313 | mov %rax,$A[0] | ||
314 | mov ($np),%rax | ||
315 | |||
316 | imulq $A[0],$m1 # "tp[0]"*n0 | ||
317 | mov %rdx,$A[1] | ||
318 | |||
319 | mulq $m1 # np[0]*m1 | ||
320 | add %rax,$A[0] # discarded | ||
321 | mov 8($ap),%rax | ||
322 | adc \$0,%rdx | ||
323 | mov %rdx,$N[1] | ||
324 | |||
325 | mulq $m0 | ||
326 | add %rax,$A[1] | ||
327 | mov 8($np),%rax | ||
328 | adc \$0,%rdx | ||
329 | mov %rdx,$A[0] | ||
330 | |||
331 | mulq $m1 | ||
332 | add %rax,$N[1] | ||
333 | mov 16($ap),%rax | ||
334 | adc \$0,%rdx | ||
335 | add $A[1],$N[1] | ||
336 | lea 4($j),$j # j++ | ||
337 | adc \$0,%rdx | ||
338 | mov $N[1],(%rsp) | ||
339 | mov %rdx,$N[0] | ||
340 | jmp .L1st4x | ||
341 | .align 16 | ||
342 | .L1st4x: | ||
343 | mulq $m0 # ap[j]*bp[0] | ||
344 | add %rax,$A[0] | ||
345 | mov -16($np,$j,8),%rax | ||
346 | adc \$0,%rdx | ||
347 | mov %rdx,$A[1] | ||
348 | |||
349 | mulq $m1 # np[j]*m1 | ||
350 | add %rax,$N[0] | ||
351 | mov -8($ap,$j,8),%rax | ||
352 | adc \$0,%rdx | ||
353 | add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] | ||
354 | adc \$0,%rdx | ||
355 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
356 | mov %rdx,$N[1] | ||
357 | |||
358 | mulq $m0 # ap[j]*bp[0] | ||
359 | add %rax,$A[1] | ||
360 | mov -8($np,$j,8),%rax | ||
361 | adc \$0,%rdx | ||
362 | mov %rdx,$A[0] | ||
363 | |||
364 | mulq $m1 # np[j]*m1 | ||
365 | add %rax,$N[1] | ||
366 | mov ($ap,$j,8),%rax | ||
367 | adc \$0,%rdx | ||
368 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] | ||
369 | adc \$0,%rdx | ||
370 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
371 | mov %rdx,$N[0] | ||
372 | |||
373 | mulq $m0 # ap[j]*bp[0] | ||
374 | add %rax,$A[0] | ||
375 | mov ($np,$j,8),%rax | ||
376 | adc \$0,%rdx | ||
377 | mov %rdx,$A[1] | ||
378 | |||
379 | mulq $m1 # np[j]*m1 | ||
380 | add %rax,$N[0] | ||
381 | mov 8($ap,$j,8),%rax | ||
382 | adc \$0,%rdx | ||
383 | add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] | ||
384 | adc \$0,%rdx | ||
385 | mov $N[0],-8(%rsp,$j,8) # tp[j-1] | ||
386 | mov %rdx,$N[1] | ||
387 | |||
388 | mulq $m0 # ap[j]*bp[0] | ||
389 | add %rax,$A[1] | ||
390 | mov 8($np,$j,8),%rax | ||
391 | adc \$0,%rdx | ||
392 | lea 4($j),$j # j++ | ||
393 | mov %rdx,$A[0] | ||
394 | |||
395 | mulq $m1 # np[j]*m1 | ||
396 | add %rax,$N[1] | ||
397 | mov -16($ap,$j,8),%rax | ||
398 | adc \$0,%rdx | ||
399 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] | ||
400 | adc \$0,%rdx | ||
401 | mov $N[1],-32(%rsp,$j,8) # tp[j-1] | ||
402 | mov %rdx,$N[0] | ||
403 | cmp $num,$j | ||
404 | jl .L1st4x | ||
405 | |||
406 | mulq $m0 # ap[j]*bp[0] | ||
407 | add %rax,$A[0] | ||
408 | mov -16($np,$j,8),%rax | ||
409 | adc \$0,%rdx | ||
410 | mov %rdx,$A[1] | ||
411 | |||
412 | mulq $m1 # np[j]*m1 | ||
413 | add %rax,$N[0] | ||
414 | mov -8($ap,$j,8),%rax | ||
415 | adc \$0,%rdx | ||
416 | add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] | ||
417 | adc \$0,%rdx | ||
418 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
419 | mov %rdx,$N[1] | ||
420 | |||
421 | mulq $m0 # ap[j]*bp[0] | ||
422 | add %rax,$A[1] | ||
423 | mov -8($np,$j,8),%rax | ||
424 | adc \$0,%rdx | ||
425 | mov %rdx,$A[0] | ||
426 | |||
427 | mulq $m1 # np[j]*m1 | ||
428 | add %rax,$N[1] | ||
429 | mov ($ap),%rax # ap[0] | ||
430 | adc \$0,%rdx | ||
431 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] | ||
432 | adc \$0,%rdx | ||
433 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
434 | mov %rdx,$N[0] | ||
435 | |||
436 | xor $N[1],$N[1] | ||
437 | add $A[0],$N[0] | ||
438 | adc \$0,$N[1] | ||
439 | mov $N[0],-8(%rsp,$j,8) | ||
440 | mov $N[1],(%rsp,$j,8) # store upmost overflow bit | ||
441 | |||
442 | lea 1($i),$i # i++ | ||
443 | .align 4 | ||
444 | .Louter4x: | ||
445 | mov ($bp,$i,8),$m0 # m0=bp[i] | ||
446 | xor $j,$j # j=0 | ||
447 | mov (%rsp),$A[0] | ||
448 | mov $n0,$m1 | ||
449 | mulq $m0 # ap[0]*bp[i] | ||
450 | add %rax,$A[0] # ap[0]*bp[i]+tp[0] | ||
451 | mov ($np),%rax | ||
452 | adc \$0,%rdx | ||
453 | |||
454 | imulq $A[0],$m1 # tp[0]*n0 | ||
455 | mov %rdx,$A[1] | ||
456 | |||
457 | mulq $m1 # np[0]*m1 | ||
458 | add %rax,$A[0] # "$N[0]", discarded | ||
459 | mov 8($ap),%rax | ||
460 | adc \$0,%rdx | ||
461 | mov %rdx,$N[1] | ||
462 | |||
463 | mulq $m0 # ap[j]*bp[i] | ||
464 | add %rax,$A[1] | ||
465 | mov 8($np),%rax | ||
466 | adc \$0,%rdx | ||
467 | add 8(%rsp),$A[1] # +tp[1] | ||
468 | adc \$0,%rdx | ||
469 | mov %rdx,$A[0] | ||
470 | |||
471 | mulq $m1 # np[j]*m1 | ||
472 | add %rax,$N[1] | ||
473 | mov 16($ap),%rax | ||
474 | adc \$0,%rdx | ||
475 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[i]+tp[j] | ||
476 | lea 4($j),$j # j+=2 | ||
477 | adc \$0,%rdx | ||
478 | mov $N[1],(%rsp) # tp[j-1] | ||
479 | mov %rdx,$N[0] | ||
480 | jmp .Linner4x | ||
481 | .align 16 | ||
482 | .Linner4x: | ||
483 | mulq $m0 # ap[j]*bp[i] | ||
484 | add %rax,$A[0] | ||
485 | mov -16($np,$j,8),%rax | ||
486 | adc \$0,%rdx | ||
487 | add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] | ||
488 | adc \$0,%rdx | ||
489 | mov %rdx,$A[1] | ||
490 | |||
491 | mulq $m1 # np[j]*m1 | ||
492 | add %rax,$N[0] | ||
493 | mov -8($ap,$j,8),%rax | ||
494 | adc \$0,%rdx | ||
495 | add $A[0],$N[0] | ||
496 | adc \$0,%rdx | ||
497 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
498 | mov %rdx,$N[1] | ||
499 | |||
500 | mulq $m0 # ap[j]*bp[i] | ||
501 | add %rax,$A[1] | ||
502 | mov -8($np,$j,8),%rax | ||
503 | adc \$0,%rdx | ||
504 | add -8(%rsp,$j,8),$A[1] | ||
505 | adc \$0,%rdx | ||
506 | mov %rdx,$A[0] | ||
507 | |||
508 | mulq $m1 # np[j]*m1 | ||
509 | add %rax,$N[1] | ||
510 | mov ($ap,$j,8),%rax | ||
511 | adc \$0,%rdx | ||
512 | add $A[1],$N[1] | ||
513 | adc \$0,%rdx | ||
514 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
515 | mov %rdx,$N[0] | ||
516 | |||
517 | mulq $m0 # ap[j]*bp[i] | ||
518 | add %rax,$A[0] | ||
519 | mov ($np,$j,8),%rax | ||
520 | adc \$0,%rdx | ||
521 | add (%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] | ||
522 | adc \$0,%rdx | ||
523 | mov %rdx,$A[1] | ||
524 | |||
525 | mulq $m1 # np[j]*m1 | ||
526 | add %rax,$N[0] | ||
527 | mov 8($ap,$j,8),%rax | ||
528 | adc \$0,%rdx | ||
529 | add $A[0],$N[0] | ||
530 | adc \$0,%rdx | ||
531 | mov $N[0],-8(%rsp,$j,8) # tp[j-1] | ||
532 | mov %rdx,$N[1] | ||
533 | |||
534 | mulq $m0 # ap[j]*bp[i] | ||
535 | add %rax,$A[1] | ||
536 | mov 8($np,$j,8),%rax | ||
537 | adc \$0,%rdx | ||
538 | add 8(%rsp,$j,8),$A[1] | ||
539 | adc \$0,%rdx | ||
540 | lea 4($j),$j # j++ | ||
541 | mov %rdx,$A[0] | ||
542 | |||
543 | mulq $m1 # np[j]*m1 | ||
544 | add %rax,$N[1] | ||
545 | mov -16($ap,$j,8),%rax | ||
546 | adc \$0,%rdx | ||
547 | add $A[1],$N[1] | ||
548 | adc \$0,%rdx | ||
549 | mov $N[1],-32(%rsp,$j,8) # tp[j-1] | ||
550 | mov %rdx,$N[0] | ||
551 | cmp $num,$j | ||
552 | jl .Linner4x | ||
553 | |||
554 | mulq $m0 # ap[j]*bp[i] | ||
555 | add %rax,$A[0] | ||
556 | mov -16($np,$j,8),%rax | ||
557 | adc \$0,%rdx | ||
558 | add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] | ||
559 | adc \$0,%rdx | ||
560 | mov %rdx,$A[1] | ||
561 | |||
562 | mulq $m1 # np[j]*m1 | ||
563 | add %rax,$N[0] | ||
564 | mov -8($ap,$j,8),%rax | ||
565 | adc \$0,%rdx | ||
566 | add $A[0],$N[0] | ||
567 | adc \$0,%rdx | ||
568 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
569 | mov %rdx,$N[1] | ||
570 | |||
571 | mulq $m0 # ap[j]*bp[i] | ||
572 | add %rax,$A[1] | ||
573 | mov -8($np,$j,8),%rax | ||
574 | adc \$0,%rdx | ||
575 | add -8(%rsp,$j,8),$A[1] | ||
576 | adc \$0,%rdx | ||
577 | lea 1($i),$i # i++ | ||
578 | mov %rdx,$A[0] | ||
579 | |||
580 | mulq $m1 # np[j]*m1 | ||
581 | add %rax,$N[1] | ||
582 | mov ($ap),%rax # ap[0] | ||
583 | adc \$0,%rdx | ||
584 | add $A[1],$N[1] | ||
585 | adc \$0,%rdx | ||
586 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
587 | mov %rdx,$N[0] | ||
588 | |||
589 | xor $N[1],$N[1] | ||
590 | add $A[0],$N[0] | ||
591 | adc \$0,$N[1] | ||
592 | add (%rsp,$num,8),$N[0] # pull upmost overflow bit | ||
593 | adc \$0,$N[1] | ||
594 | mov $N[0],-8(%rsp,$j,8) | ||
595 | mov $N[1],(%rsp,$j,8) # store upmost overflow bit | ||
596 | |||
597 | cmp $num,$i | ||
598 | jl .Louter4x | ||
599 | ___ | ||
600 | { | ||
601 | my @ri=("%rax","%rdx",$m0,$m1); | ||
602 | $code.=<<___; | ||
603 | mov 16(%rsp,$num,8),$rp # restore $rp | ||
604 | mov 0(%rsp),@ri[0] # tp[0] | ||
605 | pxor %xmm0,%xmm0 | ||
606 | mov 8(%rsp),@ri[1] # tp[1] | ||
607 | shr \$2,$num # num/=4 | ||
608 | lea (%rsp),$ap # borrow ap for tp | ||
609 | xor $i,$i # i=0 and clear CF! | ||
610 | |||
611 | sub 0($np),@ri[0] | ||
612 | mov 16($ap),@ri[2] # tp[2] | ||
613 | mov 24($ap),@ri[3] # tp[3] | ||
614 | sbb 8($np),@ri[1] | ||
615 | lea -1($num),$j # j=num/4-1 | ||
616 | jmp .Lsub4x | ||
617 | .align 16 | ||
618 | .Lsub4x: | ||
619 | mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
620 | mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
621 | sbb 16($np,$i,8),@ri[2] | ||
622 | mov 32($ap,$i,8),@ri[0] # tp[i+1] | ||
623 | mov 40($ap,$i,8),@ri[1] | ||
624 | sbb 24($np,$i,8),@ri[3] | ||
625 | mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
626 | mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
627 | sbb 32($np,$i,8),@ri[0] | ||
628 | mov 48($ap,$i,8),@ri[2] | ||
629 | mov 56($ap,$i,8),@ri[3] | ||
630 | sbb 40($np,$i,8),@ri[1] | ||
631 | lea 4($i),$i # i++ | ||
632 | dec $j # doesnn't affect CF! | ||
633 | jnz .Lsub4x | ||
634 | |||
635 | mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
636 | mov 32($ap,$i,8),@ri[0] # load overflow bit | ||
637 | sbb 16($np,$i,8),@ri[2] | ||
638 | mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
639 | sbb 24($np,$i,8),@ri[3] | ||
640 | mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
641 | |||
642 | sbb \$0,@ri[0] # handle upmost overflow bit | ||
643 | mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
644 | xor $i,$i # i=0 | ||
645 | and @ri[0],$ap | ||
646 | not @ri[0] | ||
647 | mov $rp,$np | ||
648 | and @ri[0],$np | ||
649 | lea -1($num),$j | ||
650 | or $np,$ap # ap=borrow?tp:rp | ||
651 | |||
652 | movdqu ($ap),%xmm1 | ||
653 | movdqa %xmm0,(%rsp) | ||
654 | movdqu %xmm1,($rp) | ||
655 | jmp .Lcopy4x | ||
656 | .align 16 | ||
657 | .Lcopy4x: # copy or in-place refresh | ||
658 | movdqu 16($ap,$i),%xmm2 | ||
659 | movdqu 32($ap,$i),%xmm1 | ||
660 | movdqa %xmm0,16(%rsp,$i) | ||
661 | movdqu %xmm2,16($rp,$i) | ||
662 | movdqa %xmm0,32(%rsp,$i) | ||
663 | movdqu %xmm1,32($rp,$i) | ||
664 | lea 32($i),$i | ||
665 | dec $j | ||
666 | jnz .Lcopy4x | ||
667 | |||
668 | shl \$2,$num | ||
669 | movdqu 16($ap,$i),%xmm2 | ||
670 | movdqa %xmm0,16(%rsp,$i) | ||
671 | movdqu %xmm2,16($rp,$i) | ||
672 | ___ | ||
673 | } | ||
674 | $code.=<<___; | ||
675 | mov 8(%rsp,$num,8),%rsi # restore %rsp | ||
676 | mov \$1,%rax | ||
677 | mov (%rsi),%r15 | ||
678 | mov 8(%rsi),%r14 | ||
679 | mov 16(%rsi),%r13 | ||
680 | mov 24(%rsi),%r12 | ||
681 | mov 32(%rsi),%rbp | ||
682 | mov 40(%rsi),%rbx | ||
683 | lea 48(%rsi),%rsp | ||
684 | .Lmul4x_epilogue: | ||
685 | ret | ||
686 | .size bn_mul4x_mont,.-bn_mul4x_mont | ||
687 | ___ | ||
688 | }}} | ||
689 | {{{ | ||
690 | ###################################################################### | ||
691 | # void bn_sqr4x_mont( | ||
692 | my $rptr="%rdi"; # const BN_ULONG *rptr, | ||
693 | my $aptr="%rsi"; # const BN_ULONG *aptr, | ||
694 | my $bptr="%rdx"; # not used | ||
695 | my $nptr="%rcx"; # const BN_ULONG *nptr, | ||
696 | my $n0 ="%r8"; # const BN_ULONG *n0); | ||
697 | my $num ="%r9"; # int num, has to be divisible by 4 and | ||
698 | # not less than 8 | ||
699 | |||
700 | my ($i,$j,$tptr)=("%rbp","%rcx",$rptr); | ||
701 | my @A0=("%r10","%r11"); | ||
702 | my @A1=("%r12","%r13"); | ||
703 | my ($a0,$a1,$ai)=("%r14","%r15","%rbx"); | ||
704 | |||
705 | $code.=<<___; | ||
706 | .type bn_sqr4x_mont,\@function,6 | ||
707 | .align 16 | ||
708 | bn_sqr4x_mont: | ||
709 | .Lsqr4x_enter: | ||
710 | _CET_ENDBR | ||
711 | push %rbx | ||
712 | push %rbp | ||
713 | push %r12 | ||
714 | push %r13 | ||
715 | push %r14 | ||
716 | push %r15 | ||
717 | |||
718 | shl \$3,${num}d # convert $num to bytes | ||
719 | xor %r10,%r10 | ||
720 | mov %rsp,%r11 # put aside %rsp | ||
721 | sub $num,%r10 # -$num | ||
722 | mov ($n0),$n0 # *n0 | ||
723 | lea -72(%rsp,%r10,2),%rsp # alloca(frame+2*$num) | ||
724 | and \$-1024,%rsp # minimize TLB usage | ||
725 | ############################################################## | ||
726 | # Stack layout | ||
727 | # | ||
728 | # +0 saved $num, used in reduction section | ||
729 | # +8 &t[2*$num], used in reduction section | ||
730 | # +32 saved $rptr | ||
731 | # +40 saved $nptr | ||
732 | # +48 saved *n0 | ||
733 | # +56 saved %rsp | ||
734 | # +64 t[2*$num] | ||
735 | # | ||
736 | mov $rptr,32(%rsp) # save $rptr | ||
737 | mov $nptr,40(%rsp) | ||
738 | mov $n0, 48(%rsp) | ||
739 | mov %r11, 56(%rsp) # save original %rsp | ||
740 | .Lsqr4x_body: | ||
741 | ############################################################## | ||
742 | # Squaring part: | ||
743 | # | ||
744 | # a) multiply-n-add everything but a[i]*a[i]; | ||
745 | # b) shift result of a) by 1 to the left and accumulate | ||
746 | # a[i]*a[i] products; | ||
747 | # | ||
748 | lea 32(%r10),$i # $i=-($num-32) | ||
749 | lea ($aptr,$num),$aptr # end of a[] buffer, ($aptr,$i)=&ap[2] | ||
750 | |||
751 | mov $num,$j # $j=$num | ||
752 | |||
753 | # comments apply to $num==8 case | ||
754 | mov -32($aptr,$i),$a0 # a[0] | ||
755 | lea 64(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] | ||
756 | mov -24($aptr,$i),%rax # a[1] | ||
757 | lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] | ||
758 | mov -16($aptr,$i),$ai # a[2] | ||
759 | mov %rax,$a1 | ||
760 | |||
761 | mul $a0 # a[1]*a[0] | ||
762 | mov %rax,$A0[0] # a[1]*a[0] | ||
763 | mov $ai,%rax # a[2] | ||
764 | mov %rdx,$A0[1] | ||
765 | mov $A0[0],-24($tptr,$i) # t[1] | ||
766 | |||
767 | xor $A0[0],$A0[0] | ||
768 | mul $a0 # a[2]*a[0] | ||
769 | add %rax,$A0[1] | ||
770 | mov $ai,%rax | ||
771 | adc %rdx,$A0[0] | ||
772 | mov $A0[1],-16($tptr,$i) # t[2] | ||
773 | |||
774 | lea -16($i),$j # j=-16 | ||
775 | |||
776 | |||
777 | mov 8($aptr,$j),$ai # a[3] | ||
778 | mul $a1 # a[2]*a[1] | ||
779 | mov %rax,$A1[0] # a[2]*a[1]+t[3] | ||
780 | mov $ai,%rax | ||
781 | mov %rdx,$A1[1] | ||
782 | |||
783 | xor $A0[1],$A0[1] | ||
784 | add $A1[0],$A0[0] | ||
785 | lea 16($j),$j | ||
786 | adc \$0,$A0[1] | ||
787 | mul $a0 # a[3]*a[0] | ||
788 | add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] | ||
789 | mov $ai,%rax | ||
790 | adc %rdx,$A0[1] | ||
791 | mov $A0[0],-8($tptr,$j) # t[3] | ||
792 | jmp .Lsqr4x_1st | ||
793 | |||
794 | .align 16 | ||
795 | .Lsqr4x_1st: | ||
796 | mov ($aptr,$j),$ai # a[4] | ||
797 | xor $A1[0],$A1[0] | ||
798 | mul $a1 # a[3]*a[1] | ||
799 | add %rax,$A1[1] # a[3]*a[1]+t[4] | ||
800 | mov $ai,%rax | ||
801 | adc %rdx,$A1[0] | ||
802 | |||
803 | xor $A0[0],$A0[0] | ||
804 | add $A1[1],$A0[1] | ||
805 | adc \$0,$A0[0] | ||
806 | mul $a0 # a[4]*a[0] | ||
807 | add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4] | ||
808 | mov $ai,%rax # a[3] | ||
809 | adc %rdx,$A0[0] | ||
810 | mov $A0[1],($tptr,$j) # t[4] | ||
811 | |||
812 | |||
813 | mov 8($aptr,$j),$ai # a[5] | ||
814 | xor $A1[1],$A1[1] | ||
815 | mul $a1 # a[4]*a[3] | ||
816 | add %rax,$A1[0] # a[4]*a[3]+t[5] | ||
817 | mov $ai,%rax | ||
818 | adc %rdx,$A1[1] | ||
819 | |||
820 | xor $A0[1],$A0[1] | ||
821 | add $A1[0],$A0[0] | ||
822 | adc \$0,$A0[1] | ||
823 | mul $a0 # a[5]*a[2] | ||
824 | add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5] | ||
825 | mov $ai,%rax | ||
826 | adc %rdx,$A0[1] | ||
827 | mov $A0[0],8($tptr,$j) # t[5] | ||
828 | |||
829 | mov 16($aptr,$j),$ai # a[6] | ||
830 | xor $A1[0],$A1[0] | ||
831 | mul $a1 # a[5]*a[3] | ||
832 | add %rax,$A1[1] # a[5]*a[3]+t[6] | ||
833 | mov $ai,%rax | ||
834 | adc %rdx,$A1[0] | ||
835 | |||
836 | xor $A0[0],$A0[0] | ||
837 | add $A1[1],$A0[1] | ||
838 | adc \$0,$A0[0] | ||
839 | mul $a0 # a[6]*a[2] | ||
840 | add %rax,$A0[1] # a[6]*a[2]+a[5]*a[3]+t[6] | ||
841 | mov $ai,%rax # a[3] | ||
842 | adc %rdx,$A0[0] | ||
843 | mov $A0[1],16($tptr,$j) # t[6] | ||
844 | |||
845 | |||
846 | mov 24($aptr,$j),$ai # a[7] | ||
847 | xor $A1[1],$A1[1] | ||
848 | mul $a1 # a[6]*a[5] | ||
849 | add %rax,$A1[0] # a[6]*a[5]+t[7] | ||
850 | mov $ai,%rax | ||
851 | adc %rdx,$A1[1] | ||
852 | |||
853 | xor $A0[1],$A0[1] | ||
854 | add $A1[0],$A0[0] | ||
855 | lea 32($j),$j | ||
856 | adc \$0,$A0[1] | ||
857 | mul $a0 # a[7]*a[4] | ||
858 | add %rax,$A0[0] # a[7]*a[4]+a[6]*a[5]+t[6] | ||
859 | mov $ai,%rax | ||
860 | adc %rdx,$A0[1] | ||
861 | mov $A0[0],-8($tptr,$j) # t[7] | ||
862 | |||
863 | cmp \$0,$j | ||
864 | jne .Lsqr4x_1st | ||
865 | |||
866 | xor $A1[0],$A1[0] | ||
867 | add $A0[1],$A1[1] | ||
868 | adc \$0,$A1[0] | ||
869 | mul $a1 # a[7]*a[5] | ||
870 | add %rax,$A1[1] | ||
871 | adc %rdx,$A1[0] | ||
872 | |||
873 | mov $A1[1],($tptr) # t[8] | ||
874 | lea 16($i),$i | ||
875 | mov $A1[0],8($tptr) # t[9] | ||
876 | jmp .Lsqr4x_outer | ||
877 | |||
878 | .align 16 | ||
879 | .Lsqr4x_outer: # comments apply to $num==6 case | ||
880 | mov -32($aptr,$i),$a0 # a[0] | ||
881 | lea 64(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] | ||
882 | mov -24($aptr,$i),%rax # a[1] | ||
883 | lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] | ||
884 | mov -16($aptr,$i),$ai # a[2] | ||
885 | mov %rax,$a1 | ||
886 | |||
887 | mov -24($tptr,$i),$A0[0] # t[1] | ||
888 | xor $A0[1],$A0[1] | ||
889 | mul $a0 # a[1]*a[0] | ||
890 | add %rax,$A0[0] # a[1]*a[0]+t[1] | ||
891 | mov $ai,%rax # a[2] | ||
892 | adc %rdx,$A0[1] | ||
893 | mov $A0[0],-24($tptr,$i) # t[1] | ||
894 | |||
895 | xor $A0[0],$A0[0] | ||
896 | add -16($tptr,$i),$A0[1] # a[2]*a[0]+t[2] | ||
897 | adc \$0,$A0[0] | ||
898 | mul $a0 # a[2]*a[0] | ||
899 | add %rax,$A0[1] | ||
900 | mov $ai,%rax | ||
901 | adc %rdx,$A0[0] | ||
902 | mov $A0[1],-16($tptr,$i) # t[2] | ||
903 | |||
904 | lea -16($i),$j # j=-16 | ||
905 | xor $A1[0],$A1[0] | ||
906 | |||
907 | |||
908 | mov 8($aptr,$j),$ai # a[3] | ||
909 | xor $A1[1],$A1[1] | ||
910 | add 8($tptr,$j),$A1[0] | ||
911 | adc \$0,$A1[1] | ||
912 | mul $a1 # a[2]*a[1] | ||
913 | add %rax,$A1[0] # a[2]*a[1]+t[3] | ||
914 | mov $ai,%rax | ||
915 | adc %rdx,$A1[1] | ||
916 | |||
917 | xor $A0[1],$A0[1] | ||
918 | add $A1[0],$A0[0] | ||
919 | adc \$0,$A0[1] | ||
920 | mul $a0 # a[3]*a[0] | ||
921 | add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] | ||
922 | mov $ai,%rax | ||
923 | adc %rdx,$A0[1] | ||
924 | mov $A0[0],8($tptr,$j) # t[3] | ||
925 | |||
926 | lea 16($j),$j | ||
927 | jmp .Lsqr4x_inner | ||
928 | |||
929 | .align 16 | ||
930 | .Lsqr4x_inner: | ||
931 | mov ($aptr,$j),$ai # a[4] | ||
932 | xor $A1[0],$A1[0] | ||
933 | add ($tptr,$j),$A1[1] | ||
934 | adc \$0,$A1[0] | ||
935 | mul $a1 # a[3]*a[1] | ||
936 | add %rax,$A1[1] # a[3]*a[1]+t[4] | ||
937 | mov $ai,%rax | ||
938 | adc %rdx,$A1[0] | ||
939 | |||
940 | xor $A0[0],$A0[0] | ||
941 | add $A1[1],$A0[1] | ||
942 | adc \$0,$A0[0] | ||
943 | mul $a0 # a[4]*a[0] | ||
944 | add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4] | ||
945 | mov $ai,%rax # a[3] | ||
946 | adc %rdx,$A0[0] | ||
947 | mov $A0[1],($tptr,$j) # t[4] | ||
948 | |||
949 | mov 8($aptr,$j),$ai # a[5] | ||
950 | xor $A1[1],$A1[1] | ||
951 | add 8($tptr,$j),$A1[0] | ||
952 | adc \$0,$A1[1] | ||
953 | mul $a1 # a[4]*a[3] | ||
954 | add %rax,$A1[0] # a[4]*a[3]+t[5] | ||
955 | mov $ai,%rax | ||
956 | adc %rdx,$A1[1] | ||
957 | |||
958 | xor $A0[1],$A0[1] | ||
959 | add $A1[0],$A0[0] | ||
960 | lea 16($j),$j # j++ | ||
961 | adc \$0,$A0[1] | ||
962 | mul $a0 # a[5]*a[2] | ||
963 | add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5] | ||
964 | mov $ai,%rax | ||
965 | adc %rdx,$A0[1] | ||
966 | mov $A0[0],-8($tptr,$j) # t[5], "preloaded t[1]" below | ||
967 | |||
968 | cmp \$0,$j | ||
969 | jne .Lsqr4x_inner | ||
970 | |||
971 | xor $A1[0],$A1[0] | ||
972 | add $A0[1],$A1[1] | ||
973 | adc \$0,$A1[0] | ||
974 | mul $a1 # a[5]*a[3] | ||
975 | add %rax,$A1[1] | ||
976 | adc %rdx,$A1[0] | ||
977 | |||
978 | mov $A1[1],($tptr) # t[6], "preloaded t[2]" below | ||
979 | mov $A1[0],8($tptr) # t[7], "preloaded t[3]" below | ||
980 | |||
981 | add \$16,$i | ||
982 | jnz .Lsqr4x_outer | ||
983 | |||
984 | # comments apply to $num==4 case | ||
985 | mov -32($aptr),$a0 # a[0] | ||
986 | lea 64(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] | ||
987 | mov -24($aptr),%rax # a[1] | ||
988 | lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] | ||
989 | mov -16($aptr),$ai # a[2] | ||
990 | mov %rax,$a1 | ||
991 | |||
992 | xor $A0[1],$A0[1] | ||
993 | mul $a0 # a[1]*a[0] | ||
994 | add %rax,$A0[0] # a[1]*a[0]+t[1], preloaded t[1] | ||
995 | mov $ai,%rax # a[2] | ||
996 | adc %rdx,$A0[1] | ||
997 | mov $A0[0],-24($tptr) # t[1] | ||
998 | |||
999 | xor $A0[0],$A0[0] | ||
1000 | add $A1[1],$A0[1] # a[2]*a[0]+t[2], preloaded t[2] | ||
1001 | adc \$0,$A0[0] | ||
1002 | mul $a0 # a[2]*a[0] | ||
1003 | add %rax,$A0[1] | ||
1004 | mov $ai,%rax | ||
1005 | adc %rdx,$A0[0] | ||
1006 | mov $A0[1],-16($tptr) # t[2] | ||
1007 | |||
1008 | mov -8($aptr),$ai # a[3] | ||
1009 | mul $a1 # a[2]*a[1] | ||
1010 | add %rax,$A1[0] # a[2]*a[1]+t[3], preloaded t[3] | ||
1011 | mov $ai,%rax | ||
1012 | adc \$0,%rdx | ||
1013 | |||
1014 | xor $A0[1],$A0[1] | ||
1015 | add $A1[0],$A0[0] | ||
1016 | mov %rdx,$A1[1] | ||
1017 | adc \$0,$A0[1] | ||
1018 | mul $a0 # a[3]*a[0] | ||
1019 | add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] | ||
1020 | mov $ai,%rax | ||
1021 | adc %rdx,$A0[1] | ||
1022 | mov $A0[0],-8($tptr) # t[3] | ||
1023 | |||
1024 | xor $A1[0],$A1[0] | ||
1025 | add $A0[1],$A1[1] | ||
1026 | adc \$0,$A1[0] | ||
1027 | mul $a1 # a[3]*a[1] | ||
1028 | add %rax,$A1[1] | ||
1029 | mov -16($aptr),%rax # a[2] | ||
1030 | adc %rdx,$A1[0] | ||
1031 | |||
1032 | mov $A1[1],($tptr) # t[4] | ||
1033 | mov $A1[0],8($tptr) # t[5] | ||
1034 | |||
1035 | mul $ai # a[2]*a[3] | ||
1036 | ___ | ||
1037 | { | ||
1038 | my ($shift,$carry)=($a0,$a1); | ||
1039 | my @S=(@A1,$ai,$n0); | ||
1040 | $code.=<<___; | ||
1041 | add \$16,$i | ||
1042 | xor $shift,$shift | ||
1043 | sub $num,$i # $i=16-$num | ||
1044 | xor $carry,$carry | ||
1045 | |||
1046 | add $A1[0],%rax # t[5] | ||
1047 | adc \$0,%rdx | ||
1048 | mov %rax,8($tptr) # t[5] | ||
1049 | mov %rdx,16($tptr) # t[6] | ||
1050 | mov $carry,24($tptr) # t[7] | ||
1051 | |||
1052 | mov -16($aptr,$i),%rax # a[0] | ||
1053 | lea 64(%rsp,$num,2),$tptr | ||
1054 | xor $A0[0],$A0[0] # t[0] | ||
1055 | mov -24($tptr,$i,2),$A0[1] # t[1] | ||
1056 | |||
1057 | lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift | ||
1058 | shr \$63,$A0[0] | ||
1059 | lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | | ||
1060 | shr \$63,$A0[1] | ||
1061 | or $A0[0],$S[1] # | t[2*i]>>63 | ||
1062 | mov -16($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch | ||
1063 | mov $A0[1],$shift # shift=t[2*i+1]>>63 | ||
1064 | mul %rax # a[i]*a[i] | ||
1065 | neg $carry # mov $carry,cf | ||
1066 | mov -8($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch | ||
1067 | adc %rax,$S[0] | ||
1068 | mov -8($aptr,$i),%rax # a[i+1] # prefetch | ||
1069 | mov $S[0],-32($tptr,$i,2) | ||
1070 | adc %rdx,$S[1] | ||
1071 | |||
1072 | lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift | ||
1073 | mov $S[1],-24($tptr,$i,2) | ||
1074 | sbb $carry,$carry # mov cf,$carry | ||
1075 | shr \$63,$A0[0] | ||
1076 | lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | | ||
1077 | shr \$63,$A0[1] | ||
1078 | or $A0[0],$S[3] # | t[2*i]>>63 | ||
1079 | mov 0($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch | ||
1080 | mov $A0[1],$shift # shift=t[2*i+1]>>63 | ||
1081 | mul %rax # a[i]*a[i] | ||
1082 | neg $carry # mov $carry,cf | ||
1083 | mov 8($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch | ||
1084 | adc %rax,$S[2] | ||
1085 | mov 0($aptr,$i),%rax # a[i+1] # prefetch | ||
1086 | mov $S[2],-16($tptr,$i,2) | ||
1087 | adc %rdx,$S[3] | ||
1088 | lea 16($i),$i | ||
1089 | mov $S[3],-40($tptr,$i,2) | ||
1090 | sbb $carry,$carry # mov cf,$carry | ||
1091 | jmp .Lsqr4x_shift_n_add | ||
1092 | |||
1093 | .align 16 | ||
1094 | .Lsqr4x_shift_n_add: | ||
1095 | lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift | ||
1096 | shr \$63,$A0[0] | ||
1097 | lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | | ||
1098 | shr \$63,$A0[1] | ||
1099 | or $A0[0],$S[1] # | t[2*i]>>63 | ||
1100 | mov -16($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch | ||
1101 | mov $A0[1],$shift # shift=t[2*i+1]>>63 | ||
1102 | mul %rax # a[i]*a[i] | ||
1103 | neg $carry # mov $carry,cf | ||
1104 | mov -8($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch | ||
1105 | adc %rax,$S[0] | ||
1106 | mov -8($aptr,$i),%rax # a[i+1] # prefetch | ||
1107 | mov $S[0],-32($tptr,$i,2) | ||
1108 | adc %rdx,$S[1] | ||
1109 | |||
1110 | lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift | ||
1111 | mov $S[1],-24($tptr,$i,2) | ||
1112 | sbb $carry,$carry # mov cf,$carry | ||
1113 | shr \$63,$A0[0] | ||
1114 | lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | | ||
1115 | shr \$63,$A0[1] | ||
1116 | or $A0[0],$S[3] # | t[2*i]>>63 | ||
1117 | mov 0($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch | ||
1118 | mov $A0[1],$shift # shift=t[2*i+1]>>63 | ||
1119 | mul %rax # a[i]*a[i] | ||
1120 | neg $carry # mov $carry,cf | ||
1121 | mov 8($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch | ||
1122 | adc %rax,$S[2] | ||
1123 | mov 0($aptr,$i),%rax # a[i+1] # prefetch | ||
1124 | mov $S[2],-16($tptr,$i,2) | ||
1125 | adc %rdx,$S[3] | ||
1126 | |||
1127 | lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift | ||
1128 | mov $S[3],-8($tptr,$i,2) | ||
1129 | sbb $carry,$carry # mov cf,$carry | ||
1130 | shr \$63,$A0[0] | ||
1131 | lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | | ||
1132 | shr \$63,$A0[1] | ||
1133 | or $A0[0],$S[1] # | t[2*i]>>63 | ||
1134 | mov 16($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch | ||
1135 | mov $A0[1],$shift # shift=t[2*i+1]>>63 | ||
1136 | mul %rax # a[i]*a[i] | ||
1137 | neg $carry # mov $carry,cf | ||
1138 | mov 24($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch | ||
1139 | adc %rax,$S[0] | ||
1140 | mov 8($aptr,$i),%rax # a[i+1] # prefetch | ||
1141 | mov $S[0],0($tptr,$i,2) | ||
1142 | adc %rdx,$S[1] | ||
1143 | |||
1144 | lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift | ||
1145 | mov $S[1],8($tptr,$i,2) | ||
1146 | sbb $carry,$carry # mov cf,$carry | ||
1147 | shr \$63,$A0[0] | ||
1148 | lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | | ||
1149 | shr \$63,$A0[1] | ||
1150 | or $A0[0],$S[3] # | t[2*i]>>63 | ||
1151 | mov 32($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch | ||
1152 | mov $A0[1],$shift # shift=t[2*i+1]>>63 | ||
1153 | mul %rax # a[i]*a[i] | ||
1154 | neg $carry # mov $carry,cf | ||
1155 | mov 40($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch | ||
1156 | adc %rax,$S[2] | ||
1157 | mov 16($aptr,$i),%rax # a[i+1] # prefetch | ||
1158 | mov $S[2],16($tptr,$i,2) | ||
1159 | adc %rdx,$S[3] | ||
1160 | mov $S[3],24($tptr,$i,2) | ||
1161 | sbb $carry,$carry # mov cf,$carry | ||
1162 | add \$32,$i | ||
1163 | jnz .Lsqr4x_shift_n_add | ||
1164 | |||
1165 | lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift | ||
1166 | shr \$63,$A0[0] | ||
1167 | lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | | ||
1168 | shr \$63,$A0[1] | ||
1169 | or $A0[0],$S[1] # | t[2*i]>>63 | ||
1170 | mov -16($tptr),$A0[0] # t[2*i+2] # prefetch | ||
1171 | mov $A0[1],$shift # shift=t[2*i+1]>>63 | ||
1172 | mul %rax # a[i]*a[i] | ||
1173 | neg $carry # mov $carry,cf | ||
1174 | mov -8($tptr),$A0[1] # t[2*i+2+1] # prefetch | ||
1175 | adc %rax,$S[0] | ||
1176 | mov -8($aptr),%rax # a[i+1] # prefetch | ||
1177 | mov $S[0],-32($tptr) | ||
1178 | adc %rdx,$S[1] | ||
1179 | |||
1180 | lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1|shift | ||
1181 | mov $S[1],-24($tptr) | ||
1182 | sbb $carry,$carry # mov cf,$carry | ||
1183 | shr \$63,$A0[0] | ||
1184 | lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | | ||
1185 | shr \$63,$A0[1] | ||
1186 | or $A0[0],$S[3] # | t[2*i]>>63 | ||
1187 | mul %rax # a[i]*a[i] | ||
1188 | neg $carry # mov $carry,cf | ||
1189 | adc %rax,$S[2] | ||
1190 | adc %rdx,$S[3] | ||
1191 | mov $S[2],-16($tptr) | ||
1192 | mov $S[3],-8($tptr) | ||
1193 | ___ | ||
1194 | } | ||
1195 | ############################################################## | ||
1196 | # Montgomery reduction part, "word-by-word" algorithm. | ||
1197 | # | ||
1198 | { | ||
1199 | my ($topbit,$nptr)=("%rbp",$aptr); | ||
1200 | my ($m0,$m1)=($a0,$a1); | ||
1201 | my @Ni=("%rbx","%r9"); | ||
1202 | $code.=<<___; | ||
1203 | mov 40(%rsp),$nptr # restore $nptr | ||
1204 | mov 48(%rsp),$n0 # restore *n0 | ||
1205 | xor $j,$j | ||
1206 | mov $num,0(%rsp) # save $num | ||
1207 | sub $num,$j # $j=-$num | ||
1208 | mov 64(%rsp),$A0[0] # t[0] # modsched # | ||
1209 | mov $n0,$m0 # # modsched # | ||
1210 | lea 64(%rsp,$num,2),%rax # end of t[] buffer | ||
1211 | lea 64(%rsp,$num),$tptr # end of t[] window | ||
1212 | mov %rax,8(%rsp) # save end of t[] buffer | ||
1213 | lea ($nptr,$num),$nptr # end of n[] buffer | ||
1214 | xor $topbit,$topbit # $topbit=0 | ||
1215 | |||
1216 | mov 0($nptr,$j),%rax # n[0] # modsched # | ||
1217 | mov 8($nptr,$j),$Ni[1] # n[1] # modsched # | ||
1218 | imulq $A0[0],$m0 # m0=t[0]*n0 # modsched # | ||
1219 | mov %rax,$Ni[0] # # modsched # | ||
1220 | jmp .Lsqr4x_mont_outer | ||
1221 | |||
1222 | .align 16 | ||
1223 | .Lsqr4x_mont_outer: | ||
1224 | xor $A0[1],$A0[1] | ||
1225 | mul $m0 # n[0]*m0 | ||
1226 | add %rax,$A0[0] # n[0]*m0+t[0] | ||
1227 | mov $Ni[1],%rax | ||
1228 | adc %rdx,$A0[1] | ||
1229 | mov $n0,$m1 | ||
1230 | |||
1231 | xor $A0[0],$A0[0] | ||
1232 | add 8($tptr,$j),$A0[1] | ||
1233 | adc \$0,$A0[0] | ||
1234 | mul $m0 # n[1]*m0 | ||
1235 | add %rax,$A0[1] # n[1]*m0+t[1] | ||
1236 | mov $Ni[0],%rax | ||
1237 | adc %rdx,$A0[0] | ||
1238 | |||
1239 | imulq $A0[1],$m1 | ||
1240 | |||
1241 | mov 16($nptr,$j),$Ni[0] # n[2] | ||
1242 | xor $A1[1],$A1[1] | ||
1243 | add $A0[1],$A1[0] | ||
1244 | adc \$0,$A1[1] | ||
1245 | mul $m1 # n[0]*m1 | ||
1246 | add %rax,$A1[0] # n[0]*m1+"t[1]" | ||
1247 | mov $Ni[0],%rax | ||
1248 | adc %rdx,$A1[1] | ||
1249 | mov $A1[0],8($tptr,$j) # "t[1]" | ||
1250 | |||
1251 | xor $A0[1],$A0[1] | ||
1252 | add 16($tptr,$j),$A0[0] | ||
1253 | adc \$0,$A0[1] | ||
1254 | mul $m0 # n[2]*m0 | ||
1255 | add %rax,$A0[0] # n[2]*m0+t[2] | ||
1256 | mov $Ni[1],%rax | ||
1257 | adc %rdx,$A0[1] | ||
1258 | |||
1259 | mov 24($nptr,$j),$Ni[1] # n[3] | ||
1260 | xor $A1[0],$A1[0] | ||
1261 | add $A0[0],$A1[1] | ||
1262 | adc \$0,$A1[0] | ||
1263 | mul $m1 # n[1]*m1 | ||
1264 | add %rax,$A1[1] # n[1]*m1+"t[2]" | ||
1265 | mov $Ni[1],%rax | ||
1266 | adc %rdx,$A1[0] | ||
1267 | mov $A1[1],16($tptr,$j) # "t[2]" | ||
1268 | |||
1269 | xor $A0[0],$A0[0] | ||
1270 | add 24($tptr,$j),$A0[1] | ||
1271 | lea 32($j),$j | ||
1272 | adc \$0,$A0[0] | ||
1273 | mul $m0 # n[3]*m0 | ||
1274 | add %rax,$A0[1] # n[3]*m0+t[3] | ||
1275 | mov $Ni[0],%rax | ||
1276 | adc %rdx,$A0[0] | ||
1277 | jmp .Lsqr4x_mont_inner | ||
1278 | |||
1279 | .align 16 | ||
1280 | .Lsqr4x_mont_inner: | ||
1281 | mov ($nptr,$j),$Ni[0] # n[4] | ||
1282 | xor $A1[1],$A1[1] | ||
1283 | add $A0[1],$A1[0] | ||
1284 | adc \$0,$A1[1] | ||
1285 | mul $m1 # n[2]*m1 | ||
1286 | add %rax,$A1[0] # n[2]*m1+"t[3]" | ||
1287 | mov $Ni[0],%rax | ||
1288 | adc %rdx,$A1[1] | ||
1289 | mov $A1[0],-8($tptr,$j) # "t[3]" | ||
1290 | |||
1291 | xor $A0[1],$A0[1] | ||
1292 | add ($tptr,$j),$A0[0] | ||
1293 | adc \$0,$A0[1] | ||
1294 | mul $m0 # n[4]*m0 | ||
1295 | add %rax,$A0[0] # n[4]*m0+t[4] | ||
1296 | mov $Ni[1],%rax | ||
1297 | adc %rdx,$A0[1] | ||
1298 | |||
1299 | mov 8($nptr,$j),$Ni[1] # n[5] | ||
1300 | xor $A1[0],$A1[0] | ||
1301 | add $A0[0],$A1[1] | ||
1302 | adc \$0,$A1[0] | ||
1303 | mul $m1 # n[3]*m1 | ||
1304 | add %rax,$A1[1] # n[3]*m1+"t[4]" | ||
1305 | mov $Ni[1],%rax | ||
1306 | adc %rdx,$A1[0] | ||
1307 | mov $A1[1],($tptr,$j) # "t[4]" | ||
1308 | |||
1309 | xor $A0[0],$A0[0] | ||
1310 | add 8($tptr,$j),$A0[1] | ||
1311 | adc \$0,$A0[0] | ||
1312 | mul $m0 # n[5]*m0 | ||
1313 | add %rax,$A0[1] # n[5]*m0+t[5] | ||
1314 | mov $Ni[0],%rax | ||
1315 | adc %rdx,$A0[0] | ||
1316 | |||
1317 | |||
1318 | mov 16($nptr,$j),$Ni[0] # n[6] | ||
1319 | xor $A1[1],$A1[1] | ||
1320 | add $A0[1],$A1[0] | ||
1321 | adc \$0,$A1[1] | ||
1322 | mul $m1 # n[4]*m1 | ||
1323 | add %rax,$A1[0] # n[4]*m1+"t[5]" | ||
1324 | mov $Ni[0],%rax | ||
1325 | adc %rdx,$A1[1] | ||
1326 | mov $A1[0],8($tptr,$j) # "t[5]" | ||
1327 | |||
1328 | xor $A0[1],$A0[1] | ||
1329 | add 16($tptr,$j),$A0[0] | ||
1330 | adc \$0,$A0[1] | ||
1331 | mul $m0 # n[6]*m0 | ||
1332 | add %rax,$A0[0] # n[6]*m0+t[6] | ||
1333 | mov $Ni[1],%rax | ||
1334 | adc %rdx,$A0[1] | ||
1335 | |||
1336 | mov 24($nptr,$j),$Ni[1] # n[7] | ||
1337 | xor $A1[0],$A1[0] | ||
1338 | add $A0[0],$A1[1] | ||
1339 | adc \$0,$A1[0] | ||
1340 | mul $m1 # n[5]*m1 | ||
1341 | add %rax,$A1[1] # n[5]*m1+"t[6]" | ||
1342 | mov $Ni[1],%rax | ||
1343 | adc %rdx,$A1[0] | ||
1344 | mov $A1[1],16($tptr,$j) # "t[6]" | ||
1345 | |||
1346 | xor $A0[0],$A0[0] | ||
1347 | add 24($tptr,$j),$A0[1] | ||
1348 | lea 32($j),$j | ||
1349 | adc \$0,$A0[0] | ||
1350 | mul $m0 # n[7]*m0 | ||
1351 | add %rax,$A0[1] # n[7]*m0+t[7] | ||
1352 | mov $Ni[0],%rax | ||
1353 | adc %rdx,$A0[0] | ||
1354 | cmp \$0,$j | ||
1355 | jne .Lsqr4x_mont_inner | ||
1356 | |||
1357 | sub 0(%rsp),$j # $j=-$num # modsched # | ||
1358 | mov $n0,$m0 # # modsched # | ||
1359 | |||
1360 | xor $A1[1],$A1[1] | ||
1361 | add $A0[1],$A1[0] | ||
1362 | adc \$0,$A1[1] | ||
1363 | mul $m1 # n[6]*m1 | ||
1364 | add %rax,$A1[0] # n[6]*m1+"t[7]" | ||
1365 | mov $Ni[1],%rax | ||
1366 | adc %rdx,$A1[1] | ||
1367 | mov $A1[0],-8($tptr) # "t[7]" | ||
1368 | |||
1369 | xor $A0[1],$A0[1] | ||
1370 | add ($tptr),$A0[0] # +t[8] | ||
1371 | adc \$0,$A0[1] | ||
1372 | mov 0($nptr,$j),$Ni[0] # n[0] # modsched # | ||
1373 | add $topbit,$A0[0] | ||
1374 | adc \$0,$A0[1] | ||
1375 | |||
1376 | imulq 16($tptr,$j),$m0 # m0=t[0]*n0 # modsched # | ||
1377 | xor $A1[0],$A1[0] | ||
1378 | mov 8($nptr,$j),$Ni[1] # n[1] # modsched # | ||
1379 | add $A0[0],$A1[1] | ||
1380 | mov 16($tptr,$j),$A0[0] # t[0] # modsched # | ||
1381 | adc \$0,$A1[0] | ||
1382 | mul $m1 # n[7]*m1 | ||
1383 | add %rax,$A1[1] # n[7]*m1+"t[8]" | ||
1384 | mov $Ni[0],%rax # # modsched # | ||
1385 | adc %rdx,$A1[0] | ||
1386 | mov $A1[1],($tptr) # "t[8]" | ||
1387 | |||
1388 | xor $topbit,$topbit | ||
1389 | add 8($tptr),$A1[0] # +t[9] | ||
1390 | adc $topbit,$topbit | ||
1391 | add $A0[1],$A1[0] | ||
1392 | lea 16($tptr),$tptr # "t[$num]>>128" | ||
1393 | adc \$0,$topbit | ||
1394 | mov $A1[0],-8($tptr) # "t[9]" | ||
1395 | cmp 8(%rsp),$tptr # are we done? | ||
1396 | jb .Lsqr4x_mont_outer | ||
1397 | |||
1398 | mov 0(%rsp),$num # restore $num | ||
1399 | mov $topbit,($tptr) # save $topbit | ||
1400 | ___ | ||
1401 | } | ||
1402 | ############################################################## | ||
1403 | # Post-condition, 4x unrolled copy from bn_mul_mont | ||
1404 | # | ||
1405 | { | ||
1406 | my ($tptr,$nptr)=("%rbx",$aptr); | ||
1407 | my @ri=("%rax","%rdx","%r10","%r11"); | ||
1408 | $code.=<<___; | ||
1409 | mov 64(%rsp,$num),@ri[0] # tp[0] | ||
1410 | lea 64(%rsp,$num),$tptr # upper half of t[2*$num] holds result | ||
1411 | mov 40(%rsp),$nptr # restore $nptr | ||
1412 | shr \$5,$num # num/4 | ||
1413 | mov 8($tptr),@ri[1] # t[1] | ||
1414 | xor $i,$i # i=0 and clear CF! | ||
1415 | |||
1416 | mov 32(%rsp),$rptr # restore $rptr | ||
1417 | sub 0($nptr),@ri[0] | ||
1418 | mov 16($tptr),@ri[2] # t[2] | ||
1419 | mov 24($tptr),@ri[3] # t[3] | ||
1420 | sbb 8($nptr),@ri[1] | ||
1421 | lea -1($num),$j # j=num/4-1 | ||
1422 | jmp .Lsqr4x_sub | ||
1423 | .align 16 | ||
1424 | .Lsqr4x_sub: | ||
1425 | mov @ri[0],0($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1426 | mov @ri[1],8($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1427 | sbb 16($nptr,$i,8),@ri[2] | ||
1428 | mov 32($tptr,$i,8),@ri[0] # tp[i+1] | ||
1429 | mov 40($tptr,$i,8),@ri[1] | ||
1430 | sbb 24($nptr,$i,8),@ri[3] | ||
1431 | mov @ri[2],16($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1432 | mov @ri[3],24($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1433 | sbb 32($nptr,$i,8),@ri[0] | ||
1434 | mov 48($tptr,$i,8),@ri[2] | ||
1435 | mov 56($tptr,$i,8),@ri[3] | ||
1436 | sbb 40($nptr,$i,8),@ri[1] | ||
1437 | lea 4($i),$i # i++ | ||
1438 | dec $j # doesn't affect CF! | ||
1439 | jnz .Lsqr4x_sub | ||
1440 | |||
1441 | mov @ri[0],0($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1442 | mov 32($tptr,$i,8),@ri[0] # load overflow bit | ||
1443 | sbb 16($nptr,$i,8),@ri[2] | ||
1444 | mov @ri[1],8($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1445 | sbb 24($nptr,$i,8),@ri[3] | ||
1446 | mov @ri[2],16($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1447 | |||
1448 | sbb \$0,@ri[0] # handle upmost overflow bit | ||
1449 | mov @ri[3],24($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1450 | xor $i,$i # i=0 | ||
1451 | and @ri[0],$tptr | ||
1452 | not @ri[0] | ||
1453 | mov $rptr,$nptr | ||
1454 | and @ri[0],$nptr | ||
1455 | lea -1($num),$j | ||
1456 | or $nptr,$tptr # tp=borrow?tp:rp | ||
1457 | |||
1458 | pxor %xmm0,%xmm0 | ||
1459 | lea 64(%rsp,$num,8),$nptr | ||
1460 | movdqu ($tptr),%xmm1 | ||
1461 | lea ($nptr,$num,8),$nptr | ||
1462 | movdqa %xmm0,64(%rsp) # zap lower half of temporary vector | ||
1463 | movdqa %xmm0,($nptr) # zap upper half of temporary vector | ||
1464 | movdqu %xmm1,($rptr) | ||
1465 | jmp .Lsqr4x_copy | ||
1466 | .align 16 | ||
1467 | .Lsqr4x_copy: # copy or in-place refresh | ||
1468 | movdqu 16($tptr,$i),%xmm2 | ||
1469 | movdqu 32($tptr,$i),%xmm1 | ||
1470 | movdqa %xmm0,80(%rsp,$i) # zap lower half of temporary vector | ||
1471 | movdqa %xmm0,96(%rsp,$i) # zap lower half of temporary vector | ||
1472 | movdqa %xmm0,16($nptr,$i) # zap upper half of temporary vector | ||
1473 | movdqa %xmm0,32($nptr,$i) # zap upper half of temporary vector | ||
1474 | movdqu %xmm2,16($rptr,$i) | ||
1475 | movdqu %xmm1,32($rptr,$i) | ||
1476 | lea 32($i),$i | ||
1477 | dec $j | ||
1478 | jnz .Lsqr4x_copy | ||
1479 | |||
1480 | movdqu 16($tptr,$i),%xmm2 | ||
1481 | movdqa %xmm0,80(%rsp,$i) # zap lower half of temporary vector | ||
1482 | movdqa %xmm0,16($nptr,$i) # zap upper half of temporary vector | ||
1483 | movdqu %xmm2,16($rptr,$i) | ||
1484 | ___ | ||
1485 | } | ||
1486 | $code.=<<___; | ||
1487 | mov 56(%rsp),%rsi # restore %rsp | ||
1488 | mov \$1,%rax | ||
1489 | mov 0(%rsi),%r15 | ||
1490 | mov 8(%rsi),%r14 | ||
1491 | mov 16(%rsi),%r13 | ||
1492 | mov 24(%rsi),%r12 | ||
1493 | mov 32(%rsi),%rbp | ||
1494 | mov 40(%rsi),%rbx | ||
1495 | lea 48(%rsi),%rsp | ||
1496 | .Lsqr4x_epilogue: | ||
1497 | ret | ||
1498 | .size bn_sqr4x_mont,.-bn_sqr4x_mont | ||
1499 | ___ | ||
1500 | }}} | ||
1501 | |||
1502 | print $code; | ||
1503 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86_64-mont5.pl b/src/lib/libcrypto/bn/asm/x86_64-mont5.pl deleted file mode 100755 index 38751ec5de..0000000000 --- a/src/lib/libcrypto/bn/asm/x86_64-mont5.pl +++ /dev/null | |||
@@ -1,1192 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # August 2011. | ||
11 | # | ||
12 | # Companion to x86_64-mont.pl that optimizes cache-timing attack | ||
13 | # countermeasures. The subroutines are produced by replacing bp[i] | ||
14 | # references in their x86_64-mont.pl counterparts with cache-neutral | ||
15 | # references to powers table computed in BN_mod_exp_mont_consttime. | ||
16 | # In addition subroutine that scatters elements of the powers table | ||
17 | # is implemented, so that scatter-/gathering can be tuned without | ||
18 | # bn_exp.c modifications. | ||
19 | |||
20 | $flavour = shift; | ||
21 | $output = shift; | ||
22 | if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } | ||
23 | |||
24 | $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); | ||
25 | |||
26 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
27 | ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or | ||
28 | ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or | ||
29 | die "can't locate x86_64-xlate.pl"; | ||
30 | |||
31 | open OUT,"| \"$^X\" $xlate $flavour $output"; | ||
32 | *STDOUT=*OUT; | ||
33 | |||
34 | # int bn_mul_mont_gather5( | ||
35 | $rp="%rdi"; # BN_ULONG *rp, | ||
36 | $ap="%rsi"; # const BN_ULONG *ap, | ||
37 | $bp="%rdx"; # const BN_ULONG *bp, | ||
38 | $np="%rcx"; # const BN_ULONG *np, | ||
39 | $n0="%r8"; # const BN_ULONG *n0, | ||
40 | $num="%r9"; # int num, | ||
41 | # int idx); # 0 to 2^5-1, "index" in $bp holding | ||
42 | # pre-computed powers of a', interlaced | ||
43 | # in such manner that b[0] is $bp[idx], | ||
44 | # b[1] is [2^5+idx], etc. | ||
45 | $lo0="%r10"; | ||
46 | $hi0="%r11"; | ||
47 | $hi1="%r13"; | ||
48 | $i="%r14"; | ||
49 | $j="%r15"; | ||
50 | $m0="%rbx"; | ||
51 | $m1="%rbp"; | ||
52 | |||
53 | $code=<<___; | ||
54 | .text | ||
55 | |||
56 | .globl bn_mul_mont_gather5 | ||
57 | .type bn_mul_mont_gather5,\@function,6 | ||
58 | .align 64 | ||
59 | bn_mul_mont_gather5: | ||
60 | _CET_ENDBR | ||
61 | test \$3,${num}d | ||
62 | jnz .Lmul_enter | ||
63 | cmp \$8,${num}d | ||
64 | jb .Lmul_enter | ||
65 | jmp .Lmul4x_enter | ||
66 | |||
67 | .align 16 | ||
68 | .Lmul_enter: | ||
69 | mov ${num}d,${num}d | ||
70 | movd `($win64?56:8)`(%rsp),%xmm5 # load 7th argument | ||
71 | lea .Linc(%rip),%r10 | ||
72 | push %rbx | ||
73 | push %rbp | ||
74 | push %r12 | ||
75 | push %r13 | ||
76 | push %r14 | ||
77 | push %r15 | ||
78 | |||
79 | .Lmul_alloca: | ||
80 | mov %rsp,%rax | ||
81 | lea 2($num),%r11 | ||
82 | neg %r11 | ||
83 | lea -264(%rsp,%r11,8),%rsp # tp=alloca(8*(num+2)+256+8) | ||
84 | and \$-1024,%rsp # minimize TLB usage | ||
85 | |||
86 | mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp | ||
87 | .Lmul_body: | ||
88 | lea 128($bp),%r12 # reassign $bp (+size optimization) | ||
89 | ___ | ||
90 | $bp="%r12"; | ||
91 | $STRIDE=2**5*8; # 5 is "window size" | ||
92 | $N=$STRIDE/4; # should match cache line size | ||
93 | $code.=<<___; | ||
94 | movdqa 0(%r10),%xmm0 # 00000001000000010000000000000000 | ||
95 | movdqa 16(%r10),%xmm1 # 00000002000000020000000200000002 | ||
96 | lea 24-112(%rsp,$num,8),%r10# place the mask after tp[num+3] (+ICache optimization) | ||
97 | and \$-16,%r10 | ||
98 | |||
99 | pshufd \$0,%xmm5,%xmm5 # broadcast index | ||
100 | movdqa %xmm1,%xmm4 | ||
101 | movdqa %xmm1,%xmm2 | ||
102 | ___ | ||
103 | ######################################################################## | ||
104 | # calculate mask by comparing 0..31 to index and save result to stack | ||
105 | # | ||
106 | $code.=<<___; | ||
107 | paddd %xmm0,%xmm1 | ||
108 | pcmpeqd %xmm5,%xmm0 # compare to 1,0 | ||
109 | .byte 0x67 | ||
110 | movdqa %xmm4,%xmm3 | ||
111 | ___ | ||
112 | for($k=0;$k<$STRIDE/16-4;$k+=4) { | ||
113 | $code.=<<___; | ||
114 | paddd %xmm1,%xmm2 | ||
115 | pcmpeqd %xmm5,%xmm1 # compare to 3,2 | ||
116 | movdqa %xmm0,`16*($k+0)+112`(%r10) | ||
117 | movdqa %xmm4,%xmm0 | ||
118 | |||
119 | paddd %xmm2,%xmm3 | ||
120 | pcmpeqd %xmm5,%xmm2 # compare to 5,4 | ||
121 | movdqa %xmm1,`16*($k+1)+112`(%r10) | ||
122 | movdqa %xmm4,%xmm1 | ||
123 | |||
124 | paddd %xmm3,%xmm0 | ||
125 | pcmpeqd %xmm5,%xmm3 # compare to 7,6 | ||
126 | movdqa %xmm2,`16*($k+2)+112`(%r10) | ||
127 | movdqa %xmm4,%xmm2 | ||
128 | |||
129 | paddd %xmm0,%xmm1 | ||
130 | pcmpeqd %xmm5,%xmm0 | ||
131 | movdqa %xmm3,`16*($k+3)+112`(%r10) | ||
132 | movdqa %xmm4,%xmm3 | ||
133 | ___ | ||
134 | } | ||
135 | $code.=<<___; # last iteration can be optimized | ||
136 | paddd %xmm1,%xmm2 | ||
137 | pcmpeqd %xmm5,%xmm1 | ||
138 | movdqa %xmm0,`16*($k+0)+112`(%r10) | ||
139 | |||
140 | paddd %xmm2,%xmm3 | ||
141 | .byte 0x67 | ||
142 | pcmpeqd %xmm5,%xmm2 | ||
143 | movdqa %xmm1,`16*($k+1)+112`(%r10) | ||
144 | |||
145 | pcmpeqd %xmm5,%xmm3 | ||
146 | movdqa %xmm2,`16*($k+2)+112`(%r10) | ||
147 | pand `16*($k+0)-128`($bp),%xmm0 # while it's still in register | ||
148 | |||
149 | pand `16*($k+1)-128`($bp),%xmm1 | ||
150 | pand `16*($k+2)-128`($bp),%xmm2 | ||
151 | movdqa %xmm3,`16*($k+3)+112`(%r10) | ||
152 | pand `16*($k+3)-128`($bp),%xmm3 | ||
153 | por %xmm2,%xmm0 | ||
154 | por %xmm3,%xmm1 | ||
155 | ___ | ||
156 | for($k=0;$k<$STRIDE/16-4;$k+=4) { | ||
157 | $code.=<<___; | ||
158 | movdqa `16*($k+0)-128`($bp),%xmm4 | ||
159 | movdqa `16*($k+1)-128`($bp),%xmm5 | ||
160 | movdqa `16*($k+2)-128`($bp),%xmm2 | ||
161 | pand `16*($k+0)+112`(%r10),%xmm4 | ||
162 | movdqa `16*($k+3)-128`($bp),%xmm3 | ||
163 | pand `16*($k+1)+112`(%r10),%xmm5 | ||
164 | por %xmm4,%xmm0 | ||
165 | pand `16*($k+2)+112`(%r10),%xmm2 | ||
166 | por %xmm5,%xmm1 | ||
167 | pand `16*($k+3)+112`(%r10),%xmm3 | ||
168 | por %xmm2,%xmm0 | ||
169 | por %xmm3,%xmm1 | ||
170 | ___ | ||
171 | } | ||
172 | $code.=<<___; | ||
173 | por %xmm1,%xmm0 | ||
174 | pshufd \$0x4e,%xmm0,%xmm1 | ||
175 | por %xmm1,%xmm0 | ||
176 | lea $STRIDE($bp),$bp | ||
177 | movd %xmm0,$m0 # m0=bp[0] | ||
178 | |||
179 | mov ($n0),$n0 # pull n0[0] value | ||
180 | mov ($ap),%rax | ||
181 | |||
182 | xor $i,$i # i=0 | ||
183 | xor $j,$j # j=0 | ||
184 | |||
185 | mov $n0,$m1 | ||
186 | mulq $m0 # ap[0]*bp[0] | ||
187 | mov %rax,$lo0 | ||
188 | mov ($np),%rax | ||
189 | |||
190 | imulq $lo0,$m1 # "tp[0]"*n0 | ||
191 | mov %rdx,$hi0 | ||
192 | |||
193 | mulq $m1 # np[0]*m1 | ||
194 | add %rax,$lo0 # discarded | ||
195 | mov 8($ap),%rax | ||
196 | adc \$0,%rdx | ||
197 | mov %rdx,$hi1 | ||
198 | |||
199 | lea 1($j),$j # j++ | ||
200 | jmp .L1st_enter | ||
201 | |||
202 | .align 16 | ||
203 | .L1st: | ||
204 | add %rax,$hi1 | ||
205 | mov ($ap,$j,8),%rax | ||
206 | adc \$0,%rdx | ||
207 | add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] | ||
208 | mov $lo0,$hi0 | ||
209 | adc \$0,%rdx | ||
210 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
211 | mov %rdx,$hi1 | ||
212 | |||
213 | .L1st_enter: | ||
214 | mulq $m0 # ap[j]*bp[0] | ||
215 | add %rax,$hi0 | ||
216 | mov ($np,$j,8),%rax | ||
217 | adc \$0,%rdx | ||
218 | lea 1($j),$j # j++ | ||
219 | mov %rdx,$lo0 | ||
220 | |||
221 | mulq $m1 # np[j]*m1 | ||
222 | cmp $num,$j | ||
223 | jl .L1st | ||
224 | |||
225 | add %rax,$hi1 | ||
226 | mov ($ap),%rax # ap[0] | ||
227 | adc \$0,%rdx | ||
228 | add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] | ||
229 | adc \$0,%rdx | ||
230 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
231 | mov %rdx,$hi1 | ||
232 | mov $lo0,$hi0 | ||
233 | |||
234 | xor %rdx,%rdx | ||
235 | add $hi0,$hi1 | ||
236 | adc \$0,%rdx | ||
237 | mov $hi1,-8(%rsp,$num,8) | ||
238 | mov %rdx,(%rsp,$num,8) # store upmost overflow bit | ||
239 | |||
240 | lea 1($i),$i # i++ | ||
241 | jmp .Louter | ||
242 | .align 16 | ||
243 | .Louter: | ||
244 | lea 24+128(%rsp,$num,8),%rdx # where 256-byte mask is (+size optimization) | ||
245 | and \$-16,%rdx | ||
246 | pxor %xmm4,%xmm4 | ||
247 | pxor %xmm5,%xmm5 | ||
248 | ___ | ||
249 | for($k=0;$k<$STRIDE/16;$k+=4) { | ||
250 | $code.=<<___; | ||
251 | movdqa `16*($k+0)-128`($bp),%xmm0 | ||
252 | movdqa `16*($k+1)-128`($bp),%xmm1 | ||
253 | movdqa `16*($k+2)-128`($bp),%xmm2 | ||
254 | movdqa `16*($k+3)-128`($bp),%xmm3 | ||
255 | pand `16*($k+0)-128`(%rdx),%xmm0 | ||
256 | pand `16*($k+1)-128`(%rdx),%xmm1 | ||
257 | por %xmm0,%xmm4 | ||
258 | pand `16*($k+2)-128`(%rdx),%xmm2 | ||
259 | por %xmm1,%xmm5 | ||
260 | pand `16*($k+3)-128`(%rdx),%xmm3 | ||
261 | por %xmm2,%xmm4 | ||
262 | por %xmm3,%xmm5 | ||
263 | ___ | ||
264 | } | ||
265 | $code.=<<___; | ||
266 | por %xmm5,%xmm4 | ||
267 | pshufd \$0x4e,%xmm4,%xmm0 | ||
268 | por %xmm4,%xmm0 | ||
269 | lea $STRIDE($bp),$bp | ||
270 | movd %xmm0,$m0 # m0=bp[i] | ||
271 | |||
272 | xor $j,$j # j=0 | ||
273 | mov $n0,$m1 | ||
274 | mov (%rsp),$lo0 | ||
275 | |||
276 | mulq $m0 # ap[0]*bp[i] | ||
277 | add %rax,$lo0 # ap[0]*bp[i]+tp[0] | ||
278 | mov ($np),%rax | ||
279 | adc \$0,%rdx | ||
280 | |||
281 | imulq $lo0,$m1 # tp[0]*n0 | ||
282 | mov %rdx,$hi0 | ||
283 | |||
284 | mulq $m1 # np[0]*m1 | ||
285 | add %rax,$lo0 # discarded | ||
286 | mov 8($ap),%rax | ||
287 | adc \$0,%rdx | ||
288 | mov 8(%rsp),$lo0 # tp[1] | ||
289 | mov %rdx,$hi1 | ||
290 | |||
291 | lea 1($j),$j # j++ | ||
292 | jmp .Linner_enter | ||
293 | |||
294 | .align 16 | ||
295 | .Linner: | ||
296 | add %rax,$hi1 | ||
297 | mov ($ap,$j,8),%rax | ||
298 | adc \$0,%rdx | ||
299 | add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] | ||
300 | mov (%rsp,$j,8),$lo0 | ||
301 | adc \$0,%rdx | ||
302 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
303 | mov %rdx,$hi1 | ||
304 | |||
305 | .Linner_enter: | ||
306 | mulq $m0 # ap[j]*bp[i] | ||
307 | add %rax,$hi0 | ||
308 | mov ($np,$j,8),%rax | ||
309 | adc \$0,%rdx | ||
310 | add $hi0,$lo0 # ap[j]*bp[i]+tp[j] | ||
311 | mov %rdx,$hi0 | ||
312 | adc \$0,$hi0 | ||
313 | lea 1($j),$j # j++ | ||
314 | |||
315 | mulq $m1 # np[j]*m1 | ||
316 | cmp $num,$j | ||
317 | jl .Linner | ||
318 | |||
319 | add %rax,$hi1 | ||
320 | mov ($ap),%rax # ap[0] | ||
321 | adc \$0,%rdx | ||
322 | add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] | ||
323 | mov (%rsp,$j,8),$lo0 | ||
324 | adc \$0,%rdx | ||
325 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
326 | mov %rdx,$hi1 | ||
327 | |||
328 | xor %rdx,%rdx | ||
329 | add $hi0,$hi1 | ||
330 | adc \$0,%rdx | ||
331 | add $lo0,$hi1 # pull upmost overflow bit | ||
332 | adc \$0,%rdx | ||
333 | mov $hi1,-8(%rsp,$num,8) | ||
334 | mov %rdx,(%rsp,$num,8) # store upmost overflow bit | ||
335 | |||
336 | lea 1($i),$i # i++ | ||
337 | cmp $num,$i | ||
338 | jl .Louter | ||
339 | |||
340 | xor $i,$i # i=0 and clear CF! | ||
341 | mov (%rsp),%rax # tp[0] | ||
342 | lea (%rsp),$ap # borrow ap for tp | ||
343 | mov $num,$j # j=num | ||
344 | jmp .Lsub | ||
345 | .align 16 | ||
346 | .Lsub: sbb ($np,$i,8),%rax | ||
347 | mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
348 | mov 8($ap,$i,8),%rax # tp[i+1] | ||
349 | lea 1($i),$i # i++ | ||
350 | dec $j # doesnn't affect CF! | ||
351 | jnz .Lsub | ||
352 | |||
353 | sbb \$0,%rax # handle upmost overflow bit | ||
354 | xor $i,$i | ||
355 | and %rax,$ap | ||
356 | not %rax | ||
357 | mov $rp,$np | ||
358 | and %rax,$np | ||
359 | mov $num,$j # j=num | ||
360 | or $np,$ap # ap=borrow?tp:rp | ||
361 | .align 16 | ||
362 | .Lcopy: # copy or in-place refresh | ||
363 | mov ($ap,$i,8),%rax | ||
364 | mov $i,(%rsp,$i,8) # zap temporary vector | ||
365 | mov %rax,($rp,$i,8) # rp[i]=tp[i] | ||
366 | lea 1($i),$i | ||
367 | sub \$1,$j | ||
368 | jnz .Lcopy | ||
369 | |||
370 | mov 8(%rsp,$num,8),%rsi # restore %rsp | ||
371 | mov \$1,%rax | ||
372 | |||
373 | mov (%rsi),%r15 | ||
374 | mov 8(%rsi),%r14 | ||
375 | mov 16(%rsi),%r13 | ||
376 | mov 24(%rsi),%r12 | ||
377 | mov 32(%rsi),%rbp | ||
378 | mov 40(%rsi),%rbx | ||
379 | lea 48(%rsi),%rsp | ||
380 | .Lmul_epilogue: | ||
381 | ret | ||
382 | .size bn_mul_mont_gather5,.-bn_mul_mont_gather5 | ||
383 | ___ | ||
384 | {{{ | ||
385 | my @A=("%r10","%r11"); | ||
386 | my @N=("%r13","%rdi"); | ||
387 | $code.=<<___; | ||
388 | .type bn_mul4x_mont_gather5,\@function,6 | ||
389 | .align 16 | ||
390 | bn_mul4x_mont_gather5: | ||
391 | _CET_ENDBR | ||
392 | .Lmul4x_enter: | ||
393 | mov ${num}d,${num}d | ||
394 | movd `($win64?56:8)`(%rsp),%xmm5 # load 7th argument | ||
395 | lea .Linc(%rip),%r10 | ||
396 | push %rbx | ||
397 | push %rbp | ||
398 | push %r12 | ||
399 | push %r13 | ||
400 | push %r14 | ||
401 | push %r15 | ||
402 | |||
403 | .Lmul4x_alloca: | ||
404 | mov %rsp,%rax | ||
405 | lea 4($num),%r11 | ||
406 | neg %r11 | ||
407 | lea -256(%rsp,%r11,8),%rsp # tp=alloca(8*(num+4)+256) | ||
408 | and \$-1024,%rsp # minimize TLB usage | ||
409 | |||
410 | mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp | ||
411 | .Lmul4x_body: | ||
412 | mov $rp,16(%rsp,$num,8) # tp[num+2]=$rp | ||
413 | lea 128(%rdx),%r12 # reassign $bp (+size optimization) | ||
414 | ___ | ||
415 | $bp="%r12"; | ||
416 | $STRIDE=2**5*8; # 5 is "window size" | ||
417 | $N=$STRIDE/4; # should match cache line size | ||
418 | $code.=<<___; | ||
419 | movdqa 0(%r10),%xmm0 # 00000001000000010000000000000000 | ||
420 | movdqa 16(%r10),%xmm1 # 00000002000000020000000200000002 | ||
421 | lea 32-112(%rsp,$num,8),%r10# place the mask after tp[num+4] (+ICache optimization) | ||
422 | |||
423 | pshufd \$0,%xmm5,%xmm5 # broadcast index | ||
424 | movdqa %xmm1,%xmm4 | ||
425 | .byte 0x67,0x67 | ||
426 | movdqa %xmm1,%xmm2 | ||
427 | ___ | ||
428 | ######################################################################## | ||
429 | # calculate mask by comparing 0..31 to index and save result to stack | ||
430 | # | ||
431 | $code.=<<___; | ||
432 | paddd %xmm0,%xmm1 | ||
433 | pcmpeqd %xmm5,%xmm0 # compare to 1,0 | ||
434 | .byte 0x67 | ||
435 | movdqa %xmm4,%xmm3 | ||
436 | ___ | ||
437 | for($k=0;$k<$STRIDE/16-4;$k+=4) { | ||
438 | $code.=<<___; | ||
439 | paddd %xmm1,%xmm2 | ||
440 | pcmpeqd %xmm5,%xmm1 # compare to 3,2 | ||
441 | movdqa %xmm0,`16*($k+0)+112`(%r10) | ||
442 | movdqa %xmm4,%xmm0 | ||
443 | |||
444 | paddd %xmm2,%xmm3 | ||
445 | pcmpeqd %xmm5,%xmm2 # compare to 5,4 | ||
446 | movdqa %xmm1,`16*($k+1)+112`(%r10) | ||
447 | movdqa %xmm4,%xmm1 | ||
448 | |||
449 | paddd %xmm3,%xmm0 | ||
450 | pcmpeqd %xmm5,%xmm3 # compare to 7,6 | ||
451 | movdqa %xmm2,`16*($k+2)+112`(%r10) | ||
452 | movdqa %xmm4,%xmm2 | ||
453 | |||
454 | paddd %xmm0,%xmm1 | ||
455 | pcmpeqd %xmm5,%xmm0 | ||
456 | movdqa %xmm3,`16*($k+3)+112`(%r10) | ||
457 | movdqa %xmm4,%xmm3 | ||
458 | ___ | ||
459 | } | ||
460 | $code.=<<___; # last iteration can be optimized | ||
461 | paddd %xmm1,%xmm2 | ||
462 | pcmpeqd %xmm5,%xmm1 | ||
463 | movdqa %xmm0,`16*($k+0)+112`(%r10) | ||
464 | |||
465 | paddd %xmm2,%xmm3 | ||
466 | .byte 0x67 | ||
467 | pcmpeqd %xmm5,%xmm2 | ||
468 | movdqa %xmm1,`16*($k+1)+112`(%r10) | ||
469 | |||
470 | pcmpeqd %xmm5,%xmm3 | ||
471 | movdqa %xmm2,`16*($k+2)+112`(%r10) | ||
472 | pand `16*($k+0)-128`($bp),%xmm0 # while it's still in register | ||
473 | |||
474 | pand `16*($k+1)-128`($bp),%xmm1 | ||
475 | pand `16*($k+2)-128`($bp),%xmm2 | ||
476 | movdqa %xmm3,`16*($k+3)+112`(%r10) | ||
477 | pand `16*($k+3)-128`($bp),%xmm3 | ||
478 | por %xmm2,%xmm0 | ||
479 | por %xmm3,%xmm1 | ||
480 | ___ | ||
481 | for($k=0;$k<$STRIDE/16-4;$k+=4) { | ||
482 | $code.=<<___; | ||
483 | movdqa `16*($k+0)-128`($bp),%xmm4 | ||
484 | movdqa `16*($k+1)-128`($bp),%xmm5 | ||
485 | movdqa `16*($k+2)-128`($bp),%xmm2 | ||
486 | pand `16*($k+0)+112`(%r10),%xmm4 | ||
487 | movdqa `16*($k+3)-128`($bp),%xmm3 | ||
488 | pand `16*($k+1)+112`(%r10),%xmm5 | ||
489 | por %xmm4,%xmm0 | ||
490 | pand `16*($k+2)+112`(%r10),%xmm2 | ||
491 | por %xmm5,%xmm1 | ||
492 | pand `16*($k+3)+112`(%r10),%xmm3 | ||
493 | por %xmm2,%xmm0 | ||
494 | por %xmm3,%xmm1 | ||
495 | ___ | ||
496 | } | ||
497 | $code.=<<___; | ||
498 | por %xmm1,%xmm0 | ||
499 | pshufd \$0x4e,%xmm0,%xmm1 | ||
500 | por %xmm1,%xmm0 | ||
501 | lea $STRIDE($bp),$bp | ||
502 | movd %xmm0,$m0 # m0=bp[0] | ||
503 | |||
504 | mov ($n0),$n0 # pull n0[0] value | ||
505 | mov ($ap),%rax | ||
506 | |||
507 | xor $i,$i # i=0 | ||
508 | xor $j,$j # j=0 | ||
509 | |||
510 | mov $n0,$m1 | ||
511 | mulq $m0 # ap[0]*bp[0] | ||
512 | mov %rax,$A[0] | ||
513 | mov ($np),%rax | ||
514 | |||
515 | imulq $A[0],$m1 # "tp[0]"*n0 | ||
516 | mov %rdx,$A[1] | ||
517 | |||
518 | mulq $m1 # np[0]*m1 | ||
519 | add %rax,$A[0] # discarded | ||
520 | mov 8($ap),%rax | ||
521 | adc \$0,%rdx | ||
522 | mov %rdx,$N[1] | ||
523 | |||
524 | mulq $m0 | ||
525 | add %rax,$A[1] | ||
526 | mov 8($np),%rax | ||
527 | adc \$0,%rdx | ||
528 | mov %rdx,$A[0] | ||
529 | |||
530 | mulq $m1 | ||
531 | add %rax,$N[1] | ||
532 | mov 16($ap),%rax | ||
533 | adc \$0,%rdx | ||
534 | add $A[1],$N[1] | ||
535 | lea 4($j),$j # j++ | ||
536 | adc \$0,%rdx | ||
537 | mov $N[1],(%rsp) | ||
538 | mov %rdx,$N[0] | ||
539 | jmp .L1st4x | ||
540 | .align 16 | ||
541 | .L1st4x: | ||
542 | mulq $m0 # ap[j]*bp[0] | ||
543 | add %rax,$A[0] | ||
544 | mov -16($np,$j,8),%rax | ||
545 | adc \$0,%rdx | ||
546 | mov %rdx,$A[1] | ||
547 | |||
548 | mulq $m1 # np[j]*m1 | ||
549 | add %rax,$N[0] | ||
550 | mov -8($ap,$j,8),%rax | ||
551 | adc \$0,%rdx | ||
552 | add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] | ||
553 | adc \$0,%rdx | ||
554 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
555 | mov %rdx,$N[1] | ||
556 | |||
557 | mulq $m0 # ap[j]*bp[0] | ||
558 | add %rax,$A[1] | ||
559 | mov -8($np,$j,8),%rax | ||
560 | adc \$0,%rdx | ||
561 | mov %rdx,$A[0] | ||
562 | |||
563 | mulq $m1 # np[j]*m1 | ||
564 | add %rax,$N[1] | ||
565 | mov ($ap,$j,8),%rax | ||
566 | adc \$0,%rdx | ||
567 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] | ||
568 | adc \$0,%rdx | ||
569 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
570 | mov %rdx,$N[0] | ||
571 | |||
572 | mulq $m0 # ap[j]*bp[0] | ||
573 | add %rax,$A[0] | ||
574 | mov ($np,$j,8),%rax | ||
575 | adc \$0,%rdx | ||
576 | mov %rdx,$A[1] | ||
577 | |||
578 | mulq $m1 # np[j]*m1 | ||
579 | add %rax,$N[0] | ||
580 | mov 8($ap,$j,8),%rax | ||
581 | adc \$0,%rdx | ||
582 | add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] | ||
583 | adc \$0,%rdx | ||
584 | mov $N[0],-8(%rsp,$j,8) # tp[j-1] | ||
585 | mov %rdx,$N[1] | ||
586 | |||
587 | mulq $m0 # ap[j]*bp[0] | ||
588 | add %rax,$A[1] | ||
589 | mov 8($np,$j,8),%rax | ||
590 | adc \$0,%rdx | ||
591 | lea 4($j),$j # j++ | ||
592 | mov %rdx,$A[0] | ||
593 | |||
594 | mulq $m1 # np[j]*m1 | ||
595 | add %rax,$N[1] | ||
596 | mov -16($ap,$j,8),%rax | ||
597 | adc \$0,%rdx | ||
598 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] | ||
599 | adc \$0,%rdx | ||
600 | mov $N[1],-32(%rsp,$j,8) # tp[j-1] | ||
601 | mov %rdx,$N[0] | ||
602 | cmp $num,$j | ||
603 | jl .L1st4x | ||
604 | |||
605 | mulq $m0 # ap[j]*bp[0] | ||
606 | add %rax,$A[0] | ||
607 | mov -16($np,$j,8),%rax | ||
608 | adc \$0,%rdx | ||
609 | mov %rdx,$A[1] | ||
610 | |||
611 | mulq $m1 # np[j]*m1 | ||
612 | add %rax,$N[0] | ||
613 | mov -8($ap,$j,8),%rax | ||
614 | adc \$0,%rdx | ||
615 | add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] | ||
616 | adc \$0,%rdx | ||
617 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
618 | mov %rdx,$N[1] | ||
619 | |||
620 | mulq $m0 # ap[j]*bp[0] | ||
621 | add %rax,$A[1] | ||
622 | mov -8($np,$j,8),%rax | ||
623 | adc \$0,%rdx | ||
624 | mov %rdx,$A[0] | ||
625 | |||
626 | mulq $m1 # np[j]*m1 | ||
627 | add %rax,$N[1] | ||
628 | mov ($ap),%rax # ap[0] | ||
629 | adc \$0,%rdx | ||
630 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] | ||
631 | adc \$0,%rdx | ||
632 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
633 | mov %rdx,$N[0] | ||
634 | |||
635 | xor $N[1],$N[1] | ||
636 | add $A[0],$N[0] | ||
637 | adc \$0,$N[1] | ||
638 | mov $N[0],-8(%rsp,$j,8) | ||
639 | mov $N[1],(%rsp,$j,8) # store upmost overflow bit | ||
640 | |||
641 | lea 1($i),$i # i++ | ||
642 | .align 4 | ||
643 | .Louter4x: | ||
644 | lea 32+128(%rsp,$num,8),%rdx # where 256-byte mask is (+size optimization) | ||
645 | pxor %xmm4,%xmm4 | ||
646 | pxor %xmm5,%xmm5 | ||
647 | ___ | ||
648 | for($k=0;$k<$STRIDE/16;$k+=4) { | ||
649 | $code.=<<___; | ||
650 | movdqa `16*($k+0)-128`($bp),%xmm0 | ||
651 | movdqa `16*($k+1)-128`($bp),%xmm1 | ||
652 | movdqa `16*($k+2)-128`($bp),%xmm2 | ||
653 | movdqa `16*($k+3)-128`($bp),%xmm3 | ||
654 | pand `16*($k+0)-128`(%rdx),%xmm0 | ||
655 | pand `16*($k+1)-128`(%rdx),%xmm1 | ||
656 | por %xmm0,%xmm4 | ||
657 | pand `16*($k+2)-128`(%rdx),%xmm2 | ||
658 | por %xmm1,%xmm5 | ||
659 | pand `16*($k+3)-128`(%rdx),%xmm3 | ||
660 | por %xmm2,%xmm4 | ||
661 | por %xmm3,%xmm5 | ||
662 | ___ | ||
663 | } | ||
664 | $code.=<<___; | ||
665 | por %xmm5,%xmm4 | ||
666 | pshufd \$0x4e,%xmm4,%xmm0 | ||
667 | por %xmm4,%xmm0 | ||
668 | lea $STRIDE($bp),$bp | ||
669 | movd %xmm0,$m0 # m0=bp[i] | ||
670 | |||
671 | xor $j,$j # j=0 | ||
672 | |||
673 | mov (%rsp),$A[0] | ||
674 | mov $n0,$m1 | ||
675 | mulq $m0 # ap[0]*bp[i] | ||
676 | add %rax,$A[0] # ap[0]*bp[i]+tp[0] | ||
677 | mov ($np),%rax | ||
678 | adc \$0,%rdx | ||
679 | |||
680 | imulq $A[0],$m1 # tp[0]*n0 | ||
681 | mov %rdx,$A[1] | ||
682 | |||
683 | mulq $m1 # np[0]*m1 | ||
684 | add %rax,$A[0] # "$N[0]", discarded | ||
685 | mov 8($ap),%rax | ||
686 | adc \$0,%rdx | ||
687 | mov %rdx,$N[1] | ||
688 | |||
689 | mulq $m0 # ap[j]*bp[i] | ||
690 | add %rax,$A[1] | ||
691 | mov 8($np),%rax | ||
692 | adc \$0,%rdx | ||
693 | add 8(%rsp),$A[1] # +tp[1] | ||
694 | adc \$0,%rdx | ||
695 | mov %rdx,$A[0] | ||
696 | |||
697 | mulq $m1 # np[j]*m1 | ||
698 | add %rax,$N[1] | ||
699 | mov 16($ap),%rax | ||
700 | adc \$0,%rdx | ||
701 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[i]+tp[j] | ||
702 | lea 4($j),$j # j+=2 | ||
703 | adc \$0,%rdx | ||
704 | mov %rdx,$N[0] | ||
705 | jmp .Linner4x | ||
706 | .align 16 | ||
707 | .Linner4x: | ||
708 | mulq $m0 # ap[j]*bp[i] | ||
709 | add %rax,$A[0] | ||
710 | mov -16($np,$j,8),%rax | ||
711 | adc \$0,%rdx | ||
712 | add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] | ||
713 | adc \$0,%rdx | ||
714 | mov %rdx,$A[1] | ||
715 | |||
716 | mulq $m1 # np[j]*m1 | ||
717 | add %rax,$N[0] | ||
718 | mov -8($ap,$j,8),%rax | ||
719 | adc \$0,%rdx | ||
720 | add $A[0],$N[0] | ||
721 | adc \$0,%rdx | ||
722 | mov $N[1],-32(%rsp,$j,8) # tp[j-1] | ||
723 | mov %rdx,$N[1] | ||
724 | |||
725 | mulq $m0 # ap[j]*bp[i] | ||
726 | add %rax,$A[1] | ||
727 | mov -8($np,$j,8),%rax | ||
728 | adc \$0,%rdx | ||
729 | add -8(%rsp,$j,8),$A[1] | ||
730 | adc \$0,%rdx | ||
731 | mov %rdx,$A[0] | ||
732 | |||
733 | mulq $m1 # np[j]*m1 | ||
734 | add %rax,$N[1] | ||
735 | mov ($ap,$j,8),%rax | ||
736 | adc \$0,%rdx | ||
737 | add $A[1],$N[1] | ||
738 | adc \$0,%rdx | ||
739 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
740 | mov %rdx,$N[0] | ||
741 | |||
742 | mulq $m0 # ap[j]*bp[i] | ||
743 | add %rax,$A[0] | ||
744 | mov ($np,$j,8),%rax | ||
745 | adc \$0,%rdx | ||
746 | add (%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] | ||
747 | adc \$0,%rdx | ||
748 | mov %rdx,$A[1] | ||
749 | |||
750 | mulq $m1 # np[j]*m1 | ||
751 | add %rax,$N[0] | ||
752 | mov 8($ap,$j,8),%rax | ||
753 | adc \$0,%rdx | ||
754 | add $A[0],$N[0] | ||
755 | adc \$0,%rdx | ||
756 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
757 | mov %rdx,$N[1] | ||
758 | |||
759 | mulq $m0 # ap[j]*bp[i] | ||
760 | add %rax,$A[1] | ||
761 | mov 8($np,$j,8),%rax | ||
762 | adc \$0,%rdx | ||
763 | add 8(%rsp,$j,8),$A[1] | ||
764 | adc \$0,%rdx | ||
765 | lea 4($j),$j # j++ | ||
766 | mov %rdx,$A[0] | ||
767 | |||
768 | mulq $m1 # np[j]*m1 | ||
769 | add %rax,$N[1] | ||
770 | mov -16($ap,$j,8),%rax | ||
771 | adc \$0,%rdx | ||
772 | add $A[1],$N[1] | ||
773 | adc \$0,%rdx | ||
774 | mov $N[0],-40(%rsp,$j,8) # tp[j-1] | ||
775 | mov %rdx,$N[0] | ||
776 | cmp $num,$j | ||
777 | jl .Linner4x | ||
778 | |||
779 | mulq $m0 # ap[j]*bp[i] | ||
780 | add %rax,$A[0] | ||
781 | mov -16($np,$j,8),%rax | ||
782 | adc \$0,%rdx | ||
783 | add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] | ||
784 | adc \$0,%rdx | ||
785 | mov %rdx,$A[1] | ||
786 | |||
787 | mulq $m1 # np[j]*m1 | ||
788 | add %rax,$N[0] | ||
789 | mov -8($ap,$j,8),%rax | ||
790 | adc \$0,%rdx | ||
791 | add $A[0],$N[0] | ||
792 | adc \$0,%rdx | ||
793 | mov $N[1],-32(%rsp,$j,8) # tp[j-1] | ||
794 | mov %rdx,$N[1] | ||
795 | |||
796 | mulq $m0 # ap[j]*bp[i] | ||
797 | add %rax,$A[1] | ||
798 | mov -8($np,$j,8),%rax | ||
799 | adc \$0,%rdx | ||
800 | add -8(%rsp,$j,8),$A[1] | ||
801 | adc \$0,%rdx | ||
802 | lea 1($i),$i # i++ | ||
803 | mov %rdx,$A[0] | ||
804 | |||
805 | mulq $m1 # np[j]*m1 | ||
806 | add %rax,$N[1] | ||
807 | mov ($ap),%rax # ap[0] | ||
808 | adc \$0,%rdx | ||
809 | add $A[1],$N[1] | ||
810 | adc \$0,%rdx | ||
811 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
812 | mov %rdx,$N[0] | ||
813 | |||
814 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
815 | |||
816 | xor $N[1],$N[1] | ||
817 | add $A[0],$N[0] | ||
818 | adc \$0,$N[1] | ||
819 | add (%rsp,$num,8),$N[0] # pull upmost overflow bit | ||
820 | adc \$0,$N[1] | ||
821 | mov $N[0],-8(%rsp,$j,8) | ||
822 | mov $N[1],(%rsp,$j,8) # store upmost overflow bit | ||
823 | |||
824 | cmp $num,$i | ||
825 | jl .Louter4x | ||
826 | ___ | ||
827 | { | ||
828 | my @ri=("%rax","%rdx",$m0,$m1); | ||
829 | $code.=<<___; | ||
830 | mov 16(%rsp,$num,8),$rp # restore $rp | ||
831 | mov 0(%rsp),@ri[0] # tp[0] | ||
832 | pxor %xmm0,%xmm0 | ||
833 | mov 8(%rsp),@ri[1] # tp[1] | ||
834 | shr \$2,$num # num/=4 | ||
835 | lea (%rsp),$ap # borrow ap for tp | ||
836 | xor $i,$i # i=0 and clear CF! | ||
837 | |||
838 | sub 0($np),@ri[0] | ||
839 | mov 16($ap),@ri[2] # tp[2] | ||
840 | mov 24($ap),@ri[3] # tp[3] | ||
841 | sbb 8($np),@ri[1] | ||
842 | lea -1($num),$j # j=num/4-1 | ||
843 | jmp .Lsub4x | ||
844 | .align 16 | ||
845 | .Lsub4x: | ||
846 | mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
847 | mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
848 | sbb 16($np,$i,8),@ri[2] | ||
849 | mov 32($ap,$i,8),@ri[0] # tp[i+1] | ||
850 | mov 40($ap,$i,8),@ri[1] | ||
851 | sbb 24($np,$i,8),@ri[3] | ||
852 | mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
853 | mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
854 | sbb 32($np,$i,8),@ri[0] | ||
855 | mov 48($ap,$i,8),@ri[2] | ||
856 | mov 56($ap,$i,8),@ri[3] | ||
857 | sbb 40($np,$i,8),@ri[1] | ||
858 | lea 4($i),$i # i++ | ||
859 | dec $j # doesnn't affect CF! | ||
860 | jnz .Lsub4x | ||
861 | |||
862 | mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
863 | mov 32($ap,$i,8),@ri[0] # load overflow bit | ||
864 | sbb 16($np,$i,8),@ri[2] | ||
865 | mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
866 | sbb 24($np,$i,8),@ri[3] | ||
867 | mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
868 | |||
869 | sbb \$0,@ri[0] # handle upmost overflow bit | ||
870 | mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
871 | xor $i,$i # i=0 | ||
872 | and @ri[0],$ap | ||
873 | not @ri[0] | ||
874 | mov $rp,$np | ||
875 | and @ri[0],$np | ||
876 | lea -1($num),$j | ||
877 | or $np,$ap # ap=borrow?tp:rp | ||
878 | |||
879 | movdqu ($ap),%xmm1 | ||
880 | movdqa %xmm0,(%rsp) | ||
881 | movdqu %xmm1,($rp) | ||
882 | jmp .Lcopy4x | ||
883 | .align 16 | ||
884 | .Lcopy4x: # copy or in-place refresh | ||
885 | movdqu 16($ap,$i),%xmm2 | ||
886 | movdqu 32($ap,$i),%xmm1 | ||
887 | movdqa %xmm0,16(%rsp,$i) | ||
888 | movdqu %xmm2,16($rp,$i) | ||
889 | movdqa %xmm0,32(%rsp,$i) | ||
890 | movdqu %xmm1,32($rp,$i) | ||
891 | lea 32($i),$i | ||
892 | dec $j | ||
893 | jnz .Lcopy4x | ||
894 | |||
895 | shl \$2,$num | ||
896 | movdqu 16($ap,$i),%xmm2 | ||
897 | movdqa %xmm0,16(%rsp,$i) | ||
898 | movdqu %xmm2,16($rp,$i) | ||
899 | ___ | ||
900 | } | ||
901 | $code.=<<___; | ||
902 | mov 8(%rsp,$num,8),%rsi # restore %rsp | ||
903 | mov \$1,%rax | ||
904 | |||
905 | mov (%rsi),%r15 | ||
906 | mov 8(%rsi),%r14 | ||
907 | mov 16(%rsi),%r13 | ||
908 | mov 24(%rsi),%r12 | ||
909 | mov 32(%rsi),%rbp | ||
910 | mov 40(%rsi),%rbx | ||
911 | lea 48(%rsi),%rsp | ||
912 | .Lmul4x_epilogue: | ||
913 | ret | ||
914 | .size bn_mul4x_mont_gather5,.-bn_mul4x_mont_gather5 | ||
915 | ___ | ||
916 | }}} | ||
917 | |||
918 | { | ||
919 | my ($inp,$num,$tbl,$idx)=$win64?("%rcx","%rdx","%r8", "%r9d") : # Win64 order | ||
920 | ("%rdi","%rsi","%rdx","%ecx"); # Unix order | ||
921 | my $out=$inp; | ||
922 | my $STRIDE=2**5*8; | ||
923 | my $N=$STRIDE/4; | ||
924 | |||
925 | $code.=<<___; | ||
926 | .globl bn_scatter5 | ||
927 | .type bn_scatter5,\@abi-omnipotent | ||
928 | .align 16 | ||
929 | bn_scatter5: | ||
930 | _CET_ENDBR | ||
931 | cmp \$0, $num | ||
932 | jz .Lscatter_epilogue | ||
933 | lea ($tbl,$idx,8),$tbl | ||
934 | .Lscatter: | ||
935 | mov ($inp),%rax | ||
936 | lea 8($inp),$inp | ||
937 | mov %rax,($tbl) | ||
938 | lea 32*8($tbl),$tbl | ||
939 | sub \$1,$num | ||
940 | jnz .Lscatter | ||
941 | .Lscatter_epilogue: | ||
942 | ret | ||
943 | .size bn_scatter5,.-bn_scatter5 | ||
944 | |||
945 | .globl bn_gather5 | ||
946 | .type bn_gather5,\@abi-omnipotent | ||
947 | .align 16 | ||
948 | bn_gather5: | ||
949 | _CET_ENDBR | ||
950 | .LSEH_begin_bn_gather5: # Win64 thing, but harmless in other cases | ||
951 | # I can't trust assembler to use specific encoding:-( | ||
952 | .byte 0x4c,0x8d,0x14,0x24 # lea (%rsp),%r10 | ||
953 | .byte 0x48,0x81,0xec,0x08,0x01,0x00,0x00 # sub $0x108,%rsp | ||
954 | lea .Linc(%rip),%rax | ||
955 | and \$-16,%rsp # shouldn't be formally required | ||
956 | |||
957 | movd $idx,%xmm5 | ||
958 | movdqa 0(%rax),%xmm0 # 00000001000000010000000000000000 | ||
959 | movdqa 16(%rax),%xmm1 # 00000002000000020000000200000002 | ||
960 | lea 128($tbl),%r11 # size optimization | ||
961 | lea 128(%rsp),%rax # size optimization | ||
962 | |||
963 | pshufd \$0,%xmm5,%xmm5 # broadcast $idx | ||
964 | movdqa %xmm1,%xmm4 | ||
965 | movdqa %xmm1,%xmm2 | ||
966 | ___ | ||
967 | ######################################################################## | ||
968 | # calculate mask by comparing 0..31 to $idx and save result to stack | ||
969 | # | ||
970 | for($i=0;$i<$STRIDE/16;$i+=4) { | ||
971 | $code.=<<___; | ||
972 | paddd %xmm0,%xmm1 | ||
973 | pcmpeqd %xmm5,%xmm0 # compare to 1,0 | ||
974 | ___ | ||
975 | $code.=<<___ if ($i); | ||
976 | movdqa %xmm3,`16*($i-1)-128`(%rax) | ||
977 | ___ | ||
978 | $code.=<<___; | ||
979 | movdqa %xmm4,%xmm3 | ||
980 | |||
981 | paddd %xmm1,%xmm2 | ||
982 | pcmpeqd %xmm5,%xmm1 # compare to 3,2 | ||
983 | movdqa %xmm0,`16*($i+0)-128`(%rax) | ||
984 | movdqa %xmm4,%xmm0 | ||
985 | |||
986 | paddd %xmm2,%xmm3 | ||
987 | pcmpeqd %xmm5,%xmm2 # compare to 5,4 | ||
988 | movdqa %xmm1,`16*($i+1)-128`(%rax) | ||
989 | movdqa %xmm4,%xmm1 | ||
990 | |||
991 | paddd %xmm3,%xmm0 | ||
992 | pcmpeqd %xmm5,%xmm3 # compare to 7,6 | ||
993 | movdqa %xmm2,`16*($i+2)-128`(%rax) | ||
994 | movdqa %xmm4,%xmm2 | ||
995 | ___ | ||
996 | } | ||
997 | $code.=<<___; | ||
998 | movdqa %xmm3,`16*($i-1)-128`(%rax) | ||
999 | jmp .Lgather | ||
1000 | |||
1001 | .align 32 | ||
1002 | .Lgather: | ||
1003 | pxor %xmm4,%xmm4 | ||
1004 | pxor %xmm5,%xmm5 | ||
1005 | ___ | ||
1006 | for($i=0;$i<$STRIDE/16;$i+=4) { | ||
1007 | $code.=<<___; | ||
1008 | movdqa `16*($i+0)-128`(%r11),%xmm0 | ||
1009 | movdqa `16*($i+1)-128`(%r11),%xmm1 | ||
1010 | movdqa `16*($i+2)-128`(%r11),%xmm2 | ||
1011 | pand `16*($i+0)-128`(%rax),%xmm0 | ||
1012 | movdqa `16*($i+3)-128`(%r11),%xmm3 | ||
1013 | pand `16*($i+1)-128`(%rax),%xmm1 | ||
1014 | por %xmm0,%xmm4 | ||
1015 | pand `16*($i+2)-128`(%rax),%xmm2 | ||
1016 | por %xmm1,%xmm5 | ||
1017 | pand `16*($i+3)-128`(%rax),%xmm3 | ||
1018 | por %xmm2,%xmm4 | ||
1019 | por %xmm3,%xmm5 | ||
1020 | ___ | ||
1021 | } | ||
1022 | $code.=<<___; | ||
1023 | por %xmm5,%xmm4 | ||
1024 | lea $STRIDE(%r11),%r11 | ||
1025 | pshufd \$0x4e,%xmm4,%xmm0 | ||
1026 | por %xmm4,%xmm0 | ||
1027 | movq %xmm0,($out) # m0=bp[0] | ||
1028 | lea 8($out),$out | ||
1029 | sub \$1,$num | ||
1030 | jnz .Lgather | ||
1031 | |||
1032 | lea (%r10),%rsp | ||
1033 | ret | ||
1034 | .LSEH_end_bn_gather5: | ||
1035 | .size bn_gather5,.-bn_gather5 | ||
1036 | ___ | ||
1037 | } | ||
1038 | $code.=<<___; | ||
1039 | .section .rodata | ||
1040 | .align 64 | ||
1041 | .Linc: | ||
1042 | .long 0,0, 1,1 | ||
1043 | .long 2,2, 2,2 | ||
1044 | .text | ||
1045 | ___ | ||
1046 | |||
1047 | # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, | ||
1048 | # CONTEXT *context,DISPATCHER_CONTEXT *disp) | ||
1049 | if ($win64) { | ||
1050 | $rec="%rcx"; | ||
1051 | $frame="%rdx"; | ||
1052 | $context="%r8"; | ||
1053 | $disp="%r9"; | ||
1054 | |||
1055 | $code.=<<___; | ||
1056 | .extern __imp_RtlVirtualUnwind | ||
1057 | .type mul_handler,\@abi-omnipotent | ||
1058 | .align 16 | ||
1059 | mul_handler: | ||
1060 | _CET_ENDBR | ||
1061 | push %rsi | ||
1062 | push %rdi | ||
1063 | push %rbx | ||
1064 | push %rbp | ||
1065 | push %r12 | ||
1066 | push %r13 | ||
1067 | push %r14 | ||
1068 | push %r15 | ||
1069 | pushfq | ||
1070 | sub \$64,%rsp | ||
1071 | |||
1072 | mov 120($context),%rax # pull context->Rax | ||
1073 | mov 248($context),%rbx # pull context->Rip | ||
1074 | |||
1075 | mov 8($disp),%rsi # disp->ImageBase | ||
1076 | mov 56($disp),%r11 # disp->HandlerData | ||
1077 | |||
1078 | mov 0(%r11),%r10d # HandlerData[0] | ||
1079 | lea (%rsi,%r10),%r10 # end of prologue label | ||
1080 | cmp %r10,%rbx # context->Rip<end of prologue label | ||
1081 | jb .Lcommon_seh_tail | ||
1082 | |||
1083 | lea 48(%rax),%rax | ||
1084 | |||
1085 | mov 4(%r11),%r10d # HandlerData[1] | ||
1086 | lea (%rsi,%r10),%r10 # end of alloca label | ||
1087 | cmp %r10,%rbx # context->Rip<end of alloca label | ||
1088 | jb .Lcommon_seh_tail | ||
1089 | |||
1090 | mov 152($context),%rax # pull context->Rsp | ||
1091 | |||
1092 | mov 8(%r11),%r10d # HandlerData[2] | ||
1093 | lea (%rsi,%r10),%r10 # epilogue label | ||
1094 | cmp %r10,%rbx # context->Rip>=epilogue label | ||
1095 | jae .Lcommon_seh_tail | ||
1096 | |||
1097 | mov 192($context),%r10 # pull $num | ||
1098 | mov 8(%rax,%r10,8),%rax # pull saved stack pointer | ||
1099 | |||
1100 | lea 48(%rax),%rax | ||
1101 | |||
1102 | mov -8(%rax),%rbx | ||
1103 | mov -16(%rax),%rbp | ||
1104 | mov -24(%rax),%r12 | ||
1105 | mov -32(%rax),%r13 | ||
1106 | mov -40(%rax),%r14 | ||
1107 | mov -48(%rax),%r15 | ||
1108 | mov %rbx,144($context) # restore context->Rbx | ||
1109 | mov %rbp,160($context) # restore context->Rbp | ||
1110 | mov %r12,216($context) # restore context->R12 | ||
1111 | mov %r13,224($context) # restore context->R13 | ||
1112 | mov %r14,232($context) # restore context->R14 | ||
1113 | mov %r15,240($context) # restore context->R15 | ||
1114 | |||
1115 | .Lcommon_seh_tail: | ||
1116 | mov 8(%rax),%rdi | ||
1117 | mov 16(%rax),%rsi | ||
1118 | mov %rax,152($context) # restore context->Rsp | ||
1119 | mov %rsi,168($context) # restore context->Rsi | ||
1120 | mov %rdi,176($context) # restore context->Rdi | ||
1121 | |||
1122 | mov 40($disp),%rdi # disp->ContextRecord | ||
1123 | mov $context,%rsi # context | ||
1124 | mov \$154,%ecx # sizeof(CONTEXT) | ||
1125 | .long 0xa548f3fc # cld; rep movsq | ||
1126 | |||
1127 | mov $disp,%rsi | ||
1128 | xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER | ||
1129 | mov 8(%rsi),%rdx # arg2, disp->ImageBase | ||
1130 | mov 0(%rsi),%r8 # arg3, disp->ControlPc | ||
1131 | mov 16(%rsi),%r9 # arg4, disp->FunctionEntry | ||
1132 | mov 40(%rsi),%r10 # disp->ContextRecord | ||
1133 | lea 56(%rsi),%r11 # &disp->HandlerData | ||
1134 | lea 24(%rsi),%r12 # &disp->EstablisherFrame | ||
1135 | mov %r10,32(%rsp) # arg5 | ||
1136 | mov %r11,40(%rsp) # arg6 | ||
1137 | mov %r12,48(%rsp) # arg7 | ||
1138 | mov %rcx,56(%rsp) # arg8, (NULL) | ||
1139 | call *__imp_RtlVirtualUnwind(%rip) | ||
1140 | |||
1141 | mov \$1,%eax # ExceptionContinueSearch | ||
1142 | add \$64,%rsp | ||
1143 | popfq | ||
1144 | pop %r15 | ||
1145 | pop %r14 | ||
1146 | pop %r13 | ||
1147 | pop %r12 | ||
1148 | pop %rbp | ||
1149 | pop %rbx | ||
1150 | pop %rdi | ||
1151 | pop %rsi | ||
1152 | ret | ||
1153 | .size mul_handler,.-mul_handler | ||
1154 | |||
1155 | .section .pdata | ||
1156 | .align 4 | ||
1157 | .rva .LSEH_begin_bn_mul_mont_gather5 | ||
1158 | .rva .LSEH_end_bn_mul_mont_gather5 | ||
1159 | .rva .LSEH_info_bn_mul_mont_gather5 | ||
1160 | |||
1161 | .rva .LSEH_begin_bn_mul4x_mont_gather5 | ||
1162 | .rva .LSEH_end_bn_mul4x_mont_gather5 | ||
1163 | .rva .LSEH_info_bn_mul4x_mont_gather5 | ||
1164 | |||
1165 | .rva .LSEH_begin_bn_gather5 | ||
1166 | .rva .LSEH_end_bn_gather5 | ||
1167 | .rva .LSEH_info_bn_gather5 | ||
1168 | |||
1169 | .section .xdata | ||
1170 | .align 8 | ||
1171 | .LSEH_info_bn_mul_mont_gather5: | ||
1172 | .byte 9,0,0,0 | ||
1173 | .rva mul_handler | ||
1174 | .rva .Lmul_alloca,.Lmul_body,.Lmul_epilogue # HandlerData[] | ||
1175 | .align 8 | ||
1176 | .LSEH_info_bn_mul4x_mont_gather5: | ||
1177 | .byte 9,0,0,0 | ||
1178 | .rva mul_handler | ||
1179 | .rva .Lmul4x_alloca,.Lmul4x_body,.Lmul4x_epilogue # HandlerData[] | ||
1180 | .align 8 | ||
1181 | .LSEH_info_bn_gather5: | ||
1182 | .byte 0x01,0x0b,0x03,0x0a | ||
1183 | .byte 0x0b,0x01,0x21,0x00 # sub rsp,0x108 | ||
1184 | .byte 0x04,0xa3,0x00,0x00 # lea r10,(rsp), set_frame r10 | ||
1185 | .align 8 | ||
1186 | ___ | ||
1187 | } | ||
1188 | |||
1189 | $code =~ s/\`([^\`]*)\`/eval($1)/gem; | ||
1190 | |||
1191 | print $code; | ||
1192 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/bn.h b/src/lib/libcrypto/bn/bn.h deleted file mode 100644 index 7c3c0b142f..0000000000 --- a/src/lib/libcrypto/bn/bn.h +++ /dev/null | |||
@@ -1,520 +0,0 @@ | |||
1 | /* $OpenBSD: bn.h,v 1.80 2025/03/09 15:22:40 tb Exp $ */ | ||
2 | /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | /* ==================================================================== | ||
112 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
113 | * | ||
114 | * Portions of the attached software ("Contribution") are developed by | ||
115 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. | ||
116 | * | ||
117 | * The Contribution is licensed pursuant to the Eric Young open source | ||
118 | * license provided above. | ||
119 | * | ||
120 | * The binary polynomial arithmetic software is originally written by | ||
121 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories. | ||
122 | * | ||
123 | */ | ||
124 | |||
125 | #ifndef HEADER_BN_H | ||
126 | #define HEADER_BN_H | ||
127 | |||
128 | #include <stdio.h> | ||
129 | #include <stdlib.h> | ||
130 | |||
131 | #include <openssl/opensslconf.h> | ||
132 | |||
133 | #include <openssl/ossl_typ.h> | ||
134 | #include <openssl/crypto.h> | ||
135 | #include <openssl/bio.h> | ||
136 | |||
137 | #ifdef __cplusplus | ||
138 | extern "C" { | ||
139 | #endif | ||
140 | |||
141 | /* This next option uses the C libraries (2 word)/(1 word) function. | ||
142 | * If it is not defined, I use my C version (which is slower). | ||
143 | * The reason for this flag is that when the particular C compiler | ||
144 | * library routine is used, and the library is linked with a different | ||
145 | * compiler, the library is missing. This mostly happens when the | ||
146 | * library is built with gcc and then linked using normal cc. This would | ||
147 | * be a common occurrence because gcc normally produces code that is | ||
148 | * 2 times faster than system compilers for the big number stuff. | ||
149 | * For machines with only one compiler (or shared libraries), this should | ||
150 | * be on. Again this in only really a problem on machines | ||
151 | * using "long long's", are 32bit, and are not using my assembler code. */ | ||
152 | /* #define BN_DIV2W */ | ||
153 | |||
154 | #ifdef _LP64 | ||
155 | #undef BN_LLONG | ||
156 | #define BN_ULONG unsigned long | ||
157 | #define BN_LONG long | ||
158 | #define BN_BITS 128 | ||
159 | #define BN_BYTES 8 | ||
160 | #define BN_BITS2 64 | ||
161 | #define BN_BITS4 32 | ||
162 | #define BN_MASK2 (0xffffffffffffffffL) | ||
163 | #define BN_MASK2l (0xffffffffL) | ||
164 | #define BN_MASK2h (0xffffffff00000000L) | ||
165 | #define BN_MASK2h1 (0xffffffff80000000L) | ||
166 | #define BN_TBIT (0x8000000000000000L) | ||
167 | #define BN_DEC_CONV (10000000000000000000UL) | ||
168 | #define BN_DEC_FMT1 "%lu" | ||
169 | #define BN_DEC_FMT2 "%019lu" | ||
170 | #define BN_DEC_NUM 19 | ||
171 | #define BN_HEX_FMT1 "%lX" | ||
172 | #define BN_HEX_FMT2 "%016lX" | ||
173 | #else | ||
174 | #define BN_ULLONG unsigned long long | ||
175 | #define BN_LLONG | ||
176 | #define BN_ULONG unsigned int | ||
177 | #define BN_LONG int | ||
178 | #define BN_BITS 64 | ||
179 | #define BN_BYTES 4 | ||
180 | #define BN_BITS2 32 | ||
181 | #define BN_BITS4 16 | ||
182 | #define BN_MASK (0xffffffffffffffffLL) | ||
183 | #define BN_MASK2 (0xffffffffL) | ||
184 | #define BN_MASK2l (0xffff) | ||
185 | #define BN_MASK2h1 (0xffff8000L) | ||
186 | #define BN_MASK2h (0xffff0000L) | ||
187 | #define BN_TBIT (0x80000000L) | ||
188 | #define BN_DEC_CONV (1000000000L) | ||
189 | #define BN_DEC_FMT1 "%u" | ||
190 | #define BN_DEC_FMT2 "%09u" | ||
191 | #define BN_DEC_NUM 9 | ||
192 | #define BN_HEX_FMT1 "%X" | ||
193 | #define BN_HEX_FMT2 "%08X" | ||
194 | #endif | ||
195 | |||
196 | #define BN_FLG_MALLOCED 0x01 | ||
197 | #define BN_FLG_STATIC_DATA 0x02 | ||
198 | #define BN_FLG_CONSTTIME 0x04 /* avoid leaking exponent information through timing, | ||
199 | * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime, | ||
200 | * BN_div() will call BN_div_no_branch, | ||
201 | * BN_mod_inverse() will call BN_mod_inverse_no_branch. | ||
202 | */ | ||
203 | |||
204 | void BN_set_flags(BIGNUM *b, int n); | ||
205 | int BN_get_flags(const BIGNUM *b, int n); | ||
206 | void BN_with_flags(BIGNUM *dest, const BIGNUM *src, int flags); | ||
207 | |||
208 | /* Values for |top| in BN_rand() */ | ||
209 | #define BN_RAND_TOP_ANY -1 | ||
210 | #define BN_RAND_TOP_ONE 0 | ||
211 | #define BN_RAND_TOP_TWO 1 | ||
212 | |||
213 | /* Values for |bottom| in BN_rand() */ | ||
214 | #define BN_RAND_BOTTOM_ANY 0 | ||
215 | #define BN_RAND_BOTTOM_ODD 1 | ||
216 | |||
217 | BN_GENCB *BN_GENCB_new(void); | ||
218 | void BN_GENCB_free(BN_GENCB *cb); | ||
219 | |||
220 | /* Wrapper function to make using BN_GENCB easier, */ | ||
221 | int BN_GENCB_call(BN_GENCB *cb, int a, int b); | ||
222 | |||
223 | /* Populate a BN_GENCB structure with an "old"-style callback */ | ||
224 | void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback)(int, int, void *), | ||
225 | void *cb_arg); | ||
226 | |||
227 | /* Populate a BN_GENCB structure with a "new"-style callback */ | ||
228 | void BN_GENCB_set(BN_GENCB *gencb, int (*callback)(int, int, BN_GENCB *), | ||
229 | void *cb_arg); | ||
230 | |||
231 | void *BN_GENCB_get_arg(BN_GENCB *cb); | ||
232 | |||
233 | #define BN_prime_checks 0 /* default: select number of iterations | ||
234 | based on the size of the number */ | ||
235 | |||
236 | /* | ||
237 | * BN_prime_checks_for_size() returns the number of Miller-Rabin | ||
238 | * iterations that will be done for checking that a random number | ||
239 | * is probably prime. The error rate for accepting a composite | ||
240 | * number as prime depends on the size of the prime |b|. The error | ||
241 | * rates used are for calculating an RSA key with 2 primes, and so | ||
242 | * the level is what you would expect for a key of double the size | ||
243 | * of the prime. | ||
244 | * | ||
245 | * This table is generated using the algorithm of FIPS PUB 186-4 | ||
246 | * Digital Signature Standard (DSS), section F.1, page 117. | ||
247 | * (https://dx.doi.org/10.6028/NIST.FIPS.186-4) | ||
248 | * | ||
249 | * The following magma script was used to generate the output: | ||
250 | * securitybits:=125; | ||
251 | * k:=1024; | ||
252 | * for t:=1 to 65 do | ||
253 | * for M:=3 to Floor(2*Sqrt(k-1)-1) do | ||
254 | * S:=0; | ||
255 | * // Sum over m | ||
256 | * for m:=3 to M do | ||
257 | * s:=0; | ||
258 | * // Sum over j | ||
259 | * for j:=2 to m do | ||
260 | * s+:=(RealField(32)!2)^-(j+(k-1)/j); | ||
261 | * end for; | ||
262 | * S+:=2^(m-(m-1)*t)*s; | ||
263 | * end for; | ||
264 | * A:=2^(k-2-M*t); | ||
265 | * B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S; | ||
266 | * pkt:=2.00743*Log(2)*k*2^-k*(A+B); | ||
267 | * seclevel:=Floor(-Log(2,pkt)); | ||
268 | * if seclevel ge securitybits then | ||
269 | * printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M; | ||
270 | * break; | ||
271 | * end if; | ||
272 | * end for; | ||
273 | * if seclevel ge securitybits then break; end if; | ||
274 | * end for; | ||
275 | * | ||
276 | * It can be run online at: | ||
277 | * http://magma.maths.usyd.edu.au/calc | ||
278 | * | ||
279 | * And will output: | ||
280 | * k: 1024, security: 129 bits (t: 6, M: 23) | ||
281 | * | ||
282 | * k is the number of bits of the prime, securitybits is the level | ||
283 | * we want to reach. | ||
284 | * | ||
285 | * prime length | RSA key size | # MR tests | security level | ||
286 | * -------------+--------------|------------+--------------- | ||
287 | * (b) >= 6394 | >= 12788 | 3 | 256 bit | ||
288 | * (b) >= 3747 | >= 7494 | 3 | 192 bit | ||
289 | * (b) >= 1345 | >= 2690 | 4 | 128 bit | ||
290 | * (b) >= 1080 | >= 2160 | 5 | 128 bit | ||
291 | * (b) >= 852 | >= 1704 | 5 | 112 bit | ||
292 | * (b) >= 476 | >= 952 | 5 | 80 bit | ||
293 | * (b) >= 400 | >= 800 | 6 | 80 bit | ||
294 | * (b) >= 347 | >= 694 | 7 | 80 bit | ||
295 | * (b) >= 308 | >= 616 | 8 | 80 bit | ||
296 | * (b) >= 55 | >= 110 | 27 | 64 bit | ||
297 | * (b) >= 6 | >= 12 | 34 | 64 bit | ||
298 | */ | ||
299 | |||
300 | #define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \ | ||
301 | (b) >= 1345 ? 4 : \ | ||
302 | (b) >= 476 ? 5 : \ | ||
303 | (b) >= 400 ? 6 : \ | ||
304 | (b) >= 347 ? 7 : \ | ||
305 | (b) >= 308 ? 8 : \ | ||
306 | (b) >= 55 ? 27 : \ | ||
307 | /* b >= 6 */ 34) | ||
308 | |||
309 | #define BN_num_bytes(a) ((BN_num_bits(a)+7)/8) | ||
310 | |||
311 | int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w); | ||
312 | int BN_is_zero(const BIGNUM *a); | ||
313 | int BN_is_one(const BIGNUM *a); | ||
314 | int BN_is_word(const BIGNUM *a, const BN_ULONG w); | ||
315 | int BN_is_odd(const BIGNUM *a); | ||
316 | |||
317 | void BN_zero(BIGNUM *a); | ||
318 | int BN_one(BIGNUM *a); | ||
319 | |||
320 | const BIGNUM *BN_value_one(void); | ||
321 | BN_CTX *BN_CTX_new(void); | ||
322 | void BN_CTX_free(BN_CTX *c); | ||
323 | void BN_CTX_start(BN_CTX *ctx); | ||
324 | BIGNUM *BN_CTX_get(BN_CTX *ctx); | ||
325 | void BN_CTX_end(BN_CTX *ctx); | ||
326 | int BN_rand(BIGNUM *rnd, int bits, int top, int bottom); | ||
327 | int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); | ||
328 | int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); | ||
329 | int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); | ||
330 | int BN_num_bits(const BIGNUM *a); | ||
331 | int BN_num_bits_word(BN_ULONG); | ||
332 | BIGNUM *BN_new(void); | ||
333 | void BN_clear_free(BIGNUM *a); | ||
334 | BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b); | ||
335 | void BN_swap(BIGNUM *a, BIGNUM *b); | ||
336 | BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret); | ||
337 | int BN_bn2bin(const BIGNUM *a, unsigned char *to); | ||
338 | int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen); | ||
339 | BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret); | ||
340 | int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen); | ||
341 | BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret); | ||
342 | int BN_bn2mpi(const BIGNUM *a, unsigned char *to); | ||
343 | int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | ||
344 | int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | ||
345 | int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | ||
346 | int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | ||
347 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | ||
348 | int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); | ||
349 | void BN_set_negative(BIGNUM *b, int n); | ||
350 | |||
351 | int BN_is_negative(const BIGNUM *b); | ||
352 | |||
353 | int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, | ||
354 | BN_CTX *ctx); | ||
355 | #define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx)) | ||
356 | |||
357 | int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx); | ||
358 | int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); | ||
359 | int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m); | ||
360 | int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); | ||
361 | int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m); | ||
362 | int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
363 | const BIGNUM *m, BN_CTX *ctx); | ||
364 | int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); | ||
365 | int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); | ||
366 | int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m); | ||
367 | int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx); | ||
368 | int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m); | ||
369 | |||
370 | BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); | ||
371 | BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w); | ||
372 | int BN_mul_word(BIGNUM *a, BN_ULONG w); | ||
373 | int BN_add_word(BIGNUM *a, BN_ULONG w); | ||
374 | int BN_sub_word(BIGNUM *a, BN_ULONG w); | ||
375 | int BN_set_word(BIGNUM *a, BN_ULONG w); | ||
376 | BN_ULONG BN_get_word(const BIGNUM *a); | ||
377 | |||
378 | int BN_cmp(const BIGNUM *a, const BIGNUM *b); | ||
379 | void BN_free(BIGNUM *a); | ||
380 | int BN_is_bit_set(const BIGNUM *a, int n); | ||
381 | int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); | ||
382 | int BN_lshift1(BIGNUM *r, const BIGNUM *a); | ||
383 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | ||
384 | |||
385 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
386 | const BIGNUM *m, BN_CTX *ctx); | ||
387 | int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
388 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); | ||
389 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
390 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont); | ||
391 | |||
392 | int BN_mask_bits(BIGNUM *a, int n); | ||
393 | int BN_print_fp(FILE *fp, const BIGNUM *a); | ||
394 | int BN_print(BIO *fp, const BIGNUM *a); | ||
395 | int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); | ||
396 | int BN_rshift1(BIGNUM *r, const BIGNUM *a); | ||
397 | void BN_clear(BIGNUM *a); | ||
398 | BIGNUM *BN_dup(const BIGNUM *a); | ||
399 | int BN_ucmp(const BIGNUM *a, const BIGNUM *b); | ||
400 | int BN_set_bit(BIGNUM *a, int n); | ||
401 | int BN_clear_bit(BIGNUM *a, int n); | ||
402 | char * BN_bn2hex(const BIGNUM *a); | ||
403 | char * BN_bn2dec(const BIGNUM *a); | ||
404 | int BN_hex2bn(BIGNUM **a, const char *str); | ||
405 | int BN_dec2bn(BIGNUM **a, const char *str); | ||
406 | int BN_asc2bn(BIGNUM **a, const char *str); | ||
407 | int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | ||
408 | int BN_kronecker(const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx); /* returns -2 for error */ | ||
409 | BIGNUM *BN_mod_inverse(BIGNUM *ret, | ||
410 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); | ||
411 | BIGNUM *BN_mod_sqrt(BIGNUM *ret, | ||
412 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); | ||
413 | |||
414 | void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords); | ||
415 | |||
416 | int BN_security_bits(int L, int N); | ||
417 | |||
418 | int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, | ||
419 | const BIGNUM *rem, BN_GENCB *cb); | ||
420 | int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb); | ||
421 | int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, | ||
422 | int do_trial_division, BN_GENCB *cb); | ||
423 | |||
424 | BN_MONT_CTX *BN_MONT_CTX_new(void); | ||
425 | int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
426 | BN_MONT_CTX *mont, BN_CTX *ctx); | ||
427 | int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, | ||
428 | BN_CTX *ctx); | ||
429 | int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, | ||
430 | BN_MONT_CTX *mont, BN_CTX *ctx); | ||
431 | void BN_MONT_CTX_free(BN_MONT_CTX *mont); | ||
432 | int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx); | ||
433 | BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, const BN_MONT_CTX *from); | ||
434 | BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, int lock, | ||
435 | const BIGNUM *mod, BN_CTX *ctx); | ||
436 | |||
437 | /* Primes from RFC 2409 */ | ||
438 | BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn); | ||
439 | BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn); | ||
440 | |||
441 | /* Primes from RFC 3526 */ | ||
442 | BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn); | ||
443 | BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn); | ||
444 | BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn); | ||
445 | BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn); | ||
446 | BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn); | ||
447 | BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn); | ||
448 | |||
449 | void ERR_load_BN_strings(void); | ||
450 | |||
451 | /* Error codes for the BN functions. */ | ||
452 | |||
453 | /* Function codes. */ | ||
454 | #define BN_F_BNRAND 127 | ||
455 | #define BN_F_BN_BLINDING_CONVERT_EX 100 | ||
456 | #define BN_F_BN_BLINDING_CREATE_PARAM 128 | ||
457 | #define BN_F_BN_BLINDING_INVERT_EX 101 | ||
458 | #define BN_F_BN_BLINDING_NEW 102 | ||
459 | #define BN_F_BN_BLINDING_UPDATE 103 | ||
460 | #define BN_F_BN_BN2DEC 104 | ||
461 | #define BN_F_BN_BN2HEX 105 | ||
462 | #define BN_F_BN_CTX_GET 116 | ||
463 | #define BN_F_BN_CTX_NEW 106 | ||
464 | #define BN_F_BN_CTX_START 129 | ||
465 | #define BN_F_BN_DIV 107 | ||
466 | #define BN_F_BN_DIV_NO_BRANCH 138 | ||
467 | #define BN_F_BN_DIV_RECP 130 | ||
468 | #define BN_F_BN_EXP 123 | ||
469 | #define BN_F_BN_EXPAND2 108 | ||
470 | #define BN_F_BN_GENERATE_PRIME_EX 140 | ||
471 | #define BN_F_BN_EXPAND_INTERNAL 120 | ||
472 | #define BN_F_BN_GF2M_MOD 131 | ||
473 | #define BN_F_BN_GF2M_MOD_EXP 132 | ||
474 | #define BN_F_BN_GF2M_MOD_MUL 133 | ||
475 | #define BN_F_BN_GF2M_MOD_SOLVE_QUAD 134 | ||
476 | #define BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR 135 | ||
477 | #define BN_F_BN_GF2M_MOD_SQR 136 | ||
478 | #define BN_F_BN_GF2M_MOD_SQRT 137 | ||
479 | #define BN_F_BN_MOD_EXP2_MONT 118 | ||
480 | #define BN_F_BN_MOD_EXP_MONT 109 | ||
481 | #define BN_F_BN_MOD_EXP_MONT_CONSTTIME 124 | ||
482 | #define BN_F_BN_MOD_EXP_MONT_WORD 117 | ||
483 | #define BN_F_BN_MOD_EXP_RECP 125 | ||
484 | #define BN_F_BN_MOD_EXP_SIMPLE 126 | ||
485 | #define BN_F_BN_MOD_INVERSE 110 | ||
486 | #define BN_F_BN_MOD_INVERSE_NO_BRANCH 139 | ||
487 | #define BN_F_BN_MOD_LSHIFT_QUICK 119 | ||
488 | #define BN_F_BN_MOD_MUL_RECIPROCAL 111 | ||
489 | #define BN_F_BN_MOD_SQRT 121 | ||
490 | #define BN_F_BN_MPI2BN 112 | ||
491 | #define BN_F_BN_NEW 113 | ||
492 | #define BN_F_BN_RAND 114 | ||
493 | #define BN_F_BN_RAND_RANGE 122 | ||
494 | #define BN_F_BN_USUB 115 | ||
495 | |||
496 | /* Reason codes. */ | ||
497 | #define BN_R_ARG2_LT_ARG3 100 | ||
498 | #define BN_R_BAD_RECIPROCAL 101 | ||
499 | #define BN_R_BIGNUM_TOO_LONG 114 | ||
500 | #define BN_R_BITS_TOO_SMALL 117 | ||
501 | #define BN_R_CALLED_WITH_EVEN_MODULUS 102 | ||
502 | #define BN_R_DIV_BY_ZERO 103 | ||
503 | #define BN_R_ENCODING_ERROR 104 | ||
504 | #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 105 | ||
505 | #define BN_R_INPUT_NOT_REDUCED 110 | ||
506 | #define BN_R_INVALID_ARGUMENT 118 | ||
507 | #define BN_R_INVALID_LENGTH 106 | ||
508 | #define BN_R_INVALID_RANGE 115 | ||
509 | #define BN_R_NOT_A_SQUARE 111 | ||
510 | #define BN_R_NOT_INITIALIZED 107 | ||
511 | #define BN_R_NO_INVERSE 108 | ||
512 | #define BN_R_NO_SOLUTION 116 | ||
513 | #define BN_R_P_IS_NOT_PRIME 112 | ||
514 | #define BN_R_TOO_MANY_ITERATIONS 113 | ||
515 | #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 109 | ||
516 | |||
517 | #ifdef __cplusplus | ||
518 | } | ||
519 | #endif | ||
520 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_add.c b/src/lib/libcrypto/bn/bn_add.c deleted file mode 100644 index 86768a312a..0000000000 --- a/src/lib/libcrypto/bn/bn_add.c +++ /dev/null | |||
@@ -1,341 +0,0 @@ | |||
1 | /* $OpenBSD: bn_add.c,v 1.26 2023/07/08 12:21:58 beck Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <assert.h> | ||
60 | #include <limits.h> | ||
61 | #include <stdio.h> | ||
62 | |||
63 | #include <openssl/err.h> | ||
64 | |||
65 | #include "bn_arch.h" | ||
66 | #include "bn_local.h" | ||
67 | #include "bn_internal.h" | ||
68 | |||
69 | /* | ||
70 | * bn_add_words() computes (carry:r[i]) = a[i] + b[i] + carry, where a and b | ||
71 | * are both arrays of words. Any carry resulting from the addition is returned. | ||
72 | */ | ||
73 | #ifndef HAVE_BN_ADD_WORDS | ||
74 | BN_ULONG | ||
75 | bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
76 | { | ||
77 | BN_ULONG carry = 0; | ||
78 | |||
79 | assert(n >= 0); | ||
80 | if (n <= 0) | ||
81 | return 0; | ||
82 | |||
83 | while (n & ~3) { | ||
84 | bn_qwaddqw(a[3], a[2], a[1], a[0], b[3], b[2], b[1], b[0], | ||
85 | carry, &carry, &r[3], &r[2], &r[1], &r[0]); | ||
86 | a += 4; | ||
87 | b += 4; | ||
88 | r += 4; | ||
89 | n -= 4; | ||
90 | } | ||
91 | while (n) { | ||
92 | bn_addw_addw(a[0], b[0], carry, &carry, &r[0]); | ||
93 | a++; | ||
94 | b++; | ||
95 | r++; | ||
96 | n--; | ||
97 | } | ||
98 | return carry; | ||
99 | } | ||
100 | #endif | ||
101 | |||
102 | /* | ||
103 | * bn_add() computes (carry:r[i]) = a[i] + b[i] + carry, where a and b are both | ||
104 | * arrays of words (r may be the same as a or b). The length of a and b may | ||
105 | * differ, while r must be at least max(a_len, b_len) in length. Any carry | ||
106 | * resulting from the addition is returned. | ||
107 | */ | ||
108 | #ifndef HAVE_BN_ADD | ||
109 | BN_ULONG | ||
110 | bn_add(BN_ULONG *r, int r_len, const BN_ULONG *a, int a_len, const BN_ULONG *b, | ||
111 | int b_len) | ||
112 | { | ||
113 | int min_len, diff_len; | ||
114 | BN_ULONG carry = 0; | ||
115 | |||
116 | if ((min_len = a_len) > b_len) | ||
117 | min_len = b_len; | ||
118 | |||
119 | diff_len = a_len - b_len; | ||
120 | |||
121 | carry = bn_add_words(r, a, b, min_len); | ||
122 | |||
123 | a += min_len; | ||
124 | b += min_len; | ||
125 | r += min_len; | ||
126 | |||
127 | /* XXX - consider doing four at a time to match bn_add_words(). */ | ||
128 | while (diff_len < 0) { | ||
129 | /* Compute r[0] = 0 + b[0] + carry. */ | ||
130 | bn_addw(b[0], carry, &carry, &r[0]); | ||
131 | diff_len++; | ||
132 | b++; | ||
133 | r++; | ||
134 | } | ||
135 | |||
136 | /* XXX - consider doing four at a time to match bn_add_words(). */ | ||
137 | while (diff_len > 0) { | ||
138 | /* Compute r[0] = a[0] + 0 + carry. */ | ||
139 | bn_addw(a[0], carry, &carry, &r[0]); | ||
140 | diff_len--; | ||
141 | a++; | ||
142 | r++; | ||
143 | } | ||
144 | |||
145 | return carry; | ||
146 | } | ||
147 | #endif | ||
148 | |||
149 | /* | ||
150 | * bn_sub_words() computes (borrow:r[i]) = a[i] - b[i] - borrow, where a and b | ||
151 | * are both arrays of words. Any borrow resulting from the subtraction is | ||
152 | * returned. | ||
153 | */ | ||
154 | #ifndef HAVE_BN_SUB_WORDS | ||
155 | BN_ULONG | ||
156 | bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
157 | { | ||
158 | BN_ULONG borrow = 0; | ||
159 | |||
160 | assert(n >= 0); | ||
161 | if (n <= 0) | ||
162 | return 0; | ||
163 | |||
164 | while (n & ~3) { | ||
165 | bn_qwsubqw(a[3], a[2], a[1], a[0], b[3], b[2], b[1], b[0], | ||
166 | borrow, &borrow, &r[3], &r[2], &r[1], &r[0]); | ||
167 | a += 4; | ||
168 | b += 4; | ||
169 | r += 4; | ||
170 | n -= 4; | ||
171 | } | ||
172 | while (n) { | ||
173 | bn_subw_subw(a[0], b[0], borrow, &borrow, &r[0]); | ||
174 | a++; | ||
175 | b++; | ||
176 | r++; | ||
177 | n--; | ||
178 | } | ||
179 | return borrow; | ||
180 | } | ||
181 | #endif | ||
182 | |||
183 | /* | ||
184 | * bn_sub() computes (borrow:r[i]) = a[i] - b[i] - borrow, where a and b are both | ||
185 | * arrays of words (r may be the same as a or b). The length of a and b may | ||
186 | * differ, while r must be at least max(a_len, b_len) in length. Any borrow | ||
187 | * resulting from the subtraction is returned. | ||
188 | */ | ||
189 | #ifndef HAVE_BN_SUB | ||
190 | BN_ULONG | ||
191 | bn_sub(BN_ULONG *r, int r_len, const BN_ULONG *a, int a_len, const BN_ULONG *b, | ||
192 | int b_len) | ||
193 | { | ||
194 | int min_len, diff_len; | ||
195 | BN_ULONG borrow = 0; | ||
196 | |||
197 | if ((min_len = a_len) > b_len) | ||
198 | min_len = b_len; | ||
199 | |||
200 | diff_len = a_len - b_len; | ||
201 | |||
202 | borrow = bn_sub_words(r, a, b, min_len); | ||
203 | |||
204 | a += min_len; | ||
205 | b += min_len; | ||
206 | r += min_len; | ||
207 | |||
208 | /* XXX - consider doing four at a time to match bn_sub_words. */ | ||
209 | while (diff_len < 0) { | ||
210 | /* Compute r[0] = 0 - b[0] - borrow. */ | ||
211 | bn_subw(0 - b[0], borrow, &borrow, &r[0]); | ||
212 | diff_len++; | ||
213 | b++; | ||
214 | r++; | ||
215 | } | ||
216 | |||
217 | /* XXX - consider doing four at a time to match bn_sub_words. */ | ||
218 | while (diff_len > 0) { | ||
219 | /* Compute r[0] = a[0] - 0 - borrow. */ | ||
220 | bn_subw(a[0], borrow, &borrow, &r[0]); | ||
221 | diff_len--; | ||
222 | a++; | ||
223 | r++; | ||
224 | } | ||
225 | |||
226 | return borrow; | ||
227 | } | ||
228 | #endif | ||
229 | |||
230 | int | ||
231 | BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
232 | { | ||
233 | BN_ULONG carry; | ||
234 | int rn; | ||
235 | |||
236 | if ((rn = a->top) < b->top) | ||
237 | rn = b->top; | ||
238 | if (rn == INT_MAX) | ||
239 | return 0; | ||
240 | if (!bn_wexpand(r, rn + 1)) | ||
241 | return 0; | ||
242 | |||
243 | carry = bn_add(r->d, rn, a->d, a->top, b->d, b->top); | ||
244 | r->d[rn] = carry; | ||
245 | |||
246 | r->top = rn + (carry & 1); | ||
247 | r->neg = 0; | ||
248 | |||
249 | return 1; | ||
250 | } | ||
251 | LCRYPTO_ALIAS(BN_uadd); | ||
252 | |||
253 | int | ||
254 | BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
255 | { | ||
256 | BN_ULONG borrow; | ||
257 | int rn; | ||
258 | |||
259 | if (a->top < b->top) { | ||
260 | BNerror(BN_R_ARG2_LT_ARG3); | ||
261 | return 0; | ||
262 | } | ||
263 | rn = a->top; | ||
264 | |||
265 | if (!bn_wexpand(r, rn)) | ||
266 | return 0; | ||
267 | |||
268 | borrow = bn_sub(r->d, rn, a->d, a->top, b->d, b->top); | ||
269 | if (borrow > 0) { | ||
270 | BNerror(BN_R_ARG2_LT_ARG3); | ||
271 | return 0; | ||
272 | } | ||
273 | |||
274 | r->top = rn; | ||
275 | r->neg = 0; | ||
276 | |||
277 | bn_correct_top(r); | ||
278 | |||
279 | return 1; | ||
280 | } | ||
281 | LCRYPTO_ALIAS(BN_usub); | ||
282 | |||
283 | int | ||
284 | BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
285 | { | ||
286 | int ret, r_neg; | ||
287 | |||
288 | if (a->neg == b->neg) { | ||
289 | r_neg = a->neg; | ||
290 | ret = BN_uadd(r, a, b); | ||
291 | } else { | ||
292 | int cmp = BN_ucmp(a, b); | ||
293 | |||
294 | if (cmp > 0) { | ||
295 | r_neg = a->neg; | ||
296 | ret = BN_usub(r, a, b); | ||
297 | } else if (cmp < 0) { | ||
298 | r_neg = b->neg; | ||
299 | ret = BN_usub(r, b, a); | ||
300 | } else { | ||
301 | r_neg = 0; | ||
302 | BN_zero(r); | ||
303 | ret = 1; | ||
304 | } | ||
305 | } | ||
306 | |||
307 | BN_set_negative(r, r_neg); | ||
308 | |||
309 | return ret; | ||
310 | } | ||
311 | LCRYPTO_ALIAS(BN_add); | ||
312 | |||
313 | int | ||
314 | BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
315 | { | ||
316 | int ret, r_neg; | ||
317 | |||
318 | if (a->neg != b->neg) { | ||
319 | r_neg = a->neg; | ||
320 | ret = BN_uadd(r, a, b); | ||
321 | } else { | ||
322 | int cmp = BN_ucmp(a, b); | ||
323 | |||
324 | if (cmp > 0) { | ||
325 | r_neg = a->neg; | ||
326 | ret = BN_usub(r, a, b); | ||
327 | } else if (cmp < 0) { | ||
328 | r_neg = !b->neg; | ||
329 | ret = BN_usub(r, b, a); | ||
330 | } else { | ||
331 | r_neg = 0; | ||
332 | BN_zero(r); | ||
333 | ret = 1; | ||
334 | } | ||
335 | } | ||
336 | |||
337 | BN_set_negative(r, r_neg); | ||
338 | |||
339 | return ret; | ||
340 | } | ||
341 | LCRYPTO_ALIAS(BN_sub); | ||
diff --git a/src/lib/libcrypto/bn/bn_bpsw.c b/src/lib/libcrypto/bn/bn_bpsw.c deleted file mode 100644 index 04db17b527..0000000000 --- a/src/lib/libcrypto/bn/bn_bpsw.c +++ /dev/null | |||
@@ -1,531 +0,0 @@ | |||
1 | /* $OpenBSD: bn_bpsw.c,v 1.12 2025/02/13 11:10:01 tb Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2022 Martin Grenouilloux <martin.grenouilloux@lse.epita.fr> | ||
4 | * Copyright (c) 2022 Theo Buehler <tb@openbsd.org> | ||
5 | * | ||
6 | * Permission to use, copy, modify, and distribute this software for any | ||
7 | * purpose with or without fee is hereby granted, provided that the above | ||
8 | * copyright notice and this permission notice appear in all copies. | ||
9 | * | ||
10 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
11 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
12 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
13 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
14 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
15 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
16 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
17 | */ | ||
18 | |||
19 | #include <openssl/bn.h> | ||
20 | |||
21 | #include "bn_local.h" | ||
22 | #include "bn_prime.h" | ||
23 | |||
24 | /* | ||
25 | * For an odd n compute a / 2 (mod n). If a is even, we can do a plain | ||
26 | * division, otherwise calculate (a + n) / 2. Then reduce (mod n). | ||
27 | */ | ||
28 | |||
29 | static int | ||
30 | bn_div_by_two_mod_odd_n(BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
31 | { | ||
32 | if (!BN_is_odd(n)) | ||
33 | return 0; | ||
34 | |||
35 | if (BN_is_odd(a)) { | ||
36 | if (!BN_add(a, a, n)) | ||
37 | return 0; | ||
38 | } | ||
39 | if (!BN_rshift1(a, a)) | ||
40 | return 0; | ||
41 | if (!BN_mod_ct(a, a, n, ctx)) | ||
42 | return 0; | ||
43 | |||
44 | return 1; | ||
45 | } | ||
46 | |||
47 | /* | ||
48 | * Given the next binary digit of k and the current Lucas terms U and V, this | ||
49 | * helper computes the next terms in the Lucas sequence defined as follows: | ||
50 | * | ||
51 | * U' = U * V (mod n) | ||
52 | * V' = (V^2 + D * U^2) / 2 (mod n) | ||
53 | * | ||
54 | * If digit == 0, bn_lucas_step() returns U' and V'. If digit == 1, it returns | ||
55 | * | ||
56 | * U'' = (U' + V') / 2 (mod n) | ||
57 | * V'' = (V' + D * U') / 2 (mod n) | ||
58 | * | ||
59 | * Compare with FIPS 186-4, Appendix C.3.3, step 6. | ||
60 | */ | ||
61 | |||
62 | static int | ||
63 | bn_lucas_step(BIGNUM *U, BIGNUM *V, int digit, const BIGNUM *D, | ||
64 | const BIGNUM *n, BN_CTX *ctx) | ||
65 | { | ||
66 | BIGNUM *tmp; | ||
67 | int ret = 0; | ||
68 | |||
69 | BN_CTX_start(ctx); | ||
70 | |||
71 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
72 | goto err; | ||
73 | |||
74 | /* Calculate D * U^2 before computing U'. */ | ||
75 | if (!BN_sqr(tmp, U, ctx)) | ||
76 | goto err; | ||
77 | if (!BN_mul(tmp, D, tmp, ctx)) | ||
78 | goto err; | ||
79 | |||
80 | /* U' = U * V (mod n). */ | ||
81 | if (!BN_mod_mul(U, U, V, n, ctx)) | ||
82 | goto err; | ||
83 | |||
84 | /* V' = (V^2 + D * U^2) / 2 (mod n). */ | ||
85 | if (!BN_sqr(V, V, ctx)) | ||
86 | goto err; | ||
87 | if (!BN_add(V, V, tmp)) | ||
88 | goto err; | ||
89 | if (!bn_div_by_two_mod_odd_n(V, n, ctx)) | ||
90 | goto err; | ||
91 | |||
92 | if (digit == 1) { | ||
93 | /* Calculate D * U' before computing U''. */ | ||
94 | if (!BN_mul(tmp, D, U, ctx)) | ||
95 | goto err; | ||
96 | |||
97 | /* U'' = (U' + V') / 2 (mod n). */ | ||
98 | if (!BN_add(U, U, V)) | ||
99 | goto err; | ||
100 | if (!bn_div_by_two_mod_odd_n(U, n, ctx)) | ||
101 | goto err; | ||
102 | |||
103 | /* V'' = (V' + D * U') / 2 (mod n). */ | ||
104 | if (!BN_add(V, V, tmp)) | ||
105 | goto err; | ||
106 | if (!bn_div_by_two_mod_odd_n(V, n, ctx)) | ||
107 | goto err; | ||
108 | } | ||
109 | |||
110 | ret = 1; | ||
111 | |||
112 | err: | ||
113 | BN_CTX_end(ctx); | ||
114 | |||
115 | return ret; | ||
116 | } | ||
117 | |||
118 | /* | ||
119 | * Compute the Lucas terms U_k, V_k, see FIPS 186-4, Appendix C.3.3, steps 4-6. | ||
120 | */ | ||
121 | |||
122 | static int | ||
123 | bn_lucas(BIGNUM *U, BIGNUM *V, const BIGNUM *k, const BIGNUM *D, | ||
124 | const BIGNUM *n, BN_CTX *ctx) | ||
125 | { | ||
126 | int digit, i; | ||
127 | int ret = 0; | ||
128 | |||
129 | if (!BN_one(U)) | ||
130 | goto err; | ||
131 | if (!BN_one(V)) | ||
132 | goto err; | ||
133 | |||
134 | /* | ||
135 | * Iterate over the digits of k from MSB to LSB. Start at digit 2 | ||
136 | * since the first digit is dealt with by setting U = 1 and V = 1. | ||
137 | */ | ||
138 | |||
139 | for (i = BN_num_bits(k) - 2; i >= 0; i--) { | ||
140 | digit = BN_is_bit_set(k, i); | ||
141 | |||
142 | if (!bn_lucas_step(U, V, digit, D, n, ctx)) | ||
143 | goto err; | ||
144 | } | ||
145 | |||
146 | ret = 1; | ||
147 | |||
148 | err: | ||
149 | return ret; | ||
150 | } | ||
151 | |||
152 | /* | ||
153 | * This is a stronger variant of the Lucas test in FIPS 186-4, Appendix C.3.3. | ||
154 | * Every strong Lucas pseudoprime n is also a Lucas pseudoprime since | ||
155 | * U_{n+1} == 0 follows from U_k == 0 or V_{k * 2^r} == 0 for 0 <= r < s. | ||
156 | */ | ||
157 | |||
158 | static int | ||
159 | bn_strong_lucas_test(int *is_pseudoprime, const BIGNUM *n, const BIGNUM *D, | ||
160 | BN_CTX *ctx) | ||
161 | { | ||
162 | BIGNUM *k, *U, *V; | ||
163 | int r, s; | ||
164 | int ret = 0; | ||
165 | |||
166 | BN_CTX_start(ctx); | ||
167 | |||
168 | if ((k = BN_CTX_get(ctx)) == NULL) | ||
169 | goto err; | ||
170 | if ((U = BN_CTX_get(ctx)) == NULL) | ||
171 | goto err; | ||
172 | if ((V = BN_CTX_get(ctx)) == NULL) | ||
173 | goto err; | ||
174 | |||
175 | /* | ||
176 | * Factorize n + 1 = k * 2^s with odd k: shift away the s trailing ones | ||
177 | * of n and set the lowest bit of the resulting number k. | ||
178 | */ | ||
179 | |||
180 | s = 0; | ||
181 | while (BN_is_bit_set(n, s)) | ||
182 | s++; | ||
183 | if (!BN_rshift(k, n, s)) | ||
184 | goto err; | ||
185 | if (!BN_set_bit(k, 0)) | ||
186 | goto err; | ||
187 | |||
188 | /* | ||
189 | * Calculate the Lucas terms U_k and V_k. If either of them is zero, | ||
190 | * then n is a strong Lucas pseudoprime. | ||
191 | */ | ||
192 | |||
193 | if (!bn_lucas(U, V, k, D, n, ctx)) | ||
194 | goto err; | ||
195 | |||
196 | if (BN_is_zero(U) || BN_is_zero(V)) { | ||
197 | *is_pseudoprime = 1; | ||
198 | goto done; | ||
199 | } | ||
200 | |||
201 | /* | ||
202 | * Calculate the Lucas terms U_{k * 2^r}, V_{k * 2^r} for 1 <= r < s. | ||
203 | * If any V_{k * 2^r} is zero then n is a strong Lucas pseudoprime. | ||
204 | */ | ||
205 | |||
206 | for (r = 1; r < s; r++) { | ||
207 | if (!bn_lucas_step(U, V, 0, D, n, ctx)) | ||
208 | goto err; | ||
209 | |||
210 | if (BN_is_zero(V)) { | ||
211 | *is_pseudoprime = 1; | ||
212 | goto done; | ||
213 | } | ||
214 | } | ||
215 | |||
216 | /* | ||
217 | * If we got here, n is definitely composite. | ||
218 | */ | ||
219 | |||
220 | *is_pseudoprime = 0; | ||
221 | |||
222 | done: | ||
223 | ret = 1; | ||
224 | |||
225 | err: | ||
226 | BN_CTX_end(ctx); | ||
227 | |||
228 | return ret; | ||
229 | } | ||
230 | |||
231 | /* | ||
232 | * Test n for primality using the strong Lucas test with Selfridge's Method A. | ||
233 | * Returns 1 if n is prime or a strong Lucas-Selfridge pseudoprime. | ||
234 | * If it returns 0 then n is definitely composite. | ||
235 | */ | ||
236 | |||
237 | static int | ||
238 | bn_strong_lucas_selfridge(int *is_pseudoprime, const BIGNUM *n, BN_CTX *ctx) | ||
239 | { | ||
240 | BIGNUM *D, *two; | ||
241 | int is_perfect_square, jacobi_symbol, sign; | ||
242 | int ret = 0; | ||
243 | |||
244 | BN_CTX_start(ctx); | ||
245 | |||
246 | /* If n is a perfect square, it is composite. */ | ||
247 | if (!bn_is_perfect_square(&is_perfect_square, n, ctx)) | ||
248 | goto err; | ||
249 | if (is_perfect_square) { | ||
250 | *is_pseudoprime = 0; | ||
251 | goto done; | ||
252 | } | ||
253 | |||
254 | /* | ||
255 | * Find the first D in the Selfridge sequence 5, -7, 9, -11, 13, ... | ||
256 | * such that the Jacobi symbol (D/n) is -1. | ||
257 | */ | ||
258 | |||
259 | if ((D = BN_CTX_get(ctx)) == NULL) | ||
260 | goto err; | ||
261 | if ((two = BN_CTX_get(ctx)) == NULL) | ||
262 | goto err; | ||
263 | |||
264 | sign = 1; | ||
265 | if (!BN_set_word(D, 5)) | ||
266 | goto err; | ||
267 | if (!BN_set_word(two, 2)) | ||
268 | goto err; | ||
269 | |||
270 | while (1) { | ||
271 | /* For odd n the Kronecker symbol computes the Jacobi symbol. */ | ||
272 | if ((jacobi_symbol = BN_kronecker(D, n, ctx)) == -2) | ||
273 | goto err; | ||
274 | |||
275 | /* We found the value for D. */ | ||
276 | if (jacobi_symbol == -1) | ||
277 | break; | ||
278 | |||
279 | /* n and D have prime factors in common. */ | ||
280 | if (jacobi_symbol == 0) { | ||
281 | *is_pseudoprime = 0; | ||
282 | goto done; | ||
283 | } | ||
284 | |||
285 | sign = -sign; | ||
286 | if (!BN_uadd(D, D, two)) | ||
287 | goto err; | ||
288 | BN_set_negative(D, sign == -1); | ||
289 | } | ||
290 | |||
291 | if (!bn_strong_lucas_test(is_pseudoprime, n, D, ctx)) | ||
292 | goto err; | ||
293 | |||
294 | done: | ||
295 | ret = 1; | ||
296 | |||
297 | err: | ||
298 | BN_CTX_end(ctx); | ||
299 | |||
300 | return ret; | ||
301 | } | ||
302 | |||
303 | /* | ||
304 | * Fermat criterion in Miller-Rabin test. | ||
305 | * | ||
306 | * Check whether 1 < base < n - 1 witnesses that n is composite. For prime n: | ||
307 | * | ||
308 | * * Fermat's little theorem: base^(n-1) = 1 (mod n). | ||
309 | * * The only square roots of 1 (mod n) are 1 and -1. | ||
310 | * | ||
311 | * Calculate base^((n-1)/2) by writing n - 1 = k * 2^s with odd k. Iteratively | ||
312 | * compute power = (base^k)^(2^(s-1)) by successive squaring of base^k. | ||
313 | * | ||
314 | * If power ever reaches -1, base^(n-1) is equal to 1 and n is a pseudoprime | ||
315 | * for base. If power reaches 1 before -1 during successive squaring, we have | ||
316 | * an unexpected square root of 1 and n is composite. Otherwise base^(n-1) != 1, | ||
317 | * and n is composite. | ||
318 | */ | ||
319 | |||
320 | static int | ||
321 | bn_fermat(int *is_pseudoprime, const BIGNUM *n, const BIGNUM *n_minus_one, | ||
322 | const BIGNUM *k, int s, const BIGNUM *base, BN_CTX *ctx, BN_MONT_CTX *mctx) | ||
323 | { | ||
324 | BIGNUM *power; | ||
325 | int ret = 0; | ||
326 | int i; | ||
327 | |||
328 | BN_CTX_start(ctx); | ||
329 | |||
330 | if ((power = BN_CTX_get(ctx)) == NULL) | ||
331 | goto err; | ||
332 | |||
333 | /* Sanity check: ensure that 1 < base < n - 1. */ | ||
334 | if (BN_cmp(base, BN_value_one()) <= 0 || BN_cmp(base, n_minus_one) >= 0) | ||
335 | goto err; | ||
336 | |||
337 | if (!BN_mod_exp_mont_ct(power, base, k, n, ctx, mctx)) | ||
338 | goto err; | ||
339 | |||
340 | if (BN_is_one(power) || BN_cmp(power, n_minus_one) == 0) { | ||
341 | *is_pseudoprime = 1; | ||
342 | goto done; | ||
343 | } | ||
344 | |||
345 | /* Loop invariant: power is neither 1 nor -1 (mod n). */ | ||
346 | for (i = 1; i < s; i++) { | ||
347 | if (!BN_mod_sqr(power, power, n, ctx)) | ||
348 | goto err; | ||
349 | |||
350 | /* n is a pseudoprime for base. */ | ||
351 | if (BN_cmp(power, n_minus_one) == 0) { | ||
352 | *is_pseudoprime = 1; | ||
353 | goto done; | ||
354 | } | ||
355 | |||
356 | /* n is composite: there's a square root of unity != 1 or -1. */ | ||
357 | if (BN_is_one(power)) { | ||
358 | *is_pseudoprime = 0; | ||
359 | goto done; | ||
360 | } | ||
361 | } | ||
362 | |||
363 | /* | ||
364 | * If we get here, n is definitely composite: base^(n-1) != 1. | ||
365 | */ | ||
366 | |||
367 | *is_pseudoprime = 0; | ||
368 | |||
369 | done: | ||
370 | ret = 1; | ||
371 | |||
372 | err: | ||
373 | BN_CTX_end(ctx); | ||
374 | |||
375 | return ret; | ||
376 | } | ||
377 | |||
378 | /* | ||
379 | * Miller-Rabin primality test for base 2 and for |rounds| of random bases. | ||
380 | * On success: is_pseudoprime == 0 implies that n is composite. | ||
381 | */ | ||
382 | |||
383 | static int | ||
384 | bn_miller_rabin(int *is_pseudoprime, const BIGNUM *n, BN_CTX *ctx, | ||
385 | size_t rounds) | ||
386 | { | ||
387 | BN_MONT_CTX *mctx = NULL; | ||
388 | BIGNUM *base, *k, *n_minus_one; | ||
389 | size_t i; | ||
390 | int s; | ||
391 | int ret = 0; | ||
392 | |||
393 | BN_CTX_start(ctx); | ||
394 | |||
395 | if ((base = BN_CTX_get(ctx)) == NULL) | ||
396 | goto err; | ||
397 | if ((k = BN_CTX_get(ctx)) == NULL) | ||
398 | goto err; | ||
399 | if ((n_minus_one = BN_CTX_get(ctx)) == NULL) | ||
400 | goto err; | ||
401 | |||
402 | if (BN_is_word(n, 2) || BN_is_word(n, 3)) { | ||
403 | *is_pseudoprime = 1; | ||
404 | goto done; | ||
405 | } | ||
406 | |||
407 | if (BN_cmp(n, BN_value_one()) <= 0 || !BN_is_odd(n)) { | ||
408 | *is_pseudoprime = 0; | ||
409 | goto done; | ||
410 | } | ||
411 | |||
412 | if (!BN_sub(n_minus_one, n, BN_value_one())) | ||
413 | goto err; | ||
414 | |||
415 | /* | ||
416 | * Factorize n - 1 = k * 2^s. | ||
417 | */ | ||
418 | |||
419 | s = 0; | ||
420 | while (!BN_is_bit_set(n_minus_one, s)) | ||
421 | s++; | ||
422 | if (!BN_rshift(k, n_minus_one, s)) | ||
423 | goto err; | ||
424 | |||
425 | /* | ||
426 | * Montgomery setup for n. | ||
427 | */ | ||
428 | |||
429 | if ((mctx = BN_MONT_CTX_create(n, ctx)) == NULL) | ||
430 | goto err; | ||
431 | |||
432 | /* | ||
433 | * Perform a Miller-Rabin test for base 2 as required by BPSW. | ||
434 | */ | ||
435 | |||
436 | if (!BN_set_word(base, 2)) | ||
437 | goto err; | ||
438 | |||
439 | if (!bn_fermat(is_pseudoprime, n, n_minus_one, k, s, base, ctx, mctx)) | ||
440 | goto err; | ||
441 | if (!*is_pseudoprime) | ||
442 | goto done; | ||
443 | |||
444 | /* | ||
445 | * Perform Miller-Rabin tests with random 3 <= base < n - 1 to reduce | ||
446 | * risk of false positives in BPSW. | ||
447 | */ | ||
448 | |||
449 | for (i = 0; i < rounds; i++) { | ||
450 | if (!bn_rand_interval(base, 3, n_minus_one)) | ||
451 | goto err; | ||
452 | |||
453 | if (!bn_fermat(is_pseudoprime, n, n_minus_one, k, s, base, ctx, | ||
454 | mctx)) | ||
455 | goto err; | ||
456 | if (!*is_pseudoprime) | ||
457 | goto done; | ||
458 | } | ||
459 | |||
460 | /* | ||
461 | * If we got here, we have a Miller-Rabin pseudoprime. | ||
462 | */ | ||
463 | |||
464 | *is_pseudoprime = 1; | ||
465 | |||
466 | done: | ||
467 | ret = 1; | ||
468 | |||
469 | err: | ||
470 | BN_MONT_CTX_free(mctx); | ||
471 | BN_CTX_end(ctx); | ||
472 | |||
473 | return ret; | ||
474 | } | ||
475 | |||
476 | /* | ||
477 | * The Baillie-Pomerance-Selfridge-Wagstaff algorithm combines a Miller-Rabin | ||
478 | * test for base 2 with a Strong Lucas pseudoprime test. | ||
479 | */ | ||
480 | |||
481 | int | ||
482 | bn_is_prime_bpsw(int *is_pseudoprime, const BIGNUM *n, BN_CTX *in_ctx, | ||
483 | size_t rounds) | ||
484 | { | ||
485 | BN_CTX *ctx = NULL; | ||
486 | BN_ULONG mod; | ||
487 | int i; | ||
488 | int ret = 0; | ||
489 | |||
490 | if (BN_is_word(n, 2)) { | ||
491 | *is_pseudoprime = 1; | ||
492 | goto done; | ||
493 | } | ||
494 | |||
495 | if (BN_cmp(n, BN_value_one()) <= 0 || !BN_is_odd(n)) { | ||
496 | *is_pseudoprime = 0; | ||
497 | goto done; | ||
498 | } | ||
499 | |||
500 | /* Trial divisions with the first 2048 primes. */ | ||
501 | for (i = 0; i < NUMPRIMES; i++) { | ||
502 | if ((mod = BN_mod_word(n, primes[i])) == (BN_ULONG)-1) | ||
503 | goto err; | ||
504 | if (mod == 0) { | ||
505 | *is_pseudoprime = BN_is_word(n, primes[i]); | ||
506 | goto done; | ||
507 | } | ||
508 | } | ||
509 | |||
510 | if ((ctx = in_ctx) == NULL) | ||
511 | ctx = BN_CTX_new(); | ||
512 | if (ctx == NULL) | ||
513 | goto err; | ||
514 | |||
515 | if (!bn_miller_rabin(is_pseudoprime, n, ctx, rounds)) | ||
516 | goto err; | ||
517 | if (!*is_pseudoprime) | ||
518 | goto done; | ||
519 | |||
520 | if (!bn_strong_lucas_selfridge(is_pseudoprime, n, ctx)) | ||
521 | goto err; | ||
522 | |||
523 | done: | ||
524 | ret = 1; | ||
525 | |||
526 | err: | ||
527 | if (ctx != in_ctx) | ||
528 | BN_CTX_free(ctx); | ||
529 | |||
530 | return ret; | ||
531 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_const.c b/src/lib/libcrypto/bn/bn_const.c deleted file mode 100644 index bf684c8a46..0000000000 --- a/src/lib/libcrypto/bn/bn_const.c +++ /dev/null | |||
@@ -1,433 +0,0 @@ | |||
1 | /* $OpenBSD: bn_const.c,v 1.8 2023/07/28 10:07:30 tb Exp $ */ | ||
2 | /* Insert boilerplate */ | ||
3 | |||
4 | #include <openssl/bn.h> | ||
5 | |||
6 | /* | ||
7 | * "First Oakley Default Group" from RFC2409, section 6.1. | ||
8 | * | ||
9 | * The prime is: 2^768 - 2 ^704 - 1 + 2^64 * { [2^638 pi] + 149686 } | ||
10 | * | ||
11 | * RFC2409 specifies a generator of 2. | ||
12 | * RFC2412 specifies a generator of of 22. | ||
13 | */ | ||
14 | |||
15 | static const unsigned char RFC2409_PRIME_768[] = { | ||
16 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
17 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
18 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
19 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
20 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
21 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
22 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
23 | 0xA6, 0x3A, 0x36, 0x20, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
24 | }; | ||
25 | |||
26 | BIGNUM * | ||
27 | BN_get_rfc2409_prime_768(BIGNUM *bn) | ||
28 | { | ||
29 | return BN_bin2bn(RFC2409_PRIME_768, sizeof(RFC2409_PRIME_768), bn); | ||
30 | } | ||
31 | LCRYPTO_ALIAS(BN_get_rfc2409_prime_768); | ||
32 | |||
33 | /* | ||
34 | * "Second Oakley Default Group" from RFC2409, section 6.2. | ||
35 | * | ||
36 | * The prime is: 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }. | ||
37 | * | ||
38 | * RFC2409 specifies a generator of 2. | ||
39 | * RFC2412 specifies a generator of 22. | ||
40 | */ | ||
41 | |||
42 | static const unsigned char RFC2409_PRIME_1024[] = { | ||
43 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
44 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
45 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
46 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
47 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
48 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
49 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
50 | 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, | ||
51 | 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, | ||
52 | 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE6, 0x53, 0x81, | ||
53 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
54 | }; | ||
55 | |||
56 | BIGNUM * | ||
57 | BN_get_rfc2409_prime_1024(BIGNUM *bn) | ||
58 | { | ||
59 | return BN_bin2bn(RFC2409_PRIME_1024, sizeof(RFC2409_PRIME_1024), bn); | ||
60 | } | ||
61 | LCRYPTO_ALIAS(BN_get_rfc2409_prime_1024); | ||
62 | |||
63 | /* | ||
64 | * "1536-bit MODP Group" from RFC3526, Section 2. | ||
65 | * | ||
66 | * The prime is: 2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 } | ||
67 | * | ||
68 | * RFC3526 specifies a generator of 2. | ||
69 | * RFC2312 specifies a generator of 22. | ||
70 | */ | ||
71 | |||
72 | static const unsigned char RFC3526_PRIME_1536[] = { | ||
73 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
74 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
75 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
76 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
77 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
78 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
79 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
80 | 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, | ||
81 | 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, | ||
82 | 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, | ||
83 | 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, | ||
84 | 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, | ||
85 | 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, | ||
86 | 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, | ||
87 | 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, | ||
88 | 0xCA, 0x23, 0x73, 0x27, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
89 | }; | ||
90 | |||
91 | BIGNUM * | ||
92 | BN_get_rfc3526_prime_1536(BIGNUM *bn) | ||
93 | { | ||
94 | return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), bn); | ||
95 | } | ||
96 | LCRYPTO_ALIAS(BN_get_rfc3526_prime_1536); | ||
97 | |||
98 | /* | ||
99 | * "2048-bit MODP Group" from RFC3526, Section 3. | ||
100 | * | ||
101 | * The prime is: 2^2048 - 2^1984 - 1 + 2^64 * { [2^1918 pi] + 124476 } | ||
102 | * | ||
103 | * RFC3526 specifies a generator of 2. | ||
104 | */ | ||
105 | |||
106 | static const unsigned char RFC3526_PRIME_2048[] = { | ||
107 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
108 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
109 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
110 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
111 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
112 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
113 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
114 | 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, | ||
115 | 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, | ||
116 | 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, | ||
117 | 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, | ||
118 | 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, | ||
119 | 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, | ||
120 | 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, | ||
121 | 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, | ||
122 | 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, | ||
123 | 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, | ||
124 | 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, | ||
125 | 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, | ||
126 | 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, | ||
127 | 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAC, 0xAA, 0x68, 0xFF, 0xFF, 0xFF, 0xFF, | ||
128 | 0xFF, 0xFF, 0xFF, 0xFF, | ||
129 | }; | ||
130 | |||
131 | BIGNUM * | ||
132 | BN_get_rfc3526_prime_2048(BIGNUM *bn) | ||
133 | { | ||
134 | return BN_bin2bn(RFC3526_PRIME_2048, sizeof(RFC3526_PRIME_2048), bn); | ||
135 | } | ||
136 | LCRYPTO_ALIAS(BN_get_rfc3526_prime_2048); | ||
137 | |||
138 | /* | ||
139 | * "3072-bit MODP Group" from RFC3526, Section 4. | ||
140 | * | ||
141 | * The prime is: 2^3072 - 2^3008 - 1 + 2^64 * { [2^2942 pi] + 1690314 } | ||
142 | * | ||
143 | * RFC3526 specifies a generator of 2. | ||
144 | */ | ||
145 | |||
146 | static const unsigned char RFC3526_PRIME_3072[] = { | ||
147 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
148 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
149 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
150 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
151 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
152 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
153 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
154 | 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, | ||
155 | 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, | ||
156 | 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, | ||
157 | 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, | ||
158 | 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, | ||
159 | 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, | ||
160 | 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, | ||
161 | 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, | ||
162 | 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, | ||
163 | 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, | ||
164 | 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, | ||
165 | 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, | ||
166 | 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, | ||
167 | 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAA, 0xC4, 0x2D, 0xAD, 0x33, 0x17, 0x0D, | ||
168 | 0x04, 0x50, 0x7A, 0x33, 0xA8, 0x55, 0x21, 0xAB, 0xDF, 0x1C, 0xBA, 0x64, | ||
169 | 0xEC, 0xFB, 0x85, 0x04, 0x58, 0xDB, 0xEF, 0x0A, 0x8A, 0xEA, 0x71, 0x57, | ||
170 | 0x5D, 0x06, 0x0C, 0x7D, 0xB3, 0x97, 0x0F, 0x85, 0xA6, 0xE1, 0xE4, 0xC7, | ||
171 | 0xAB, 0xF5, 0xAE, 0x8C, 0xDB, 0x09, 0x33, 0xD7, 0x1E, 0x8C, 0x94, 0xE0, | ||
172 | 0x4A, 0x25, 0x61, 0x9D, 0xCE, 0xE3, 0xD2, 0x26, 0x1A, 0xD2, 0xEE, 0x6B, | ||
173 | 0xF1, 0x2F, 0xFA, 0x06, 0xD9, 0x8A, 0x08, 0x64, 0xD8, 0x76, 0x02, 0x73, | ||
174 | 0x3E, 0xC8, 0x6A, 0x64, 0x52, 0x1F, 0x2B, 0x18, 0x17, 0x7B, 0x20, 0x0C, | ||
175 | 0xBB, 0xE1, 0x17, 0x57, 0x7A, 0x61, 0x5D, 0x6C, 0x77, 0x09, 0x88, 0xC0, | ||
176 | 0xBA, 0xD9, 0x46, 0xE2, 0x08, 0xE2, 0x4F, 0xA0, 0x74, 0xE5, 0xAB, 0x31, | ||
177 | 0x43, 0xDB, 0x5B, 0xFC, 0xE0, 0xFD, 0x10, 0x8E, 0x4B, 0x82, 0xD1, 0x20, | ||
178 | 0xA9, 0x3A, 0xD2, 0xCA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
179 | }; | ||
180 | |||
181 | BIGNUM * | ||
182 | BN_get_rfc3526_prime_3072(BIGNUM *bn) | ||
183 | { | ||
184 | return BN_bin2bn(RFC3526_PRIME_3072, sizeof(RFC3526_PRIME_3072), bn); | ||
185 | } | ||
186 | LCRYPTO_ALIAS(BN_get_rfc3526_prime_3072); | ||
187 | |||
188 | /* | ||
189 | * "4096-bit MODP Group" from RFC3526, Section 5. | ||
190 | * | ||
191 | * The prime is: 2^4096 - 2^4032 - 1 + 2^64 * { [2^3966 pi] + 240904 } | ||
192 | * | ||
193 | * RFC3526 specifies a generator of 2. | ||
194 | */ | ||
195 | |||
196 | static const unsigned char RFC3526_PRIME_4096[] = { | ||
197 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
198 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
199 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
200 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
201 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
202 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
203 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
204 | 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, | ||
205 | 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, | ||
206 | 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, | ||
207 | 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, | ||
208 | 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, | ||
209 | 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, | ||
210 | 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, | ||
211 | 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, | ||
212 | 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, | ||
213 | 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, | ||
214 | 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, | ||
215 | 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, | ||
216 | 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, | ||
217 | 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAA, 0xC4, 0x2D, 0xAD, 0x33, 0x17, 0x0D, | ||
218 | 0x04, 0x50, 0x7A, 0x33, 0xA8, 0x55, 0x21, 0xAB, 0xDF, 0x1C, 0xBA, 0x64, | ||
219 | 0xEC, 0xFB, 0x85, 0x04, 0x58, 0xDB, 0xEF, 0x0A, 0x8A, 0xEA, 0x71, 0x57, | ||
220 | 0x5D, 0x06, 0x0C, 0x7D, 0xB3, 0x97, 0x0F, 0x85, 0xA6, 0xE1, 0xE4, 0xC7, | ||
221 | 0xAB, 0xF5, 0xAE, 0x8C, 0xDB, 0x09, 0x33, 0xD7, 0x1E, 0x8C, 0x94, 0xE0, | ||
222 | 0x4A, 0x25, 0x61, 0x9D, 0xCE, 0xE3, 0xD2, 0x26, 0x1A, 0xD2, 0xEE, 0x6B, | ||
223 | 0xF1, 0x2F, 0xFA, 0x06, 0xD9, 0x8A, 0x08, 0x64, 0xD8, 0x76, 0x02, 0x73, | ||
224 | 0x3E, 0xC8, 0x6A, 0x64, 0x52, 0x1F, 0x2B, 0x18, 0x17, 0x7B, 0x20, 0x0C, | ||
225 | 0xBB, 0xE1, 0x17, 0x57, 0x7A, 0x61, 0x5D, 0x6C, 0x77, 0x09, 0x88, 0xC0, | ||
226 | 0xBA, 0xD9, 0x46, 0xE2, 0x08, 0xE2, 0x4F, 0xA0, 0x74, 0xE5, 0xAB, 0x31, | ||
227 | 0x43, 0xDB, 0x5B, 0xFC, 0xE0, 0xFD, 0x10, 0x8E, 0x4B, 0x82, 0xD1, 0x20, | ||
228 | 0xA9, 0x21, 0x08, 0x01, 0x1A, 0x72, 0x3C, 0x12, 0xA7, 0x87, 0xE6, 0xD7, | ||
229 | 0x88, 0x71, 0x9A, 0x10, 0xBD, 0xBA, 0x5B, 0x26, 0x99, 0xC3, 0x27, 0x18, | ||
230 | 0x6A, 0xF4, 0xE2, 0x3C, 0x1A, 0x94, 0x68, 0x34, 0xB6, 0x15, 0x0B, 0xDA, | ||
231 | 0x25, 0x83, 0xE9, 0xCA, 0x2A, 0xD4, 0x4C, 0xE8, 0xDB, 0xBB, 0xC2, 0xDB, | ||
232 | 0x04, 0xDE, 0x8E, 0xF9, 0x2E, 0x8E, 0xFC, 0x14, 0x1F, 0xBE, 0xCA, 0xA6, | ||
233 | 0x28, 0x7C, 0x59, 0x47, 0x4E, 0x6B, 0xC0, 0x5D, 0x99, 0xB2, 0x96, 0x4F, | ||
234 | 0xA0, 0x90, 0xC3, 0xA2, 0x23, 0x3B, 0xA1, 0x86, 0x51, 0x5B, 0xE7, 0xED, | ||
235 | 0x1F, 0x61, 0x29, 0x70, 0xCE, 0xE2, 0xD7, 0xAF, 0xB8, 0x1B, 0xDD, 0x76, | ||
236 | 0x21, 0x70, 0x48, 0x1C, 0xD0, 0x06, 0x91, 0x27, 0xD5, 0xB0, 0x5A, 0xA9, | ||
237 | 0x93, 0xB4, 0xEA, 0x98, 0x8D, 0x8F, 0xDD, 0xC1, 0x86, 0xFF, 0xB7, 0xDC, | ||
238 | 0x90, 0xA6, 0xC0, 0x8F, 0x4D, 0xF4, 0x35, 0xC9, 0x34, 0x06, 0x31, 0x99, | ||
239 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
240 | }; | ||
241 | |||
242 | BIGNUM * | ||
243 | BN_get_rfc3526_prime_4096(BIGNUM *bn) | ||
244 | { | ||
245 | return BN_bin2bn(RFC3526_PRIME_4096, sizeof(RFC3526_PRIME_4096), bn); | ||
246 | } | ||
247 | LCRYPTO_ALIAS(BN_get_rfc3526_prime_4096); | ||
248 | |||
249 | /* | ||
250 | * "6144-bit MODP Group" from RFC3526, Section 6. | ||
251 | * | ||
252 | * The prime is: 2^6144 - 2^6080 - 1 + 2^64 * { [2^6014 pi] + 929484 } | ||
253 | * | ||
254 | * RFC3526 specifies a generator of 2. | ||
255 | */ | ||
256 | |||
257 | static const unsigned char RFC3526_PRIME_6144[] = { | ||
258 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
259 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
260 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
261 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
262 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
263 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
264 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
265 | 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, | ||
266 | 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, | ||
267 | 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, | ||
268 | 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, | ||
269 | 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, | ||
270 | 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, | ||
271 | 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, | ||
272 | 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, | ||
273 | 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, | ||
274 | 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, | ||
275 | 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, | ||
276 | 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, | ||
277 | 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, | ||
278 | 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAA, 0xC4, 0x2D, 0xAD, 0x33, 0x17, 0x0D, | ||
279 | 0x04, 0x50, 0x7A, 0x33, 0xA8, 0x55, 0x21, 0xAB, 0xDF, 0x1C, 0xBA, 0x64, | ||
280 | 0xEC, 0xFB, 0x85, 0x04, 0x58, 0xDB, 0xEF, 0x0A, 0x8A, 0xEA, 0x71, 0x57, | ||
281 | 0x5D, 0x06, 0x0C, 0x7D, 0xB3, 0x97, 0x0F, 0x85, 0xA6, 0xE1, 0xE4, 0xC7, | ||
282 | 0xAB, 0xF5, 0xAE, 0x8C, 0xDB, 0x09, 0x33, 0xD7, 0x1E, 0x8C, 0x94, 0xE0, | ||
283 | 0x4A, 0x25, 0x61, 0x9D, 0xCE, 0xE3, 0xD2, 0x26, 0x1A, 0xD2, 0xEE, 0x6B, | ||
284 | 0xF1, 0x2F, 0xFA, 0x06, 0xD9, 0x8A, 0x08, 0x64, 0xD8, 0x76, 0x02, 0x73, | ||
285 | 0x3E, 0xC8, 0x6A, 0x64, 0x52, 0x1F, 0x2B, 0x18, 0x17, 0x7B, 0x20, 0x0C, | ||
286 | 0xBB, 0xE1, 0x17, 0x57, 0x7A, 0x61, 0x5D, 0x6C, 0x77, 0x09, 0x88, 0xC0, | ||
287 | 0xBA, 0xD9, 0x46, 0xE2, 0x08, 0xE2, 0x4F, 0xA0, 0x74, 0xE5, 0xAB, 0x31, | ||
288 | 0x43, 0xDB, 0x5B, 0xFC, 0xE0, 0xFD, 0x10, 0x8E, 0x4B, 0x82, 0xD1, 0x20, | ||
289 | 0xA9, 0x21, 0x08, 0x01, 0x1A, 0x72, 0x3C, 0x12, 0xA7, 0x87, 0xE6, 0xD7, | ||
290 | 0x88, 0x71, 0x9A, 0x10, 0xBD, 0xBA, 0x5B, 0x26, 0x99, 0xC3, 0x27, 0x18, | ||
291 | 0x6A, 0xF4, 0xE2, 0x3C, 0x1A, 0x94, 0x68, 0x34, 0xB6, 0x15, 0x0B, 0xDA, | ||
292 | 0x25, 0x83, 0xE9, 0xCA, 0x2A, 0xD4, 0x4C, 0xE8, 0xDB, 0xBB, 0xC2, 0xDB, | ||
293 | 0x04, 0xDE, 0x8E, 0xF9, 0x2E, 0x8E, 0xFC, 0x14, 0x1F, 0xBE, 0xCA, 0xA6, | ||
294 | 0x28, 0x7C, 0x59, 0x47, 0x4E, 0x6B, 0xC0, 0x5D, 0x99, 0xB2, 0x96, 0x4F, | ||
295 | 0xA0, 0x90, 0xC3, 0xA2, 0x23, 0x3B, 0xA1, 0x86, 0x51, 0x5B, 0xE7, 0xED, | ||
296 | 0x1F, 0x61, 0x29, 0x70, 0xCE, 0xE2, 0xD7, 0xAF, 0xB8, 0x1B, 0xDD, 0x76, | ||
297 | 0x21, 0x70, 0x48, 0x1C, 0xD0, 0x06, 0x91, 0x27, 0xD5, 0xB0, 0x5A, 0xA9, | ||
298 | 0x93, 0xB4, 0xEA, 0x98, 0x8D, 0x8F, 0xDD, 0xC1, 0x86, 0xFF, 0xB7, 0xDC, | ||
299 | 0x90, 0xA6, 0xC0, 0x8F, 0x4D, 0xF4, 0x35, 0xC9, 0x34, 0x02, 0x84, 0x92, | ||
300 | 0x36, 0xC3, 0xFA, 0xB4, 0xD2, 0x7C, 0x70, 0x26, 0xC1, 0xD4, 0xDC, 0xB2, | ||
301 | 0x60, 0x26, 0x46, 0xDE, 0xC9, 0x75, 0x1E, 0x76, 0x3D, 0xBA, 0x37, 0xBD, | ||
302 | 0xF8, 0xFF, 0x94, 0x06, 0xAD, 0x9E, 0x53, 0x0E, 0xE5, 0xDB, 0x38, 0x2F, | ||
303 | 0x41, 0x30, 0x01, 0xAE, 0xB0, 0x6A, 0x53, 0xED, 0x90, 0x27, 0xD8, 0x31, | ||
304 | 0x17, 0x97, 0x27, 0xB0, 0x86, 0x5A, 0x89, 0x18, 0xDA, 0x3E, 0xDB, 0xEB, | ||
305 | 0xCF, 0x9B, 0x14, 0xED, 0x44, 0xCE, 0x6C, 0xBA, 0xCE, 0xD4, 0xBB, 0x1B, | ||
306 | 0xDB, 0x7F, 0x14, 0x47, 0xE6, 0xCC, 0x25, 0x4B, 0x33, 0x20, 0x51, 0x51, | ||
307 | 0x2B, 0xD7, 0xAF, 0x42, 0x6F, 0xB8, 0xF4, 0x01, 0x37, 0x8C, 0xD2, 0xBF, | ||
308 | 0x59, 0x83, 0xCA, 0x01, 0xC6, 0x4B, 0x92, 0xEC, 0xF0, 0x32, 0xEA, 0x15, | ||
309 | 0xD1, 0x72, 0x1D, 0x03, 0xF4, 0x82, 0xD7, 0xCE, 0x6E, 0x74, 0xFE, 0xF6, | ||
310 | 0xD5, 0x5E, 0x70, 0x2F, 0x46, 0x98, 0x0C, 0x82, 0xB5, 0xA8, 0x40, 0x31, | ||
311 | 0x90, 0x0B, 0x1C, 0x9E, 0x59, 0xE7, 0xC9, 0x7F, 0xBE, 0xC7, 0xE8, 0xF3, | ||
312 | 0x23, 0xA9, 0x7A, 0x7E, 0x36, 0xCC, 0x88, 0xBE, 0x0F, 0x1D, 0x45, 0xB7, | ||
313 | 0xFF, 0x58, 0x5A, 0xC5, 0x4B, 0xD4, 0x07, 0xB2, 0x2B, 0x41, 0x54, 0xAA, | ||
314 | 0xCC, 0x8F, 0x6D, 0x7E, 0xBF, 0x48, 0xE1, 0xD8, 0x14, 0xCC, 0x5E, 0xD2, | ||
315 | 0x0F, 0x80, 0x37, 0xE0, 0xA7, 0x97, 0x15, 0xEE, 0xF2, 0x9B, 0xE3, 0x28, | ||
316 | 0x06, 0xA1, 0xD5, 0x8B, 0xB7, 0xC5, 0xDA, 0x76, 0xF5, 0x50, 0xAA, 0x3D, | ||
317 | 0x8A, 0x1F, 0xBF, 0xF0, 0xEB, 0x19, 0xCC, 0xB1, 0xA3, 0x13, 0xD5, 0x5C, | ||
318 | 0xDA, 0x56, 0xC9, 0xEC, 0x2E, 0xF2, 0x96, 0x32, 0x38, 0x7F, 0xE8, 0xD7, | ||
319 | 0x6E, 0x3C, 0x04, 0x68, 0x04, 0x3E, 0x8F, 0x66, 0x3F, 0x48, 0x60, 0xEE, | ||
320 | 0x12, 0xBF, 0x2D, 0x5B, 0x0B, 0x74, 0x74, 0xD6, 0xE6, 0x94, 0xF9, 0x1E, | ||
321 | 0x6D, 0xCC, 0x40, 0x24, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
322 | }; | ||
323 | |||
324 | BIGNUM * | ||
325 | BN_get_rfc3526_prime_6144(BIGNUM *bn) | ||
326 | { | ||
327 | return BN_bin2bn(RFC3526_PRIME_6144, sizeof(RFC3526_PRIME_6144), bn); | ||
328 | } | ||
329 | LCRYPTO_ALIAS(BN_get_rfc3526_prime_6144); | ||
330 | |||
331 | /* | ||
332 | * "8192-bit MODP Group" from RFC3526, Section 7. | ||
333 | * | ||
334 | * The prime is: 2^8192 - 2^8128 - 1 + 2^64 * { [2^8062 pi] + 4743158 } | ||
335 | * | ||
336 | * RFC3526 specifies a generator of 2. | ||
337 | */ | ||
338 | |||
339 | static const unsigned char RFC3526_PRIME_8192[] = { | ||
340 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
341 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
342 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
343 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
344 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
345 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
346 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
347 | 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, | ||
348 | 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, | ||
349 | 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, | ||
350 | 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, | ||
351 | 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, | ||
352 | 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, | ||
353 | 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, | ||
354 | 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, | ||
355 | 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, | ||
356 | 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, | ||
357 | 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, | ||
358 | 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, | ||
359 | 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, | ||
360 | 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAA, 0xC4, 0x2D, 0xAD, 0x33, 0x17, 0x0D, | ||
361 | 0x04, 0x50, 0x7A, 0x33, 0xA8, 0x55, 0x21, 0xAB, 0xDF, 0x1C, 0xBA, 0x64, | ||
362 | 0xEC, 0xFB, 0x85, 0x04, 0x58, 0xDB, 0xEF, 0x0A, 0x8A, 0xEA, 0x71, 0x57, | ||
363 | 0x5D, 0x06, 0x0C, 0x7D, 0xB3, 0x97, 0x0F, 0x85, 0xA6, 0xE1, 0xE4, 0xC7, | ||
364 | 0xAB, 0xF5, 0xAE, 0x8C, 0xDB, 0x09, 0x33, 0xD7, 0x1E, 0x8C, 0x94, 0xE0, | ||
365 | 0x4A, 0x25, 0x61, 0x9D, 0xCE, 0xE3, 0xD2, 0x26, 0x1A, 0xD2, 0xEE, 0x6B, | ||
366 | 0xF1, 0x2F, 0xFA, 0x06, 0xD9, 0x8A, 0x08, 0x64, 0xD8, 0x76, 0x02, 0x73, | ||
367 | 0x3E, 0xC8, 0x6A, 0x64, 0x52, 0x1F, 0x2B, 0x18, 0x17, 0x7B, 0x20, 0x0C, | ||
368 | 0xBB, 0xE1, 0x17, 0x57, 0x7A, 0x61, 0x5D, 0x6C, 0x77, 0x09, 0x88, 0xC0, | ||
369 | 0xBA, 0xD9, 0x46, 0xE2, 0x08, 0xE2, 0x4F, 0xA0, 0x74, 0xE5, 0xAB, 0x31, | ||
370 | 0x43, 0xDB, 0x5B, 0xFC, 0xE0, 0xFD, 0x10, 0x8E, 0x4B, 0x82, 0xD1, 0x20, | ||
371 | 0xA9, 0x21, 0x08, 0x01, 0x1A, 0x72, 0x3C, 0x12, 0xA7, 0x87, 0xE6, 0xD7, | ||
372 | 0x88, 0x71, 0x9A, 0x10, 0xBD, 0xBA, 0x5B, 0x26, 0x99, 0xC3, 0x27, 0x18, | ||
373 | 0x6A, 0xF4, 0xE2, 0x3C, 0x1A, 0x94, 0x68, 0x34, 0xB6, 0x15, 0x0B, 0xDA, | ||
374 | 0x25, 0x83, 0xE9, 0xCA, 0x2A, 0xD4, 0x4C, 0xE8, 0xDB, 0xBB, 0xC2, 0xDB, | ||
375 | 0x04, 0xDE, 0x8E, 0xF9, 0x2E, 0x8E, 0xFC, 0x14, 0x1F, 0xBE, 0xCA, 0xA6, | ||
376 | 0x28, 0x7C, 0x59, 0x47, 0x4E, 0x6B, 0xC0, 0x5D, 0x99, 0xB2, 0x96, 0x4F, | ||
377 | 0xA0, 0x90, 0xC3, 0xA2, 0x23, 0x3B, 0xA1, 0x86, 0x51, 0x5B, 0xE7, 0xED, | ||
378 | 0x1F, 0x61, 0x29, 0x70, 0xCE, 0xE2, 0xD7, 0xAF, 0xB8, 0x1B, 0xDD, 0x76, | ||
379 | 0x21, 0x70, 0x48, 0x1C, 0xD0, 0x06, 0x91, 0x27, 0xD5, 0xB0, 0x5A, 0xA9, | ||
380 | 0x93, 0xB4, 0xEA, 0x98, 0x8D, 0x8F, 0xDD, 0xC1, 0x86, 0xFF, 0xB7, 0xDC, | ||
381 | 0x90, 0xA6, 0xC0, 0x8F, 0x4D, 0xF4, 0x35, 0xC9, 0x34, 0x02, 0x84, 0x92, | ||
382 | 0x36, 0xC3, 0xFA, 0xB4, 0xD2, 0x7C, 0x70, 0x26, 0xC1, 0xD4, 0xDC, 0xB2, | ||
383 | 0x60, 0x26, 0x46, 0xDE, 0xC9, 0x75, 0x1E, 0x76, 0x3D, 0xBA, 0x37, 0xBD, | ||
384 | 0xF8, 0xFF, 0x94, 0x06, 0xAD, 0x9E, 0x53, 0x0E, 0xE5, 0xDB, 0x38, 0x2F, | ||
385 | 0x41, 0x30, 0x01, 0xAE, 0xB0, 0x6A, 0x53, 0xED, 0x90, 0x27, 0xD8, 0x31, | ||
386 | 0x17, 0x97, 0x27, 0xB0, 0x86, 0x5A, 0x89, 0x18, 0xDA, 0x3E, 0xDB, 0xEB, | ||
387 | 0xCF, 0x9B, 0x14, 0xED, 0x44, 0xCE, 0x6C, 0xBA, 0xCE, 0xD4, 0xBB, 0x1B, | ||
388 | 0xDB, 0x7F, 0x14, 0x47, 0xE6, 0xCC, 0x25, 0x4B, 0x33, 0x20, 0x51, 0x51, | ||
389 | 0x2B, 0xD7, 0xAF, 0x42, 0x6F, 0xB8, 0xF4, 0x01, 0x37, 0x8C, 0xD2, 0xBF, | ||
390 | 0x59, 0x83, 0xCA, 0x01, 0xC6, 0x4B, 0x92, 0xEC, 0xF0, 0x32, 0xEA, 0x15, | ||
391 | 0xD1, 0x72, 0x1D, 0x03, 0xF4, 0x82, 0xD7, 0xCE, 0x6E, 0x74, 0xFE, 0xF6, | ||
392 | 0xD5, 0x5E, 0x70, 0x2F, 0x46, 0x98, 0x0C, 0x82, 0xB5, 0xA8, 0x40, 0x31, | ||
393 | 0x90, 0x0B, 0x1C, 0x9E, 0x59, 0xE7, 0xC9, 0x7F, 0xBE, 0xC7, 0xE8, 0xF3, | ||
394 | 0x23, 0xA9, 0x7A, 0x7E, 0x36, 0xCC, 0x88, 0xBE, 0x0F, 0x1D, 0x45, 0xB7, | ||
395 | 0xFF, 0x58, 0x5A, 0xC5, 0x4B, 0xD4, 0x07, 0xB2, 0x2B, 0x41, 0x54, 0xAA, | ||
396 | 0xCC, 0x8F, 0x6D, 0x7E, 0xBF, 0x48, 0xE1, 0xD8, 0x14, 0xCC, 0x5E, 0xD2, | ||
397 | 0x0F, 0x80, 0x37, 0xE0, 0xA7, 0x97, 0x15, 0xEE, 0xF2, 0x9B, 0xE3, 0x28, | ||
398 | 0x06, 0xA1, 0xD5, 0x8B, 0xB7, 0xC5, 0xDA, 0x76, 0xF5, 0x50, 0xAA, 0x3D, | ||
399 | 0x8A, 0x1F, 0xBF, 0xF0, 0xEB, 0x19, 0xCC, 0xB1, 0xA3, 0x13, 0xD5, 0x5C, | ||
400 | 0xDA, 0x56, 0xC9, 0xEC, 0x2E, 0xF2, 0x96, 0x32, 0x38, 0x7F, 0xE8, 0xD7, | ||
401 | 0x6E, 0x3C, 0x04, 0x68, 0x04, 0x3E, 0x8F, 0x66, 0x3F, 0x48, 0x60, 0xEE, | ||
402 | 0x12, 0xBF, 0x2D, 0x5B, 0x0B, 0x74, 0x74, 0xD6, 0xE6, 0x94, 0xF9, 0x1E, | ||
403 | 0x6D, 0xBE, 0x11, 0x59, 0x74, 0xA3, 0x92, 0x6F, 0x12, 0xFE, 0xE5, 0xE4, | ||
404 | 0x38, 0x77, 0x7C, 0xB6, 0xA9, 0x32, 0xDF, 0x8C, 0xD8, 0xBE, 0xC4, 0xD0, | ||
405 | 0x73, 0xB9, 0x31, 0xBA, 0x3B, 0xC8, 0x32, 0xB6, 0x8D, 0x9D, 0xD3, 0x00, | ||
406 | 0x74, 0x1F, 0xA7, 0xBF, 0x8A, 0xFC, 0x47, 0xED, 0x25, 0x76, 0xF6, 0x93, | ||
407 | 0x6B, 0xA4, 0x24, 0x66, 0x3A, 0xAB, 0x63, 0x9C, 0x5A, 0xE4, 0xF5, 0x68, | ||
408 | 0x34, 0x23, 0xB4, 0x74, 0x2B, 0xF1, 0xC9, 0x78, 0x23, 0x8F, 0x16, 0xCB, | ||
409 | 0xE3, 0x9D, 0x65, 0x2D, 0xE3, 0xFD, 0xB8, 0xBE, 0xFC, 0x84, 0x8A, 0xD9, | ||
410 | 0x22, 0x22, 0x2E, 0x04, 0xA4, 0x03, 0x7C, 0x07, 0x13, 0xEB, 0x57, 0xA8, | ||
411 | 0x1A, 0x23, 0xF0, 0xC7, 0x34, 0x73, 0xFC, 0x64, 0x6C, 0xEA, 0x30, 0x6B, | ||
412 | 0x4B, 0xCB, 0xC8, 0x86, 0x2F, 0x83, 0x85, 0xDD, 0xFA, 0x9D, 0x4B, 0x7F, | ||
413 | 0xA2, 0xC0, 0x87, 0xE8, 0x79, 0x68, 0x33, 0x03, 0xED, 0x5B, 0xDD, 0x3A, | ||
414 | 0x06, 0x2B, 0x3C, 0xF5, 0xB3, 0xA2, 0x78, 0xA6, 0x6D, 0x2A, 0x13, 0xF8, | ||
415 | 0x3F, 0x44, 0xF8, 0x2D, 0xDF, 0x31, 0x0E, 0xE0, 0x74, 0xAB, 0x6A, 0x36, | ||
416 | 0x45, 0x97, 0xE8, 0x99, 0xA0, 0x25, 0x5D, 0xC1, 0x64, 0xF3, 0x1C, 0xC5, | ||
417 | 0x08, 0x46, 0x85, 0x1D, 0xF9, 0xAB, 0x48, 0x19, 0x5D, 0xED, 0x7E, 0xA1, | ||
418 | 0xB1, 0xD5, 0x10, 0xBD, 0x7E, 0xE7, 0x4D, 0x73, 0xFA, 0xF3, 0x6B, 0xC3, | ||
419 | 0x1E, 0xCF, 0xA2, 0x68, 0x35, 0x90, 0x46, 0xF4, 0xEB, 0x87, 0x9F, 0x92, | ||
420 | 0x40, 0x09, 0x43, 0x8B, 0x48, 0x1C, 0x6C, 0xD7, 0x88, 0x9A, 0x00, 0x2E, | ||
421 | 0xD5, 0xEE, 0x38, 0x2B, 0xC9, 0x19, 0x0D, 0xA6, 0xFC, 0x02, 0x6E, 0x47, | ||
422 | 0x95, 0x58, 0xE4, 0x47, 0x56, 0x77, 0xE9, 0xAA, 0x9E, 0x30, 0x50, 0xE2, | ||
423 | 0x76, 0x56, 0x94, 0xDF, 0xC8, 0x1F, 0x56, 0xE8, 0x80, 0xB9, 0x6E, 0x71, | ||
424 | 0x60, 0xC9, 0x80, 0xDD, 0x98, 0xED, 0xD3, 0xDF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
425 | 0xFF, 0xFF, 0xFF, 0xFF, | ||
426 | }; | ||
427 | |||
428 | BIGNUM * | ||
429 | BN_get_rfc3526_prime_8192(BIGNUM *bn) | ||
430 | { | ||
431 | return BN_bin2bn(RFC3526_PRIME_8192, sizeof(RFC3526_PRIME_8192), bn); | ||
432 | } | ||
433 | LCRYPTO_ALIAS(BN_get_rfc3526_prime_8192); | ||
diff --git a/src/lib/libcrypto/bn/bn_convert.c b/src/lib/libcrypto/bn/bn_convert.c deleted file mode 100644 index 6a6354f44e..0000000000 --- a/src/lib/libcrypto/bn/bn_convert.c +++ /dev/null | |||
@@ -1,757 +0,0 @@ | |||
1 | /* $OpenBSD: bn_convert.c,v 1.23 2024/11/08 14:18:44 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <ctype.h> | ||
60 | #include <limits.h> | ||
61 | #include <stdio.h> | ||
62 | #include <string.h> | ||
63 | |||
64 | #include <openssl/opensslconf.h> | ||
65 | |||
66 | #include <openssl/bio.h> | ||
67 | #include <openssl/buffer.h> | ||
68 | #include <openssl/err.h> | ||
69 | |||
70 | #include "bn_local.h" | ||
71 | #include "bytestring.h" | ||
72 | #include "crypto_internal.h" | ||
73 | |||
74 | static int bn_dec2bn_cbs(BIGNUM **bnp, CBS *cbs); | ||
75 | static int bn_hex2bn_cbs(BIGNUM **bnp, CBS *cbs); | ||
76 | |||
77 | static const char hex_digits[] = "0123456789ABCDEF"; | ||
78 | |||
79 | static int | ||
80 | bn_bn2binpad_internal(const BIGNUM *bn, uint8_t *out, int out_len, | ||
81 | int little_endian) | ||
82 | { | ||
83 | uint8_t mask, v; | ||
84 | BN_ULONG w; | ||
85 | int i, j; | ||
86 | int b, n; | ||
87 | |||
88 | n = BN_num_bytes(bn); | ||
89 | |||
90 | if (out_len == -1) | ||
91 | out_len = n; | ||
92 | if (out_len < n) | ||
93 | return -1; | ||
94 | |||
95 | if (bn->dmax == 0) { | ||
96 | explicit_bzero(out, out_len); | ||
97 | return out_len; | ||
98 | } | ||
99 | |||
100 | mask = 0; | ||
101 | b = BN_BITS2; | ||
102 | j = 0; | ||
103 | |||
104 | for (i = out_len - 1; i >= 0; i--) { | ||
105 | if (b == BN_BITS2) { | ||
106 | mask = crypto_ct_lt_mask(j, bn->top); | ||
107 | w = bn->d[j++ % bn->dmax]; | ||
108 | b = 0; | ||
109 | } | ||
110 | out[i] = (w >> b) & mask; | ||
111 | b += 8; | ||
112 | } | ||
113 | |||
114 | if (little_endian) { | ||
115 | for (i = 0, j = out_len - 1; i < out_len / 2; i++, j--) { | ||
116 | v = out[i]; | ||
117 | out[i] = out[j]; | ||
118 | out[j] = v; | ||
119 | } | ||
120 | } | ||
121 | |||
122 | return out_len; | ||
123 | } | ||
124 | |||
125 | int | ||
126 | BN_bn2bin(const BIGNUM *bn, unsigned char *to) | ||
127 | { | ||
128 | return bn_bn2binpad_internal(bn, to, -1, 0); | ||
129 | } | ||
130 | LCRYPTO_ALIAS(BN_bn2bin); | ||
131 | |||
132 | int | ||
133 | BN_bn2binpad(const BIGNUM *bn, unsigned char *to, int to_len) | ||
134 | { | ||
135 | if (to_len < 0) | ||
136 | return -1; | ||
137 | |||
138 | return bn_bn2binpad_internal(bn, to, to_len, 0); | ||
139 | } | ||
140 | LCRYPTO_ALIAS(BN_bn2binpad); | ||
141 | |||
142 | static int | ||
143 | bn_bin2bn_cbs(BIGNUM **bnp, CBS *cbs, int lebin) | ||
144 | { | ||
145 | BIGNUM *bn = NULL; | ||
146 | BN_ULONG w; | ||
147 | uint8_t v; | ||
148 | int b, i; | ||
149 | |||
150 | if ((bn = *bnp) == NULL) | ||
151 | bn = BN_new(); | ||
152 | if (bn == NULL) | ||
153 | goto err; | ||
154 | if (!bn_expand_bytes(bn, CBS_len(cbs))) | ||
155 | goto err; | ||
156 | |||
157 | b = 0; | ||
158 | i = 0; | ||
159 | w = 0; | ||
160 | |||
161 | while (CBS_len(cbs) > 0) { | ||
162 | if (lebin) { | ||
163 | if (!CBS_get_u8(cbs, &v)) | ||
164 | goto err; | ||
165 | } else { | ||
166 | if (!CBS_get_last_u8(cbs, &v)) | ||
167 | goto err; | ||
168 | } | ||
169 | |||
170 | w |= (BN_ULONG)v << b; | ||
171 | b += 8; | ||
172 | |||
173 | if (b == BN_BITS2 || CBS_len(cbs) == 0) { | ||
174 | b = 0; | ||
175 | bn->d[i++] = w; | ||
176 | w = 0; | ||
177 | } | ||
178 | } | ||
179 | |||
180 | bn->neg = 0; | ||
181 | bn->top = i; | ||
182 | |||
183 | bn_correct_top(bn); | ||
184 | |||
185 | *bnp = bn; | ||
186 | |||
187 | return 1; | ||
188 | |||
189 | err: | ||
190 | if (*bnp == NULL) | ||
191 | BN_free(bn); | ||
192 | |||
193 | return 0; | ||
194 | } | ||
195 | |||
196 | BIGNUM * | ||
197 | BN_bin2bn(const unsigned char *d, int len, BIGNUM *bn) | ||
198 | { | ||
199 | CBS cbs; | ||
200 | |||
201 | if (len < 0) | ||
202 | return NULL; | ||
203 | |||
204 | CBS_init(&cbs, d, len); | ||
205 | |||
206 | if (!bn_bin2bn_cbs(&bn, &cbs, 0)) | ||
207 | return NULL; | ||
208 | |||
209 | return bn; | ||
210 | } | ||
211 | LCRYPTO_ALIAS(BN_bin2bn); | ||
212 | |||
213 | int | ||
214 | BN_bn2lebinpad(const BIGNUM *bn, unsigned char *to, int to_len) | ||
215 | { | ||
216 | if (to_len < 0) | ||
217 | return -1; | ||
218 | |||
219 | return bn_bn2binpad_internal(bn, to, to_len, 1); | ||
220 | } | ||
221 | LCRYPTO_ALIAS(BN_bn2lebinpad); | ||
222 | |||
223 | BIGNUM * | ||
224 | BN_lebin2bn(const unsigned char *d, int len, BIGNUM *bn) | ||
225 | { | ||
226 | CBS cbs; | ||
227 | |||
228 | if (len < 0) | ||
229 | return NULL; | ||
230 | |||
231 | CBS_init(&cbs, d, len); | ||
232 | |||
233 | if (!bn_bin2bn_cbs(&bn, &cbs, 1)) | ||
234 | return NULL; | ||
235 | |||
236 | return bn; | ||
237 | } | ||
238 | LCRYPTO_ALIAS(BN_lebin2bn); | ||
239 | |||
240 | int | ||
241 | BN_asc2bn(BIGNUM **bnp, const char *s) | ||
242 | { | ||
243 | CBS cbs, cbs_hex; | ||
244 | size_t s_len; | ||
245 | uint8_t v; | ||
246 | int neg; | ||
247 | |||
248 | if (bnp != NULL && *bnp != NULL) | ||
249 | BN_zero(*bnp); | ||
250 | |||
251 | if (s == NULL) | ||
252 | return 0; | ||
253 | if ((s_len = strlen(s)) == 0) | ||
254 | return 0; | ||
255 | |||
256 | CBS_init(&cbs, s, s_len); | ||
257 | |||
258 | /* Handle negative sign. */ | ||
259 | if (!CBS_peek_u8(&cbs, &v)) | ||
260 | return 0; | ||
261 | if ((neg = (v == '-'))) { | ||
262 | if (!CBS_skip(&cbs, 1)) | ||
263 | return 0; | ||
264 | } | ||
265 | |||
266 | /* Try parsing as hexadecimal with a 0x prefix. */ | ||
267 | CBS_dup(&cbs, &cbs_hex); | ||
268 | if (!CBS_get_u8(&cbs_hex, &v)) | ||
269 | goto decimal; | ||
270 | if (v != '0') | ||
271 | goto decimal; | ||
272 | if (!CBS_get_u8(&cbs_hex, &v)) | ||
273 | goto decimal; | ||
274 | if (v != 'X' && v != 'x') | ||
275 | goto decimal; | ||
276 | if (bn_hex2bn_cbs(bnp, &cbs_hex) == 0) | ||
277 | return 0; | ||
278 | |||
279 | goto done; | ||
280 | |||
281 | decimal: | ||
282 | if (bn_dec2bn_cbs(bnp, &cbs) == 0) | ||
283 | return 0; | ||
284 | |||
285 | done: | ||
286 | if (bnp != NULL && *bnp != NULL) | ||
287 | BN_set_negative(*bnp, neg); | ||
288 | |||
289 | return 1; | ||
290 | } | ||
291 | LCRYPTO_ALIAS(BN_asc2bn); | ||
292 | |||
293 | char * | ||
294 | BN_bn2dec(const BIGNUM *bn) | ||
295 | { | ||
296 | int started = 0; | ||
297 | BIGNUM *tmp = NULL; | ||
298 | uint8_t *data = NULL; | ||
299 | size_t data_len = 0; | ||
300 | uint8_t *s = NULL; | ||
301 | size_t s_len; | ||
302 | BN_ULONG v, w; | ||
303 | uint8_t c; | ||
304 | CBB cbb; | ||
305 | CBS cbs; | ||
306 | int i; | ||
307 | |||
308 | if (!CBB_init(&cbb, 0)) | ||
309 | goto err; | ||
310 | |||
311 | if ((tmp = BN_dup(bn)) == NULL) | ||
312 | goto err; | ||
313 | |||
314 | /* | ||
315 | * Divide the BIGNUM by a large multiple of 10, then break the remainder | ||
316 | * into decimal digits. This produces a reversed string of digits, | ||
317 | * potentially with leading zeroes. | ||
318 | */ | ||
319 | while (!BN_is_zero(tmp)) { | ||
320 | if ((w = BN_div_word(tmp, BN_DEC_CONV)) == -1) | ||
321 | goto err; | ||
322 | for (i = 0; i < BN_DEC_NUM; i++) { | ||
323 | v = w % 10; | ||
324 | if (!CBB_add_u8(&cbb, '0' + v)) | ||
325 | goto err; | ||
326 | w /= 10; | ||
327 | } | ||
328 | } | ||
329 | if (!CBB_finish(&cbb, &data, &data_len)) | ||
330 | goto err; | ||
331 | |||
332 | if (data_len > SIZE_MAX - 3) | ||
333 | goto err; | ||
334 | if (!CBB_init(&cbb, data_len + 3)) | ||
335 | goto err; | ||
336 | |||
337 | if (BN_is_negative(bn)) { | ||
338 | if (!CBB_add_u8(&cbb, '-')) | ||
339 | goto err; | ||
340 | } | ||
341 | |||
342 | /* Reverse digits and trim leading zeroes. */ | ||
343 | CBS_init(&cbs, data, data_len); | ||
344 | while (CBS_len(&cbs) > 0) { | ||
345 | if (!CBS_get_last_u8(&cbs, &c)) | ||
346 | goto err; | ||
347 | if (!started && c == '0') | ||
348 | continue; | ||
349 | if (!CBB_add_u8(&cbb, c)) | ||
350 | goto err; | ||
351 | started = 1; | ||
352 | } | ||
353 | |||
354 | if (!started) { | ||
355 | if (!CBB_add_u8(&cbb, '0')) | ||
356 | goto err; | ||
357 | } | ||
358 | if (!CBB_add_u8(&cbb, '\0')) | ||
359 | goto err; | ||
360 | if (!CBB_finish(&cbb, &s, &s_len)) | ||
361 | goto err; | ||
362 | |||
363 | err: | ||
364 | BN_free(tmp); | ||
365 | CBB_cleanup(&cbb); | ||
366 | freezero(data, data_len); | ||
367 | |||
368 | return s; | ||
369 | } | ||
370 | LCRYPTO_ALIAS(BN_bn2dec); | ||
371 | |||
372 | static int | ||
373 | bn_dec2bn_cbs(BIGNUM **bnp, CBS *cbs) | ||
374 | { | ||
375 | CBS cbs_digits; | ||
376 | BIGNUM *bn = NULL; | ||
377 | int d, neg, num; | ||
378 | size_t digits = 0; | ||
379 | BN_ULONG w; | ||
380 | uint8_t v; | ||
381 | |||
382 | /* Handle negative sign. */ | ||
383 | if (!CBS_peek_u8(cbs, &v)) | ||
384 | goto err; | ||
385 | if ((neg = (v == '-'))) { | ||
386 | if (!CBS_skip(cbs, 1)) | ||
387 | goto err; | ||
388 | } | ||
389 | |||
390 | /* Scan to find last decimal digit. */ | ||
391 | CBS_dup(cbs, &cbs_digits); | ||
392 | while (CBS_len(&cbs_digits) > 0) { | ||
393 | if (!CBS_get_u8(&cbs_digits, &v)) | ||
394 | goto err; | ||
395 | if (!isdigit(v)) | ||
396 | break; | ||
397 | digits++; | ||
398 | } | ||
399 | if (digits > INT_MAX / 4) | ||
400 | goto err; | ||
401 | |||
402 | num = digits + neg; | ||
403 | |||
404 | if (bnp == NULL) | ||
405 | return num; | ||
406 | |||
407 | if ((bn = *bnp) == NULL) | ||
408 | bn = BN_new(); | ||
409 | if (bn == NULL) | ||
410 | goto err; | ||
411 | if (!bn_expand_bits(bn, digits * 4)) | ||
412 | goto err; | ||
413 | |||
414 | if ((d = digits % BN_DEC_NUM) == 0) | ||
415 | d = BN_DEC_NUM; | ||
416 | |||
417 | w = 0; | ||
418 | |||
419 | /* Work forwards from most significant digit. */ | ||
420 | while (digits-- > 0) { | ||
421 | if (!CBS_get_u8(cbs, &v)) | ||
422 | goto err; | ||
423 | |||
424 | if (v < '0' || v > '9') | ||
425 | goto err; | ||
426 | |||
427 | v -= '0'; | ||
428 | w = w * 10 + v; | ||
429 | d--; | ||
430 | |||
431 | if (d == 0) { | ||
432 | if (!BN_mul_word(bn, BN_DEC_CONV)) | ||
433 | goto err; | ||
434 | if (!BN_add_word(bn, w)) | ||
435 | goto err; | ||
436 | |||
437 | d = BN_DEC_NUM; | ||
438 | w = 0; | ||
439 | } | ||
440 | } | ||
441 | |||
442 | bn_correct_top(bn); | ||
443 | |||
444 | BN_set_negative(bn, neg); | ||
445 | |||
446 | *bnp = bn; | ||
447 | |||
448 | return num; | ||
449 | |||
450 | err: | ||
451 | if (bnp != NULL && *bnp == NULL) | ||
452 | BN_free(bn); | ||
453 | |||
454 | return 0; | ||
455 | } | ||
456 | |||
457 | int | ||
458 | BN_dec2bn(BIGNUM **bnp, const char *s) | ||
459 | { | ||
460 | size_t s_len; | ||
461 | CBS cbs; | ||
462 | |||
463 | if (bnp != NULL && *bnp != NULL) | ||
464 | BN_zero(*bnp); | ||
465 | |||
466 | if (s == NULL) | ||
467 | return 0; | ||
468 | if ((s_len = strlen(s)) == 0) | ||
469 | return 0; | ||
470 | |||
471 | CBS_init(&cbs, s, s_len); | ||
472 | |||
473 | return bn_dec2bn_cbs(bnp, &cbs); | ||
474 | } | ||
475 | LCRYPTO_ALIAS(BN_dec2bn); | ||
476 | |||
477 | static int | ||
478 | bn_bn2hex_internal(const BIGNUM *bn, int include_sign, int nibbles_only, | ||
479 | char **out, size_t *out_len) | ||
480 | { | ||
481 | int started = 0; | ||
482 | uint8_t *s = NULL; | ||
483 | size_t s_len = 0; | ||
484 | BN_ULONG v, w; | ||
485 | int i, j; | ||
486 | CBB cbb; | ||
487 | CBS cbs; | ||
488 | uint8_t nul; | ||
489 | int ret = 0; | ||
490 | |||
491 | *out = NULL; | ||
492 | *out_len = 0; | ||
493 | |||
494 | if (!CBB_init(&cbb, 0)) | ||
495 | goto err; | ||
496 | |||
497 | if (BN_is_negative(bn) && include_sign) { | ||
498 | if (!CBB_add_u8(&cbb, '-')) | ||
499 | goto err; | ||
500 | } | ||
501 | if (BN_is_zero(bn)) { | ||
502 | if (!CBB_add_u8(&cbb, '0')) | ||
503 | goto err; | ||
504 | } | ||
505 | for (i = bn->top - 1; i >= 0; i--) { | ||
506 | w = bn->d[i]; | ||
507 | for (j = BN_BITS2 - 8; j >= 0; j -= 8) { | ||
508 | v = (w >> j) & 0xff; | ||
509 | if (!started && v == 0) | ||
510 | continue; | ||
511 | if (started || !nibbles_only || (v >> 4) != 0) { | ||
512 | if (!CBB_add_u8(&cbb, hex_digits[v >> 4])) | ||
513 | goto err; | ||
514 | } | ||
515 | if (!CBB_add_u8(&cbb, hex_digits[v & 0xf])) | ||
516 | goto err; | ||
517 | started = 1; | ||
518 | } | ||
519 | } | ||
520 | if (!CBB_add_u8(&cbb, '\0')) | ||
521 | goto err; | ||
522 | if (!CBB_finish(&cbb, &s, &s_len)) | ||
523 | goto err; | ||
524 | |||
525 | /* The length of a C string does not include the terminating NUL. */ | ||
526 | CBS_init(&cbs, s, s_len); | ||
527 | if (!CBS_get_last_u8(&cbs, &nul)) | ||
528 | goto err; | ||
529 | |||
530 | *out = (char *)CBS_data(&cbs); | ||
531 | *out_len = CBS_len(&cbs); | ||
532 | s = NULL; | ||
533 | s_len = 0; | ||
534 | |||
535 | ret = 1; | ||
536 | |||
537 | err: | ||
538 | CBB_cleanup(&cbb); | ||
539 | freezero(s, s_len); | ||
540 | |||
541 | return ret; | ||
542 | } | ||
543 | |||
544 | int | ||
545 | bn_bn2hex_nosign(const BIGNUM *bn, char **out, size_t *out_len) | ||
546 | { | ||
547 | return bn_bn2hex_internal(bn, 0, 0, out, out_len); | ||
548 | } | ||
549 | |||
550 | int | ||
551 | bn_bn2hex_nibbles(const BIGNUM *bn, char **out, size_t *out_len) | ||
552 | { | ||
553 | return bn_bn2hex_internal(bn, 1, 1, out, out_len); | ||
554 | } | ||
555 | |||
556 | char * | ||
557 | BN_bn2hex(const BIGNUM *bn) | ||
558 | { | ||
559 | char *s; | ||
560 | size_t s_len; | ||
561 | |||
562 | if (!bn_bn2hex_internal(bn, 1, 0, &s, &s_len)) | ||
563 | return NULL; | ||
564 | |||
565 | return s; | ||
566 | } | ||
567 | LCRYPTO_ALIAS(BN_bn2hex); | ||
568 | |||
569 | static int | ||
570 | bn_hex2bn_cbs(BIGNUM **bnp, CBS *cbs) | ||
571 | { | ||
572 | CBS cbs_digits; | ||
573 | BIGNUM *bn = NULL; | ||
574 | int b, i, neg, num; | ||
575 | size_t digits = 0; | ||
576 | BN_ULONG w; | ||
577 | uint8_t v; | ||
578 | |||
579 | /* Handle negative sign. */ | ||
580 | if (!CBS_peek_u8(cbs, &v)) | ||
581 | goto err; | ||
582 | if ((neg = (v == '-'))) { | ||
583 | if (!CBS_skip(cbs, 1)) | ||
584 | goto err; | ||
585 | } | ||
586 | |||
587 | /* Scan to find last hexadecimal digit. */ | ||
588 | CBS_dup(cbs, &cbs_digits); | ||
589 | while (CBS_len(&cbs_digits) > 0) { | ||
590 | if (!CBS_get_u8(&cbs_digits, &v)) | ||
591 | goto err; | ||
592 | if (!isxdigit(v)) | ||
593 | break; | ||
594 | digits++; | ||
595 | } | ||
596 | if (digits > INT_MAX / 4) | ||
597 | goto err; | ||
598 | |||
599 | num = digits + neg; | ||
600 | |||
601 | if (bnp == NULL) | ||
602 | return num; | ||
603 | |||
604 | if ((bn = *bnp) == NULL) | ||
605 | bn = BN_new(); | ||
606 | if (bn == NULL) | ||
607 | goto err; | ||
608 | if (!bn_expand_bits(bn, digits * 4)) | ||
609 | goto err; | ||
610 | |||
611 | if (!CBS_get_bytes(cbs, cbs, digits)) | ||
612 | goto err; | ||
613 | |||
614 | b = 0; | ||
615 | i = 0; | ||
616 | w = 0; | ||
617 | |||
618 | /* Work backwards from least significant digit. */ | ||
619 | while (digits-- > 0) { | ||
620 | if (!CBS_get_last_u8(cbs, &v)) | ||
621 | goto err; | ||
622 | |||
623 | if (v >= '0' && v <= '9') | ||
624 | v -= '0'; | ||
625 | else if (v >= 'a' && v <= 'f') | ||
626 | v -= 'a' - 10; | ||
627 | else if (v >= 'A' && v <= 'F') | ||
628 | v -= 'A' - 10; | ||
629 | else | ||
630 | goto err; | ||
631 | |||
632 | w |= (BN_ULONG)v << b; | ||
633 | b += 4; | ||
634 | |||
635 | if (b == BN_BITS2 || digits == 0) { | ||
636 | b = 0; | ||
637 | bn->d[i++] = w; | ||
638 | w = 0; | ||
639 | } | ||
640 | } | ||
641 | |||
642 | bn->top = i; | ||
643 | bn_correct_top(bn); | ||
644 | |||
645 | BN_set_negative(bn, neg); | ||
646 | |||
647 | *bnp = bn; | ||
648 | |||
649 | return num; | ||
650 | |||
651 | err: | ||
652 | if (bnp != NULL && *bnp == NULL) | ||
653 | BN_free(bn); | ||
654 | |||
655 | return 0; | ||
656 | } | ||
657 | |||
658 | int | ||
659 | BN_hex2bn(BIGNUM **bnp, const char *s) | ||
660 | { | ||
661 | size_t s_len; | ||
662 | CBS cbs; | ||
663 | |||
664 | if (bnp != NULL && *bnp != NULL) | ||
665 | BN_zero(*bnp); | ||
666 | |||
667 | if (s == NULL) | ||
668 | return 0; | ||
669 | if ((s_len = strlen(s)) == 0) | ||
670 | return 0; | ||
671 | |||
672 | CBS_init(&cbs, s, s_len); | ||
673 | |||
674 | return bn_hex2bn_cbs(bnp, &cbs); | ||
675 | } | ||
676 | LCRYPTO_ALIAS(BN_hex2bn); | ||
677 | |||
678 | int | ||
679 | BN_bn2mpi(const BIGNUM *bn, unsigned char *d) | ||
680 | { | ||
681 | uint8_t *out_bin; | ||
682 | size_t out_len, out_bin_len; | ||
683 | int bits, bytes; | ||
684 | int extend; | ||
685 | CBB cbb, cbb_bin; | ||
686 | |||
687 | bits = BN_num_bits(bn); | ||
688 | bytes = (bits + 7) / 8; | ||
689 | extend = (bits != 0) && (bits % 8 == 0); | ||
690 | out_bin_len = extend + bytes; | ||
691 | out_len = 4 + out_bin_len; | ||
692 | |||
693 | if (d == NULL) | ||
694 | return out_len; | ||
695 | |||
696 | if (!CBB_init_fixed(&cbb, d, out_len)) | ||
697 | goto err; | ||
698 | if (!CBB_add_u32_length_prefixed(&cbb, &cbb_bin)) | ||
699 | goto err; | ||
700 | if (!CBB_add_space(&cbb_bin, &out_bin, out_bin_len)) | ||
701 | goto err; | ||
702 | if (BN_bn2binpad(bn, out_bin, out_bin_len) != out_bin_len) | ||
703 | goto err; | ||
704 | if (!CBB_finish(&cbb, NULL, NULL)) | ||
705 | goto err; | ||
706 | |||
707 | if (bn->neg) | ||
708 | d[4] |= 0x80; | ||
709 | |||
710 | return out_len; | ||
711 | |||
712 | err: | ||
713 | CBB_cleanup(&cbb); | ||
714 | |||
715 | return -1; | ||
716 | } | ||
717 | LCRYPTO_ALIAS(BN_bn2mpi); | ||
718 | |||
719 | BIGNUM * | ||
720 | BN_mpi2bn(const unsigned char *d, int n, BIGNUM *bn_in) | ||
721 | { | ||
722 | BIGNUM *bn = bn_in; | ||
723 | uint32_t mpi_len; | ||
724 | uint8_t v; | ||
725 | int neg = 0; | ||
726 | CBS cbs; | ||
727 | |||
728 | if (n < 0) | ||
729 | return NULL; | ||
730 | |||
731 | CBS_init(&cbs, d, n); | ||
732 | |||
733 | if (!CBS_get_u32(&cbs, &mpi_len)) { | ||
734 | BNerror(BN_R_INVALID_LENGTH); | ||
735 | return NULL; | ||
736 | } | ||
737 | if (CBS_len(&cbs) != mpi_len) { | ||
738 | BNerror(BN_R_ENCODING_ERROR); | ||
739 | return NULL; | ||
740 | } | ||
741 | if (CBS_len(&cbs) > 0) { | ||
742 | if (!CBS_peek_u8(&cbs, &v)) | ||
743 | return NULL; | ||
744 | neg = (v >> 7) & 1; | ||
745 | } | ||
746 | |||
747 | if (!bn_bin2bn_cbs(&bn, &cbs, 0)) | ||
748 | return NULL; | ||
749 | |||
750 | if (neg) | ||
751 | BN_clear_bit(bn, BN_num_bits(bn) - 1); | ||
752 | |||
753 | BN_set_negative(bn, neg); | ||
754 | |||
755 | return bn; | ||
756 | } | ||
757 | LCRYPTO_ALIAS(BN_mpi2bn); | ||
diff --git a/src/lib/libcrypto/bn/bn_ctx.c b/src/lib/libcrypto/bn/bn_ctx.c deleted file mode 100644 index 129b9c9781..0000000000 --- a/src/lib/libcrypto/bn/bn_ctx.c +++ /dev/null | |||
@@ -1,161 +0,0 @@ | |||
1 | /* $OpenBSD: bn_ctx.c,v 1.22 2023/07/08 12:21:58 beck Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #include <stddef.h> | ||
19 | #include <string.h> | ||
20 | |||
21 | #include <openssl/opensslconf.h> | ||
22 | #include <openssl/err.h> | ||
23 | |||
24 | #include "bn_local.h" | ||
25 | |||
26 | #define BN_CTX_INITIAL_LEN 8 | ||
27 | |||
28 | struct bignum_ctx { | ||
29 | BIGNUM **bignums; | ||
30 | uint8_t *groups; | ||
31 | uint8_t group; | ||
32 | size_t index; | ||
33 | size_t len; | ||
34 | |||
35 | int error; | ||
36 | }; | ||
37 | |||
38 | static int | ||
39 | bn_ctx_grow(BN_CTX *bctx) | ||
40 | { | ||
41 | BIGNUM **bignums = NULL; | ||
42 | uint8_t *groups = NULL; | ||
43 | size_t len; | ||
44 | |||
45 | if ((len = bctx->len) == 0) { | ||
46 | len = BN_CTX_INITIAL_LEN; | ||
47 | } else { | ||
48 | if (SIZE_MAX - len < len) | ||
49 | return 0; | ||
50 | len *= 2; | ||
51 | } | ||
52 | |||
53 | if ((bignums = recallocarray(bctx->bignums, bctx->len, len, | ||
54 | sizeof(bctx->bignums[0]))) == NULL) | ||
55 | return 0; | ||
56 | bctx->bignums = bignums; | ||
57 | |||
58 | if ((groups = reallocarray(bctx->groups, len, | ||
59 | sizeof(bctx->groups[0]))) == NULL) | ||
60 | return 0; | ||
61 | bctx->groups = groups; | ||
62 | |||
63 | bctx->len = len; | ||
64 | |||
65 | return 1; | ||
66 | } | ||
67 | |||
68 | BN_CTX * | ||
69 | BN_CTX_new(void) | ||
70 | { | ||
71 | return calloc(1, sizeof(struct bignum_ctx)); | ||
72 | } | ||
73 | LCRYPTO_ALIAS(BN_CTX_new); | ||
74 | |||
75 | void | ||
76 | BN_CTX_free(BN_CTX *bctx) | ||
77 | { | ||
78 | size_t i; | ||
79 | |||
80 | if (bctx == NULL) | ||
81 | return; | ||
82 | |||
83 | for (i = 0; i < bctx->len; i++) { | ||
84 | BN_free(bctx->bignums[i]); | ||
85 | bctx->bignums[i] = NULL; | ||
86 | } | ||
87 | |||
88 | free(bctx->bignums); | ||
89 | free(bctx->groups); | ||
90 | |||
91 | freezero(bctx, sizeof(*bctx)); | ||
92 | } | ||
93 | LCRYPTO_ALIAS(BN_CTX_free); | ||
94 | |||
95 | void | ||
96 | BN_CTX_start(BN_CTX *bctx) | ||
97 | { | ||
98 | bctx->group++; | ||
99 | |||
100 | if (bctx->group == 0) { | ||
101 | BNerror(BN_R_TOO_MANY_TEMPORARY_VARIABLES); | ||
102 | bctx->error = 1; | ||
103 | return; | ||
104 | } | ||
105 | } | ||
106 | LCRYPTO_ALIAS(BN_CTX_start); | ||
107 | |||
108 | BIGNUM * | ||
109 | BN_CTX_get(BN_CTX *bctx) | ||
110 | { | ||
111 | BIGNUM *bn = NULL; | ||
112 | |||
113 | if (bctx->error) | ||
114 | return NULL; | ||
115 | |||
116 | if (bctx->group == 0) { | ||
117 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
118 | bctx->error = 1; | ||
119 | return NULL; | ||
120 | } | ||
121 | |||
122 | if (bctx->index == bctx->len) { | ||
123 | if (!bn_ctx_grow(bctx)) { | ||
124 | BNerror(BN_R_TOO_MANY_TEMPORARY_VARIABLES); | ||
125 | bctx->error = 1; | ||
126 | return NULL; | ||
127 | } | ||
128 | } | ||
129 | |||
130 | if ((bn = bctx->bignums[bctx->index]) == NULL) { | ||
131 | if ((bn = BN_new()) == NULL) { | ||
132 | BNerror(BN_R_TOO_MANY_TEMPORARY_VARIABLES); | ||
133 | bctx->error = 1; | ||
134 | return NULL; | ||
135 | } | ||
136 | bctx->bignums[bctx->index] = bn; | ||
137 | } | ||
138 | bctx->groups[bctx->index] = bctx->group; | ||
139 | bctx->index++; | ||
140 | |||
141 | BN_zero(bn); | ||
142 | |||
143 | return bn; | ||
144 | } | ||
145 | LCRYPTO_ALIAS(BN_CTX_get); | ||
146 | |||
147 | void | ||
148 | BN_CTX_end(BN_CTX *bctx) | ||
149 | { | ||
150 | if (bctx == NULL || bctx->error || bctx->group == 0) | ||
151 | return; | ||
152 | |||
153 | while (bctx->index > 0 && bctx->groups[bctx->index - 1] == bctx->group) { | ||
154 | BN_zero(bctx->bignums[bctx->index - 1]); | ||
155 | bctx->groups[bctx->index - 1] = 0; | ||
156 | bctx->index--; | ||
157 | } | ||
158 | |||
159 | bctx->group--; | ||
160 | } | ||
161 | LCRYPTO_ALIAS(BN_CTX_end); | ||
diff --git a/src/lib/libcrypto/bn/bn_div.c b/src/lib/libcrypto/bn/bn_div.c deleted file mode 100644 index 09a8a364df..0000000000 --- a/src/lib/libcrypto/bn/bn_div.c +++ /dev/null | |||
@@ -1,458 +0,0 @@ | |||
1 | /* $OpenBSD: bn_div.c,v 1.41 2024/04/10 14:58:06 beck Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <assert.h> | ||
60 | #include <stdio.h> | ||
61 | |||
62 | #include <openssl/opensslconf.h> | ||
63 | |||
64 | #include <openssl/bn.h> | ||
65 | #include <openssl/err.h> | ||
66 | |||
67 | #include "bn_arch.h" | ||
68 | #include "bn_local.h" | ||
69 | #include "bn_internal.h" | ||
70 | |||
71 | BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0); | ||
72 | |||
73 | #ifndef HAVE_BN_DIV_WORDS | ||
74 | #if defined(BN_LLONG) && defined(BN_DIV2W) | ||
75 | |||
76 | BN_ULONG | ||
77 | bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
78 | { | ||
79 | return ((BN_ULONG)(((((BN_ULLONG)h) << BN_BITS2)|l)/(BN_ULLONG)d)); | ||
80 | } | ||
81 | |||
82 | #else | ||
83 | |||
84 | /* Divide h,l by d and return the result. */ | ||
85 | /* I need to test this some more :-( */ | ||
86 | BN_ULONG | ||
87 | bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
88 | { | ||
89 | BN_ULONG dh, dl, q,ret = 0, th, tl, t; | ||
90 | int i, count = 2; | ||
91 | |||
92 | if (d == 0) | ||
93 | return (BN_MASK2); | ||
94 | |||
95 | i = BN_num_bits_word(d); | ||
96 | assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i)); | ||
97 | |||
98 | i = BN_BITS2 - i; | ||
99 | if (h >= d) | ||
100 | h -= d; | ||
101 | |||
102 | if (i) { | ||
103 | d <<= i; | ||
104 | h = (h << i) | (l >> (BN_BITS2 - i)); | ||
105 | l <<= i; | ||
106 | } | ||
107 | dh = (d & BN_MASK2h) >> BN_BITS4; | ||
108 | dl = (d & BN_MASK2l); | ||
109 | for (;;) { | ||
110 | if ((h >> BN_BITS4) == dh) | ||
111 | q = BN_MASK2l; | ||
112 | else | ||
113 | q = h / dh; | ||
114 | |||
115 | th = q * dh; | ||
116 | tl = dl * q; | ||
117 | for (;;) { | ||
118 | t = h - th; | ||
119 | if ((t & BN_MASK2h) || | ||
120 | ((tl) <= ( | ||
121 | (t << BN_BITS4) | | ||
122 | ((l & BN_MASK2h) >> BN_BITS4)))) | ||
123 | break; | ||
124 | q--; | ||
125 | th -= dh; | ||
126 | tl -= dl; | ||
127 | } | ||
128 | t = (tl >> BN_BITS4); | ||
129 | tl = (tl << BN_BITS4) & BN_MASK2h; | ||
130 | th += t; | ||
131 | |||
132 | if (l < tl) | ||
133 | th++; | ||
134 | l -= tl; | ||
135 | if (h < th) { | ||
136 | h += d; | ||
137 | q--; | ||
138 | } | ||
139 | h -= th; | ||
140 | |||
141 | if (--count == 0) | ||
142 | break; | ||
143 | |||
144 | ret = q << BN_BITS4; | ||
145 | h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2; | ||
146 | l = (l & BN_MASK2l) << BN_BITS4; | ||
147 | } | ||
148 | ret |= q; | ||
149 | return (ret); | ||
150 | } | ||
151 | #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */ | ||
152 | #endif | ||
153 | |||
154 | /* | ||
155 | * Divide a double word (h:l) by d, returning the quotient q and the remainder | ||
156 | * r, such that q * d + r is equal to the numerator. | ||
157 | */ | ||
158 | #ifndef HAVE_BN_DIV_REM_WORDS | ||
159 | #ifndef HAVE_BN_DIV_REM_WORDS_INLINE | ||
160 | static inline void | ||
161 | bn_div_rem_words_inline(BN_ULONG h, BN_ULONG l, BN_ULONG d, BN_ULONG *out_q, | ||
162 | BN_ULONG *out_r) | ||
163 | { | ||
164 | BN_ULONG q, r; | ||
165 | |||
166 | q = bn_div_words(h, l, d); | ||
167 | r = (l - q * d) & BN_MASK2; | ||
168 | |||
169 | *out_q = q; | ||
170 | *out_r = r; | ||
171 | } | ||
172 | #endif | ||
173 | |||
174 | void | ||
175 | bn_div_rem_words(BN_ULONG h, BN_ULONG l, BN_ULONG d, BN_ULONG *out_q, | ||
176 | BN_ULONG *out_r) | ||
177 | { | ||
178 | bn_div_rem_words_inline(h, l, d, out_q, out_r); | ||
179 | } | ||
180 | #endif | ||
181 | |||
182 | #ifndef HAVE_BN_DIV_3_WORDS | ||
183 | |||
184 | /* | ||
185 | * Interface is somewhat quirky, |m| is pointer to most significant limb, | ||
186 | * and less significant limb is referred at |m[-1]|. This means that caller | ||
187 | * is responsible for ensuring that |m[-1]| is valid. Second condition that | ||
188 | * has to be met is that |d0|'s most significant bit has to be set. Or in | ||
189 | * other words divisor has to be "bit-aligned to the left." The subroutine | ||
190 | * considers four limbs, two of which are "overlapping," hence the name... | ||
191 | */ | ||
192 | BN_ULONG | ||
193 | bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0) | ||
194 | { | ||
195 | BN_ULONG n0, n1, q, t2h, t2l; | ||
196 | BN_ULONG rem = 0; | ||
197 | |||
198 | n0 = m[0]; | ||
199 | n1 = m[-1]; | ||
200 | |||
201 | if (n0 == d0) | ||
202 | return BN_MASK2; | ||
203 | |||
204 | /* n0 < d0 */ | ||
205 | bn_div_rem_words(n0, n1, d0, &q, &rem); | ||
206 | |||
207 | bn_mulw(d1, q, &t2h, &t2l); | ||
208 | |||
209 | for (;;) { | ||
210 | if (t2h < rem || (t2h == rem && t2l <= m[-2])) | ||
211 | break; | ||
212 | q--; | ||
213 | rem += d0; | ||
214 | if (rem < d0) | ||
215 | break; /* don't let rem overflow */ | ||
216 | if (t2l < d1) | ||
217 | t2h--; | ||
218 | t2l -= d1; | ||
219 | } | ||
220 | |||
221 | return q; | ||
222 | } | ||
223 | #endif /* !HAVE_BN_DIV_3_WORDS */ | ||
224 | |||
225 | /* | ||
226 | * BN_div_internal computes quotient := numerator / divisor, rounding towards | ||
227 | * zero and setting remainder such that quotient * divisor + remainder equals | ||
228 | * the numerator. Thus: | ||
229 | * | ||
230 | * quotient->neg == numerator->neg ^ divisor->neg (unless result is zero) | ||
231 | * remainder->neg == numerator->neg (unless the remainder is zero) | ||
232 | * | ||
233 | * If either the quotient or remainder is NULL, the respective value is not | ||
234 | * returned. | ||
235 | */ | ||
236 | static int | ||
237 | BN_div_internal(BIGNUM *quotient, BIGNUM *remainder, const BIGNUM *numerator, | ||
238 | const BIGNUM *divisor, BN_CTX *ctx, int ct) | ||
239 | { | ||
240 | int norm_shift, i, loop, r_neg; | ||
241 | BIGNUM *tmp, wnum, *snum, *sdiv, *res; | ||
242 | BN_ULONG *resp, *wnump; | ||
243 | BN_ULONG d0, d1; | ||
244 | int num_n, div_n; | ||
245 | int no_branch = 0; | ||
246 | int ret = 0; | ||
247 | |||
248 | BN_CTX_start(ctx); | ||
249 | |||
250 | /* Invalid zero-padding would have particularly bad consequences. */ | ||
251 | if (numerator->top > 0 && numerator->d[numerator->top - 1] == 0) { | ||
252 | BNerror(BN_R_NOT_INITIALIZED); | ||
253 | goto err; | ||
254 | } | ||
255 | |||
256 | if (ct) | ||
257 | no_branch = 1; | ||
258 | |||
259 | if (BN_is_zero(divisor)) { | ||
260 | BNerror(BN_R_DIV_BY_ZERO); | ||
261 | goto err; | ||
262 | } | ||
263 | |||
264 | if (!no_branch) { | ||
265 | if (BN_ucmp(numerator, divisor) < 0) { | ||
266 | if (remainder != NULL) { | ||
267 | if (!bn_copy(remainder, numerator)) | ||
268 | goto err; | ||
269 | } | ||
270 | if (quotient != NULL) | ||
271 | BN_zero(quotient); | ||
272 | |||
273 | goto done; | ||
274 | } | ||
275 | } | ||
276 | |||
277 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
278 | goto err; | ||
279 | if ((snum = BN_CTX_get(ctx)) == NULL) | ||
280 | goto err; | ||
281 | if ((sdiv = BN_CTX_get(ctx)) == NULL) | ||
282 | goto err; | ||
283 | if ((res = quotient) == NULL) { | ||
284 | if ((res = BN_CTX_get(ctx)) == NULL) | ||
285 | goto err; | ||
286 | } | ||
287 | |||
288 | /* First we normalise the numbers. */ | ||
289 | norm_shift = BN_BITS2 - BN_num_bits(divisor) % BN_BITS2; | ||
290 | if (!BN_lshift(sdiv, divisor, norm_shift)) | ||
291 | goto err; | ||
292 | sdiv->neg = 0; | ||
293 | norm_shift += BN_BITS2; | ||
294 | if (!BN_lshift(snum, numerator, norm_shift)) | ||
295 | goto err; | ||
296 | snum->neg = 0; | ||
297 | |||
298 | if (no_branch) { | ||
299 | /* | ||
300 | * Since we don't know whether snum is larger than sdiv, we pad | ||
301 | * snum with enough zeroes without changing its value. | ||
302 | */ | ||
303 | if (snum->top <= sdiv->top + 1) { | ||
304 | if (!bn_wexpand(snum, sdiv->top + 2)) | ||
305 | goto err; | ||
306 | for (i = snum->top; i < sdiv->top + 2; i++) | ||
307 | snum->d[i] = 0; | ||
308 | snum->top = sdiv->top + 2; | ||
309 | } else { | ||
310 | if (!bn_wexpand(snum, snum->top + 1)) | ||
311 | goto err; | ||
312 | snum->d[snum->top] = 0; | ||
313 | snum->top++; | ||
314 | } | ||
315 | } | ||
316 | |||
317 | div_n = sdiv->top; | ||
318 | num_n = snum->top; | ||
319 | loop = num_n - div_n; | ||
320 | |||
321 | /* | ||
322 | * Setup a 'window' into snum - this is the part that corresponds to the | ||
323 | * current 'area' being divided. | ||
324 | */ | ||
325 | wnum.neg = 0; | ||
326 | wnum.d = &(snum->d[loop]); | ||
327 | wnum.top = div_n; | ||
328 | /* only needed when BN_ucmp messes up the values between top and max */ | ||
329 | wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */ | ||
330 | wnum.flags = snum->flags | BN_FLG_STATIC_DATA; | ||
331 | |||
332 | /* Get the top 2 words of sdiv */ | ||
333 | /* div_n=sdiv->top; */ | ||
334 | d0 = sdiv->d[div_n - 1]; | ||
335 | d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2]; | ||
336 | |||
337 | /* pointer to the 'top' of snum */ | ||
338 | wnump = &(snum->d[num_n - 1]); | ||
339 | |||
340 | /* Setup to 'res' */ | ||
341 | if (!bn_wexpand(res, (loop + 1))) | ||
342 | goto err; | ||
343 | res->top = loop - no_branch; | ||
344 | r_neg = numerator->neg ^ divisor->neg; | ||
345 | resp = &(res->d[loop - 1]); | ||
346 | |||
347 | /* space for temp */ | ||
348 | if (!bn_wexpand(tmp, (div_n + 1))) | ||
349 | goto err; | ||
350 | |||
351 | if (!no_branch) { | ||
352 | if (BN_ucmp(&wnum, sdiv) >= 0) { | ||
353 | bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n); | ||
354 | *resp = 1; | ||
355 | } else | ||
356 | res->top--; | ||
357 | } | ||
358 | |||
359 | /* | ||
360 | * If res->top == 0 then clear the neg value otherwise decrease the resp | ||
361 | * pointer. | ||
362 | */ | ||
363 | if (res->top == 0) | ||
364 | res->neg = 0; | ||
365 | else | ||
366 | resp--; | ||
367 | |||
368 | for (i = 0; i < loop - 1; i++, wnump--, resp--) { | ||
369 | BN_ULONG q, l0; | ||
370 | |||
371 | /* | ||
372 | * The first part of the loop uses the top two words of snum and | ||
373 | * sdiv to calculate a BN_ULONG q such that: | ||
374 | * | ||
375 | * | wnum - sdiv * q | < sdiv | ||
376 | */ | ||
377 | q = bn_div_3_words(wnump, d1, d0); | ||
378 | l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q); | ||
379 | tmp->d[div_n] = l0; | ||
380 | wnum.d--; | ||
381 | |||
382 | /* | ||
383 | * Ignore top values of the bignums just sub the two BN_ULONG | ||
384 | * arrays with bn_sub_words. | ||
385 | */ | ||
386 | if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) { | ||
387 | /* | ||
388 | * Note: As we have considered only the leading two | ||
389 | * BN_ULONGs in the calculation of q, sdiv * q might be | ||
390 | * greater than wnum (but then (q-1) * sdiv is less or | ||
391 | * equal than wnum). | ||
392 | */ | ||
393 | q--; | ||
394 | if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) { | ||
395 | /* | ||
396 | * We can't have an overflow here (assuming | ||
397 | * that q != 0, but if q == 0 then tmp is | ||
398 | * zero anyway). | ||
399 | */ | ||
400 | (*wnump)++; | ||
401 | } | ||
402 | } | ||
403 | /* store part of the result */ | ||
404 | *resp = q; | ||
405 | } | ||
406 | |||
407 | bn_correct_top(snum); | ||
408 | |||
409 | if (remainder != NULL) { | ||
410 | /* | ||
411 | * Keep a copy of the neg flag in numerator because if | ||
412 | * remainder == numerator, BN_rshift() will overwrite it. | ||
413 | */ | ||
414 | int neg = numerator->neg; | ||
415 | |||
416 | BN_rshift(remainder, snum, norm_shift); | ||
417 | BN_set_negative(remainder, neg); | ||
418 | } | ||
419 | |||
420 | if (no_branch) | ||
421 | bn_correct_top(res); | ||
422 | |||
423 | BN_set_negative(res, r_neg); | ||
424 | |||
425 | done: | ||
426 | ret = 1; | ||
427 | err: | ||
428 | BN_CTX_end(ctx); | ||
429 | |||
430 | return ret; | ||
431 | } | ||
432 | |||
433 | int | ||
434 | BN_div(BIGNUM *quotient, BIGNUM *remainder, const BIGNUM *numerator, | ||
435 | const BIGNUM *divisor, BN_CTX *ctx) | ||
436 | { | ||
437 | int ct; | ||
438 | |||
439 | ct = BN_get_flags(numerator, BN_FLG_CONSTTIME) != 0 || | ||
440 | BN_get_flags(divisor, BN_FLG_CONSTTIME) != 0; | ||
441 | |||
442 | return BN_div_internal(quotient, remainder, numerator, divisor, ctx, ct); | ||
443 | } | ||
444 | LCRYPTO_ALIAS(BN_div); | ||
445 | |||
446 | int | ||
447 | BN_div_nonct(BIGNUM *quotient, BIGNUM *remainder, const BIGNUM *numerator, | ||
448 | const BIGNUM *divisor, BN_CTX *ctx) | ||
449 | { | ||
450 | return BN_div_internal(quotient, remainder, numerator, divisor, ctx, 0); | ||
451 | } | ||
452 | |||
453 | int | ||
454 | BN_div_ct(BIGNUM *quotient, BIGNUM *remainder, const BIGNUM *numerator, | ||
455 | const BIGNUM *divisor, BN_CTX *ctx) | ||
456 | { | ||
457 | return BN_div_internal(quotient, remainder, numerator, divisor, ctx, 1); | ||
458 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_err.c b/src/lib/libcrypto/bn/bn_err.c deleted file mode 100644 index 3ee6b4311f..0000000000 --- a/src/lib/libcrypto/bn/bn_err.c +++ /dev/null | |||
@@ -1,110 +0,0 @@ | |||
1 | /* $OpenBSD: bn_err.c,v 1.18 2024/06/24 06:43:22 tb Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1999-2007 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@OpenSSL.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | #include <stdio.h> | ||
57 | |||
58 | #include <openssl/opensslconf.h> | ||
59 | |||
60 | #include <openssl/err.h> | ||
61 | #include <openssl/bn.h> | ||
62 | |||
63 | #include "err_local.h" | ||
64 | |||
65 | #ifndef OPENSSL_NO_ERR | ||
66 | |||
67 | #define ERR_FUNC(func) ERR_PACK(ERR_LIB_BN,func,0) | ||
68 | #define ERR_REASON(reason) ERR_PACK(ERR_LIB_BN,0,reason) | ||
69 | |||
70 | static const ERR_STRING_DATA BN_str_functs[] = { | ||
71 | {ERR_FUNC(0xfff), "CRYPTO_internal"}, | ||
72 | {0, NULL} | ||
73 | }; | ||
74 | |||
75 | static const ERR_STRING_DATA BN_str_reasons[] = { | ||
76 | {ERR_REASON(BN_R_ARG2_LT_ARG3) , "arg2 lt arg3"}, | ||
77 | {ERR_REASON(BN_R_BAD_RECIPROCAL) , "bad reciprocal"}, | ||
78 | {ERR_REASON(BN_R_BIGNUM_TOO_LONG) , "bignum too long"}, | ||
79 | {ERR_REASON(BN_R_BITS_TOO_SMALL) , "bits too small"}, | ||
80 | {ERR_REASON(BN_R_CALLED_WITH_EVEN_MODULUS), "called with even modulus"}, | ||
81 | {ERR_REASON(BN_R_DIV_BY_ZERO) , "div by zero"}, | ||
82 | {ERR_REASON(BN_R_ENCODING_ERROR) , "encoding error"}, | ||
83 | {ERR_REASON(BN_R_EXPAND_ON_STATIC_BIGNUM_DATA), "expand on static bignum data"}, | ||
84 | {ERR_REASON(BN_R_INPUT_NOT_REDUCED) , "input not reduced"}, | ||
85 | {ERR_REASON(BN_R_INVALID_ARGUMENT) , "invalid argument"}, | ||
86 | {ERR_REASON(BN_R_INVALID_LENGTH) , "invalid length"}, | ||
87 | {ERR_REASON(BN_R_INVALID_RANGE) , "invalid range"}, | ||
88 | {ERR_REASON(BN_R_NOT_A_SQUARE) , "not a square"}, | ||
89 | {ERR_REASON(BN_R_NOT_INITIALIZED) , "not initialized"}, | ||
90 | {ERR_REASON(BN_R_NO_INVERSE) , "no inverse"}, | ||
91 | {ERR_REASON(BN_R_NO_SOLUTION) , "no solution"}, | ||
92 | {ERR_REASON(BN_R_P_IS_NOT_PRIME) , "p is not prime"}, | ||
93 | {ERR_REASON(BN_R_TOO_MANY_ITERATIONS) , "too many iterations"}, | ||
94 | {ERR_REASON(BN_R_TOO_MANY_TEMPORARY_VARIABLES), "too many temporary variables"}, | ||
95 | {0, NULL} | ||
96 | }; | ||
97 | |||
98 | #endif | ||
99 | |||
100 | void | ||
101 | ERR_load_BN_strings(void) | ||
102 | { | ||
103 | #ifndef OPENSSL_NO_ERR | ||
104 | if (ERR_func_error_string(BN_str_functs[0].error) == NULL) { | ||
105 | ERR_load_const_strings(BN_str_functs); | ||
106 | ERR_load_const_strings(BN_str_reasons); | ||
107 | } | ||
108 | #endif | ||
109 | } | ||
110 | LCRYPTO_ALIAS(ERR_load_BN_strings); | ||
diff --git a/src/lib/libcrypto/bn/bn_exp.c b/src/lib/libcrypto/bn/bn_exp.c deleted file mode 100644 index e925d325d2..0000000000 --- a/src/lib/libcrypto/bn/bn_exp.c +++ /dev/null | |||
@@ -1,1330 +0,0 @@ | |||
1 | /* $OpenBSD: bn_exp.c,v 1.58 2025/02/13 11:15:09 tb Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include <stdlib.h> | ||
113 | #include <string.h> | ||
114 | |||
115 | #include <openssl/err.h> | ||
116 | |||
117 | #include "bn_local.h" | ||
118 | #include "constant_time.h" | ||
119 | |||
120 | /* maximum precomputation table size for *variable* sliding windows */ | ||
121 | #define TABLE_SIZE 32 | ||
122 | |||
123 | /* Calculates r = a^p by successive squaring of a. Not constant time. */ | ||
124 | int | ||
125 | BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
126 | { | ||
127 | BIGNUM *rr, *v; | ||
128 | int i; | ||
129 | int ret = 0; | ||
130 | |||
131 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
132 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
133 | return -1; | ||
134 | } | ||
135 | |||
136 | BN_CTX_start(ctx); | ||
137 | |||
138 | if ((v = BN_CTX_get(ctx)) == NULL) | ||
139 | goto err; | ||
140 | |||
141 | rr = r; | ||
142 | if (r == a || r == p) | ||
143 | rr = BN_CTX_get(ctx); | ||
144 | if (rr == NULL) | ||
145 | goto err; | ||
146 | |||
147 | if (!BN_one(rr)) | ||
148 | goto err; | ||
149 | if (BN_is_odd(p)) { | ||
150 | if (!bn_copy(rr, a)) | ||
151 | goto err; | ||
152 | } | ||
153 | |||
154 | if (!bn_copy(v, a)) | ||
155 | goto err; | ||
156 | |||
157 | for (i = 1; i < BN_num_bits(p); i++) { | ||
158 | if (!BN_sqr(v, v, ctx)) | ||
159 | goto err; | ||
160 | if (!BN_is_bit_set(p, i)) | ||
161 | continue; | ||
162 | if (!BN_mul(rr, rr, v, ctx)) | ||
163 | goto err; | ||
164 | } | ||
165 | |||
166 | if (!bn_copy(r, rr)) | ||
167 | goto err; | ||
168 | |||
169 | ret = 1; | ||
170 | |||
171 | err: | ||
172 | BN_CTX_end(ctx); | ||
173 | |||
174 | return ret; | ||
175 | } | ||
176 | LCRYPTO_ALIAS(BN_exp); | ||
177 | |||
178 | /* The old fallback, simple version :-) */ | ||
179 | int | ||
180 | BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
181 | BN_CTX *ctx) | ||
182 | { | ||
183 | int i, j, bits, wstart, wend, window, wvalue; | ||
184 | int start = 1; | ||
185 | BIGNUM *d, *q; | ||
186 | /* Table of variables obtained from 'ctx' */ | ||
187 | BIGNUM *val[TABLE_SIZE]; | ||
188 | int ret = 0; | ||
189 | |||
190 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
191 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
192 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
193 | return -1; | ||
194 | } | ||
195 | |||
196 | if (r == m) { | ||
197 | BNerror(BN_R_INVALID_ARGUMENT); | ||
198 | return 0; | ||
199 | } | ||
200 | |||
201 | bits = BN_num_bits(p); | ||
202 | if (bits == 0) { | ||
203 | /* x**0 mod 1 is still zero. */ | ||
204 | if (BN_abs_is_word(m, 1)) { | ||
205 | ret = 1; | ||
206 | BN_zero(r); | ||
207 | } else | ||
208 | ret = BN_one(r); | ||
209 | return ret; | ||
210 | } | ||
211 | |||
212 | BN_CTX_start(ctx); | ||
213 | if ((d = BN_CTX_get(ctx)) == NULL) | ||
214 | goto err; | ||
215 | if ((q = BN_CTX_get(ctx)) == NULL) | ||
216 | goto err; | ||
217 | if ((val[0] = BN_CTX_get(ctx)) == NULL) | ||
218 | goto err; | ||
219 | |||
220 | if (!BN_nnmod(val[0], a, m, ctx)) | ||
221 | goto err; | ||
222 | if (BN_is_zero(val[0])) { | ||
223 | BN_zero(r); | ||
224 | goto done; | ||
225 | } | ||
226 | if (!bn_copy(q, p)) | ||
227 | goto err; | ||
228 | |||
229 | window = BN_window_bits_for_exponent_size(bits); | ||
230 | if (window > 1) { | ||
231 | if (!BN_mod_mul(d, val[0], val[0], m, ctx)) | ||
232 | goto err; | ||
233 | j = 1 << (window - 1); | ||
234 | for (i = 1; i < j; i++) { | ||
235 | if (((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
236 | !BN_mod_mul(val[i], val[i - 1], d,m, ctx)) | ||
237 | goto err; | ||
238 | } | ||
239 | } | ||
240 | |||
241 | start = 1; /* This is used to avoid multiplication etc | ||
242 | * when there is only the value '1' in the | ||
243 | * buffer. */ | ||
244 | wvalue = 0; /* The 'value' of the window */ | ||
245 | wstart = bits - 1; /* The top bit of the window */ | ||
246 | wend = 0; /* The bottom bit of the window */ | ||
247 | |||
248 | if (!BN_one(r)) | ||
249 | goto err; | ||
250 | |||
251 | for (;;) { | ||
252 | if (BN_is_bit_set(q, wstart) == 0) { | ||
253 | if (!start) | ||
254 | if (!BN_mod_mul(r, r, r, m, ctx)) | ||
255 | goto err; | ||
256 | if (wstart == 0) | ||
257 | break; | ||
258 | wstart--; | ||
259 | continue; | ||
260 | } | ||
261 | /* We now have wstart on a 'set' bit, we now need to work out | ||
262 | * how bit a window to do. To do this we need to scan | ||
263 | * forward until the last set bit before the end of the | ||
264 | * window */ | ||
265 | j = wstart; | ||
266 | wvalue = 1; | ||
267 | wend = 0; | ||
268 | for (i = 1; i < window; i++) { | ||
269 | if (wstart - i < 0) | ||
270 | break; | ||
271 | if (BN_is_bit_set(q, wstart - i)) { | ||
272 | wvalue <<= (i - wend); | ||
273 | wvalue |= 1; | ||
274 | wend = i; | ||
275 | } | ||
276 | } | ||
277 | |||
278 | /* wend is the size of the current window */ | ||
279 | j = wend + 1; | ||
280 | /* add the 'bytes above' */ | ||
281 | if (!start) | ||
282 | for (i = 0; i < j; i++) { | ||
283 | if (!BN_mod_mul(r, r, r, m, ctx)) | ||
284 | goto err; | ||
285 | } | ||
286 | |||
287 | /* wvalue will be an odd number < 2^window */ | ||
288 | if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx)) | ||
289 | goto err; | ||
290 | |||
291 | /* move the 'window' down further */ | ||
292 | wstart -= wend + 1; | ||
293 | wvalue = 0; | ||
294 | start = 0; | ||
295 | if (wstart < 0) | ||
296 | break; | ||
297 | } | ||
298 | |||
299 | done: | ||
300 | ret = 1; | ||
301 | |||
302 | err: | ||
303 | BN_CTX_end(ctx); | ||
304 | |||
305 | return ret; | ||
306 | } | ||
307 | |||
308 | /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout | ||
309 | * so that accessing any of these table values shows the same access pattern as far | ||
310 | * as cache lines are concerned. The following functions are used to transfer a BIGNUM | ||
311 | * from/to that table. */ | ||
312 | |||
313 | static int | ||
314 | MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, unsigned char *buf, | ||
315 | int idx, int window) | ||
316 | { | ||
317 | int i, j; | ||
318 | int width = 1 << window; | ||
319 | BN_ULONG *table = (BN_ULONG *)buf; | ||
320 | |||
321 | if (top > b->top) | ||
322 | top = b->top; /* this works because 'buf' is explicitly zeroed */ | ||
323 | |||
324 | for (i = 0, j = idx; i < top; i++, j += width) { | ||
325 | table[j] = b->d[i]; | ||
326 | } | ||
327 | |||
328 | return 1; | ||
329 | } | ||
330 | |||
331 | static int | ||
332 | MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, | ||
333 | int window) | ||
334 | { | ||
335 | int i, j; | ||
336 | int width = 1 << window; | ||
337 | volatile BN_ULONG *table = (volatile BN_ULONG *)buf; | ||
338 | |||
339 | if (!bn_wexpand(b, top)) | ||
340 | return 0; | ||
341 | |||
342 | if (window <= 3) { | ||
343 | for (i = 0; i < top; i++, table += width) { | ||
344 | BN_ULONG acc = 0; | ||
345 | |||
346 | for (j = 0; j < width; j++) { | ||
347 | acc |= table[j] & | ||
348 | ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1)); | ||
349 | } | ||
350 | |||
351 | b->d[i] = acc; | ||
352 | } | ||
353 | } else { | ||
354 | int xstride = 1 << (window - 2); | ||
355 | BN_ULONG y0, y1, y2, y3; | ||
356 | |||
357 | i = idx >> (window - 2); /* equivalent of idx / xstride */ | ||
358 | idx &= xstride - 1; /* equivalent of idx % xstride */ | ||
359 | |||
360 | y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1); | ||
361 | y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1); | ||
362 | y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1); | ||
363 | y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1); | ||
364 | |||
365 | for (i = 0; i < top; i++, table += width) { | ||
366 | BN_ULONG acc = 0; | ||
367 | |||
368 | for (j = 0; j < xstride; j++) { | ||
369 | acc |= ( (table[j + 0 * xstride] & y0) | | ||
370 | (table[j + 1 * xstride] & y1) | | ||
371 | (table[j + 2 * xstride] & y2) | | ||
372 | (table[j + 3 * xstride] & y3) ) | ||
373 | & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1)); | ||
374 | } | ||
375 | |||
376 | b->d[i] = acc; | ||
377 | } | ||
378 | } | ||
379 | b->top = top; | ||
380 | bn_correct_top(b); | ||
381 | return 1; | ||
382 | } | ||
383 | |||
384 | /* Given a pointer value, compute the next address that is a cache line multiple. */ | ||
385 | #define MOD_EXP_CTIME_ALIGN(x_) \ | ||
386 | ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) | ||
387 | |||
388 | /* This variant of BN_mod_exp_mont() uses fixed windows and the special | ||
389 | * precomputation memory layout to limit data-dependency to a minimum | ||
390 | * to protect secret exponents (cf. the hyper-threading timing attacks | ||
391 | * pointed out by Colin Percival, | ||
392 | * http://www.daemonology.net/hyperthreading-considered-harmful/) | ||
393 | */ | ||
394 | int | ||
395 | BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
396 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
397 | { | ||
398 | int i, bits, ret = 0, window, wvalue; | ||
399 | int top; | ||
400 | BN_MONT_CTX *mont = NULL; | ||
401 | int numPowers; | ||
402 | unsigned char *powerbufFree = NULL; | ||
403 | int powerbufLen = 0; | ||
404 | unsigned char *powerbuf = NULL; | ||
405 | BIGNUM tmp, am; | ||
406 | |||
407 | |||
408 | if (!BN_is_odd(m)) { | ||
409 | BNerror(BN_R_CALLED_WITH_EVEN_MODULUS); | ||
410 | return (0); | ||
411 | } | ||
412 | |||
413 | top = m->top; | ||
414 | |||
415 | bits = BN_num_bits(p); | ||
416 | if (bits == 0) { | ||
417 | /* x**0 mod 1 is still zero. */ | ||
418 | if (BN_abs_is_word(m, 1)) { | ||
419 | ret = 1; | ||
420 | BN_zero(rr); | ||
421 | } else | ||
422 | ret = BN_one(rr); | ||
423 | return ret; | ||
424 | } | ||
425 | |||
426 | BN_CTX_start(ctx); | ||
427 | |||
428 | if ((mont = in_mont) == NULL) | ||
429 | mont = BN_MONT_CTX_create(m, ctx); | ||
430 | if (mont == NULL) | ||
431 | goto err; | ||
432 | |||
433 | /* Get the window size to use with size of p. */ | ||
434 | window = BN_window_bits_for_ctime_exponent_size(bits); | ||
435 | #if defined(OPENSSL_BN_ASM_MONT5) | ||
436 | if (window == 6 && bits <= 1024) | ||
437 | window = 5; /* ~5% improvement of 2048-bit RSA sign */ | ||
438 | #endif | ||
439 | |||
440 | /* Allocate a buffer large enough to hold all of the pre-computed | ||
441 | * powers of am, am itself and tmp. | ||
442 | */ | ||
443 | numPowers = 1 << window; | ||
444 | powerbufLen = sizeof(m->d[0]) * (top * numPowers + | ||
445 | ((2*top) > numPowers ? (2*top) : numPowers)); | ||
446 | if ((powerbufFree = calloc(powerbufLen + | ||
447 | MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH, 1)) == NULL) | ||
448 | goto err; | ||
449 | powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); | ||
450 | |||
451 | /* lay down tmp and am right after powers table */ | ||
452 | tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers); | ||
453 | am.d = tmp.d + top; | ||
454 | tmp.top = am.top = 0; | ||
455 | tmp.dmax = am.dmax = top; | ||
456 | tmp.neg = am.neg = 0; | ||
457 | tmp.flags = am.flags = BN_FLG_STATIC_DATA; | ||
458 | |||
459 | /* prepare a^0 in Montgomery domain */ | ||
460 | #if 1 | ||
461 | if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx)) | ||
462 | goto err; | ||
463 | #else | ||
464 | tmp.d[0] = (0 - m - >d[0]) & BN_MASK2; /* 2^(top*BN_BITS2) - m */ | ||
465 | for (i = 1; i < top; i++) | ||
466 | tmp.d[i] = (~m->d[i]) & BN_MASK2; | ||
467 | tmp.top = top; | ||
468 | #endif | ||
469 | |||
470 | /* prepare a^1 in Montgomery domain */ | ||
471 | if (!BN_nnmod(&am, a, m, ctx)) | ||
472 | goto err; | ||
473 | if (!BN_to_montgomery(&am, &am, mont, ctx)) | ||
474 | goto err; | ||
475 | |||
476 | #if defined(OPENSSL_BN_ASM_MONT5) | ||
477 | /* This optimization uses ideas from http://eprint.iacr.org/2011/239, | ||
478 | * specifically optimization of cache-timing attack countermeasures | ||
479 | * and pre-computation optimization. */ | ||
480 | |||
481 | /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as | ||
482 | * 512-bit RSA is hardly relevant, we omit it to spare size... */ | ||
483 | if (window == 5 && top > 1) { | ||
484 | void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, | ||
485 | const void *table, const BN_ULONG *np, | ||
486 | const BN_ULONG *n0, int num, int power); | ||
487 | void bn_scatter5(const BN_ULONG *inp, size_t num, | ||
488 | void *table, size_t power); | ||
489 | void bn_gather5(BN_ULONG *out, size_t num, | ||
490 | void *table, size_t power); | ||
491 | |||
492 | BN_ULONG *np = mont->N.d, *n0 = mont->n0; | ||
493 | |||
494 | /* BN_to_montgomery can contaminate words above .top | ||
495 | * [in BN_DEBUG[_DEBUG] build]... */ | ||
496 | for (i = am.top; i < top; i++) | ||
497 | am.d[i] = 0; | ||
498 | for (i = tmp.top; i < top; i++) | ||
499 | tmp.d[i] = 0; | ||
500 | |||
501 | bn_scatter5(tmp.d, top, powerbuf, 0); | ||
502 | bn_scatter5(am.d, am.top, powerbuf, 1); | ||
503 | bn_mul_mont(tmp.d, am.d, am.d, np, n0, top); | ||
504 | bn_scatter5(tmp.d, top, powerbuf, 2); | ||
505 | |||
506 | #if 0 | ||
507 | for (i = 3; i < 32; i++) { | ||
508 | /* Calculate a^i = a^(i-1) * a */ | ||
509 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
510 | n0, top, i - 1); | ||
511 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
512 | } | ||
513 | #else | ||
514 | /* same as above, but uses squaring for 1/2 of operations */ | ||
515 | for (i = 4; i < 32; i*=2) { | ||
516 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
517 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
518 | } | ||
519 | for (i = 3; i < 8; i += 2) { | ||
520 | int j; | ||
521 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
522 | n0, top, i - 1); | ||
523 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
524 | for (j = 2 * i; j < 32; j *= 2) { | ||
525 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
526 | bn_scatter5(tmp.d, top, powerbuf, j); | ||
527 | } | ||
528 | } | ||
529 | for (; i < 16; i += 2) { | ||
530 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
531 | n0, top, i - 1); | ||
532 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
533 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
534 | bn_scatter5(tmp.d, top, powerbuf, 2*i); | ||
535 | } | ||
536 | for (; i < 32; i += 2) { | ||
537 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
538 | n0, top, i - 1); | ||
539 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
540 | } | ||
541 | #endif | ||
542 | bits--; | ||
543 | for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) | ||
544 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
545 | bn_gather5(tmp.d, top, powerbuf, wvalue); | ||
546 | |||
547 | /* Scan the exponent one window at a time starting from the most | ||
548 | * significant bits. | ||
549 | */ | ||
550 | while (bits >= 0) { | ||
551 | for (wvalue = 0, i = 0; i < 5; i++, bits--) | ||
552 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
553 | |||
554 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
555 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
556 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
557 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
558 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
559 | bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); | ||
560 | } | ||
561 | |||
562 | tmp.top = top; | ||
563 | bn_correct_top(&tmp); | ||
564 | } else | ||
565 | #endif | ||
566 | { | ||
567 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, | ||
568 | window)) | ||
569 | goto err; | ||
570 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, | ||
571 | window)) | ||
572 | goto err; | ||
573 | |||
574 | /* If the window size is greater than 1, then calculate | ||
575 | * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) | ||
576 | * (even powers could instead be computed as (a^(i/2))^2 | ||
577 | * to use the slight performance advantage of sqr over mul). | ||
578 | */ | ||
579 | if (window > 1) { | ||
580 | if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) | ||
581 | goto err; | ||
582 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, | ||
583 | 2, window)) | ||
584 | goto err; | ||
585 | for (i = 3; i < numPowers; i++) { | ||
586 | /* Calculate a^i = a^(i-1) * a */ | ||
587 | if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, | ||
588 | mont, ctx)) | ||
589 | goto err; | ||
590 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, | ||
591 | powerbuf, i, window)) | ||
592 | goto err; | ||
593 | } | ||
594 | } | ||
595 | |||
596 | bits--; | ||
597 | for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) | ||
598 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
599 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, | ||
600 | wvalue, window)) | ||
601 | goto err; | ||
602 | |||
603 | /* Scan the exponent one window at a time starting from the most | ||
604 | * significant bits. | ||
605 | */ | ||
606 | while (bits >= 0) { | ||
607 | wvalue = 0; /* The 'value' of the window */ | ||
608 | |||
609 | /* Scan the window, squaring the result as we go */ | ||
610 | for (i = 0; i < window; i++, bits--) { | ||
611 | if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, | ||
612 | mont, ctx)) | ||
613 | goto err; | ||
614 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
615 | } | ||
616 | |||
617 | /* Fetch the appropriate pre-computed value from the pre-buf */ | ||
618 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, | ||
619 | wvalue, window)) | ||
620 | goto err; | ||
621 | |||
622 | /* Multiply the result into the intermediate result */ | ||
623 | if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) | ||
624 | goto err; | ||
625 | } | ||
626 | } | ||
627 | |||
628 | /* Convert the final result from montgomery to standard format */ | ||
629 | if (!BN_from_montgomery(rr, &tmp, mont, ctx)) | ||
630 | goto err; | ||
631 | |||
632 | ret = 1; | ||
633 | |||
634 | err: | ||
635 | if (mont != in_mont) | ||
636 | BN_MONT_CTX_free(mont); | ||
637 | BN_CTX_end(ctx); | ||
638 | freezero(powerbufFree, powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH); | ||
639 | |||
640 | return ret; | ||
641 | } | ||
642 | LCRYPTO_ALIAS(BN_mod_exp_mont_consttime); | ||
643 | |||
644 | static int | ||
645 | BN_mod_exp_mont_internal(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
646 | BN_CTX *ctx, BN_MONT_CTX *in_mont, int ct) | ||
647 | { | ||
648 | int i, j, bits, ret = 0, wstart, wend, window, wvalue; | ||
649 | int start = 1; | ||
650 | BIGNUM *d, *r; | ||
651 | const BIGNUM *aa; | ||
652 | /* Table of variables obtained from 'ctx' */ | ||
653 | BIGNUM *val[TABLE_SIZE]; | ||
654 | BN_MONT_CTX *mont = NULL; | ||
655 | |||
656 | if (ct) { | ||
657 | return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); | ||
658 | } | ||
659 | |||
660 | |||
661 | if (!BN_is_odd(m)) { | ||
662 | BNerror(BN_R_CALLED_WITH_EVEN_MODULUS); | ||
663 | return (0); | ||
664 | } | ||
665 | |||
666 | bits = BN_num_bits(p); | ||
667 | if (bits == 0) { | ||
668 | /* x**0 mod 1 is still zero. */ | ||
669 | if (BN_abs_is_word(m, 1)) { | ||
670 | ret = 1; | ||
671 | BN_zero(rr); | ||
672 | } else | ||
673 | ret = BN_one(rr); | ||
674 | return ret; | ||
675 | } | ||
676 | |||
677 | BN_CTX_start(ctx); | ||
678 | if ((d = BN_CTX_get(ctx)) == NULL) | ||
679 | goto err; | ||
680 | if ((r = BN_CTX_get(ctx)) == NULL) | ||
681 | goto err; | ||
682 | if ((val[0] = BN_CTX_get(ctx)) == NULL) | ||
683 | goto err; | ||
684 | |||
685 | if ((mont = in_mont) == NULL) | ||
686 | mont = BN_MONT_CTX_create(m, ctx); | ||
687 | if (mont == NULL) | ||
688 | goto err; | ||
689 | |||
690 | if (!BN_nnmod(val[0], a,m, ctx)) | ||
691 | goto err; | ||
692 | aa = val[0]; | ||
693 | if (BN_is_zero(aa)) { | ||
694 | BN_zero(rr); | ||
695 | ret = 1; | ||
696 | goto err; | ||
697 | } | ||
698 | if (!BN_to_montgomery(val[0], aa, mont, ctx)) | ||
699 | goto err; | ||
700 | |||
701 | window = BN_window_bits_for_exponent_size(bits); | ||
702 | if (window > 1) { | ||
703 | if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) | ||
704 | goto err; | ||
705 | j = 1 << (window - 1); | ||
706 | for (i = 1; i < j; i++) { | ||
707 | if (((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
708 | !BN_mod_mul_montgomery(val[i], val[i - 1], | ||
709 | d, mont, ctx)) | ||
710 | goto err; | ||
711 | } | ||
712 | } | ||
713 | |||
714 | start = 1; /* This is used to avoid multiplication etc | ||
715 | * when there is only the value '1' in the | ||
716 | * buffer. */ | ||
717 | wvalue = 0; /* The 'value' of the window */ | ||
718 | wstart = bits - 1; /* The top bit of the window */ | ||
719 | wend = 0; /* The bottom bit of the window */ | ||
720 | |||
721 | if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) | ||
722 | goto err; | ||
723 | for (;;) { | ||
724 | if (BN_is_bit_set(p, wstart) == 0) { | ||
725 | if (!start) { | ||
726 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) | ||
727 | goto err; | ||
728 | } | ||
729 | if (wstart == 0) | ||
730 | break; | ||
731 | wstart--; | ||
732 | continue; | ||
733 | } | ||
734 | /* We now have wstart on a 'set' bit, we now need to work out | ||
735 | * how bit a window to do. To do this we need to scan | ||
736 | * forward until the last set bit before the end of the | ||
737 | * window */ | ||
738 | j = wstart; | ||
739 | wvalue = 1; | ||
740 | wend = 0; | ||
741 | for (i = 1; i < window; i++) { | ||
742 | if (wstart - i < 0) | ||
743 | break; | ||
744 | if (BN_is_bit_set(p, wstart - i)) { | ||
745 | wvalue <<= (i - wend); | ||
746 | wvalue |= 1; | ||
747 | wend = i; | ||
748 | } | ||
749 | } | ||
750 | |||
751 | /* wend is the size of the current window */ | ||
752 | j = wend + 1; | ||
753 | /* add the 'bytes above' */ | ||
754 | if (!start) | ||
755 | for (i = 0; i < j; i++) { | ||
756 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) | ||
757 | goto err; | ||
758 | } | ||
759 | |||
760 | /* wvalue will be an odd number < 2^window */ | ||
761 | if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) | ||
762 | goto err; | ||
763 | |||
764 | /* move the 'window' down further */ | ||
765 | wstart -= wend + 1; | ||
766 | wvalue = 0; | ||
767 | start = 0; | ||
768 | if (wstart < 0) | ||
769 | break; | ||
770 | } | ||
771 | if (!BN_from_montgomery(rr, r,mont, ctx)) | ||
772 | goto err; | ||
773 | |||
774 | ret = 1; | ||
775 | |||
776 | err: | ||
777 | if (mont != in_mont) | ||
778 | BN_MONT_CTX_free(mont); | ||
779 | BN_CTX_end(ctx); | ||
780 | |||
781 | return ret; | ||
782 | } | ||
783 | |||
784 | int | ||
785 | BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
786 | BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
787 | { | ||
788 | return BN_mod_exp_mont_internal(rr, a, p, m, ctx, in_mont, | ||
789 | (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)); | ||
790 | } | ||
791 | LCRYPTO_ALIAS(BN_mod_exp_mont); | ||
792 | |||
793 | int | ||
794 | BN_mod_exp_mont_ct(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
795 | BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
796 | { | ||
797 | return BN_mod_exp_mont_internal(rr, a, p, m, ctx, in_mont, 1); | ||
798 | } | ||
799 | |||
800 | int | ||
801 | BN_mod_exp_mont_nonct(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
802 | BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
803 | { | ||
804 | return BN_mod_exp_mont_internal(rr, a, p, m, ctx, in_mont, 0); | ||
805 | } | ||
806 | |||
807 | int | ||
808 | BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, const BIGNUM *m, | ||
809 | BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
810 | { | ||
811 | BN_MONT_CTX *mont = NULL; | ||
812 | int b, bits, ret = 0; | ||
813 | int r_is_one; | ||
814 | BN_ULONG w, next_w; | ||
815 | BIGNUM *d, *r, *t; | ||
816 | BIGNUM *swap_tmp; | ||
817 | |||
818 | #define BN_MOD_MUL_WORD(r, w, m) \ | ||
819 | (BN_mul_word(r, (w)) && \ | ||
820 | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ | ||
821 | (BN_mod_ct(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) | ||
822 | /* BN_MOD_MUL_WORD is only used with 'w' large, | ||
823 | * so the BN_ucmp test is probably more overhead | ||
824 | * than always using BN_mod (which uses bn_copy if | ||
825 | * a similar test returns true). */ | ||
826 | /* We can use BN_mod and do not need BN_nnmod because our | ||
827 | * accumulator is never negative (the result of BN_mod does | ||
828 | * not depend on the sign of the modulus). | ||
829 | */ | ||
830 | #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ | ||
831 | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) | ||
832 | |||
833 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
834 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
835 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
836 | return -1; | ||
837 | } | ||
838 | |||
839 | |||
840 | if (!BN_is_odd(m)) { | ||
841 | BNerror(BN_R_CALLED_WITH_EVEN_MODULUS); | ||
842 | return (0); | ||
843 | } | ||
844 | if (m->top == 1) | ||
845 | a %= m->d[0]; /* make sure that 'a' is reduced */ | ||
846 | |||
847 | bits = BN_num_bits(p); | ||
848 | if (bits == 0) { | ||
849 | /* x**0 mod 1 is still zero. */ | ||
850 | if (BN_abs_is_word(m, 1)) { | ||
851 | ret = 1; | ||
852 | BN_zero(rr); | ||
853 | } else | ||
854 | ret = BN_one(rr); | ||
855 | return ret; | ||
856 | } | ||
857 | if (a == 0) { | ||
858 | BN_zero(rr); | ||
859 | ret = 1; | ||
860 | return ret; | ||
861 | } | ||
862 | |||
863 | BN_CTX_start(ctx); | ||
864 | if ((d = BN_CTX_get(ctx)) == NULL) | ||
865 | goto err; | ||
866 | if ((r = BN_CTX_get(ctx)) == NULL) | ||
867 | goto err; | ||
868 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
869 | goto err; | ||
870 | |||
871 | if ((mont = in_mont) == NULL) | ||
872 | mont = BN_MONT_CTX_create(m, ctx); | ||
873 | if (mont == NULL) | ||
874 | goto err; | ||
875 | |||
876 | r_is_one = 1; /* except for Montgomery factor */ | ||
877 | |||
878 | /* bits-1 >= 0 */ | ||
879 | |||
880 | /* The result is accumulated in the product r*w. */ | ||
881 | w = a; /* bit 'bits-1' of 'p' is always set */ | ||
882 | for (b = bits - 2; b >= 0; b--) { | ||
883 | /* First, square r*w. */ | ||
884 | next_w = w * w; | ||
885 | if ((next_w / w) != w) /* overflow */ | ||
886 | { | ||
887 | if (r_is_one) { | ||
888 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) | ||
889 | goto err; | ||
890 | r_is_one = 0; | ||
891 | } else { | ||
892 | if (!BN_MOD_MUL_WORD(r, w, m)) | ||
893 | goto err; | ||
894 | } | ||
895 | next_w = 1; | ||
896 | } | ||
897 | w = next_w; | ||
898 | if (!r_is_one) { | ||
899 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) | ||
900 | goto err; | ||
901 | } | ||
902 | |||
903 | /* Second, multiply r*w by 'a' if exponent bit is set. */ | ||
904 | if (BN_is_bit_set(p, b)) { | ||
905 | next_w = w * a; | ||
906 | if ((next_w / a) != w) /* overflow */ | ||
907 | { | ||
908 | if (r_is_one) { | ||
909 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) | ||
910 | goto err; | ||
911 | r_is_one = 0; | ||
912 | } else { | ||
913 | if (!BN_MOD_MUL_WORD(r, w, m)) | ||
914 | goto err; | ||
915 | } | ||
916 | next_w = a; | ||
917 | } | ||
918 | w = next_w; | ||
919 | } | ||
920 | } | ||
921 | |||
922 | /* Finally, set r:=r*w. */ | ||
923 | if (w != 1) { | ||
924 | if (r_is_one) { | ||
925 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) | ||
926 | goto err; | ||
927 | r_is_one = 0; | ||
928 | } else { | ||
929 | if (!BN_MOD_MUL_WORD(r, w, m)) | ||
930 | goto err; | ||
931 | } | ||
932 | } | ||
933 | |||
934 | if (r_is_one) /* can happen only if a == 1*/ | ||
935 | { | ||
936 | if (!BN_one(rr)) | ||
937 | goto err; | ||
938 | } else { | ||
939 | if (!BN_from_montgomery(rr, r, mont, ctx)) | ||
940 | goto err; | ||
941 | } | ||
942 | |||
943 | ret = 1; | ||
944 | |||
945 | err: | ||
946 | if (mont != in_mont) | ||
947 | BN_MONT_CTX_free(mont); | ||
948 | BN_CTX_end(ctx); | ||
949 | |||
950 | return ret; | ||
951 | } | ||
952 | |||
953 | int | ||
954 | BN_mod_exp_reciprocal(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
955 | BN_CTX *ctx) | ||
956 | { | ||
957 | int i, j, bits, wstart, wend, window, wvalue; | ||
958 | int start = 1; | ||
959 | BIGNUM *aa, *q; | ||
960 | /* Table of variables obtained from 'ctx' */ | ||
961 | BIGNUM *val[TABLE_SIZE]; | ||
962 | BN_RECP_CTX *recp = NULL; | ||
963 | int ret = 0; | ||
964 | |||
965 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
966 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
967 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
968 | return -1; | ||
969 | } | ||
970 | |||
971 | bits = BN_num_bits(p); | ||
972 | if (bits == 0) { | ||
973 | /* x**0 mod 1 is still zero. */ | ||
974 | if (BN_abs_is_word(m, 1)) { | ||
975 | ret = 1; | ||
976 | BN_zero(r); | ||
977 | } else | ||
978 | ret = BN_one(r); | ||
979 | return ret; | ||
980 | } | ||
981 | |||
982 | BN_CTX_start(ctx); | ||
983 | if ((aa = BN_CTX_get(ctx)) == NULL) | ||
984 | goto err; | ||
985 | if ((q = BN_CTX_get(ctx)) == NULL) | ||
986 | goto err; | ||
987 | if ((val[0] = BN_CTX_get(ctx)) == NULL) | ||
988 | goto err; | ||
989 | |||
990 | if ((recp = BN_RECP_CTX_create(m)) == NULL) | ||
991 | goto err; | ||
992 | |||
993 | if (!BN_nnmod(val[0], a, m, ctx)) | ||
994 | goto err; | ||
995 | if (BN_is_zero(val[0])) { | ||
996 | BN_zero(r); | ||
997 | goto done; | ||
998 | } | ||
999 | if (!bn_copy(q, p)) | ||
1000 | goto err; | ||
1001 | |||
1002 | window = BN_window_bits_for_exponent_size(bits); | ||
1003 | if (window > 1) { | ||
1004 | if (!BN_mod_sqr_reciprocal(aa, val[0], recp, ctx)) | ||
1005 | goto err; | ||
1006 | j = 1 << (window - 1); | ||
1007 | for (i = 1; i < j; i++) { | ||
1008 | if (((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
1009 | !BN_mod_mul_reciprocal(val[i], val[i - 1], | ||
1010 | aa, recp, ctx)) | ||
1011 | goto err; | ||
1012 | } | ||
1013 | } | ||
1014 | |||
1015 | start = 1; /* This is used to avoid multiplication etc | ||
1016 | * when there is only the value '1' in the | ||
1017 | * buffer. */ | ||
1018 | wvalue = 0; /* The 'value' of the window */ | ||
1019 | wstart = bits - 1; /* The top bit of the window */ | ||
1020 | wend = 0; /* The bottom bit of the window */ | ||
1021 | |||
1022 | if (!BN_one(r)) | ||
1023 | goto err; | ||
1024 | |||
1025 | for (;;) { | ||
1026 | if (BN_is_bit_set(q, wstart) == 0) { | ||
1027 | if (!start) | ||
1028 | if (!BN_mod_sqr_reciprocal(r, r, recp, ctx)) | ||
1029 | goto err; | ||
1030 | if (wstart == 0) | ||
1031 | break; | ||
1032 | wstart--; | ||
1033 | continue; | ||
1034 | } | ||
1035 | /* We now have wstart on a 'set' bit, we now need to work out | ||
1036 | * how bit a window to do. To do this we need to scan | ||
1037 | * forward until the last set bit before the end of the | ||
1038 | * window */ | ||
1039 | j = wstart; | ||
1040 | wvalue = 1; | ||
1041 | wend = 0; | ||
1042 | for (i = 1; i < window; i++) { | ||
1043 | if (wstart - i < 0) | ||
1044 | break; | ||
1045 | if (BN_is_bit_set(q, wstart - i)) { | ||
1046 | wvalue <<= (i - wend); | ||
1047 | wvalue |= 1; | ||
1048 | wend = i; | ||
1049 | } | ||
1050 | } | ||
1051 | |||
1052 | /* wend is the size of the current window */ | ||
1053 | j = wend + 1; | ||
1054 | /* add the 'bytes above' */ | ||
1055 | if (!start) | ||
1056 | for (i = 0; i < j; i++) { | ||
1057 | if (!BN_mod_sqr_reciprocal(r, r, recp, ctx)) | ||
1058 | goto err; | ||
1059 | } | ||
1060 | |||
1061 | /* wvalue will be an odd number < 2^window */ | ||
1062 | if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], recp, ctx)) | ||
1063 | goto err; | ||
1064 | |||
1065 | /* move the 'window' down further */ | ||
1066 | wstart -= wend + 1; | ||
1067 | wvalue = 0; | ||
1068 | start = 0; | ||
1069 | if (wstart < 0) | ||
1070 | break; | ||
1071 | } | ||
1072 | |||
1073 | done: | ||
1074 | ret = 1; | ||
1075 | |||
1076 | err: | ||
1077 | BN_CTX_end(ctx); | ||
1078 | BN_RECP_CTX_free(recp); | ||
1079 | |||
1080 | return ret; | ||
1081 | } | ||
1082 | |||
1083 | static int | ||
1084 | BN_mod_exp_internal(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
1085 | BN_CTX *ctx, int ct) | ||
1086 | { | ||
1087 | int ret; | ||
1088 | |||
1089 | |||
1090 | /* For even modulus m = 2^k*m_odd, it might make sense to compute | ||
1091 | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery | ||
1092 | * exponentiation for the odd part), using appropriate exponent | ||
1093 | * reductions, and combine the results using the CRT. | ||
1094 | * | ||
1095 | * For now, we use Montgomery only if the modulus is odd; otherwise, | ||
1096 | * exponentiation using the reciprocal-based quick remaindering | ||
1097 | * algorithm is used. | ||
1098 | * | ||
1099 | * (Timing obtained with expspeed.c [computations a^p mod m | ||
1100 | * where a, p, m are of the same length: 256, 512, 1024, 2048, | ||
1101 | * 4096, 8192 bits], compared to the running time of the | ||
1102 | * standard algorithm: | ||
1103 | * | ||
1104 | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] | ||
1105 | * 55 .. 77 % [UltraSparc processor, but | ||
1106 | * debug-solaris-sparcv8-gcc conf.] | ||
1107 | * | ||
1108 | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] | ||
1109 | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] | ||
1110 | * | ||
1111 | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont | ||
1112 | * at 2048 and more bits, but at 512 and 1024 bits, it was | ||
1113 | * slower even than the standard algorithm! | ||
1114 | * | ||
1115 | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] | ||
1116 | * should be obtained when the new Montgomery reduction code | ||
1117 | * has been integrated into OpenSSL.) | ||
1118 | */ | ||
1119 | |||
1120 | if (BN_is_odd(m)) { | ||
1121 | if (a->top == 1 && !a->neg && !ct) { | ||
1122 | BN_ULONG A = a->d[0]; | ||
1123 | ret = BN_mod_exp_mont_word(r, A,p, m,ctx, NULL); | ||
1124 | } else | ||
1125 | ret = BN_mod_exp_mont_ct(r, a,p, m,ctx, NULL); | ||
1126 | } else { | ||
1127 | ret = BN_mod_exp_reciprocal(r, a,p, m, ctx); | ||
1128 | } | ||
1129 | |||
1130 | return (ret); | ||
1131 | } | ||
1132 | |||
1133 | int | ||
1134 | BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
1135 | BN_CTX *ctx) | ||
1136 | { | ||
1137 | return BN_mod_exp_internal(r, a, p, m, ctx, | ||
1138 | (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)); | ||
1139 | } | ||
1140 | LCRYPTO_ALIAS(BN_mod_exp); | ||
1141 | |||
1142 | int | ||
1143 | BN_mod_exp_ct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
1144 | BN_CTX *ctx) | ||
1145 | { | ||
1146 | return BN_mod_exp_internal(r, a, p, m, ctx, 1); | ||
1147 | } | ||
1148 | |||
1149 | int | ||
1150 | BN_mod_exp_nonct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
1151 | BN_CTX *ctx) | ||
1152 | { | ||
1153 | return BN_mod_exp_internal(r, a, p, m, ctx, 0); | ||
1154 | } | ||
1155 | |||
1156 | int | ||
1157 | BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1, | ||
1158 | const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, BN_CTX *ctx, | ||
1159 | BN_MONT_CTX *in_mont) | ||
1160 | { | ||
1161 | int i, j, bits, b, bits1, bits2, ret = 0, wpos1, wpos2, window1, window2, wvalue1, wvalue2; | ||
1162 | int r_is_one = 1; | ||
1163 | BIGNUM *d, *r; | ||
1164 | const BIGNUM *a_mod_m; | ||
1165 | /* Tables of variables obtained from 'ctx' */ | ||
1166 | BIGNUM *val1[TABLE_SIZE], *val2[TABLE_SIZE]; | ||
1167 | BN_MONT_CTX *mont = NULL; | ||
1168 | |||
1169 | |||
1170 | if (!BN_is_odd(m)) { | ||
1171 | BNerror(BN_R_CALLED_WITH_EVEN_MODULUS); | ||
1172 | return (0); | ||
1173 | } | ||
1174 | bits1 = BN_num_bits(p1); | ||
1175 | bits2 = BN_num_bits(p2); | ||
1176 | if ((bits1 == 0) && (bits2 == 0)) { | ||
1177 | ret = BN_one(rr); | ||
1178 | return ret; | ||
1179 | } | ||
1180 | |||
1181 | bits = (bits1 > bits2) ? bits1 : bits2; | ||
1182 | |||
1183 | BN_CTX_start(ctx); | ||
1184 | if ((d = BN_CTX_get(ctx)) == NULL) | ||
1185 | goto err; | ||
1186 | if ((r = BN_CTX_get(ctx)) == NULL) | ||
1187 | goto err; | ||
1188 | if ((val1[0] = BN_CTX_get(ctx)) == NULL) | ||
1189 | goto err; | ||
1190 | if ((val2[0] = BN_CTX_get(ctx)) == NULL) | ||
1191 | goto err; | ||
1192 | |||
1193 | if ((mont = in_mont) == NULL) | ||
1194 | mont = BN_MONT_CTX_create(m, ctx); | ||
1195 | if (mont == NULL) | ||
1196 | goto err; | ||
1197 | |||
1198 | window1 = BN_window_bits_for_exponent_size(bits1); | ||
1199 | window2 = BN_window_bits_for_exponent_size(bits2); | ||
1200 | |||
1201 | /* | ||
1202 | * Build table for a1: val1[i] := a1^(2*i + 1) mod m for i = 0 .. 2^(window1-1) | ||
1203 | */ | ||
1204 | if (!BN_nnmod(val1[0], a1, m, ctx)) | ||
1205 | goto err; | ||
1206 | a_mod_m = val1[0]; | ||
1207 | if (BN_is_zero(a_mod_m)) { | ||
1208 | BN_zero(rr); | ||
1209 | ret = 1; | ||
1210 | goto err; | ||
1211 | } | ||
1212 | |||
1213 | if (!BN_to_montgomery(val1[0], a_mod_m, mont, ctx)) | ||
1214 | goto err; | ||
1215 | if (window1 > 1) { | ||
1216 | if (!BN_mod_mul_montgomery(d, val1[0], val1[0], mont, ctx)) | ||
1217 | goto err; | ||
1218 | |||
1219 | j = 1 << (window1 - 1); | ||
1220 | for (i = 1; i < j; i++) { | ||
1221 | if (((val1[i] = BN_CTX_get(ctx)) == NULL) || | ||
1222 | !BN_mod_mul_montgomery(val1[i], val1[i - 1], | ||
1223 | d, mont, ctx)) | ||
1224 | goto err; | ||
1225 | } | ||
1226 | } | ||
1227 | |||
1228 | |||
1229 | /* | ||
1230 | * Build table for a2: val2[i] := a2^(2*i + 1) mod m for i = 0 .. 2^(window2-1) | ||
1231 | */ | ||
1232 | if (!BN_nnmod(val2[0], a2, m, ctx)) | ||
1233 | goto err; | ||
1234 | a_mod_m = val2[0]; | ||
1235 | if (BN_is_zero(a_mod_m)) { | ||
1236 | BN_zero(rr); | ||
1237 | ret = 1; | ||
1238 | goto err; | ||
1239 | } | ||
1240 | if (!BN_to_montgomery(val2[0], a_mod_m, mont, ctx)) | ||
1241 | goto err; | ||
1242 | if (window2 > 1) { | ||
1243 | if (!BN_mod_mul_montgomery(d, val2[0], val2[0], mont, ctx)) | ||
1244 | goto err; | ||
1245 | |||
1246 | j = 1 << (window2 - 1); | ||
1247 | for (i = 1; i < j; i++) { | ||
1248 | if (((val2[i] = BN_CTX_get(ctx)) == NULL) || | ||
1249 | !BN_mod_mul_montgomery(val2[i], val2[i - 1], | ||
1250 | d, mont, ctx)) | ||
1251 | goto err; | ||
1252 | } | ||
1253 | } | ||
1254 | |||
1255 | |||
1256 | /* Now compute the power product, using independent windows. */ | ||
1257 | r_is_one = 1; | ||
1258 | wvalue1 = 0; /* The 'value' of the first window */ | ||
1259 | wvalue2 = 0; /* The 'value' of the second window */ | ||
1260 | wpos1 = 0; /* If wvalue1 > 0, the bottom bit of the first window */ | ||
1261 | wpos2 = 0; /* If wvalue2 > 0, the bottom bit of the second window */ | ||
1262 | |||
1263 | if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) | ||
1264 | goto err; | ||
1265 | for (b = bits - 1; b >= 0; b--) { | ||
1266 | if (!r_is_one) { | ||
1267 | if (!BN_mod_mul_montgomery(r, r,r, mont, ctx)) | ||
1268 | goto err; | ||
1269 | } | ||
1270 | |||
1271 | if (!wvalue1) | ||
1272 | if (BN_is_bit_set(p1, b)) { | ||
1273 | /* consider bits b-window1+1 .. b for this window */ | ||
1274 | i = b - window1 + 1; | ||
1275 | while (!BN_is_bit_set(p1, i)) /* works for i<0 */ | ||
1276 | i++; | ||
1277 | wpos1 = i; | ||
1278 | wvalue1 = 1; | ||
1279 | for (i = b - 1; i >= wpos1; i--) { | ||
1280 | wvalue1 <<= 1; | ||
1281 | if (BN_is_bit_set(p1, i)) | ||
1282 | wvalue1++; | ||
1283 | } | ||
1284 | } | ||
1285 | |||
1286 | if (!wvalue2) | ||
1287 | if (BN_is_bit_set(p2, b)) { | ||
1288 | /* consider bits b-window2+1 .. b for this window */ | ||
1289 | i = b - window2 + 1; | ||
1290 | while (!BN_is_bit_set(p2, i)) | ||
1291 | i++; | ||
1292 | wpos2 = i; | ||
1293 | wvalue2 = 1; | ||
1294 | for (i = b - 1; i >= wpos2; i--) { | ||
1295 | wvalue2 <<= 1; | ||
1296 | if (BN_is_bit_set(p2, i)) | ||
1297 | wvalue2++; | ||
1298 | } | ||
1299 | } | ||
1300 | |||
1301 | if (wvalue1 && b == wpos1) { | ||
1302 | /* wvalue1 is odd and < 2^window1 */ | ||
1303 | if (!BN_mod_mul_montgomery(r, r, val1[wvalue1 >> 1], | ||
1304 | mont, ctx)) | ||
1305 | goto err; | ||
1306 | wvalue1 = 0; | ||
1307 | r_is_one = 0; | ||
1308 | } | ||
1309 | |||
1310 | if (wvalue2 && b == wpos2) { | ||
1311 | /* wvalue2 is odd and < 2^window2 */ | ||
1312 | if (!BN_mod_mul_montgomery(r, r, val2[wvalue2 >> 1], | ||
1313 | mont, ctx)) | ||
1314 | goto err; | ||
1315 | wvalue2 = 0; | ||
1316 | r_is_one = 0; | ||
1317 | } | ||
1318 | } | ||
1319 | if (!BN_from_montgomery(rr, r,mont, ctx)) | ||
1320 | goto err; | ||
1321 | |||
1322 | ret = 1; | ||
1323 | |||
1324 | err: | ||
1325 | if (mont != in_mont) | ||
1326 | BN_MONT_CTX_free(mont); | ||
1327 | BN_CTX_end(ctx); | ||
1328 | |||
1329 | return ret; | ||
1330 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_gcd.c b/src/lib/libcrypto/bn/bn_gcd.c deleted file mode 100644 index fa5d71a7f3..0000000000 --- a/src/lib/libcrypto/bn/bn_gcd.c +++ /dev/null | |||
@@ -1,818 +0,0 @@ | |||
1 | /* $OpenBSD: bn_gcd.c,v 1.29 2024/04/10 14:58:06 beck Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include <openssl/err.h> | ||
113 | |||
114 | #include "bn_local.h" | ||
115 | |||
116 | static BIGNUM * | ||
117 | euclid(BIGNUM *a, BIGNUM *b) | ||
118 | { | ||
119 | BIGNUM *t; | ||
120 | int shifts = 0; | ||
121 | |||
122 | /* Loop invariant: 0 <= b <= a. */ | ||
123 | while (!BN_is_zero(b)) { | ||
124 | if (BN_is_odd(a) && BN_is_odd(b)) { | ||
125 | if (!BN_sub(a, a, b)) | ||
126 | goto err; | ||
127 | if (!BN_rshift1(a, a)) | ||
128 | goto err; | ||
129 | } else if (BN_is_odd(a) && !BN_is_odd(b)) { | ||
130 | if (!BN_rshift1(b, b)) | ||
131 | goto err; | ||
132 | } else if (!BN_is_odd(a) && BN_is_odd(b)) { | ||
133 | if (!BN_rshift1(a, a)) | ||
134 | goto err; | ||
135 | } else { | ||
136 | if (!BN_rshift1(a, a)) | ||
137 | goto err; | ||
138 | if (!BN_rshift1(b, b)) | ||
139 | goto err; | ||
140 | shifts++; | ||
141 | continue; | ||
142 | } | ||
143 | |||
144 | if (BN_cmp(a, b) < 0) { | ||
145 | t = a; | ||
146 | a = b; | ||
147 | b = t; | ||
148 | } | ||
149 | } | ||
150 | |||
151 | if (shifts) { | ||
152 | if (!BN_lshift(a, a, shifts)) | ||
153 | goto err; | ||
154 | } | ||
155 | |||
156 | return a; | ||
157 | |||
158 | err: | ||
159 | return NULL; | ||
160 | } | ||
161 | |||
162 | int | ||
163 | BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) | ||
164 | { | ||
165 | BIGNUM *a, *b, *t; | ||
166 | int ret = 0; | ||
167 | |||
168 | BN_CTX_start(ctx); | ||
169 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
170 | goto err; | ||
171 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
172 | goto err; | ||
173 | |||
174 | if (!bn_copy(a, in_a)) | ||
175 | goto err; | ||
176 | if (!bn_copy(b, in_b)) | ||
177 | goto err; | ||
178 | a->neg = 0; | ||
179 | b->neg = 0; | ||
180 | |||
181 | if (BN_cmp(a, b) < 0) { | ||
182 | t = a; | ||
183 | a = b; | ||
184 | b = t; | ||
185 | } | ||
186 | t = euclid(a, b); | ||
187 | if (t == NULL) | ||
188 | goto err; | ||
189 | |||
190 | if (!bn_copy(r, t)) | ||
191 | goto err; | ||
192 | ret = 1; | ||
193 | |||
194 | err: | ||
195 | BN_CTX_end(ctx); | ||
196 | return (ret); | ||
197 | } | ||
198 | LCRYPTO_ALIAS(BN_gcd); | ||
199 | |||
200 | /* | ||
201 | * BN_gcd_no_branch is a special version of BN_mod_inverse_no_branch. | ||
202 | * that returns the GCD. | ||
203 | */ | ||
204 | static BIGNUM * | ||
205 | BN_gcd_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, | ||
206 | BN_CTX *ctx) | ||
207 | { | ||
208 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; | ||
209 | BIGNUM local_A, local_B; | ||
210 | BIGNUM *pA, *pB; | ||
211 | BIGNUM *ret = NULL; | ||
212 | int sign; | ||
213 | |||
214 | if (in == NULL) | ||
215 | goto err; | ||
216 | R = in; | ||
217 | |||
218 | BN_init(&local_A); | ||
219 | BN_init(&local_B); | ||
220 | |||
221 | BN_CTX_start(ctx); | ||
222 | if ((A = BN_CTX_get(ctx)) == NULL) | ||
223 | goto err; | ||
224 | if ((B = BN_CTX_get(ctx)) == NULL) | ||
225 | goto err; | ||
226 | if ((X = BN_CTX_get(ctx)) == NULL) | ||
227 | goto err; | ||
228 | if ((D = BN_CTX_get(ctx)) == NULL) | ||
229 | goto err; | ||
230 | if ((M = BN_CTX_get(ctx)) == NULL) | ||
231 | goto err; | ||
232 | if ((Y = BN_CTX_get(ctx)) == NULL) | ||
233 | goto err; | ||
234 | if ((T = BN_CTX_get(ctx)) == NULL) | ||
235 | goto err; | ||
236 | |||
237 | if (!BN_one(X)) | ||
238 | goto err; | ||
239 | BN_zero(Y); | ||
240 | if (!bn_copy(B, a)) | ||
241 | goto err; | ||
242 | if (!bn_copy(A, n)) | ||
243 | goto err; | ||
244 | A->neg = 0; | ||
245 | |||
246 | if (B->neg || (BN_ucmp(B, A) >= 0)) { | ||
247 | /* | ||
248 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
249 | * BN_div_no_branch will be called eventually. | ||
250 | */ | ||
251 | pB = &local_B; | ||
252 | /* BN_init() done at the top of the function. */ | ||
253 | BN_with_flags(pB, B, BN_FLG_CONSTTIME); | ||
254 | if (!BN_nnmod(B, pB, A, ctx)) | ||
255 | goto err; | ||
256 | } | ||
257 | sign = -1; | ||
258 | /* From B = a mod |n|, A = |n| it follows that | ||
259 | * | ||
260 | * 0 <= B < A, | ||
261 | * -sign*X*a == B (mod |n|), | ||
262 | * sign*Y*a == A (mod |n|). | ||
263 | */ | ||
264 | |||
265 | while (!BN_is_zero(B)) { | ||
266 | BIGNUM *tmp; | ||
267 | |||
268 | /* | ||
269 | * 0 < B < A, | ||
270 | * (*) -sign*X*a == B (mod |n|), | ||
271 | * sign*Y*a == A (mod |n|) | ||
272 | */ | ||
273 | |||
274 | /* | ||
275 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
276 | * BN_div_no_branch will be called eventually. | ||
277 | */ | ||
278 | pA = &local_A; | ||
279 | /* BN_init() done at the top of the function. */ | ||
280 | BN_with_flags(pA, A, BN_FLG_CONSTTIME); | ||
281 | |||
282 | /* (D, M) := (A/B, A%B) ... */ | ||
283 | if (!BN_div_ct(D, M, pA, B, ctx)) | ||
284 | goto err; | ||
285 | |||
286 | /* Now | ||
287 | * A = D*B + M; | ||
288 | * thus we have | ||
289 | * (**) sign*Y*a == D*B + M (mod |n|). | ||
290 | */ | ||
291 | tmp = A; /* keep the BIGNUM object, the value does not matter */ | ||
292 | |||
293 | /* (A, B) := (B, A mod B) ... */ | ||
294 | A = B; | ||
295 | B = M; | ||
296 | /* ... so we have 0 <= B < A again */ | ||
297 | |||
298 | /* Since the former M is now B and the former B is now A, | ||
299 | * (**) translates into | ||
300 | * sign*Y*a == D*A + B (mod |n|), | ||
301 | * i.e. | ||
302 | * sign*Y*a - D*A == B (mod |n|). | ||
303 | * Similarly, (*) translates into | ||
304 | * -sign*X*a == A (mod |n|). | ||
305 | * | ||
306 | * Thus, | ||
307 | * sign*Y*a + D*sign*X*a == B (mod |n|), | ||
308 | * i.e. | ||
309 | * sign*(Y + D*X)*a == B (mod |n|). | ||
310 | * | ||
311 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | ||
312 | * -sign*X*a == B (mod |n|), | ||
313 | * sign*Y*a == A (mod |n|). | ||
314 | * Note that X and Y stay non-negative all the time. | ||
315 | */ | ||
316 | |||
317 | if (!BN_mul(tmp, D, X, ctx)) | ||
318 | goto err; | ||
319 | if (!BN_add(tmp, tmp, Y)) | ||
320 | goto err; | ||
321 | |||
322 | M = Y; /* keep the BIGNUM object, the value does not matter */ | ||
323 | Y = X; | ||
324 | X = tmp; | ||
325 | sign = -sign; | ||
326 | } | ||
327 | |||
328 | /* | ||
329 | * The while loop (Euclid's algorithm) ends when | ||
330 | * A == gcd(a,n); | ||
331 | */ | ||
332 | |||
333 | if (!bn_copy(R, A)) | ||
334 | goto err; | ||
335 | ret = R; | ||
336 | err: | ||
337 | if ((ret == NULL) && (in == NULL)) | ||
338 | BN_free(R); | ||
339 | BN_CTX_end(ctx); | ||
340 | return (ret); | ||
341 | } | ||
342 | |||
343 | int | ||
344 | BN_gcd_ct(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) | ||
345 | { | ||
346 | if (BN_gcd_no_branch(r, in_a, in_b, ctx) == NULL) | ||
347 | return 0; | ||
348 | return 1; | ||
349 | } | ||
350 | |||
351 | /* BN_mod_inverse_no_branch is a special version of BN_mod_inverse. | ||
352 | * It does not contain branches that may leak sensitive information. | ||
353 | */ | ||
354 | static BIGNUM * | ||
355 | BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, | ||
356 | BN_CTX *ctx) | ||
357 | { | ||
358 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; | ||
359 | BIGNUM local_A, local_B; | ||
360 | BIGNUM *pA, *pB; | ||
361 | BIGNUM *ret = NULL; | ||
362 | int sign; | ||
363 | |||
364 | BN_init(&local_A); | ||
365 | BN_init(&local_B); | ||
366 | |||
367 | BN_CTX_start(ctx); | ||
368 | if ((A = BN_CTX_get(ctx)) == NULL) | ||
369 | goto err; | ||
370 | if ((B = BN_CTX_get(ctx)) == NULL) | ||
371 | goto err; | ||
372 | if ((X = BN_CTX_get(ctx)) == NULL) | ||
373 | goto err; | ||
374 | if ((D = BN_CTX_get(ctx)) == NULL) | ||
375 | goto err; | ||
376 | if ((M = BN_CTX_get(ctx)) == NULL) | ||
377 | goto err; | ||
378 | if ((Y = BN_CTX_get(ctx)) == NULL) | ||
379 | goto err; | ||
380 | if ((T = BN_CTX_get(ctx)) == NULL) | ||
381 | goto err; | ||
382 | |||
383 | if (in == NULL) | ||
384 | R = BN_new(); | ||
385 | else | ||
386 | R = in; | ||
387 | if (R == NULL) | ||
388 | goto err; | ||
389 | |||
390 | if (!BN_one(X)) | ||
391 | goto err; | ||
392 | BN_zero(Y); | ||
393 | if (!bn_copy(B, a)) | ||
394 | goto err; | ||
395 | if (!bn_copy(A, n)) | ||
396 | goto err; | ||
397 | A->neg = 0; | ||
398 | |||
399 | if (B->neg || (BN_ucmp(B, A) >= 0)) { | ||
400 | /* | ||
401 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
402 | * BN_div_no_branch will be called eventually. | ||
403 | */ | ||
404 | pB = &local_B; | ||
405 | /* BN_init() done at the top of the function. */ | ||
406 | BN_with_flags(pB, B, BN_FLG_CONSTTIME); | ||
407 | if (!BN_nnmod(B, pB, A, ctx)) | ||
408 | goto err; | ||
409 | } | ||
410 | sign = -1; | ||
411 | /* From B = a mod |n|, A = |n| it follows that | ||
412 | * | ||
413 | * 0 <= B < A, | ||
414 | * -sign*X*a == B (mod |n|), | ||
415 | * sign*Y*a == A (mod |n|). | ||
416 | */ | ||
417 | |||
418 | while (!BN_is_zero(B)) { | ||
419 | BIGNUM *tmp; | ||
420 | |||
421 | /* | ||
422 | * 0 < B < A, | ||
423 | * (*) -sign*X*a == B (mod |n|), | ||
424 | * sign*Y*a == A (mod |n|) | ||
425 | */ | ||
426 | |||
427 | /* | ||
428 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
429 | * BN_div_no_branch will be called eventually. | ||
430 | */ | ||
431 | pA = &local_A; | ||
432 | /* BN_init() done at the top of the function. */ | ||
433 | BN_with_flags(pA, A, BN_FLG_CONSTTIME); | ||
434 | |||
435 | /* (D, M) := (A/B, A%B) ... */ | ||
436 | if (!BN_div_ct(D, M, pA, B, ctx)) | ||
437 | goto err; | ||
438 | |||
439 | /* Now | ||
440 | * A = D*B + M; | ||
441 | * thus we have | ||
442 | * (**) sign*Y*a == D*B + M (mod |n|). | ||
443 | */ | ||
444 | tmp = A; /* keep the BIGNUM object, the value does not matter */ | ||
445 | |||
446 | /* (A, B) := (B, A mod B) ... */ | ||
447 | A = B; | ||
448 | B = M; | ||
449 | /* ... so we have 0 <= B < A again */ | ||
450 | |||
451 | /* Since the former M is now B and the former B is now A, | ||
452 | * (**) translates into | ||
453 | * sign*Y*a == D*A + B (mod |n|), | ||
454 | * i.e. | ||
455 | * sign*Y*a - D*A == B (mod |n|). | ||
456 | * Similarly, (*) translates into | ||
457 | * -sign*X*a == A (mod |n|). | ||
458 | * | ||
459 | * Thus, | ||
460 | * sign*Y*a + D*sign*X*a == B (mod |n|), | ||
461 | * i.e. | ||
462 | * sign*(Y + D*X)*a == B (mod |n|). | ||
463 | * | ||
464 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | ||
465 | * -sign*X*a == B (mod |n|), | ||
466 | * sign*Y*a == A (mod |n|). | ||
467 | * Note that X and Y stay non-negative all the time. | ||
468 | */ | ||
469 | |||
470 | if (!BN_mul(tmp, D, X, ctx)) | ||
471 | goto err; | ||
472 | if (!BN_add(tmp, tmp, Y)) | ||
473 | goto err; | ||
474 | |||
475 | M = Y; /* keep the BIGNUM object, the value does not matter */ | ||
476 | Y = X; | ||
477 | X = tmp; | ||
478 | sign = -sign; | ||
479 | } | ||
480 | |||
481 | /* | ||
482 | * The while loop (Euclid's algorithm) ends when | ||
483 | * A == gcd(a,n); | ||
484 | * we have | ||
485 | * sign*Y*a == A (mod |n|), | ||
486 | * where Y is non-negative. | ||
487 | */ | ||
488 | |||
489 | if (sign < 0) { | ||
490 | if (!BN_sub(Y, n, Y)) | ||
491 | goto err; | ||
492 | } | ||
493 | /* Now Y*a == A (mod |n|). */ | ||
494 | |||
495 | if (!BN_is_one(A)) { | ||
496 | BNerror(BN_R_NO_INVERSE); | ||
497 | goto err; | ||
498 | } | ||
499 | |||
500 | if (!BN_nnmod(Y, Y, n, ctx)) | ||
501 | goto err; | ||
502 | if (!bn_copy(R, Y)) | ||
503 | goto err; | ||
504 | |||
505 | ret = R; | ||
506 | |||
507 | err: | ||
508 | if ((ret == NULL) && (in == NULL)) | ||
509 | BN_free(R); | ||
510 | BN_CTX_end(ctx); | ||
511 | return (ret); | ||
512 | } | ||
513 | |||
514 | /* solves ax == 1 (mod n) */ | ||
515 | static BIGNUM * | ||
516 | BN_mod_inverse_internal(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, | ||
517 | int ct) | ||
518 | { | ||
519 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; | ||
520 | BIGNUM *ret = NULL; | ||
521 | int sign; | ||
522 | |||
523 | if (ct) | ||
524 | return BN_mod_inverse_no_branch(in, a, n, ctx); | ||
525 | |||
526 | BN_CTX_start(ctx); | ||
527 | if ((A = BN_CTX_get(ctx)) == NULL) | ||
528 | goto err; | ||
529 | if ((B = BN_CTX_get(ctx)) == NULL) | ||
530 | goto err; | ||
531 | if ((X = BN_CTX_get(ctx)) == NULL) | ||
532 | goto err; | ||
533 | if ((D = BN_CTX_get(ctx)) == NULL) | ||
534 | goto err; | ||
535 | if ((M = BN_CTX_get(ctx)) == NULL) | ||
536 | goto err; | ||
537 | if ((Y = BN_CTX_get(ctx)) == NULL) | ||
538 | goto err; | ||
539 | if ((T = BN_CTX_get(ctx)) == NULL) | ||
540 | goto err; | ||
541 | |||
542 | if (in == NULL) | ||
543 | R = BN_new(); | ||
544 | else | ||
545 | R = in; | ||
546 | if (R == NULL) | ||
547 | goto err; | ||
548 | |||
549 | if (!BN_one(X)) | ||
550 | goto err; | ||
551 | BN_zero(Y); | ||
552 | if (!bn_copy(B, a)) | ||
553 | goto err; | ||
554 | if (!bn_copy(A, n)) | ||
555 | goto err; | ||
556 | A->neg = 0; | ||
557 | if (B->neg || (BN_ucmp(B, A) >= 0)) { | ||
558 | if (!BN_nnmod(B, B, A, ctx)) | ||
559 | goto err; | ||
560 | } | ||
561 | sign = -1; | ||
562 | /* From B = a mod |n|, A = |n| it follows that | ||
563 | * | ||
564 | * 0 <= B < A, | ||
565 | * -sign*X*a == B (mod |n|), | ||
566 | * sign*Y*a == A (mod |n|). | ||
567 | */ | ||
568 | |||
569 | if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) { | ||
570 | /* Binary inversion algorithm; requires odd modulus. | ||
571 | * This is faster than the general algorithm if the modulus | ||
572 | * is sufficiently small (about 400 .. 500 bits on 32-bit | ||
573 | * systems, but much more on 64-bit systems) */ | ||
574 | int shift; | ||
575 | |||
576 | while (!BN_is_zero(B)) { | ||
577 | /* | ||
578 | * 0 < B < |n|, | ||
579 | * 0 < A <= |n|, | ||
580 | * (1) -sign*X*a == B (mod |n|), | ||
581 | * (2) sign*Y*a == A (mod |n|) | ||
582 | */ | ||
583 | |||
584 | /* Now divide B by the maximum possible power of two in the integers, | ||
585 | * and divide X by the same value mod |n|. | ||
586 | * When we're done, (1) still holds. */ | ||
587 | shift = 0; | ||
588 | while (!BN_is_bit_set(B, shift)) /* note that 0 < B */ | ||
589 | { | ||
590 | shift++; | ||
591 | |||
592 | if (BN_is_odd(X)) { | ||
593 | if (!BN_uadd(X, X, n)) | ||
594 | goto err; | ||
595 | } | ||
596 | /* now X is even, so we can easily divide it by two */ | ||
597 | if (!BN_rshift1(X, X)) | ||
598 | goto err; | ||
599 | } | ||
600 | if (shift > 0) { | ||
601 | if (!BN_rshift(B, B, shift)) | ||
602 | goto err; | ||
603 | } | ||
604 | |||
605 | /* Same for A and Y. Afterwards, (2) still holds. */ | ||
606 | shift = 0; | ||
607 | while (!BN_is_bit_set(A, shift)) /* note that 0 < A */ | ||
608 | { | ||
609 | shift++; | ||
610 | |||
611 | if (BN_is_odd(Y)) { | ||
612 | if (!BN_uadd(Y, Y, n)) | ||
613 | goto err; | ||
614 | } | ||
615 | /* now Y is even */ | ||
616 | if (!BN_rshift1(Y, Y)) | ||
617 | goto err; | ||
618 | } | ||
619 | if (shift > 0) { | ||
620 | if (!BN_rshift(A, A, shift)) | ||
621 | goto err; | ||
622 | } | ||
623 | |||
624 | /* We still have (1) and (2). | ||
625 | * Both A and B are odd. | ||
626 | * The following computations ensure that | ||
627 | * | ||
628 | * 0 <= B < |n|, | ||
629 | * 0 < A < |n|, | ||
630 | * (1) -sign*X*a == B (mod |n|), | ||
631 | * (2) sign*Y*a == A (mod |n|), | ||
632 | * | ||
633 | * and that either A or B is even in the next iteration. | ||
634 | */ | ||
635 | if (BN_ucmp(B, A) >= 0) { | ||
636 | /* -sign*(X + Y)*a == B - A (mod |n|) */ | ||
637 | if (!BN_uadd(X, X, Y)) | ||
638 | goto err; | ||
639 | /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that | ||
640 | * actually makes the algorithm slower */ | ||
641 | if (!BN_usub(B, B, A)) | ||
642 | goto err; | ||
643 | } else { | ||
644 | /* sign*(X + Y)*a == A - B (mod |n|) */ | ||
645 | if (!BN_uadd(Y, Y, X)) | ||
646 | goto err; | ||
647 | /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */ | ||
648 | if (!BN_usub(A, A, B)) | ||
649 | goto err; | ||
650 | } | ||
651 | } | ||
652 | } else { | ||
653 | /* general inversion algorithm */ | ||
654 | |||
655 | while (!BN_is_zero(B)) { | ||
656 | BIGNUM *tmp; | ||
657 | |||
658 | /* | ||
659 | * 0 < B < A, | ||
660 | * (*) -sign*X*a == B (mod |n|), | ||
661 | * sign*Y*a == A (mod |n|) | ||
662 | */ | ||
663 | |||
664 | /* (D, M) := (A/B, A%B) ... */ | ||
665 | if (BN_num_bits(A) == BN_num_bits(B)) { | ||
666 | if (!BN_one(D)) | ||
667 | goto err; | ||
668 | if (!BN_sub(M, A, B)) | ||
669 | goto err; | ||
670 | } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { | ||
671 | /* A/B is 1, 2, or 3 */ | ||
672 | if (!BN_lshift1(T, B)) | ||
673 | goto err; | ||
674 | if (BN_ucmp(A, T) < 0) { | ||
675 | /* A < 2*B, so D=1 */ | ||
676 | if (!BN_one(D)) | ||
677 | goto err; | ||
678 | if (!BN_sub(M, A, B)) | ||
679 | goto err; | ||
680 | } else { | ||
681 | /* A >= 2*B, so D=2 or D=3 */ | ||
682 | if (!BN_sub(M, A, T)) | ||
683 | goto err; | ||
684 | if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */ | ||
685 | if (BN_ucmp(A, D) < 0) { | ||
686 | /* A < 3*B, so D=2 */ | ||
687 | if (!BN_set_word(D, 2)) | ||
688 | goto err; | ||
689 | /* M (= A - 2*B) already has the correct value */ | ||
690 | } else { | ||
691 | /* only D=3 remains */ | ||
692 | if (!BN_set_word(D, 3)) | ||
693 | goto err; | ||
694 | /* currently M = A - 2*B, but we need M = A - 3*B */ | ||
695 | if (!BN_sub(M, M, B)) | ||
696 | goto err; | ||
697 | } | ||
698 | } | ||
699 | } else { | ||
700 | if (!BN_div_nonct(D, M, A, B, ctx)) | ||
701 | goto err; | ||
702 | } | ||
703 | |||
704 | /* Now | ||
705 | * A = D*B + M; | ||
706 | * thus we have | ||
707 | * (**) sign*Y*a == D*B + M (mod |n|). | ||
708 | */ | ||
709 | tmp = A; /* keep the BIGNUM object, the value does not matter */ | ||
710 | |||
711 | /* (A, B) := (B, A mod B) ... */ | ||
712 | A = B; | ||
713 | B = M; | ||
714 | /* ... so we have 0 <= B < A again */ | ||
715 | |||
716 | /* Since the former M is now B and the former B is now A, | ||
717 | * (**) translates into | ||
718 | * sign*Y*a == D*A + B (mod |n|), | ||
719 | * i.e. | ||
720 | * sign*Y*a - D*A == B (mod |n|). | ||
721 | * Similarly, (*) translates into | ||
722 | * -sign*X*a == A (mod |n|). | ||
723 | * | ||
724 | * Thus, | ||
725 | * sign*Y*a + D*sign*X*a == B (mod |n|), | ||
726 | * i.e. | ||
727 | * sign*(Y + D*X)*a == B (mod |n|). | ||
728 | * | ||
729 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | ||
730 | * -sign*X*a == B (mod |n|), | ||
731 | * sign*Y*a == A (mod |n|). | ||
732 | * Note that X and Y stay non-negative all the time. | ||
733 | */ | ||
734 | |||
735 | /* most of the time D is very small, so we can optimize tmp := D*X+Y */ | ||
736 | if (BN_is_one(D)) { | ||
737 | if (!BN_add(tmp, X, Y)) | ||
738 | goto err; | ||
739 | } else { | ||
740 | if (BN_is_word(D, 2)) { | ||
741 | if (!BN_lshift1(tmp, X)) | ||
742 | goto err; | ||
743 | } else if (BN_is_word(D, 4)) { | ||
744 | if (!BN_lshift(tmp, X, 2)) | ||
745 | goto err; | ||
746 | } else if (D->top == 1) { | ||
747 | if (!bn_copy(tmp, X)) | ||
748 | goto err; | ||
749 | if (!BN_mul_word(tmp, D->d[0])) | ||
750 | goto err; | ||
751 | } else { | ||
752 | if (!BN_mul(tmp, D,X, ctx)) | ||
753 | goto err; | ||
754 | } | ||
755 | if (!BN_add(tmp, tmp, Y)) | ||
756 | goto err; | ||
757 | } | ||
758 | |||
759 | M = Y; /* keep the BIGNUM object, the value does not matter */ | ||
760 | Y = X; | ||
761 | X = tmp; | ||
762 | sign = -sign; | ||
763 | } | ||
764 | } | ||
765 | |||
766 | /* | ||
767 | * The while loop (Euclid's algorithm) ends when | ||
768 | * A == gcd(a,n); | ||
769 | * we have | ||
770 | * sign*Y*a == A (mod |n|), | ||
771 | * where Y is non-negative. | ||
772 | */ | ||
773 | |||
774 | if (sign < 0) { | ||
775 | if (!BN_sub(Y, n, Y)) | ||
776 | goto err; | ||
777 | } | ||
778 | /* Now Y*a == A (mod |n|). */ | ||
779 | |||
780 | if (!BN_is_one(A)) { | ||
781 | BNerror(BN_R_NO_INVERSE); | ||
782 | goto err; | ||
783 | } | ||
784 | |||
785 | if (!BN_nnmod(Y, Y, n, ctx)) | ||
786 | goto err; | ||
787 | if (!bn_copy(R, Y)) | ||
788 | goto err; | ||
789 | |||
790 | ret = R; | ||
791 | |||
792 | err: | ||
793 | if ((ret == NULL) && (in == NULL)) | ||
794 | BN_free(R); | ||
795 | BN_CTX_end(ctx); | ||
796 | return (ret); | ||
797 | } | ||
798 | |||
799 | BIGNUM * | ||
800 | BN_mod_inverse(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
801 | { | ||
802 | int ct = ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || | ||
803 | (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)); | ||
804 | return BN_mod_inverse_internal(in, a, n, ctx, ct); | ||
805 | } | ||
806 | LCRYPTO_ALIAS(BN_mod_inverse); | ||
807 | |||
808 | BIGNUM * | ||
809 | BN_mod_inverse_nonct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
810 | { | ||
811 | return BN_mod_inverse_internal(in, a, n, ctx, 0); | ||
812 | } | ||
813 | |||
814 | BIGNUM * | ||
815 | BN_mod_inverse_ct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
816 | { | ||
817 | return BN_mod_inverse_internal(in, a, n, ctx, 1); | ||
818 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_internal.h b/src/lib/libcrypto/bn/bn_internal.h deleted file mode 100644 index fd04bc9f8a..0000000000 --- a/src/lib/libcrypto/bn/bn_internal.h +++ /dev/null | |||
@@ -1,568 +0,0 @@ | |||
1 | /* $OpenBSD: bn_internal.h,v 1.15 2023/06/25 11:42:26 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #include <openssl/bn.h> | ||
19 | |||
20 | #include "bn_arch.h" | ||
21 | |||
22 | #ifndef HEADER_BN_INTERNAL_H | ||
23 | #define HEADER_BN_INTERNAL_H | ||
24 | |||
25 | int bn_word_clz(BN_ULONG w); | ||
26 | |||
27 | int bn_bitsize(const BIGNUM *bn); | ||
28 | |||
29 | #ifndef HAVE_BN_CT_NE_ZERO | ||
30 | static inline int | ||
31 | bn_ct_ne_zero(BN_ULONG w) | ||
32 | { | ||
33 | return (w | ~(w - 1)) >> (BN_BITS2 - 1); | ||
34 | } | ||
35 | #endif | ||
36 | |||
37 | #ifndef HAVE_BN_CT_NE_ZERO_MASK | ||
38 | static inline BN_ULONG | ||
39 | bn_ct_ne_zero_mask(BN_ULONG w) | ||
40 | { | ||
41 | return 0 - bn_ct_ne_zero(w); | ||
42 | } | ||
43 | #endif | ||
44 | |||
45 | #ifndef HAVE_BN_CT_EQ_ZERO | ||
46 | static inline int | ||
47 | bn_ct_eq_zero(BN_ULONG w) | ||
48 | { | ||
49 | return 1 - bn_ct_ne_zero(w); | ||
50 | } | ||
51 | #endif | ||
52 | |||
53 | #ifndef HAVE_BN_CT_EQ_ZERO_MASK | ||
54 | static inline BN_ULONG | ||
55 | bn_ct_eq_zero_mask(BN_ULONG w) | ||
56 | { | ||
57 | return 0 - bn_ct_eq_zero(w); | ||
58 | } | ||
59 | #endif | ||
60 | |||
61 | #ifndef HAVE_BN_CLZW | ||
62 | static inline int | ||
63 | bn_clzw(BN_ULONG w) | ||
64 | { | ||
65 | return bn_word_clz(w); | ||
66 | } | ||
67 | #endif | ||
68 | |||
69 | /* | ||
70 | * Big number primitives are named as the operation followed by a suffix | ||
71 | * that indicates the number of words that it operates on, where 'w' means | ||
72 | * single word, 'dw' means double word, 'tw' means triple word and 'qw' means | ||
73 | * quadruple word. Unless otherwise noted, the size of the output is implied | ||
74 | * based on its inputs, for example bn_mulw() takes two single word inputs | ||
75 | * and is going to produce a double word result. | ||
76 | * | ||
77 | * Where a function implements multiple operations, these are listed in order. | ||
78 | * For example, a function that computes (r1:r0) = a * b + c is named | ||
79 | * bn_mulw_addw(), producing a double word result. | ||
80 | */ | ||
81 | |||
82 | /* | ||
83 | * Default implementations for BN_ULLONG architectures. | ||
84 | * | ||
85 | * On these platforms the C compiler is generally better at optimising without | ||
86 | * the use of inline assembly primitives. However, it can be difficult for the | ||
87 | * compiler to see through primitives in order to combine operations, due to | ||
88 | * type changes/narrowing. For this reason compound primitives are usually | ||
89 | * explicitly provided. | ||
90 | */ | ||
91 | #ifdef BN_ULLONG | ||
92 | |||
93 | #ifndef HAVE_BN_ADDW | ||
94 | #define HAVE_BN_ADDW | ||
95 | static inline void | ||
96 | bn_addw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
97 | { | ||
98 | BN_ULLONG r; | ||
99 | |||
100 | r = (BN_ULLONG)a + (BN_ULLONG)b; | ||
101 | |||
102 | *out_r1 = r >> BN_BITS2; | ||
103 | *out_r0 = r & BN_MASK2; | ||
104 | } | ||
105 | #endif | ||
106 | |||
107 | #ifndef HAVE_BN_ADDW_ADDW | ||
108 | #define HAVE_BN_ADDW_ADDW | ||
109 | static inline void | ||
110 | bn_addw_addw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG *out_r1, | ||
111 | BN_ULONG *out_r0) | ||
112 | { | ||
113 | BN_ULLONG r; | ||
114 | |||
115 | r = (BN_ULLONG)a + (BN_ULLONG)b + (BN_ULLONG)c; | ||
116 | |||
117 | *out_r1 = r >> BN_BITS2; | ||
118 | *out_r0 = r & BN_MASK2; | ||
119 | } | ||
120 | #endif | ||
121 | |||
122 | #ifndef HAVE_BN_MULW | ||
123 | #define HAVE_BN_MULW | ||
124 | static inline void | ||
125 | bn_mulw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
126 | { | ||
127 | BN_ULLONG r; | ||
128 | |||
129 | r = (BN_ULLONG)a * (BN_ULLONG)b; | ||
130 | |||
131 | *out_r1 = r >> BN_BITS2; | ||
132 | *out_r0 = r & BN_MASK2; | ||
133 | } | ||
134 | #endif | ||
135 | |||
136 | #ifndef HAVE_BN_MULW_ADDW | ||
137 | #define HAVE_BN_MULW_ADDW | ||
138 | static inline void | ||
139 | bn_mulw_addw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG *out_r1, | ||
140 | BN_ULONG *out_r0) | ||
141 | { | ||
142 | BN_ULLONG r; | ||
143 | |||
144 | r = (BN_ULLONG)a * (BN_ULLONG)b + (BN_ULLONG)c; | ||
145 | |||
146 | *out_r1 = r >> BN_BITS2; | ||
147 | *out_r0 = r & BN_MASK2; | ||
148 | } | ||
149 | #endif | ||
150 | |||
151 | #ifndef HAVE_BN_MULW_ADDW_ADDW | ||
152 | #define HAVE_BN_MULW_ADDW_ADDW | ||
153 | static inline void | ||
154 | bn_mulw_addw_addw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG d, | ||
155 | BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
156 | { | ||
157 | BN_ULLONG r; | ||
158 | |||
159 | r = (BN_ULLONG)a * (BN_ULLONG)b + (BN_ULLONG)c + (BN_ULLONG)d; | ||
160 | |||
161 | *out_r1 = r >> BN_BITS2; | ||
162 | *out_r0 = r & BN_MASK2; | ||
163 | } | ||
164 | #endif | ||
165 | |||
166 | #endif /* !BN_ULLONG */ | ||
167 | |||
168 | /* | ||
169 | * bn_addw() computes (r1:r0) = a + b, where both inputs are single words, | ||
170 | * producing a double word result. The value of r1 is the carry from the | ||
171 | * addition. | ||
172 | */ | ||
173 | #ifndef HAVE_BN_ADDW | ||
174 | static inline void | ||
175 | bn_addw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
176 | { | ||
177 | BN_ULONG r1, r0, c1, c2; | ||
178 | |||
179 | c1 = a | b; | ||
180 | c2 = a & b; | ||
181 | r0 = a + b; | ||
182 | r1 = ((c1 & ~r0) | c2) >> (BN_BITS2 - 1); /* carry */ | ||
183 | |||
184 | *out_r1 = r1; | ||
185 | *out_r0 = r0; | ||
186 | } | ||
187 | #endif | ||
188 | |||
189 | /* | ||
190 | * bn_addw_addw() computes (r1:r0) = a + b + c, where all inputs are single | ||
191 | * words, producing a double word result. | ||
192 | */ | ||
193 | #ifndef HAVE_BN_ADDW_ADDW | ||
194 | static inline void | ||
195 | bn_addw_addw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG *out_r1, | ||
196 | BN_ULONG *out_r0) | ||
197 | { | ||
198 | BN_ULONG carry, r1, r0; | ||
199 | |||
200 | bn_addw(a, b, &r1, &r0); | ||
201 | bn_addw(r0, c, &carry, &r0); | ||
202 | r1 += carry; | ||
203 | |||
204 | *out_r1 = r1; | ||
205 | *out_r0 = r0; | ||
206 | } | ||
207 | #endif | ||
208 | |||
209 | /* | ||
210 | * bn_qwaddqw() computes | ||
211 | * (r4:r3:r2:r1:r0) = (a3:a2:a1:a0) + (b3:b2:b1:b0) + carry, where a is a quad word, | ||
212 | * b is a quad word, and carry is a single word with value 0 or 1, producing a four | ||
213 | * word result and carry. | ||
214 | */ | ||
215 | #ifndef HAVE_BN_QWADDQW | ||
216 | static inline void | ||
217 | bn_qwaddqw(BN_ULONG a3, BN_ULONG a2, BN_ULONG a1, BN_ULONG a0, BN_ULONG b3, | ||
218 | BN_ULONG b2, BN_ULONG b1, BN_ULONG b0, BN_ULONG carry, BN_ULONG *out_carry, | ||
219 | BN_ULONG *out_r3, BN_ULONG *out_r2, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
220 | { | ||
221 | BN_ULONG r3, r2, r1, r0; | ||
222 | |||
223 | bn_addw_addw(a0, b0, carry, &carry, &r0); | ||
224 | bn_addw_addw(a1, b1, carry, &carry, &r1); | ||
225 | bn_addw_addw(a2, b2, carry, &carry, &r2); | ||
226 | bn_addw_addw(a3, b3, carry, &carry, &r3); | ||
227 | |||
228 | *out_carry = carry; | ||
229 | *out_r3 = r3; | ||
230 | *out_r2 = r2; | ||
231 | *out_r1 = r1; | ||
232 | *out_r0 = r0; | ||
233 | } | ||
234 | #endif | ||
235 | |||
236 | /* | ||
237 | * bn_subw() computes r0 = a - b, where both inputs are single words, | ||
238 | * producing a single word result and borrow. | ||
239 | */ | ||
240 | #ifndef HAVE_BN_SUBW | ||
241 | static inline void | ||
242 | bn_subw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_borrow, BN_ULONG *out_r0) | ||
243 | { | ||
244 | BN_ULONG borrow, r0; | ||
245 | |||
246 | r0 = a - b; | ||
247 | borrow = ((r0 | (b & ~a)) & (b | ~a)) >> (BN_BITS2 - 1); | ||
248 | |||
249 | *out_borrow = borrow; | ||
250 | *out_r0 = r0; | ||
251 | } | ||
252 | #endif | ||
253 | |||
254 | /* | ||
255 | * bn_subw_subw() computes r0 = a - b - c, where all inputs are single words, | ||
256 | * producing a single word result and borrow. | ||
257 | */ | ||
258 | #ifndef HAVE_BN_SUBW_SUBW | ||
259 | static inline void | ||
260 | bn_subw_subw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG *out_borrow, | ||
261 | BN_ULONG *out_r0) | ||
262 | { | ||
263 | BN_ULONG b1, b2, r0; | ||
264 | |||
265 | bn_subw(a, b, &b1, &r0); | ||
266 | bn_subw(r0, c, &b2, &r0); | ||
267 | |||
268 | *out_borrow = b1 + b2; | ||
269 | *out_r0 = r0; | ||
270 | } | ||
271 | #endif | ||
272 | |||
273 | /* | ||
274 | * bn_qwsubqw() computes | ||
275 | * (r3:r2:r1:r0) = (a3:a2:a1:a0) - (b3:b2:b1:b0) - borrow, where a is a quad word, | ||
276 | * b is a quad word, and borrow is a single word with value 0 or 1, producing a | ||
277 | * four word result and borrow. | ||
278 | */ | ||
279 | #ifndef HAVE_BN_QWSUBQW | ||
280 | static inline void | ||
281 | bn_qwsubqw(BN_ULONG a3, BN_ULONG a2, BN_ULONG a1, BN_ULONG a0, BN_ULONG b3, | ||
282 | BN_ULONG b2, BN_ULONG b1, BN_ULONG b0, BN_ULONG borrow, BN_ULONG *out_borrow, | ||
283 | BN_ULONG *out_r3, BN_ULONG *out_r2, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
284 | { | ||
285 | BN_ULONG r3, r2, r1, r0; | ||
286 | |||
287 | bn_subw_subw(a0, b0, borrow, &borrow, &r0); | ||
288 | bn_subw_subw(a1, b1, borrow, &borrow, &r1); | ||
289 | bn_subw_subw(a2, b2, borrow, &borrow, &r2); | ||
290 | bn_subw_subw(a3, b3, borrow, &borrow, &r3); | ||
291 | |||
292 | *out_borrow = borrow; | ||
293 | *out_r3 = r3; | ||
294 | *out_r2 = r2; | ||
295 | *out_r1 = r1; | ||
296 | *out_r0 = r0; | ||
297 | } | ||
298 | #endif | ||
299 | |||
300 | /* | ||
301 | * bn_mulw() computes (r1:r0) = a * b, where both inputs are single words, | ||
302 | * producing a double word result. | ||
303 | */ | ||
304 | #ifndef HAVE_BN_MULW | ||
305 | /* | ||
306 | * Multiply two words (a * b) producing a double word result (h:l). | ||
307 | * | ||
308 | * This can be rewritten as: | ||
309 | * | ||
310 | * a * b = (hi32(a) * 2^32 + lo32(a)) * (hi32(b) * 2^32 + lo32(b)) | ||
311 | * = hi32(a) * hi32(b) * 2^64 + | ||
312 | * hi32(a) * lo32(b) * 2^32 + | ||
313 | * hi32(b) * lo32(a) * 2^32 + | ||
314 | * lo32(a) * lo32(b) | ||
315 | * | ||
316 | * The multiplication for each part of a and b can be calculated for each of | ||
317 | * these four terms without overflowing a BN_ULONG, as the maximum value of a | ||
318 | * 32 bit x 32 bit multiplication is 32 + 32 = 64 bits. Once these | ||
319 | * multiplications have been performed the result can be partitioned and summed | ||
320 | * into a double word (h:l). The same applies on a 32 bit system, substituting | ||
321 | * 16 for 32 and 32 for 64. | ||
322 | */ | ||
323 | #if 1 | ||
324 | static inline void | ||
325 | bn_mulw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
326 | { | ||
327 | BN_ULONG a1, a0, b1, b0, r1, r0; | ||
328 | BN_ULONG carry, x; | ||
329 | |||
330 | a1 = a >> BN_BITS4; | ||
331 | a0 = a & BN_MASK2l; | ||
332 | b1 = b >> BN_BITS4; | ||
333 | b0 = b & BN_MASK2l; | ||
334 | |||
335 | r1 = a1 * b1; | ||
336 | r0 = a0 * b0; | ||
337 | |||
338 | /* (a1 * b0) << BN_BITS4, partition the result across r1:r0 with carry. */ | ||
339 | x = a1 * b0; | ||
340 | r1 += x >> BN_BITS4; | ||
341 | bn_addw(r0, x << BN_BITS4, &carry, &r0); | ||
342 | r1 += carry; | ||
343 | |||
344 | /* (b1 * a0) << BN_BITS4, partition the result across r1:r0 with carry. */ | ||
345 | x = b1 * a0; | ||
346 | r1 += x >> BN_BITS4; | ||
347 | bn_addw(r0, x << BN_BITS4, &carry, &r0); | ||
348 | r1 += carry; | ||
349 | |||
350 | *out_r1 = r1; | ||
351 | *out_r0 = r0; | ||
352 | } | ||
353 | #else | ||
354 | |||
355 | /* | ||
356 | * XXX - this accumulator based version uses fewer instructions, however | ||
357 | * requires more variables/registers. It seems to be slower on at least amd64 | ||
358 | * and i386, however may be faster on other architectures that have more | ||
359 | * registers available. Further testing is required and one of the two | ||
360 | * implementations should eventually be removed. | ||
361 | */ | ||
362 | static inline void | ||
363 | bn_mulw(BN_ULONG a, BN_ULONG b, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
364 | { | ||
365 | BN_ULONG a1, a0, b1, b0, r1, r0, x; | ||
366 | BN_ULONG acc0, acc1, acc2, acc3; | ||
367 | |||
368 | a1 = a >> BN_BITS4; | ||
369 | b1 = b >> BN_BITS4; | ||
370 | a0 = a & BN_MASK2l; | ||
371 | b0 = b & BN_MASK2l; | ||
372 | |||
373 | r1 = a1 * b1; | ||
374 | r0 = a0 * b0; | ||
375 | |||
376 | acc0 = r0 & BN_MASK2l; | ||
377 | acc1 = r0 >> BN_BITS4; | ||
378 | acc2 = r1 & BN_MASK2l; | ||
379 | acc3 = r1 >> BN_BITS4; | ||
380 | |||
381 | /* (a1 * b0) << BN_BITS4, partition the result across r1:r0. */ | ||
382 | x = a1 * b0; | ||
383 | acc1 += x & BN_MASK2l; | ||
384 | acc2 += (acc1 >> BN_BITS4) + (x >> BN_BITS4); | ||
385 | acc1 &= BN_MASK2l; | ||
386 | acc3 += acc2 >> BN_BITS4; | ||
387 | acc2 &= BN_MASK2l; | ||
388 | |||
389 | /* (b1 * a0) << BN_BITS4, partition the result across r1:r0. */ | ||
390 | x = b1 * a0; | ||
391 | acc1 += x & BN_MASK2l; | ||
392 | acc2 += (acc1 >> BN_BITS4) + (x >> BN_BITS4); | ||
393 | acc1 &= BN_MASK2l; | ||
394 | acc3 += acc2 >> BN_BITS4; | ||
395 | acc2 &= BN_MASK2l; | ||
396 | |||
397 | *out_r1 = (acc3 << BN_BITS4) | acc2; | ||
398 | *out_r0 = (acc1 << BN_BITS4) | acc0; | ||
399 | } | ||
400 | #endif | ||
401 | #endif | ||
402 | |||
403 | #ifndef HAVE_BN_MULW_LO | ||
404 | static inline BN_ULONG | ||
405 | bn_mulw_lo(BN_ULONG a, BN_ULONG b) | ||
406 | { | ||
407 | return a * b; | ||
408 | } | ||
409 | #endif | ||
410 | |||
411 | #ifndef HAVE_BN_MULW_HI | ||
412 | static inline BN_ULONG | ||
413 | bn_mulw_hi(BN_ULONG a, BN_ULONG b) | ||
414 | { | ||
415 | BN_ULONG h, l; | ||
416 | |||
417 | bn_mulw(a, b, &h, &l); | ||
418 | |||
419 | return h; | ||
420 | } | ||
421 | #endif | ||
422 | |||
423 | /* | ||
424 | * bn_mulw_addw() computes (r1:r0) = a * b + c with all inputs being single | ||
425 | * words, producing a double word result. | ||
426 | */ | ||
427 | #ifndef HAVE_BN_MULW_ADDW | ||
428 | static inline void | ||
429 | bn_mulw_addw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG *out_r1, | ||
430 | BN_ULONG *out_r0) | ||
431 | { | ||
432 | BN_ULONG carry, r1, r0; | ||
433 | |||
434 | bn_mulw(a, b, &r1, &r0); | ||
435 | bn_addw(r0, c, &carry, &r0); | ||
436 | r1 += carry; | ||
437 | |||
438 | *out_r1 = r1; | ||
439 | *out_r0 = r0; | ||
440 | } | ||
441 | #endif | ||
442 | |||
443 | /* | ||
444 | * bn_mulw_addw_addw() computes (r1:r0) = a * b + c + d with all inputs being | ||
445 | * single words, producing a double word result. | ||
446 | */ | ||
447 | #ifndef HAVE_BN_MULW_ADDW_ADDW | ||
448 | static inline void | ||
449 | bn_mulw_addw_addw(BN_ULONG a, BN_ULONG b, BN_ULONG c, BN_ULONG d, | ||
450 | BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
451 | { | ||
452 | BN_ULONG carry, r1, r0; | ||
453 | |||
454 | bn_mulw_addw(a, b, c, &r1, &r0); | ||
455 | bn_addw(r0, d, &carry, &r0); | ||
456 | r1 += carry; | ||
457 | |||
458 | *out_r1 = r1; | ||
459 | *out_r0 = r0; | ||
460 | } | ||
461 | #endif | ||
462 | |||
463 | /* | ||
464 | * bn_mulw_addtw() computes (r2:r1:r0) = a * b + (c2:c1:c0), where a and b are | ||
465 | * single words and (c2:c1:c0) is a triple word, producing a triple word result. | ||
466 | * The caller must ensure that the inputs provided do not result in c2 | ||
467 | * overflowing. | ||
468 | */ | ||
469 | #ifndef HAVE_BN_MULW_ADDTW | ||
470 | static inline void | ||
471 | bn_mulw_addtw(BN_ULONG a, BN_ULONG b, BN_ULONG c2, BN_ULONG c1, BN_ULONG c0, | ||
472 | BN_ULONG *out_r2, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
473 | { | ||
474 | BN_ULONG carry, r2, r1, r0, x1; | ||
475 | |||
476 | bn_mulw_addw(a, b, c0, &x1, &r0); | ||
477 | bn_addw(c1, x1, &carry, &r1); | ||
478 | r2 = c2 + carry; | ||
479 | |||
480 | *out_r2 = r2; | ||
481 | *out_r1 = r1; | ||
482 | *out_r0 = r0; | ||
483 | } | ||
484 | #endif | ||
485 | |||
486 | /* | ||
487 | * bn_mul2_mulw_addtw() computes (r2:r1:r0) = 2 * a * b + (c2:c1:c0), where a | ||
488 | * and b are single words and (c2:c1:c0) is a triple word, producing a triple | ||
489 | * word result. The caller must ensure that the inputs provided do not result | ||
490 | * in c2 overflowing. | ||
491 | */ | ||
492 | #ifndef HAVE_BN_MUL2_MULW_ADDTW | ||
493 | static inline void | ||
494 | bn_mul2_mulw_addtw(BN_ULONG a, BN_ULONG b, BN_ULONG c2, BN_ULONG c1, BN_ULONG c0, | ||
495 | BN_ULONG *out_r2, BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
496 | { | ||
497 | BN_ULONG r2, r1, r0, x1, x0; | ||
498 | BN_ULONG carry; | ||
499 | |||
500 | bn_mulw(a, b, &x1, &x0); | ||
501 | bn_addw(c0, x0, &carry, &r0); | ||
502 | bn_addw(c1, x1 + carry, &r2, &r1); | ||
503 | bn_addw(c2, r2, &carry, &r2); | ||
504 | bn_addw(r0, x0, &carry, &r0); | ||
505 | bn_addw(r1, x1 + carry, &carry, &r1); | ||
506 | r2 += carry; | ||
507 | |||
508 | *out_r2 = r2; | ||
509 | *out_r1 = r1; | ||
510 | *out_r0 = r0; | ||
511 | } | ||
512 | #endif | ||
513 | |||
514 | /* | ||
515 | * bn_qwmulw_addw() computes (r4:r3:r2:r1:r0) = (a3:a2:a1:a0) * b + c, where a | ||
516 | * is a quad word, b is a single word and c is a single word, producing a five | ||
517 | * word result. | ||
518 | */ | ||
519 | #ifndef HAVE_BN_QWMULW_ADDW | ||
520 | static inline void | ||
521 | bn_qwmulw_addw(BN_ULONG a3, BN_ULONG a2, BN_ULONG a1, BN_ULONG a0, BN_ULONG b, | ||
522 | BN_ULONG c, BN_ULONG *out_r4, BN_ULONG *out_r3, BN_ULONG *out_r2, | ||
523 | BN_ULONG *out_r1, BN_ULONG *out_r0) | ||
524 | { | ||
525 | BN_ULONG r3, r2, r1, r0; | ||
526 | |||
527 | bn_mulw_addw(a0, b, c, &c, &r0); | ||
528 | bn_mulw_addw(a1, b, c, &c, &r1); | ||
529 | bn_mulw_addw(a2, b, c, &c, &r2); | ||
530 | bn_mulw_addw(a3, b, c, &c, &r3); | ||
531 | |||
532 | *out_r4 = c; | ||
533 | *out_r3 = r3; | ||
534 | *out_r2 = r2; | ||
535 | *out_r1 = r1; | ||
536 | *out_r0 = r0; | ||
537 | } | ||
538 | #endif | ||
539 | |||
540 | /* | ||
541 | * bn_qwmulw_addqw_addw() computes | ||
542 | * (r4:r3:r2:r1:r0) = (a3:a2:a1:a0) * b + (c3:c2:c1:c0) + d, where a | ||
543 | * is a quad word, b is a single word, c is a quad word, and d is a single word, | ||
544 | * producing a five word result. | ||
545 | */ | ||
546 | #ifndef HAVE_BN_QWMULW_ADDQW_ADDW | ||
547 | static inline void | ||
548 | bn_qwmulw_addqw_addw(BN_ULONG a3, BN_ULONG a2, BN_ULONG a1, BN_ULONG a0, | ||
549 | BN_ULONG b, BN_ULONG c3, BN_ULONG c2, BN_ULONG c1, BN_ULONG c0, BN_ULONG d, | ||
550 | BN_ULONG *out_r4, BN_ULONG *out_r3, BN_ULONG *out_r2, BN_ULONG *out_r1, | ||
551 | BN_ULONG *out_r0) | ||
552 | { | ||
553 | BN_ULONG r3, r2, r1, r0; | ||
554 | |||
555 | bn_mulw_addw_addw(a0, b, c0, d, &d, &r0); | ||
556 | bn_mulw_addw_addw(a1, b, c1, d, &d, &r1); | ||
557 | bn_mulw_addw_addw(a2, b, c2, d, &d, &r2); | ||
558 | bn_mulw_addw_addw(a3, b, c3, d, &d, &r3); | ||
559 | |||
560 | *out_r4 = d; | ||
561 | *out_r3 = r3; | ||
562 | *out_r2 = r2; | ||
563 | *out_r1 = r1; | ||
564 | *out_r0 = r0; | ||
565 | } | ||
566 | #endif | ||
567 | |||
568 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_isqrt.c b/src/lib/libcrypto/bn/bn_isqrt.c deleted file mode 100644 index 018d5f34bd..0000000000 --- a/src/lib/libcrypto/bn/bn_isqrt.c +++ /dev/null | |||
@@ -1,234 +0,0 @@ | |||
1 | /* $OpenBSD: bn_isqrt.c,v 1.10 2023/06/04 17:28:35 tb Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2022 Theo Buehler <tb@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #include <stddef.h> | ||
19 | #include <stdint.h> | ||
20 | |||
21 | #include <openssl/bn.h> | ||
22 | #include <openssl/err.h> | ||
23 | |||
24 | #include "bn_local.h" | ||
25 | #include "crypto_internal.h" | ||
26 | |||
27 | /* | ||
28 | * Calculate integer square root of |n| using a variant of Newton's method. | ||
29 | * | ||
30 | * Returns the integer square root of |n| in the caller-provided |out_sqrt|; | ||
31 | * |*out_perfect| is set to 1 if and only if |n| is a perfect square. | ||
32 | * One of |out_sqrt| and |out_perfect| can be NULL; |in_ctx| can be NULL. | ||
33 | * | ||
34 | * Returns 0 on error, 1 on success. | ||
35 | * | ||
36 | * Adapted from pure Python describing cpython's math.isqrt(), without bothering | ||
37 | * with any of the optimizations in the C code. A correctness proof is here: | ||
38 | * https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean | ||
39 | * The comments in the Python code also give a rather detailed proof. | ||
40 | */ | ||
41 | |||
42 | int | ||
43 | bn_isqrt(BIGNUM *out_sqrt, int *out_perfect, const BIGNUM *n, BN_CTX *in_ctx) | ||
44 | { | ||
45 | BN_CTX *ctx = NULL; | ||
46 | BIGNUM *a, *b; | ||
47 | int c, d, e, s; | ||
48 | int cmp, perfect; | ||
49 | int ret = 0; | ||
50 | |||
51 | if (out_perfect == NULL && out_sqrt == NULL) { | ||
52 | BNerror(ERR_R_PASSED_NULL_PARAMETER); | ||
53 | goto err; | ||
54 | } | ||
55 | |||
56 | if (BN_is_negative(n)) { | ||
57 | BNerror(BN_R_INVALID_RANGE); | ||
58 | goto err; | ||
59 | } | ||
60 | |||
61 | if ((ctx = in_ctx) == NULL) | ||
62 | ctx = BN_CTX_new(); | ||
63 | if (ctx == NULL) | ||
64 | goto err; | ||
65 | |||
66 | BN_CTX_start(ctx); | ||
67 | |||
68 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
69 | goto err; | ||
70 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
71 | goto err; | ||
72 | |||
73 | if (BN_is_zero(n)) { | ||
74 | perfect = 1; | ||
75 | BN_zero(a); | ||
76 | goto done; | ||
77 | } | ||
78 | |||
79 | if (!BN_one(a)) | ||
80 | goto err; | ||
81 | |||
82 | c = (BN_num_bits(n) - 1) / 2; | ||
83 | d = 0; | ||
84 | |||
85 | /* Calculate s = floor(log(c)). */ | ||
86 | if (!BN_set_word(b, c)) | ||
87 | goto err; | ||
88 | s = BN_num_bits(b) - 1; | ||
89 | |||
90 | /* | ||
91 | * By definition, the loop below is run <= floor(log(log(n))) times. | ||
92 | * Comments in the cpython code establish the loop invariant that | ||
93 | * | ||
94 | * (a - 1)^2 < n / 4^(c - d) < (a + 1)^2 | ||
95 | * | ||
96 | * holds true in every iteration. Once this is proved via induction, | ||
97 | * correctness of the algorithm is easy. | ||
98 | * | ||
99 | * Roughly speaking, A = (a << (d - e)) is used for one Newton step | ||
100 | * "a = (A >> 1) + (m >> 1) / A" approximating m = (n >> 2 * (c - d)). | ||
101 | */ | ||
102 | |||
103 | for (; s >= 0; s--) { | ||
104 | e = d; | ||
105 | d = c >> s; | ||
106 | |||
107 | if (!BN_rshift(b, n, 2 * c - d - e + 1)) | ||
108 | goto err; | ||
109 | |||
110 | if (!BN_div_ct(b, NULL, b, a, ctx)) | ||
111 | goto err; | ||
112 | |||
113 | if (!BN_lshift(a, a, d - e - 1)) | ||
114 | goto err; | ||
115 | |||
116 | if (!BN_add(a, a, b)) | ||
117 | goto err; | ||
118 | } | ||
119 | |||
120 | /* | ||
121 | * The loop invariant implies that either a or a - 1 is isqrt(n). | ||
122 | * Figure out which one it is. The invariant also implies that for | ||
123 | * a perfect square n, a must be the square root. | ||
124 | */ | ||
125 | |||
126 | if (!BN_sqr(b, a, ctx)) | ||
127 | goto err; | ||
128 | |||
129 | /* If a^2 > n, we must have isqrt(n) == a - 1. */ | ||
130 | if ((cmp = BN_cmp(b, n)) > 0) { | ||
131 | if (!BN_sub_word(a, 1)) | ||
132 | goto err; | ||
133 | } | ||
134 | |||
135 | perfect = cmp == 0; | ||
136 | |||
137 | done: | ||
138 | if (out_perfect != NULL) | ||
139 | *out_perfect = perfect; | ||
140 | |||
141 | if (out_sqrt != NULL) { | ||
142 | if (!bn_copy(out_sqrt, a)) | ||
143 | goto err; | ||
144 | } | ||
145 | |||
146 | ret = 1; | ||
147 | |||
148 | err: | ||
149 | BN_CTX_end(ctx); | ||
150 | |||
151 | if (ctx != in_ctx) | ||
152 | BN_CTX_free(ctx); | ||
153 | |||
154 | return ret; | ||
155 | } | ||
156 | |||
157 | /* | ||
158 | * is_square_mod_N[r % N] indicates whether r % N has a square root modulo N. | ||
159 | * The tables are generated in regress/lib/libcrypto/bn/bn_isqrt.c. | ||
160 | */ | ||
161 | |||
162 | const uint8_t is_square_mod_11[] = { | ||
163 | 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, | ||
164 | }; | ||
165 | CTASSERT(sizeof(is_square_mod_11) == 11); | ||
166 | |||
167 | const uint8_t is_square_mod_63[] = { | ||
168 | 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, | ||
169 | 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, | ||
170 | 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, | ||
171 | 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, | ||
172 | }; | ||
173 | CTASSERT(sizeof(is_square_mod_63) == 63); | ||
174 | |||
175 | const uint8_t is_square_mod_64[] = { | ||
176 | 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, | ||
177 | 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, | ||
178 | 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, | ||
179 | 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, | ||
180 | }; | ||
181 | CTASSERT(sizeof(is_square_mod_64) == 64); | ||
182 | |||
183 | const uint8_t is_square_mod_65[] = { | ||
184 | 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, | ||
185 | 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, | ||
186 | 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, | ||
187 | 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, | ||
188 | 1, | ||
189 | }; | ||
190 | CTASSERT(sizeof(is_square_mod_65) == 65); | ||
191 | |||
192 | /* | ||
193 | * Determine whether n is a perfect square or not. | ||
194 | * | ||
195 | * Returns 1 on success and 0 on error. In case of success, |*out_perfect| is | ||
196 | * set to 1 if and only if |n| is a perfect square. | ||
197 | */ | ||
198 | |||
199 | int | ||
200 | bn_is_perfect_square(int *out_perfect, const BIGNUM *n, BN_CTX *ctx) | ||
201 | { | ||
202 | BN_ULONG r; | ||
203 | |||
204 | *out_perfect = 0; | ||
205 | |||
206 | if (BN_is_negative(n)) | ||
207 | return 1; | ||
208 | |||
209 | /* | ||
210 | * Before performing an expensive bn_isqrt() operation, weed out many | ||
211 | * obvious non-squares. See H. Cohen, "A course in computational | ||
212 | * algebraic number theory", Algorithm 1.7.3. | ||
213 | * | ||
214 | * The idea is that a square remains a square when reduced modulo any | ||
215 | * number. The moduli are chosen in such a way that a non-square has | ||
216 | * probability < 1% of passing the four table lookups. | ||
217 | */ | ||
218 | |||
219 | /* n % 64 */ | ||
220 | r = BN_lsw(n) & 0x3f; | ||
221 | |||
222 | if (!is_square_mod_64[r % 64]) | ||
223 | return 1; | ||
224 | |||
225 | if ((r = BN_mod_word(n, 11 * 63 * 65)) == (BN_ULONG)-1) | ||
226 | return 0; | ||
227 | |||
228 | if (!is_square_mod_63[r % 63] || | ||
229 | !is_square_mod_65[r % 65] || | ||
230 | !is_square_mod_11[r % 11]) | ||
231 | return 1; | ||
232 | |||
233 | return bn_isqrt(NULL, out_perfect, n, ctx); | ||
234 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_kron.c b/src/lib/libcrypto/bn/bn_kron.c deleted file mode 100644 index a170d688e9..0000000000 --- a/src/lib/libcrypto/bn/bn_kron.c +++ /dev/null | |||
@@ -1,195 +0,0 @@ | |||
1 | /* $OpenBSD: bn_kron.c,v 1.15 2023/07/08 12:21:58 beck Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@openssl.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | #include "bn_local.h" | ||
57 | |||
58 | /* | ||
59 | * Kronecker symbol, implemented according to Henri Cohen, "A Course in | ||
60 | * Computational Algebraic Number Theory", Algorithm 1.4.10. | ||
61 | * | ||
62 | * Returns -1, 0, or 1 on success and -2 on error. | ||
63 | */ | ||
64 | |||
65 | int | ||
66 | BN_kronecker(const BIGNUM *A, const BIGNUM *B, BN_CTX *ctx) | ||
67 | { | ||
68 | /* tab[BN_lsw(n) & 7] = (-1)^((n^2 - 1)) / 8) for odd values of n. */ | ||
69 | static const int tab[8] = {0, 1, 0, -1, 0, -1, 0, 1}; | ||
70 | BIGNUM *a, *b, *tmp; | ||
71 | int k, v; | ||
72 | int ret = -2; | ||
73 | |||
74 | BN_CTX_start(ctx); | ||
75 | |||
76 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
77 | goto end; | ||
78 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
79 | goto end; | ||
80 | |||
81 | if (!bn_copy(a, A)) | ||
82 | goto end; | ||
83 | if (!bn_copy(b, B)) | ||
84 | goto end; | ||
85 | |||
86 | /* | ||
87 | * Cohen's step 1: | ||
88 | */ | ||
89 | |||
90 | /* If b is zero, output 1 if |a| is 1, otherwise output 0. */ | ||
91 | if (BN_is_zero(b)) { | ||
92 | ret = BN_abs_is_word(a, 1); | ||
93 | goto end; | ||
94 | } | ||
95 | |||
96 | /* | ||
97 | * Cohen's step 2: | ||
98 | */ | ||
99 | |||
100 | /* If both are even, they have a factor in common, so output 0. */ | ||
101 | if (!BN_is_odd(a) && !BN_is_odd(b)) { | ||
102 | ret = 0; | ||
103 | goto end; | ||
104 | } | ||
105 | |||
106 | /* Factorize b = 2^v * u with odd u and replace b with u. */ | ||
107 | v = 0; | ||
108 | while (!BN_is_bit_set(b, v)) | ||
109 | v++; | ||
110 | if (!BN_rshift(b, b, v)) | ||
111 | goto end; | ||
112 | |||
113 | /* If v is even set k = 1, otherwise set it to (-1)^((a^2 - 1) / 8). */ | ||
114 | k = 1; | ||
115 | if (v % 2 != 0) | ||
116 | k = tab[BN_lsw(a) & 7]; | ||
117 | |||
118 | /* | ||
119 | * If b is negative, replace it with -b and if a is also negative | ||
120 | * replace k with -k. | ||
121 | */ | ||
122 | if (BN_is_negative(b)) { | ||
123 | BN_set_negative(b, 0); | ||
124 | |||
125 | if (BN_is_negative(a)) | ||
126 | k = -k; | ||
127 | } | ||
128 | |||
129 | /* | ||
130 | * Now b is positive and odd, so compute the Jacobi symbol (a/b) | ||
131 | * and multiply it by k. | ||
132 | */ | ||
133 | |||
134 | while (1) { | ||
135 | /* | ||
136 | * Cohen's step 3: | ||
137 | */ | ||
138 | |||
139 | /* b is positive and odd. */ | ||
140 | |||
141 | /* If a is zero output k if b is one, otherwise output 0. */ | ||
142 | if (BN_is_zero(a)) { | ||
143 | ret = BN_is_one(b) ? k : 0; | ||
144 | goto end; | ||
145 | } | ||
146 | |||
147 | /* Factorize a = 2^v * u with odd u and replace a with u. */ | ||
148 | v = 0; | ||
149 | while (!BN_is_bit_set(a, v)) | ||
150 | v++; | ||
151 | if (!BN_rshift(a, a, v)) | ||
152 | goto end; | ||
153 | |||
154 | /* If v is odd, multiply k with (-1)^((b^2 - 1) / 8). */ | ||
155 | if (v % 2 != 0) | ||
156 | k *= tab[BN_lsw(b) & 7]; | ||
157 | |||
158 | /* | ||
159 | * Cohen's step 4: | ||
160 | */ | ||
161 | |||
162 | /* | ||
163 | * Apply the reciprocity law: multiply k by (-1)^((a-1)(b-1)/4). | ||
164 | * | ||
165 | * This expression is -1 if and only if a and b are 3 (mod 4). | ||
166 | * In turn, this is the case if and only if their two's | ||
167 | * complement representations have the second bit set. | ||
168 | * a could be negative in the first iteration, b is positive. | ||
169 | */ | ||
170 | if ((BN_is_negative(a) ? ~BN_lsw(a) : BN_lsw(a)) & BN_lsw(b) & 2) | ||
171 | k = -k; | ||
172 | |||
173 | /* | ||
174 | * (a, b) := (b mod |a|, |a|) | ||
175 | * | ||
176 | * Once this is done, we know that 0 < a < b at the start of the | ||
177 | * loop. Since b is strictly decreasing, the loop terminates. | ||
178 | */ | ||
179 | |||
180 | if (!BN_nnmod(b, b, a, ctx)) | ||
181 | goto end; | ||
182 | |||
183 | tmp = a; | ||
184 | a = b; | ||
185 | b = tmp; | ||
186 | |||
187 | BN_set_negative(b, 0); | ||
188 | } | ||
189 | |||
190 | end: | ||
191 | BN_CTX_end(ctx); | ||
192 | |||
193 | return ret; | ||
194 | } | ||
195 | LCRYPTO_ALIAS(BN_kronecker); | ||
diff --git a/src/lib/libcrypto/bn/bn_lib.c b/src/lib/libcrypto/bn/bn_lib.c deleted file mode 100644 index 72b988650c..0000000000 --- a/src/lib/libcrypto/bn/bn_lib.c +++ /dev/null | |||
@@ -1,752 +0,0 @@ | |||
1 | /* $OpenBSD: bn_lib.c,v 1.93 2024/04/16 13:07:14 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <assert.h> | ||
60 | #include <limits.h> | ||
61 | #include <stdio.h> | ||
62 | #include <string.h> | ||
63 | |||
64 | #include <openssl/opensslconf.h> | ||
65 | |||
66 | #include <openssl/err.h> | ||
67 | |||
68 | #include "bn_local.h" | ||
69 | #include "bn_internal.h" | ||
70 | |||
71 | BIGNUM * | ||
72 | BN_new(void) | ||
73 | { | ||
74 | BIGNUM *bn; | ||
75 | |||
76 | if ((bn = calloc(1, sizeof(BIGNUM))) == NULL) { | ||
77 | BNerror(ERR_R_MALLOC_FAILURE); | ||
78 | return NULL; | ||
79 | } | ||
80 | bn->flags = BN_FLG_MALLOCED; | ||
81 | |||
82 | return bn; | ||
83 | } | ||
84 | LCRYPTO_ALIAS(BN_new); | ||
85 | |||
86 | void | ||
87 | BN_init(BIGNUM *a) | ||
88 | { | ||
89 | memset(a, 0, sizeof(BIGNUM)); | ||
90 | } | ||
91 | |||
92 | void | ||
93 | BN_clear(BIGNUM *a) | ||
94 | { | ||
95 | if (a->d != NULL) | ||
96 | explicit_bzero(a->d, a->dmax * sizeof(a->d[0])); | ||
97 | a->top = 0; | ||
98 | a->neg = 0; | ||
99 | } | ||
100 | LCRYPTO_ALIAS(BN_clear); | ||
101 | |||
102 | void | ||
103 | BN_free(BIGNUM *bn) | ||
104 | { | ||
105 | if (bn == NULL) | ||
106 | return; | ||
107 | |||
108 | if (!BN_get_flags(bn, BN_FLG_STATIC_DATA)) | ||
109 | freezero(bn->d, bn->dmax * sizeof(bn->d[0])); | ||
110 | |||
111 | if (!BN_get_flags(bn, BN_FLG_MALLOCED)) { | ||
112 | explicit_bzero(bn, sizeof(*bn)); | ||
113 | return; | ||
114 | } | ||
115 | |||
116 | freezero(bn, sizeof(*bn)); | ||
117 | } | ||
118 | LCRYPTO_ALIAS(BN_free); | ||
119 | |||
120 | void | ||
121 | BN_clear_free(BIGNUM *bn) | ||
122 | { | ||
123 | BN_free(bn); | ||
124 | } | ||
125 | LCRYPTO_ALIAS(BN_clear_free); | ||
126 | |||
127 | void | ||
128 | BN_set_flags(BIGNUM *b, int n) | ||
129 | { | ||
130 | b->flags |= n; | ||
131 | } | ||
132 | LCRYPTO_ALIAS(BN_set_flags); | ||
133 | |||
134 | int | ||
135 | BN_get_flags(const BIGNUM *b, int n) | ||
136 | { | ||
137 | return b->flags & n; | ||
138 | } | ||
139 | LCRYPTO_ALIAS(BN_get_flags); | ||
140 | |||
141 | void | ||
142 | BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags) | ||
143 | { | ||
144 | int dest_flags; | ||
145 | |||
146 | dest_flags = (dest->flags & BN_FLG_MALLOCED) | | ||
147 | (b->flags & ~BN_FLG_MALLOCED) | BN_FLG_STATIC_DATA | flags; | ||
148 | |||
149 | *dest = *b; | ||
150 | dest->flags = dest_flags; | ||
151 | } | ||
152 | LCRYPTO_ALIAS(BN_with_flags); | ||
153 | |||
154 | static const BN_ULONG bn_value_one_data = 1; | ||
155 | static const BIGNUM bn_value_one = { | ||
156 | .d = (BN_ULONG *)&bn_value_one_data, | ||
157 | .top = 1, | ||
158 | .dmax = 1, | ||
159 | .neg = 0, | ||
160 | .flags = BN_FLG_STATIC_DATA, | ||
161 | }; | ||
162 | |||
163 | const BIGNUM * | ||
164 | BN_value_one(void) | ||
165 | { | ||
166 | return &bn_value_one; | ||
167 | } | ||
168 | LCRYPTO_ALIAS(BN_value_one); | ||
169 | |||
170 | int | ||
171 | BN_num_bits_word(BN_ULONG w) | ||
172 | { | ||
173 | return BN_BITS2 - bn_clzw(w); | ||
174 | } | ||
175 | LCRYPTO_ALIAS(BN_num_bits_word); | ||
176 | |||
177 | int | ||
178 | BN_num_bits(const BIGNUM *bn) | ||
179 | { | ||
180 | return bn_bitsize(bn); | ||
181 | } | ||
182 | LCRYPTO_ALIAS(BN_num_bits); | ||
183 | |||
184 | void | ||
185 | bn_correct_top(BIGNUM *a) | ||
186 | { | ||
187 | while (a->top > 0 && a->d[a->top - 1] == 0) | ||
188 | a->top--; | ||
189 | } | ||
190 | |||
191 | static int | ||
192 | bn_expand_internal(BIGNUM *bn, int words) | ||
193 | { | ||
194 | BN_ULONG *d; | ||
195 | |||
196 | if (words < 0) { | ||
197 | BNerror(BN_R_BIGNUM_TOO_LONG); // XXX | ||
198 | return 0; | ||
199 | } | ||
200 | |||
201 | if (words > INT_MAX / (4 * BN_BITS2)) { | ||
202 | BNerror(BN_R_BIGNUM_TOO_LONG); | ||
203 | return 0; | ||
204 | } | ||
205 | if (BN_get_flags(bn, BN_FLG_STATIC_DATA)) { | ||
206 | BNerror(BN_R_EXPAND_ON_STATIC_BIGNUM_DATA); | ||
207 | return 0; | ||
208 | } | ||
209 | |||
210 | d = recallocarray(bn->d, bn->dmax, words, sizeof(BN_ULONG)); | ||
211 | if (d == NULL) { | ||
212 | BNerror(ERR_R_MALLOC_FAILURE); | ||
213 | return 0; | ||
214 | } | ||
215 | bn->d = d; | ||
216 | bn->dmax = words; | ||
217 | |||
218 | return 1; | ||
219 | } | ||
220 | |||
221 | int | ||
222 | bn_expand_bits(BIGNUM *bn, size_t bits) | ||
223 | { | ||
224 | int words; | ||
225 | |||
226 | if (bits > (INT_MAX - BN_BITS2 + 1)) | ||
227 | return 0; | ||
228 | |||
229 | words = (bits + BN_BITS2 - 1) / BN_BITS2; | ||
230 | |||
231 | return bn_wexpand(bn, words); | ||
232 | } | ||
233 | |||
234 | int | ||
235 | bn_expand_bytes(BIGNUM *bn, size_t bytes) | ||
236 | { | ||
237 | int words; | ||
238 | |||
239 | if (bytes > (INT_MAX - BN_BYTES + 1)) | ||
240 | return 0; | ||
241 | |||
242 | words = (bytes + BN_BYTES - 1) / BN_BYTES; | ||
243 | |||
244 | return bn_wexpand(bn, words); | ||
245 | } | ||
246 | |||
247 | int | ||
248 | bn_wexpand(BIGNUM *bn, int words) | ||
249 | { | ||
250 | if (words < 0) | ||
251 | return 0; | ||
252 | |||
253 | if (words <= bn->dmax) | ||
254 | return 1; | ||
255 | |||
256 | return bn_expand_internal(bn, words); | ||
257 | } | ||
258 | |||
259 | BIGNUM * | ||
260 | BN_dup(const BIGNUM *a) | ||
261 | { | ||
262 | BIGNUM *t; | ||
263 | |||
264 | if (a == NULL) | ||
265 | return NULL; | ||
266 | |||
267 | t = BN_new(); | ||
268 | if (t == NULL) | ||
269 | return NULL; | ||
270 | if (!bn_copy(t, a)) { | ||
271 | BN_free(t); | ||
272 | return NULL; | ||
273 | } | ||
274 | return t; | ||
275 | } | ||
276 | LCRYPTO_ALIAS(BN_dup); | ||
277 | |||
278 | static inline void | ||
279 | bn_copy_words(BN_ULONG *ap, const BN_ULONG *bp, int n) | ||
280 | { | ||
281 | while (n > 0) { | ||
282 | ap[0] = bp[0]; | ||
283 | ap++; | ||
284 | bp++; | ||
285 | n--; | ||
286 | } | ||
287 | } | ||
288 | |||
289 | BIGNUM * | ||
290 | BN_copy(BIGNUM *a, const BIGNUM *b) | ||
291 | { | ||
292 | if (a == b) | ||
293 | return (a); | ||
294 | |||
295 | if (!bn_wexpand(a, b->top)) | ||
296 | return (NULL); | ||
297 | |||
298 | bn_copy_words(a->d, b->d, b->top); | ||
299 | |||
300 | /* Copy constant time flag from b, but make it sticky on a. */ | ||
301 | a->flags |= b->flags & BN_FLG_CONSTTIME; | ||
302 | |||
303 | a->top = b->top; | ||
304 | a->neg = b->neg; | ||
305 | |||
306 | return (a); | ||
307 | } | ||
308 | LCRYPTO_ALIAS(BN_copy); | ||
309 | |||
310 | int | ||
311 | bn_copy(BIGNUM *dst, const BIGNUM *src) | ||
312 | { | ||
313 | return BN_copy(dst, src) != NULL; | ||
314 | } | ||
315 | |||
316 | void | ||
317 | BN_swap(BIGNUM *a, BIGNUM *b) | ||
318 | { | ||
319 | int flags_old_a, flags_old_b; | ||
320 | BN_ULONG *tmp_d; | ||
321 | int tmp_top, tmp_dmax, tmp_neg; | ||
322 | |||
323 | |||
324 | flags_old_a = a->flags; | ||
325 | flags_old_b = b->flags; | ||
326 | |||
327 | tmp_d = a->d; | ||
328 | tmp_top = a->top; | ||
329 | tmp_dmax = a->dmax; | ||
330 | tmp_neg = a->neg; | ||
331 | |||
332 | a->d = b->d; | ||
333 | a->top = b->top; | ||
334 | a->dmax = b->dmax; | ||
335 | a->neg = b->neg; | ||
336 | |||
337 | b->d = tmp_d; | ||
338 | b->top = tmp_top; | ||
339 | b->dmax = tmp_dmax; | ||
340 | b->neg = tmp_neg; | ||
341 | |||
342 | a->flags = (flags_old_a & BN_FLG_MALLOCED) | | ||
343 | (flags_old_b & BN_FLG_STATIC_DATA); | ||
344 | b->flags = (flags_old_b & BN_FLG_MALLOCED) | | ||
345 | (flags_old_a & BN_FLG_STATIC_DATA); | ||
346 | } | ||
347 | LCRYPTO_ALIAS(BN_swap); | ||
348 | |||
349 | BN_ULONG | ||
350 | BN_get_word(const BIGNUM *a) | ||
351 | { | ||
352 | if (a->top > 1) | ||
353 | return BN_MASK2; | ||
354 | else if (a->top == 1) | ||
355 | return a->d[0]; | ||
356 | /* a->top == 0 */ | ||
357 | return 0; | ||
358 | } | ||
359 | LCRYPTO_ALIAS(BN_get_word); | ||
360 | |||
361 | int | ||
362 | BN_set_word(BIGNUM *a, BN_ULONG w) | ||
363 | { | ||
364 | if (!bn_wexpand(a, 1)) | ||
365 | return (0); | ||
366 | a->neg = 0; | ||
367 | a->d[0] = w; | ||
368 | a->top = (w ? 1 : 0); | ||
369 | return (1); | ||
370 | } | ||
371 | LCRYPTO_ALIAS(BN_set_word); | ||
372 | |||
373 | int | ||
374 | BN_ucmp(const BIGNUM *a, const BIGNUM *b) | ||
375 | { | ||
376 | int i; | ||
377 | |||
378 | if (a->top < b->top) | ||
379 | return -1; | ||
380 | if (a->top > b->top) | ||
381 | return 1; | ||
382 | |||
383 | for (i = a->top - 1; i >= 0; i--) { | ||
384 | if (a->d[i] != b->d[i]) | ||
385 | return (a->d[i] > b->d[i] ? 1 : -1); | ||
386 | } | ||
387 | |||
388 | return 0; | ||
389 | } | ||
390 | LCRYPTO_ALIAS(BN_ucmp); | ||
391 | |||
392 | int | ||
393 | BN_cmp(const BIGNUM *a, const BIGNUM *b) | ||
394 | { | ||
395 | if (a == NULL || b == NULL) { | ||
396 | if (a != NULL) | ||
397 | return -1; | ||
398 | if (b != NULL) | ||
399 | return 1; | ||
400 | return 0; | ||
401 | } | ||
402 | |||
403 | if (a->neg != b->neg) | ||
404 | return b->neg - a->neg; | ||
405 | |||
406 | if (a->neg) | ||
407 | return BN_ucmp(b, a); | ||
408 | |||
409 | return BN_ucmp(a, b); | ||
410 | } | ||
411 | LCRYPTO_ALIAS(BN_cmp); | ||
412 | |||
413 | int | ||
414 | BN_set_bit(BIGNUM *a, int n) | ||
415 | { | ||
416 | int i, j, k; | ||
417 | |||
418 | if (n < 0) | ||
419 | return 0; | ||
420 | |||
421 | i = n / BN_BITS2; | ||
422 | j = n % BN_BITS2; | ||
423 | if (a->top <= i) { | ||
424 | if (!bn_wexpand(a, i + 1)) | ||
425 | return (0); | ||
426 | for (k = a->top; k < i + 1; k++) | ||
427 | a->d[k] = 0; | ||
428 | a->top = i + 1; | ||
429 | } | ||
430 | |||
431 | a->d[i] |= (((BN_ULONG)1) << j); | ||
432 | return (1); | ||
433 | } | ||
434 | LCRYPTO_ALIAS(BN_set_bit); | ||
435 | |||
436 | int | ||
437 | BN_clear_bit(BIGNUM *a, int n) | ||
438 | { | ||
439 | int i, j; | ||
440 | |||
441 | if (n < 0) | ||
442 | return 0; | ||
443 | |||
444 | i = n / BN_BITS2; | ||
445 | j = n % BN_BITS2; | ||
446 | if (a->top <= i) | ||
447 | return (0); | ||
448 | |||
449 | a->d[i] &= (~(((BN_ULONG)1) << j)); | ||
450 | bn_correct_top(a); | ||
451 | |||
452 | BN_set_negative(a, a->neg); | ||
453 | |||
454 | return (1); | ||
455 | } | ||
456 | LCRYPTO_ALIAS(BN_clear_bit); | ||
457 | |||
458 | int | ||
459 | BN_is_bit_set(const BIGNUM *a, int n) | ||
460 | { | ||
461 | int i, j; | ||
462 | |||
463 | if (n < 0) | ||
464 | return 0; | ||
465 | i = n / BN_BITS2; | ||
466 | j = n % BN_BITS2; | ||
467 | if (a->top <= i) | ||
468 | return 0; | ||
469 | return (int)(((a->d[i]) >> j) & ((BN_ULONG)1)); | ||
470 | } | ||
471 | LCRYPTO_ALIAS(BN_is_bit_set); | ||
472 | |||
473 | int | ||
474 | BN_mask_bits(BIGNUM *a, int n) | ||
475 | { | ||
476 | int b, w; | ||
477 | |||
478 | if (n < 0) | ||
479 | return 0; | ||
480 | |||
481 | w = n / BN_BITS2; | ||
482 | b = n % BN_BITS2; | ||
483 | if (w >= a->top) | ||
484 | return 0; | ||
485 | if (b == 0) | ||
486 | a->top = w; | ||
487 | else { | ||
488 | a->top = w + 1; | ||
489 | a->d[w] &= ~(BN_MASK2 << b); | ||
490 | } | ||
491 | bn_correct_top(a); | ||
492 | |||
493 | BN_set_negative(a, a->neg); | ||
494 | |||
495 | return (1); | ||
496 | } | ||
497 | LCRYPTO_ALIAS(BN_mask_bits); | ||
498 | |||
499 | void | ||
500 | BN_set_negative(BIGNUM *bn, int neg) | ||
501 | { | ||
502 | bn->neg = ~BN_is_zero(bn) & bn_ct_ne_zero(neg); | ||
503 | } | ||
504 | LCRYPTO_ALIAS(BN_set_negative); | ||
505 | |||
506 | /* | ||
507 | * Constant-time conditional swap of a and b. | ||
508 | * a and b are swapped if condition is not 0. | ||
509 | * The code assumes that at most one bit of condition is set. | ||
510 | * nwords is the number of words to swap. | ||
511 | * The code assumes that at least nwords are allocated in both a and b, | ||
512 | * and that no more than nwords are used by either a or b. | ||
513 | * a and b cannot be the same number | ||
514 | */ | ||
515 | void | ||
516 | BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords) | ||
517 | { | ||
518 | BN_ULONG t; | ||
519 | int i; | ||
520 | |||
521 | assert(a != b); | ||
522 | assert((condition & (condition - 1)) == 0); | ||
523 | assert(sizeof(BN_ULONG) >= sizeof(int)); | ||
524 | |||
525 | condition = ((condition - 1) >> (BN_BITS2 - 1)) - 1; | ||
526 | |||
527 | t = (a->top^b->top) & condition; | ||
528 | a->top ^= t; | ||
529 | b->top ^= t; | ||
530 | |||
531 | #define BN_CONSTTIME_SWAP(ind) \ | ||
532 | do { \ | ||
533 | t = (a->d[ind] ^ b->d[ind]) & condition; \ | ||
534 | a->d[ind] ^= t; \ | ||
535 | b->d[ind] ^= t; \ | ||
536 | } while (0) | ||
537 | |||
538 | |||
539 | switch (nwords) { | ||
540 | default: | ||
541 | for (i = 10; i < nwords; i++) | ||
542 | BN_CONSTTIME_SWAP(i); | ||
543 | /* Fallthrough */ | ||
544 | case 10: BN_CONSTTIME_SWAP(9); /* Fallthrough */ | ||
545 | case 9: BN_CONSTTIME_SWAP(8); /* Fallthrough */ | ||
546 | case 8: BN_CONSTTIME_SWAP(7); /* Fallthrough */ | ||
547 | case 7: BN_CONSTTIME_SWAP(6); /* Fallthrough */ | ||
548 | case 6: BN_CONSTTIME_SWAP(5); /* Fallthrough */ | ||
549 | case 5: BN_CONSTTIME_SWAP(4); /* Fallthrough */ | ||
550 | case 4: BN_CONSTTIME_SWAP(3); /* Fallthrough */ | ||
551 | case 3: BN_CONSTTIME_SWAP(2); /* Fallthrough */ | ||
552 | case 2: BN_CONSTTIME_SWAP(1); /* Fallthrough */ | ||
553 | case 1: | ||
554 | BN_CONSTTIME_SWAP(0); | ||
555 | } | ||
556 | #undef BN_CONSTTIME_SWAP | ||
557 | } | ||
558 | LCRYPTO_ALIAS(BN_consttime_swap); | ||
559 | |||
560 | /* | ||
561 | * Constant-time conditional swap of a and b. | ||
562 | * a and b are swapped if condition is not 0. | ||
563 | * nwords is the number of words to swap. | ||
564 | */ | ||
565 | int | ||
566 | BN_swap_ct(BN_ULONG condition, BIGNUM *a, BIGNUM *b, size_t nwords) | ||
567 | { | ||
568 | BN_ULONG t; | ||
569 | int i, words; | ||
570 | |||
571 | if (a == b) | ||
572 | return 1; | ||
573 | if (nwords > INT_MAX) | ||
574 | return 0; | ||
575 | words = (int)nwords; | ||
576 | if (!bn_wexpand(a, words) || !bn_wexpand(b, words)) | ||
577 | return 0; | ||
578 | if (a->top > words || b->top > words) { | ||
579 | BNerror(BN_R_INVALID_LENGTH); | ||
580 | return 0; | ||
581 | } | ||
582 | |||
583 | /* Set condition to 0 (if it was zero) or all 1s otherwise. */ | ||
584 | condition = ((~condition & (condition - 1)) >> (BN_BITS2 - 1)) - 1; | ||
585 | |||
586 | /* swap top field */ | ||
587 | t = (a->top ^ b->top) & condition; | ||
588 | a->top ^= t; | ||
589 | b->top ^= t; | ||
590 | |||
591 | /* swap neg field */ | ||
592 | t = (a->neg ^ b->neg) & condition; | ||
593 | a->neg ^= t; | ||
594 | b->neg ^= t; | ||
595 | |||
596 | /* swap BN_FLG_CONSTTIME from flag field */ | ||
597 | t = ((a->flags ^ b->flags) & BN_FLG_CONSTTIME) & condition; | ||
598 | a->flags ^= t; | ||
599 | b->flags ^= t; | ||
600 | |||
601 | /* swap the data */ | ||
602 | for (i = 0; i < words; i++) { | ||
603 | t = (a->d[i] ^ b->d[i]) & condition; | ||
604 | a->d[i] ^= t; | ||
605 | b->d[i] ^= t; | ||
606 | } | ||
607 | |||
608 | return 1; | ||
609 | } | ||
610 | |||
611 | void | ||
612 | BN_zero(BIGNUM *a) | ||
613 | { | ||
614 | a->neg = 0; | ||
615 | a->top = 0; | ||
616 | } | ||
617 | LCRYPTO_ALIAS(BN_zero); | ||
618 | |||
619 | int | ||
620 | BN_one(BIGNUM *a) | ||
621 | { | ||
622 | return BN_set_word(a, 1); | ||
623 | } | ||
624 | LCRYPTO_ALIAS(BN_one); | ||
625 | |||
626 | int | ||
627 | BN_abs_is_word(const BIGNUM *a, const BN_ULONG w) | ||
628 | { | ||
629 | return (a->top == 1 && a->d[0] == w) || (w == 0 && a->top == 0); | ||
630 | } | ||
631 | LCRYPTO_ALIAS(BN_abs_is_word); | ||
632 | |||
633 | int | ||
634 | BN_is_zero(const BIGNUM *bn) | ||
635 | { | ||
636 | BN_ULONG bits = 0; | ||
637 | int i; | ||
638 | |||
639 | for (i = 0; i < bn->top; i++) | ||
640 | bits |= bn->d[i]; | ||
641 | |||
642 | return bits == 0; | ||
643 | } | ||
644 | LCRYPTO_ALIAS(BN_is_zero); | ||
645 | |||
646 | int | ||
647 | BN_is_one(const BIGNUM *a) | ||
648 | { | ||
649 | return BN_abs_is_word(a, 1) && !a->neg; | ||
650 | } | ||
651 | LCRYPTO_ALIAS(BN_is_one); | ||
652 | |||
653 | int | ||
654 | BN_is_word(const BIGNUM *a, const BN_ULONG w) | ||
655 | { | ||
656 | return BN_abs_is_word(a, w) && (w == 0 || !a->neg); | ||
657 | } | ||
658 | LCRYPTO_ALIAS(BN_is_word); | ||
659 | |||
660 | int | ||
661 | BN_is_odd(const BIGNUM *a) | ||
662 | { | ||
663 | return a->top > 0 && (a->d[0] & 1); | ||
664 | } | ||
665 | LCRYPTO_ALIAS(BN_is_odd); | ||
666 | |||
667 | int | ||
668 | BN_is_negative(const BIGNUM *a) | ||
669 | { | ||
670 | return a->neg != 0; | ||
671 | } | ||
672 | LCRYPTO_ALIAS(BN_is_negative); | ||
673 | |||
674 | /* | ||
675 | * Bits of security, see SP800-57, section 5.6.11, table 2. | ||
676 | */ | ||
677 | int | ||
678 | BN_security_bits(int L, int N) | ||
679 | { | ||
680 | int secbits, bits; | ||
681 | |||
682 | if (L >= 15360) | ||
683 | secbits = 256; | ||
684 | else if (L >= 7680) | ||
685 | secbits = 192; | ||
686 | else if (L >= 3072) | ||
687 | secbits = 128; | ||
688 | else if (L >= 2048) | ||
689 | secbits = 112; | ||
690 | else if (L >= 1024) | ||
691 | secbits = 80; | ||
692 | else | ||
693 | return 0; | ||
694 | |||
695 | if (N == -1) | ||
696 | return secbits; | ||
697 | |||
698 | bits = N / 2; | ||
699 | if (bits < 80) | ||
700 | return 0; | ||
701 | |||
702 | return bits >= secbits ? secbits : bits; | ||
703 | } | ||
704 | LCRYPTO_ALIAS(BN_security_bits); | ||
705 | |||
706 | BN_GENCB * | ||
707 | BN_GENCB_new(void) | ||
708 | { | ||
709 | BN_GENCB *cb; | ||
710 | |||
711 | if ((cb = calloc(1, sizeof(*cb))) == NULL) | ||
712 | return NULL; | ||
713 | |||
714 | return cb; | ||
715 | } | ||
716 | LCRYPTO_ALIAS(BN_GENCB_new); | ||
717 | |||
718 | void | ||
719 | BN_GENCB_free(BN_GENCB *cb) | ||
720 | { | ||
721 | if (cb == NULL) | ||
722 | return; | ||
723 | free(cb); | ||
724 | } | ||
725 | LCRYPTO_ALIAS(BN_GENCB_free); | ||
726 | |||
727 | /* Populate a BN_GENCB structure with an "old"-style callback */ | ||
728 | void | ||
729 | BN_GENCB_set_old(BN_GENCB *gencb, void (*cb)(int, int, void *), void *cb_arg) | ||
730 | { | ||
731 | gencb->ver = 1; | ||
732 | gencb->cb.cb_1 = cb; | ||
733 | gencb->arg = cb_arg; | ||
734 | } | ||
735 | LCRYPTO_ALIAS(BN_GENCB_set_old); | ||
736 | |||
737 | /* Populate a BN_GENCB structure with a "new"-style callback */ | ||
738 | void | ||
739 | BN_GENCB_set(BN_GENCB *gencb, int (*cb)(int, int, BN_GENCB *), void *cb_arg) | ||
740 | { | ||
741 | gencb->ver = 2; | ||
742 | gencb->cb.cb_2 = cb; | ||
743 | gencb->arg = cb_arg; | ||
744 | } | ||
745 | LCRYPTO_ALIAS(BN_GENCB_set); | ||
746 | |||
747 | void * | ||
748 | BN_GENCB_get_arg(BN_GENCB *cb) | ||
749 | { | ||
750 | return cb->arg; | ||
751 | } | ||
752 | LCRYPTO_ALIAS(BN_GENCB_get_arg); | ||
diff --git a/src/lib/libcrypto/bn/bn_local.h b/src/lib/libcrypto/bn/bn_local.h deleted file mode 100644 index 067ffab3d9..0000000000 --- a/src/lib/libcrypto/bn/bn_local.h +++ /dev/null | |||
@@ -1,335 +0,0 @@ | |||
1 | /* $OpenBSD: bn_local.h,v 1.50 2025/02/13 11:04:20 tb Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #ifndef HEADER_BN_LOCAL_H | ||
113 | #define HEADER_BN_LOCAL_H | ||
114 | |||
115 | #include <openssl/opensslconf.h> | ||
116 | |||
117 | #include <openssl/bn.h> | ||
118 | |||
119 | __BEGIN_HIDDEN_DECLS | ||
120 | |||
121 | struct bignum_st { | ||
122 | BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */ | ||
123 | int top; /* Index of last used d +1. */ | ||
124 | /* The next are internal book keeping for bn_expand. */ | ||
125 | int dmax; /* Size of the d array. */ | ||
126 | int neg; /* one if the number is negative */ | ||
127 | int flags; | ||
128 | }; | ||
129 | |||
130 | struct bn_mont_ctx_st { | ||
131 | int ri; /* Number of bits in R */ | ||
132 | BIGNUM RR; /* Used to convert to Montgomery form */ | ||
133 | BIGNUM N; /* Modulus */ | ||
134 | |||
135 | /* Least significant word(s) of Ni; R*(1/R mod N) - N*Ni = 1 */ | ||
136 | BN_ULONG n0[2]; | ||
137 | |||
138 | int flags; | ||
139 | }; | ||
140 | |||
141 | typedef struct bn_recp_ctx_st BN_RECP_CTX; | ||
142 | |||
143 | /* Used for slow "generation" functions. */ | ||
144 | struct bn_gencb_st { | ||
145 | unsigned int ver; /* To handle binary (in)compatibility */ | ||
146 | void *arg; /* callback-specific data */ | ||
147 | union { | ||
148 | /* if(ver==1) - handles old style callbacks */ | ||
149 | void (*cb_1)(int, int, void *); | ||
150 | /* if(ver==2) - new callback style */ | ||
151 | int (*cb_2)(int, int, BN_GENCB *); | ||
152 | } cb; | ||
153 | }; | ||
154 | |||
155 | /* | ||
156 | * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions | ||
157 | * | ||
158 | * | ||
159 | * For window size 'w' (w >= 2) and a random 'b' bits exponent, | ||
160 | * the number of multiplications is a constant plus on average | ||
161 | * | ||
162 | * 2^(w-1) + (b-w)/(w+1); | ||
163 | * | ||
164 | * here 2^(w-1) is for precomputing the table (we actually need | ||
165 | * entries only for windows that have the lowest bit set), and | ||
166 | * (b-w)/(w+1) is an approximation for the expected number of | ||
167 | * w-bit windows, not counting the first one. | ||
168 | * | ||
169 | * Thus we should use | ||
170 | * | ||
171 | * w >= 6 if b > 671 | ||
172 | * w = 5 if 671 > b > 239 | ||
173 | * w = 4 if 239 > b > 79 | ||
174 | * w = 3 if 79 > b > 23 | ||
175 | * w <= 2 if 23 > b | ||
176 | * | ||
177 | * (with draws in between). Very small exponents are often selected | ||
178 | * with low Hamming weight, so we use w = 1 for b <= 23. | ||
179 | */ | ||
180 | #define BN_window_bits_for_exponent_size(b) \ | ||
181 | ((b) > 671 ? 6 : \ | ||
182 | (b) > 239 ? 5 : \ | ||
183 | (b) > 79 ? 4 : \ | ||
184 | (b) > 23 ? 3 : 1) | ||
185 | |||
186 | |||
187 | /* BN_mod_exp_mont_consttime is based on the assumption that the | ||
188 | * L1 data cache line width of the target processor is at least | ||
189 | * the following value. | ||
190 | */ | ||
191 | #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 ) | ||
192 | #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1) | ||
193 | |||
194 | /* Window sizes optimized for fixed window size modular exponentiation | ||
195 | * algorithm (BN_mod_exp_mont_consttime). | ||
196 | * | ||
197 | * To achieve the security goals of BN_mode_exp_mont_consttime, the | ||
198 | * maximum size of the window must not exceed | ||
199 | * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). | ||
200 | * | ||
201 | * Window size thresholds are defined for cache line sizes of 32 and 64, | ||
202 | * cache line sizes where log_2(32)=5 and log_2(64)=6 respectively. A | ||
203 | * window size of 7 should only be used on processors that have a 128 | ||
204 | * byte or greater cache line size. | ||
205 | */ | ||
206 | #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64 | ||
207 | |||
208 | # define BN_window_bits_for_ctime_exponent_size(b) \ | ||
209 | ((b) > 937 ? 6 : \ | ||
210 | (b) > 306 ? 5 : \ | ||
211 | (b) > 89 ? 4 : \ | ||
212 | (b) > 22 ? 3 : 1) | ||
213 | # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6) | ||
214 | |||
215 | #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32 | ||
216 | |||
217 | # define BN_window_bits_for_ctime_exponent_size(b) \ | ||
218 | ((b) > 306 ? 5 : \ | ||
219 | (b) > 89 ? 4 : \ | ||
220 | (b) > 22 ? 3 : 1) | ||
221 | # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5) | ||
222 | |||
223 | #endif | ||
224 | |||
225 | |||
226 | /* Pentium pro 16,16,16,32,64 */ | ||
227 | /* Alpha 16,16,16,16.64 */ | ||
228 | #define BN_MULL_SIZE_NORMAL (16) /* 32 */ | ||
229 | #define BN_MUL_RECURSIVE_SIZE_NORMAL (16) /* 32 less than */ | ||
230 | #define BN_SQR_RECURSIVE_SIZE_NORMAL (16) /* 32 */ | ||
231 | #define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32) /* 32 */ | ||
232 | #define BN_MONT_CTX_SET_SIZE_WORD (64) /* 32 */ | ||
233 | |||
234 | /* The least significant word of a BIGNUM. */ | ||
235 | #define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0]) | ||
236 | |||
237 | BN_ULONG bn_add(BN_ULONG *r, int r_len, const BN_ULONG *a, int a_len, | ||
238 | const BN_ULONG *b, int b_len); | ||
239 | BN_ULONG bn_sub(BN_ULONG *r, int r_len, const BN_ULONG *a, int a_len, | ||
240 | const BN_ULONG *b, int b_len); | ||
241 | |||
242 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb); | ||
243 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); | ||
244 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); | ||
245 | |||
246 | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a); | ||
247 | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a); | ||
248 | |||
249 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, | ||
250 | const BN_ULONG *np, const BN_ULONG *n0, int num); | ||
251 | |||
252 | void bn_correct_top(BIGNUM *a); | ||
253 | int bn_expand_bits(BIGNUM *a, size_t bits); | ||
254 | int bn_expand_bytes(BIGNUM *a, size_t bytes); | ||
255 | int bn_wexpand(BIGNUM *a, int words); | ||
256 | |||
257 | BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, | ||
258 | int num); | ||
259 | BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, | ||
260 | int num); | ||
261 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w); | ||
262 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w); | ||
263 | void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num); | ||
264 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); | ||
265 | void bn_div_rem_words(BN_ULONG h, BN_ULONG l, BN_ULONG d, BN_ULONG *out_q, | ||
266 | BN_ULONG *out_r); | ||
267 | |||
268 | int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom); | ||
269 | int bn_rand_in_range(BIGNUM *rnd, const BIGNUM *lower_inc, const BIGNUM *upper_exc); | ||
270 | int bn_rand_interval(BIGNUM *rnd, BN_ULONG lower_word, const BIGNUM *upper_exc); | ||
271 | |||
272 | void BN_init(BIGNUM *); | ||
273 | |||
274 | BN_MONT_CTX *BN_MONT_CTX_create(const BIGNUM *bn, BN_CTX *ctx); | ||
275 | |||
276 | BN_RECP_CTX *BN_RECP_CTX_create(const BIGNUM *N); | ||
277 | void BN_RECP_CTX_free(BN_RECP_CTX *recp); | ||
278 | int BN_div_reciprocal(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, | ||
279 | BN_RECP_CTX *recp, BN_CTX *ctx); | ||
280 | int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, | ||
281 | BN_RECP_CTX *recp, BN_CTX *ctx); | ||
282 | int BN_mod_sqr_reciprocal(BIGNUM *r, const BIGNUM *x, BN_RECP_CTX *recp, | ||
283 | BN_CTX *ctx); | ||
284 | int BN_mod_exp_reciprocal(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
285 | const BIGNUM *m, BN_CTX *ctx); | ||
286 | |||
287 | /* Explicitly const time / non-const time versions for internal use */ | ||
288 | int BN_mod_exp_ct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
289 | const BIGNUM *m, BN_CTX *ctx); | ||
290 | int BN_mod_exp_nonct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
291 | const BIGNUM *m, BN_CTX *ctx); | ||
292 | int BN_mod_exp_mont_ct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
293 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); | ||
294 | int BN_mod_exp_mont_nonct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
295 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); | ||
296 | int BN_div_nonct(BIGNUM *q, BIGNUM *r, const BIGNUM *n, const BIGNUM *d, | ||
297 | BN_CTX *ctx); | ||
298 | int BN_div_ct(BIGNUM *q, BIGNUM *r, const BIGNUM *n, const BIGNUM *d, | ||
299 | BN_CTX *ctx); | ||
300 | int BN_mod_ct(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); | ||
301 | int BN_mod_nonct(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); | ||
302 | |||
303 | int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, | ||
304 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); | ||
305 | int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1, | ||
306 | const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, | ||
307 | BN_CTX *ctx, BN_MONT_CTX *m_ctx); | ||
308 | |||
309 | int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
310 | const BIGNUM *m, BN_CTX *ctx); | ||
311 | |||
312 | BIGNUM *BN_mod_inverse_ct(BIGNUM *ret, const BIGNUM *a, const BIGNUM *n, | ||
313 | BN_CTX *ctx); | ||
314 | BIGNUM *BN_mod_inverse_nonct(BIGNUM *ret, const BIGNUM *a, const BIGNUM *n, | ||
315 | BN_CTX *ctx); | ||
316 | int BN_gcd_ct(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | ||
317 | |||
318 | int BN_swap_ct(BN_ULONG swap, BIGNUM *a, BIGNUM *b, size_t nwords); | ||
319 | |||
320 | int bn_copy(BIGNUM *dst, const BIGNUM *src); | ||
321 | |||
322 | int bn_isqrt(BIGNUM *out_sqrt, int *out_perfect, const BIGNUM *n, BN_CTX *ctx); | ||
323 | int bn_is_perfect_square(int *out_perfect, const BIGNUM *n, BN_CTX *ctx); | ||
324 | |||
325 | int bn_is_prime_bpsw(int *is_prime, const BIGNUM *n, BN_CTX *ctx, size_t rounds); | ||
326 | |||
327 | int bn_printf(BIO *bio, const BIGNUM *bn, int indent, const char *fmt, ...) | ||
328 | __attribute__((__format__ (printf, 4, 5))) | ||
329 | __attribute__((__nonnull__ (4))); | ||
330 | |||
331 | int bn_bn2hex_nosign(const BIGNUM *bn, char **out, size_t *out_len); | ||
332 | int bn_bn2hex_nibbles(const BIGNUM *bn, char **out, size_t *out_len); | ||
333 | |||
334 | __END_HIDDEN_DECLS | ||
335 | #endif /* !HEADER_BN_LOCAL_H */ | ||
diff --git a/src/lib/libcrypto/bn/bn_mod.c b/src/lib/libcrypto/bn/bn_mod.c deleted file mode 100644 index 365f6fcf03..0000000000 --- a/src/lib/libcrypto/bn/bn_mod.c +++ /dev/null | |||
@@ -1,369 +0,0 @@ | |||
1 | /* $OpenBSD: bn_mod.c,v 1.22 2023/07/08 12:21:58 beck Exp $ */ | ||
2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | ||
3 | * for the OpenSSL project. */ | ||
4 | /* ==================================================================== | ||
5 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
6 | * | ||
7 | * Redistribution and use in source and binary forms, with or without | ||
8 | * modification, are permitted provided that the following conditions | ||
9 | * are met: | ||
10 | * | ||
11 | * 1. Redistributions of source code must retain the above copyright | ||
12 | * notice, this list of conditions and the following disclaimer. | ||
13 | * | ||
14 | * 2. Redistributions in binary form must reproduce the above copyright | ||
15 | * notice, this list of conditions and the following disclaimer in | ||
16 | * the documentation and/or other materials provided with the | ||
17 | * distribution. | ||
18 | * | ||
19 | * 3. All advertising materials mentioning features or use of this | ||
20 | * software must display the following acknowledgment: | ||
21 | * "This product includes software developed by the OpenSSL Project | ||
22 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
23 | * | ||
24 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
25 | * endorse or promote products derived from this software without | ||
26 | * prior written permission. For written permission, please contact | ||
27 | * openssl-core@openssl.org. | ||
28 | * | ||
29 | * 5. Products derived from this software may not be called "OpenSSL" | ||
30 | * nor may "OpenSSL" appear in their names without prior written | ||
31 | * permission of the OpenSSL Project. | ||
32 | * | ||
33 | * 6. Redistributions of any form whatsoever must retain the following | ||
34 | * acknowledgment: | ||
35 | * "This product includes software developed by the OpenSSL Project | ||
36 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
37 | * | ||
38 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
39 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
40 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
41 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
42 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
43 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
44 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
45 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
46 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
47 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
48 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
49 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
50 | * ==================================================================== | ||
51 | * | ||
52 | * This product includes cryptographic software written by Eric Young | ||
53 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
54 | * Hudson (tjh@cryptsoft.com). | ||
55 | * | ||
56 | */ | ||
57 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
58 | * All rights reserved. | ||
59 | * | ||
60 | * This package is an SSL implementation written | ||
61 | * by Eric Young (eay@cryptsoft.com). | ||
62 | * The implementation was written so as to conform with Netscapes SSL. | ||
63 | * | ||
64 | * This library is free for commercial and non-commercial use as long as | ||
65 | * the following conditions are aheared to. The following conditions | ||
66 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
67 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
68 | * included with this distribution is covered by the same copyright terms | ||
69 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
70 | * | ||
71 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
72 | * the code are not to be removed. | ||
73 | * If this package is used in a product, Eric Young should be given attribution | ||
74 | * as the author of the parts of the library used. | ||
75 | * This can be in the form of a textual message at program startup or | ||
76 | * in documentation (online or textual) provided with the package. | ||
77 | * | ||
78 | * Redistribution and use in source and binary forms, with or without | ||
79 | * modification, are permitted provided that the following conditions | ||
80 | * are met: | ||
81 | * 1. Redistributions of source code must retain the copyright | ||
82 | * notice, this list of conditions and the following disclaimer. | ||
83 | * 2. Redistributions in binary form must reproduce the above copyright | ||
84 | * notice, this list of conditions and the following disclaimer in the | ||
85 | * documentation and/or other materials provided with the distribution. | ||
86 | * 3. All advertising materials mentioning features or use of this software | ||
87 | * must display the following acknowledgement: | ||
88 | * "This product includes cryptographic software written by | ||
89 | * Eric Young (eay@cryptsoft.com)" | ||
90 | * The word 'cryptographic' can be left out if the rouines from the library | ||
91 | * being used are not cryptographic related :-). | ||
92 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
93 | * the apps directory (application code) you must include an acknowledgement: | ||
94 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
95 | * | ||
96 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
97 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
98 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
99 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
100 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
101 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
102 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
103 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
104 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
105 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
106 | * SUCH DAMAGE. | ||
107 | * | ||
108 | * The licence and distribution terms for any publically available version or | ||
109 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
110 | * copied and put under another distribution licence | ||
111 | * [including the GNU Public Licence.] | ||
112 | */ | ||
113 | |||
114 | #include <openssl/err.h> | ||
115 | |||
116 | #include "bn_local.h" | ||
117 | |||
118 | int | ||
119 | BN_mod_ct(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) | ||
120 | { | ||
121 | return BN_div_ct(NULL, r, a, m, ctx); | ||
122 | } | ||
123 | |||
124 | int | ||
125 | BN_mod_nonct(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) | ||
126 | { | ||
127 | return BN_div_nonct(NULL, r, a, m, ctx); | ||
128 | } | ||
129 | |||
130 | /* | ||
131 | * BN_nnmod() is like BN_mod(), but always returns a non-negative remainder | ||
132 | * (that is 0 <= r < |m| always holds). If both a and m have the same sign then | ||
133 | * the result is already non-negative. Otherwise, -|m| < r < 0, which needs to | ||
134 | * be adjusted as r := r + |m|. This equates to r := |m| - |r|. | ||
135 | */ | ||
136 | int | ||
137 | BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) | ||
138 | { | ||
139 | if (r == m) { | ||
140 | BNerror(BN_R_INVALID_ARGUMENT); | ||
141 | return 0; | ||
142 | } | ||
143 | if (!BN_mod_ct(r, a, m, ctx)) | ||
144 | return 0; | ||
145 | if (BN_is_negative(r)) | ||
146 | return BN_usub(r, m, r); | ||
147 | return 1; | ||
148 | } | ||
149 | LCRYPTO_ALIAS(BN_nnmod); | ||
150 | |||
151 | int | ||
152 | BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | ||
153 | BN_CTX *ctx) | ||
154 | { | ||
155 | if (r == m) { | ||
156 | BNerror(BN_R_INVALID_ARGUMENT); | ||
157 | return 0; | ||
158 | } | ||
159 | if (!BN_add(r, a, b)) | ||
160 | return 0; | ||
161 | return BN_nnmod(r, r, m, ctx); | ||
162 | } | ||
163 | LCRYPTO_ALIAS(BN_mod_add); | ||
164 | |||
165 | /* | ||
166 | * BN_mod_add() variant that may only be used if both a and b are non-negative | ||
167 | * and have already been reduced (less than m). | ||
168 | */ | ||
169 | int | ||
170 | BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m) | ||
171 | { | ||
172 | if (r == m) { | ||
173 | BNerror(BN_R_INVALID_ARGUMENT); | ||
174 | return 0; | ||
175 | } | ||
176 | if (!BN_uadd(r, a, b)) | ||
177 | return 0; | ||
178 | if (BN_ucmp(r, m) >= 0) | ||
179 | return BN_usub(r, r, m); | ||
180 | return 1; | ||
181 | } | ||
182 | LCRYPTO_ALIAS(BN_mod_add_quick); | ||
183 | |||
184 | int | ||
185 | BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | ||
186 | BN_CTX *ctx) | ||
187 | { | ||
188 | if (r == m) { | ||
189 | BNerror(BN_R_INVALID_ARGUMENT); | ||
190 | return 0; | ||
191 | } | ||
192 | if (!BN_sub(r, a, b)) | ||
193 | return 0; | ||
194 | return BN_nnmod(r, r, m, ctx); | ||
195 | } | ||
196 | LCRYPTO_ALIAS(BN_mod_sub); | ||
197 | |||
198 | /* | ||
199 | * BN_mod_sub() variant that may only be used if both a and b are non-negative | ||
200 | * and have already been reduced (less than m). | ||
201 | */ | ||
202 | int | ||
203 | BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m) | ||
204 | { | ||
205 | if (r == m) { | ||
206 | BNerror(BN_R_INVALID_ARGUMENT); | ||
207 | return 0; | ||
208 | } | ||
209 | if (BN_ucmp(a, b) >= 0) | ||
210 | return BN_usub(r, a, b); | ||
211 | if (!BN_usub(r, b, a)) | ||
212 | return 0; | ||
213 | return BN_usub(r, m, r); | ||
214 | } | ||
215 | LCRYPTO_ALIAS(BN_mod_sub_quick); | ||
216 | |||
217 | int | ||
218 | BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | ||
219 | BN_CTX *ctx) | ||
220 | { | ||
221 | BIGNUM *rr; | ||
222 | int ret = 0; | ||
223 | |||
224 | BN_CTX_start(ctx); | ||
225 | |||
226 | if (r == m) { | ||
227 | BNerror(BN_R_INVALID_ARGUMENT); | ||
228 | goto err; | ||
229 | } | ||
230 | |||
231 | rr = r; | ||
232 | if (rr == a || rr == b) | ||
233 | rr = BN_CTX_get(ctx); | ||
234 | if (rr == NULL) | ||
235 | goto err; | ||
236 | |||
237 | if (a == b) { | ||
238 | if (!BN_sqr(rr, a, ctx)) | ||
239 | goto err; | ||
240 | } else { | ||
241 | if (!BN_mul(rr, a, b, ctx)) | ||
242 | goto err; | ||
243 | } | ||
244 | if (!BN_nnmod(r, rr, m, ctx)) | ||
245 | goto err; | ||
246 | |||
247 | ret = 1; | ||
248 | |||
249 | err: | ||
250 | BN_CTX_end(ctx); | ||
251 | |||
252 | return ret; | ||
253 | } | ||
254 | LCRYPTO_ALIAS(BN_mod_mul); | ||
255 | |||
256 | int | ||
257 | BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) | ||
258 | { | ||
259 | return BN_mod_mul(r, a, a, m, ctx); | ||
260 | } | ||
261 | LCRYPTO_ALIAS(BN_mod_sqr); | ||
262 | |||
263 | int | ||
264 | BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) | ||
265 | { | ||
266 | if (r == m) { | ||
267 | BNerror(BN_R_INVALID_ARGUMENT); | ||
268 | return 0; | ||
269 | } | ||
270 | if (!BN_lshift1(r, a)) | ||
271 | return 0; | ||
272 | return BN_nnmod(r, r, m, ctx); | ||
273 | } | ||
274 | LCRYPTO_ALIAS(BN_mod_lshift1); | ||
275 | |||
276 | /* | ||
277 | * BN_mod_lshift1() variant that may be used if a is non-negative | ||
278 | * and has already been reduced (less than m). | ||
279 | */ | ||
280 | int | ||
281 | BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) | ||
282 | { | ||
283 | if (r == m) { | ||
284 | BNerror(BN_R_INVALID_ARGUMENT); | ||
285 | return 0; | ||
286 | } | ||
287 | if (!BN_lshift1(r, a)) | ||
288 | return 0; | ||
289 | if (BN_ucmp(r, m) >= 0) | ||
290 | return BN_usub(r, r, m); | ||
291 | return 1; | ||
292 | } | ||
293 | LCRYPTO_ALIAS(BN_mod_lshift1_quick); | ||
294 | |||
295 | int | ||
296 | BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx) | ||
297 | { | ||
298 | BIGNUM *abs_m; | ||
299 | int ret = 0; | ||
300 | |||
301 | BN_CTX_start(ctx); | ||
302 | |||
303 | if (r == m) { | ||
304 | BNerror(BN_R_INVALID_ARGUMENT); | ||
305 | goto err; | ||
306 | } | ||
307 | |||
308 | if (!BN_nnmod(r, a, m, ctx)) | ||
309 | goto err; | ||
310 | |||
311 | if (BN_is_negative(m)) { | ||
312 | if ((abs_m = BN_CTX_get(ctx)) == NULL) | ||
313 | goto err; | ||
314 | if (!bn_copy(abs_m, m)) | ||
315 | goto err; | ||
316 | BN_set_negative(abs_m, 0); | ||
317 | m = abs_m; | ||
318 | } | ||
319 | if (!BN_mod_lshift_quick(r, r, n, m)) | ||
320 | goto err; | ||
321 | |||
322 | ret = 1; | ||
323 | err: | ||
324 | BN_CTX_end(ctx); | ||
325 | |||
326 | return ret; | ||
327 | } | ||
328 | LCRYPTO_ALIAS(BN_mod_lshift); | ||
329 | |||
330 | /* | ||
331 | * BN_mod_lshift() variant that may be used if a is non-negative | ||
332 | * and has already been reduced (less than m). | ||
333 | */ | ||
334 | int | ||
335 | BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) | ||
336 | { | ||
337 | int max_shift; | ||
338 | |||
339 | if (r == m) { | ||
340 | BNerror(BN_R_INVALID_ARGUMENT); | ||
341 | return 0; | ||
342 | } | ||
343 | |||
344 | if (!bn_copy(r, a)) | ||
345 | return 0; | ||
346 | |||
347 | while (n > 0) { | ||
348 | if ((max_shift = BN_num_bits(m) - BN_num_bits(r)) < 0) { | ||
349 | BNerror(BN_R_INPUT_NOT_REDUCED); | ||
350 | return 0; | ||
351 | } | ||
352 | if (max_shift == 0) | ||
353 | max_shift = 1; | ||
354 | if (max_shift > n) | ||
355 | max_shift = n; | ||
356 | |||
357 | if (!BN_lshift(r, r, max_shift)) | ||
358 | return 0; | ||
359 | n -= max_shift; | ||
360 | |||
361 | if (BN_ucmp(r, m) >= 0) { | ||
362 | if (!BN_usub(r, r, m)) | ||
363 | return 0; | ||
364 | } | ||
365 | } | ||
366 | |||
367 | return 1; | ||
368 | } | ||
369 | LCRYPTO_ALIAS(BN_mod_lshift_quick); | ||
diff --git a/src/lib/libcrypto/bn/bn_mod_sqrt.c b/src/lib/libcrypto/bn/bn_mod_sqrt.c deleted file mode 100644 index 280002cc48..0000000000 --- a/src/lib/libcrypto/bn/bn_mod_sqrt.c +++ /dev/null | |||
@@ -1,723 +0,0 @@ | |||
1 | /* $OpenBSD: bn_mod_sqrt.c,v 1.3 2023/08/03 18:53:55 tb Exp $ */ | ||
2 | |||
3 | /* | ||
4 | * Copyright (c) 2022 Theo Buehler <tb@openbsd.org> | ||
5 | * | ||
6 | * Permission to use, copy, modify, and distribute this software for any | ||
7 | * purpose with or without fee is hereby granted, provided that the above | ||
8 | * copyright notice and this permission notice appear in all copies. | ||
9 | * | ||
10 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
11 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
12 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
13 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
14 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
15 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
16 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
17 | */ | ||
18 | |||
19 | #include <openssl/err.h> | ||
20 | |||
21 | #include "bn_local.h" | ||
22 | |||
23 | /* | ||
24 | * Tonelli-Shanks according to H. Cohen "A Course in Computational Algebraic | ||
25 | * Number Theory", Section 1.5.1, Springer GTM volume 138, Berlin, 1996. | ||
26 | * | ||
27 | * Under the assumption that p is prime and a is a quadratic residue, we know: | ||
28 | * | ||
29 | * a^[(p-1)/2] = 1 (mod p). (*) | ||
30 | * | ||
31 | * To find a square root of a (mod p), we handle three cases of increasing | ||
32 | * complexity. In the first two cases, we can compute a square root using an | ||
33 | * explicit formula, thus avoiding the probabilistic nature of Tonelli-Shanks. | ||
34 | * | ||
35 | * 1. p = 3 (mod 4). | ||
36 | * | ||
37 | * Set n = (p+1)/4. Then 2n = 1 + (p-1)/2 and (*) shows that x = a^n (mod p) | ||
38 | * is a square root of a: x^2 = a^(2n) = a * a^[(p-1)/2] = a (mod p). | ||
39 | * | ||
40 | * 2. p = 5 (mod 8). | ||
41 | * | ||
42 | * This uses a simplification due to Atkin. By Theorem 1.4.7 and 1.4.9, the | ||
43 | * Kronecker symbol (2/p) evaluates to (-1)^[(p^2-1)/8]. From p = 5 (mod 8) | ||
44 | * we get (p^2-1)/8 = 1 (mod 2), so (2/p) = -1, and thus | ||
45 | * | ||
46 | * 2^[(p-1)/2] = -1 (mod p). (**) | ||
47 | * | ||
48 | * Set b = (2a)^[(p-5)/8]. With (p-1)/2 = 2 + (p-5)/2, (*) and (**) show | ||
49 | * | ||
50 | * i = 2 a b^2 is a square root of -1 (mod p). | ||
51 | * | ||
52 | * Indeed, i^2 = 2^2 a^2 b^4 = 2^[(p-1)/2] a^[(p-1)/2] = -1 (mod p). Because | ||
53 | * of (i-1)^2 = -2i (mod p) and i (-i) = 1 (mod p), a square root of a is | ||
54 | * | ||
55 | * x = a b (i-1) | ||
56 | * | ||
57 | * as x^2 = a^2 b^2 (-2i) = a (2 a b^2) (-i) = a (mod p). | ||
58 | * | ||
59 | * 3. p = 1 (mod 8). | ||
60 | * | ||
61 | * This is the Tonelli-Shanks algorithm. For a prime p, the multiplicative | ||
62 | * group of GF(p) is cyclic of order p - 1 = 2^s q, with odd q. Denote its | ||
63 | * 2-Sylow subgroup by S. It is cyclic of order 2^s. The squares in S have | ||
64 | * order dividing 2^(s-1). They are the even powers of any generator z of S. | ||
65 | * If a is a quadratic residue, 1 = a^[(p-1)/2] = (a^q)^[2^(s-1)], so b = a^q | ||
66 | * is a square in S. Therefore there is an integer k such that b z^(2k) = 1. | ||
67 | * Set x = a^[(q+1)/2] z^k, and find x^2 = a (mod p). | ||
68 | * | ||
69 | * The problem is thus reduced to finding a generator z of the 2-Sylow | ||
70 | * subgroup S of GF(p)* and finding k. An iterative constructions avoids | ||
71 | * the need for an explicit k, a generator is found by a randomized search. | ||
72 | * | ||
73 | * While we do not actually know that p is a prime number, we can still apply | ||
74 | * the formulas in cases 1 and 2 and verify that we have indeed found a square | ||
75 | * root of p. Similarly, in case 3, we can try to find a quadratic non-residue, | ||
76 | * which will fail for example if p is a square. The iterative construction | ||
77 | * may or may not find a candidate square root which we can then validate. | ||
78 | */ | ||
79 | |||
80 | /* | ||
81 | * Handle the cases where p is 2, p isn't odd or p is one. Since BN_mod_sqrt() | ||
82 | * can run on untrusted data, a primality check is too expensive. Also treat | ||
83 | * the obvious cases where a is 0 or 1. | ||
84 | */ | ||
85 | |||
86 | static int | ||
87 | bn_mod_sqrt_trivial_cases(int *done, BIGNUM *out_sqrt, const BIGNUM *a, | ||
88 | const BIGNUM *p, BN_CTX *ctx) | ||
89 | { | ||
90 | *done = 1; | ||
91 | |||
92 | if (BN_abs_is_word(p, 2)) | ||
93 | return BN_set_word(out_sqrt, BN_is_odd(a)); | ||
94 | |||
95 | if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { | ||
96 | BNerror(BN_R_P_IS_NOT_PRIME); | ||
97 | return 0; | ||
98 | } | ||
99 | |||
100 | if (BN_is_zero(a) || BN_is_one(a)) | ||
101 | return BN_set_word(out_sqrt, BN_is_one(a)); | ||
102 | |||
103 | *done = 0; | ||
104 | |||
105 | return 1; | ||
106 | } | ||
107 | |||
108 | /* | ||
109 | * Case 1. We know that (a/p) = 1 and that p = 3 (mod 4). | ||
110 | */ | ||
111 | |||
112 | static int | ||
113 | bn_mod_sqrt_p_is_3_mod_4(BIGNUM *out_sqrt, const BIGNUM *a, const BIGNUM *p, | ||
114 | BN_CTX *ctx) | ||
115 | { | ||
116 | BIGNUM *n; | ||
117 | int ret = 0; | ||
118 | |||
119 | BN_CTX_start(ctx); | ||
120 | |||
121 | if ((n = BN_CTX_get(ctx)) == NULL) | ||
122 | goto err; | ||
123 | |||
124 | /* Calculate n = (|p| + 1) / 4. */ | ||
125 | if (!BN_uadd(n, p, BN_value_one())) | ||
126 | goto err; | ||
127 | if (!BN_rshift(n, n, 2)) | ||
128 | goto err; | ||
129 | |||
130 | /* By case 1 above, out_sqrt = a^n is a square root of a (mod p). */ | ||
131 | if (!BN_mod_exp_ct(out_sqrt, a, n, p, ctx)) | ||
132 | goto err; | ||
133 | |||
134 | ret = 1; | ||
135 | |||
136 | err: | ||
137 | BN_CTX_end(ctx); | ||
138 | |||
139 | return ret; | ||
140 | } | ||
141 | |||
142 | /* | ||
143 | * Case 2. We know that (a/p) = 1 and that p = 5 (mod 8). | ||
144 | */ | ||
145 | |||
146 | static int | ||
147 | bn_mod_sqrt_p_is_5_mod_8(BIGNUM *out_sqrt, const BIGNUM *a, const BIGNUM *p, | ||
148 | BN_CTX *ctx) | ||
149 | { | ||
150 | BIGNUM *b, *i, *n, *tmp; | ||
151 | int ret = 0; | ||
152 | |||
153 | BN_CTX_start(ctx); | ||
154 | |||
155 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
156 | goto err; | ||
157 | if ((i = BN_CTX_get(ctx)) == NULL) | ||
158 | goto err; | ||
159 | if ((n = BN_CTX_get(ctx)) == NULL) | ||
160 | goto err; | ||
161 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
162 | goto err; | ||
163 | |||
164 | /* Calculate n = (|p| - 5) / 8. Since p = 5 (mod 8), simply shift. */ | ||
165 | if (!BN_rshift(n, p, 3)) | ||
166 | goto err; | ||
167 | BN_set_negative(n, 0); | ||
168 | |||
169 | /* Compute tmp = 2a (mod p) for later use. */ | ||
170 | if (!BN_mod_lshift1(tmp, a, p, ctx)) | ||
171 | goto err; | ||
172 | |||
173 | /* Calculate b = (2a)^n (mod p). */ | ||
174 | if (!BN_mod_exp_ct(b, tmp, n, p, ctx)) | ||
175 | goto err; | ||
176 | |||
177 | /* Calculate i = 2 a b^2 (mod p). */ | ||
178 | if (!BN_mod_sqr(i, b, p, ctx)) | ||
179 | goto err; | ||
180 | if (!BN_mod_mul(i, tmp, i, p, ctx)) | ||
181 | goto err; | ||
182 | |||
183 | /* A square root is out_sqrt = a b (i-1) (mod p). */ | ||
184 | if (!BN_sub_word(i, 1)) | ||
185 | goto err; | ||
186 | if (!BN_mod_mul(out_sqrt, a, b, p, ctx)) | ||
187 | goto err; | ||
188 | if (!BN_mod_mul(out_sqrt, out_sqrt, i, p, ctx)) | ||
189 | goto err; | ||
190 | |||
191 | ret = 1; | ||
192 | |||
193 | err: | ||
194 | BN_CTX_end(ctx); | ||
195 | |||
196 | return ret; | ||
197 | } | ||
198 | |||
199 | /* | ||
200 | * Case 3. We know that (a/p) = 1 and that p = 1 (mod 8). | ||
201 | */ | ||
202 | |||
203 | /* | ||
204 | * Simple helper. To find a generator of the 2-Sylow subgroup of GF(p)*, we | ||
205 | * need to find a quadratic non-residue of p, i.e., n such that (n/p) = -1. | ||
206 | */ | ||
207 | |||
208 | static int | ||
209 | bn_mod_sqrt_n_is_non_residue(int *is_non_residue, const BIGNUM *n, | ||
210 | const BIGNUM *p, BN_CTX *ctx) | ||
211 | { | ||
212 | switch (BN_kronecker(n, p, ctx)) { | ||
213 | case -1: | ||
214 | *is_non_residue = 1; | ||
215 | return 1; | ||
216 | case 1: | ||
217 | *is_non_residue = 0; | ||
218 | return 1; | ||
219 | case 0: | ||
220 | /* n divides p, so ... */ | ||
221 | BNerror(BN_R_P_IS_NOT_PRIME); | ||
222 | return 0; | ||
223 | default: | ||
224 | return 0; | ||
225 | } | ||
226 | } | ||
227 | |||
228 | /* | ||
229 | * The following is the only non-deterministic part preparing Tonelli-Shanks. | ||
230 | * | ||
231 | * If we find n such that (n/p) = -1, then n^q (mod p) is a generator of the | ||
232 | * 2-Sylow subgroup of GF(p)*. To find such n, first try some small numbers, | ||
233 | * then random ones. | ||
234 | */ | ||
235 | |||
236 | static int | ||
237 | bn_mod_sqrt_find_sylow_generator(BIGNUM *out_generator, const BIGNUM *p, | ||
238 | const BIGNUM *q, BN_CTX *ctx) | ||
239 | { | ||
240 | BIGNUM *n, *p_abs; | ||
241 | int i, is_non_residue; | ||
242 | int ret = 0; | ||
243 | |||
244 | BN_CTX_start(ctx); | ||
245 | |||
246 | if ((n = BN_CTX_get(ctx)) == NULL) | ||
247 | goto err; | ||
248 | if ((p_abs = BN_CTX_get(ctx)) == NULL) | ||
249 | goto err; | ||
250 | |||
251 | for (i = 2; i < 32; i++) { | ||
252 | if (!BN_set_word(n, i)) | ||
253 | goto err; | ||
254 | if (!bn_mod_sqrt_n_is_non_residue(&is_non_residue, n, p, ctx)) | ||
255 | goto err; | ||
256 | if (is_non_residue) | ||
257 | goto found; | ||
258 | } | ||
259 | |||
260 | if (!bn_copy(p_abs, p)) | ||
261 | goto err; | ||
262 | BN_set_negative(p_abs, 0); | ||
263 | |||
264 | for (i = 0; i < 128; i++) { | ||
265 | if (!bn_rand_interval(n, 32, p_abs)) | ||
266 | goto err; | ||
267 | if (!bn_mod_sqrt_n_is_non_residue(&is_non_residue, n, p, ctx)) | ||
268 | goto err; | ||
269 | if (is_non_residue) | ||
270 | goto found; | ||
271 | } | ||
272 | |||
273 | /* | ||
274 | * The probability to get here is < 2^(-128) for prime p. For squares | ||
275 | * it is easy: for p = 1369 = 37^2 this happens in ~3% of runs. | ||
276 | */ | ||
277 | |||
278 | BNerror(BN_R_TOO_MANY_ITERATIONS); | ||
279 | goto err; | ||
280 | |||
281 | found: | ||
282 | /* | ||
283 | * If p is prime, n^q generates the 2-Sylow subgroup S of GF(p)*. | ||
284 | */ | ||
285 | |||
286 | if (!BN_mod_exp_ct(out_generator, n, q, p, ctx)) | ||
287 | goto err; | ||
288 | |||
289 | /* Sanity: p is not necessarily prime, so we could have found 0 or 1. */ | ||
290 | if (BN_is_zero(out_generator) || BN_is_one(out_generator)) { | ||
291 | BNerror(BN_R_P_IS_NOT_PRIME); | ||
292 | goto err; | ||
293 | } | ||
294 | |||
295 | ret = 1; | ||
296 | |||
297 | err: | ||
298 | BN_CTX_end(ctx); | ||
299 | |||
300 | return ret; | ||
301 | } | ||
302 | |||
303 | /* | ||
304 | * Initialization step for Tonelli-Shanks. | ||
305 | * | ||
306 | * In the end, b = a^q (mod p) and x = a^[(q+1)/2] (mod p). Cohen optimizes this | ||
307 | * to minimize taking powers of a. This is a bit confusing and distracting, so | ||
308 | * factor this into a separate function. | ||
309 | */ | ||
310 | |||
311 | static int | ||
312 | bn_mod_sqrt_tonelli_shanks_initialize(BIGNUM *b, BIGNUM *x, const BIGNUM *a, | ||
313 | const BIGNUM *p, const BIGNUM *q, BN_CTX *ctx) | ||
314 | { | ||
315 | BIGNUM *k; | ||
316 | int ret = 0; | ||
317 | |||
318 | BN_CTX_start(ctx); | ||
319 | |||
320 | if ((k = BN_CTX_get(ctx)) == NULL) | ||
321 | goto err; | ||
322 | |||
323 | /* k = (q-1)/2. Since q is odd, we can shift. */ | ||
324 | if (!BN_rshift1(k, q)) | ||
325 | goto err; | ||
326 | |||
327 | /* x = a^[(q-1)/2] (mod p). */ | ||
328 | if (!BN_mod_exp_ct(x, a, k, p, ctx)) | ||
329 | goto err; | ||
330 | |||
331 | /* b = ax^2 = a^q (mod p). */ | ||
332 | if (!BN_mod_sqr(b, x, p, ctx)) | ||
333 | goto err; | ||
334 | if (!BN_mod_mul(b, a, b, p, ctx)) | ||
335 | goto err; | ||
336 | |||
337 | /* x = ax = a^[(q+1)/2] (mod p). */ | ||
338 | if (!BN_mod_mul(x, a, x, p, ctx)) | ||
339 | goto err; | ||
340 | |||
341 | ret = 1; | ||
342 | |||
343 | err: | ||
344 | BN_CTX_end(ctx); | ||
345 | |||
346 | return ret; | ||
347 | } | ||
348 | |||
349 | /* | ||
350 | * Find smallest exponent m such that b^(2^m) = 1 (mod p). Assuming that a | ||
351 | * is a quadratic residue and p is a prime, we know that 1 <= m < r. | ||
352 | */ | ||
353 | |||
354 | static int | ||
355 | bn_mod_sqrt_tonelli_shanks_find_exponent(int *out_exponent, const BIGNUM *b, | ||
356 | const BIGNUM *p, int r, BN_CTX *ctx) | ||
357 | { | ||
358 | BIGNUM *x; | ||
359 | int m; | ||
360 | int ret = 0; | ||
361 | |||
362 | BN_CTX_start(ctx); | ||
363 | |||
364 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
365 | goto err; | ||
366 | |||
367 | /* | ||
368 | * If r <= 1, the Tonelli-Shanks iteration should have terminated as | ||
369 | * r == 1 implies b == 1. | ||
370 | */ | ||
371 | if (r <= 1) { | ||
372 | BNerror(BN_R_P_IS_NOT_PRIME); | ||
373 | goto err; | ||
374 | } | ||
375 | |||
376 | /* | ||
377 | * Sanity check to ensure taking squares actually does something: | ||
378 | * If b is 1, the Tonelli-Shanks iteration should have terminated. | ||
379 | * If b is 0, something's very wrong, in particular p can't be prime. | ||
380 | */ | ||
381 | if (BN_is_zero(b) || BN_is_one(b)) { | ||
382 | BNerror(BN_R_P_IS_NOT_PRIME); | ||
383 | goto err; | ||
384 | } | ||
385 | |||
386 | if (!bn_copy(x, b)) | ||
387 | goto err; | ||
388 | |||
389 | for (m = 1; m < r; m++) { | ||
390 | if (!BN_mod_sqr(x, x, p, ctx)) | ||
391 | goto err; | ||
392 | if (BN_is_one(x)) | ||
393 | break; | ||
394 | } | ||
395 | |||
396 | if (m >= r) { | ||
397 | /* This means a is not a quadratic residue. As (a/p) = 1, ... */ | ||
398 | BNerror(BN_R_P_IS_NOT_PRIME); | ||
399 | goto err; | ||
400 | } | ||
401 | |||
402 | *out_exponent = m; | ||
403 | |||
404 | ret = 1; | ||
405 | |||
406 | err: | ||
407 | BN_CTX_end(ctx); | ||
408 | |||
409 | return ret; | ||
410 | } | ||
411 | |||
412 | /* | ||
413 | * The update step. With the minimal m such that b^(2^m) = 1 (mod m), | ||
414 | * set t = y^[2^(r-m-1)] (mod p) and update x = xt, y = t^2, b = by. | ||
415 | * This preserves the loop invariants a b = x^2, y^[2^(r-1)] = -1 and | ||
416 | * b^[2^(r-1)] = 1. | ||
417 | */ | ||
418 | |||
419 | static int | ||
420 | bn_mod_sqrt_tonelli_shanks_update(BIGNUM *b, BIGNUM *x, BIGNUM *y, | ||
421 | const BIGNUM *p, int m, int r, BN_CTX *ctx) | ||
422 | { | ||
423 | BIGNUM *t; | ||
424 | int ret = 0; | ||
425 | |||
426 | BN_CTX_start(ctx); | ||
427 | |||
428 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
429 | goto err; | ||
430 | |||
431 | /* t = y^[2^(r-m-1)] (mod p). */ | ||
432 | if (!BN_set_bit(t, r - m - 1)) | ||
433 | goto err; | ||
434 | if (!BN_mod_exp_ct(t, y, t, p, ctx)) | ||
435 | goto err; | ||
436 | |||
437 | /* x = xt (mod p). */ | ||
438 | if (!BN_mod_mul(x, x, t, p, ctx)) | ||
439 | goto err; | ||
440 | |||
441 | /* y = t^2 = y^[2^(r-m)] (mod p). */ | ||
442 | if (!BN_mod_sqr(y, t, p, ctx)) | ||
443 | goto err; | ||
444 | |||
445 | /* b = by (mod p). */ | ||
446 | if (!BN_mod_mul(b, b, y, p, ctx)) | ||
447 | goto err; | ||
448 | |||
449 | ret = 1; | ||
450 | |||
451 | err: | ||
452 | BN_CTX_end(ctx); | ||
453 | |||
454 | return ret; | ||
455 | } | ||
456 | |||
457 | static int | ||
458 | bn_mod_sqrt_p_is_1_mod_8(BIGNUM *out_sqrt, const BIGNUM *a, const BIGNUM *p, | ||
459 | BN_CTX *ctx) | ||
460 | { | ||
461 | BIGNUM *b, *q, *x, *y; | ||
462 | int e, m, r; | ||
463 | int ret = 0; | ||
464 | |||
465 | BN_CTX_start(ctx); | ||
466 | |||
467 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
468 | goto err; | ||
469 | if ((q = BN_CTX_get(ctx)) == NULL) | ||
470 | goto err; | ||
471 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
472 | goto err; | ||
473 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
474 | goto err; | ||
475 | |||
476 | /* | ||
477 | * Factor p - 1 = 2^e q with odd q. Since p = 1 (mod 8), we know e >= 3. | ||
478 | */ | ||
479 | |||
480 | e = 1; | ||
481 | while (!BN_is_bit_set(p, e)) | ||
482 | e++; | ||
483 | if (!BN_rshift(q, p, e)) | ||
484 | goto err; | ||
485 | |||
486 | if (!bn_mod_sqrt_find_sylow_generator(y, p, q, ctx)) | ||
487 | goto err; | ||
488 | |||
489 | /* | ||
490 | * Set b = a^q (mod p) and x = a^[(q+1)/2] (mod p). | ||
491 | */ | ||
492 | if (!bn_mod_sqrt_tonelli_shanks_initialize(b, x, a, p, q, ctx)) | ||
493 | goto err; | ||
494 | |||
495 | /* | ||
496 | * The Tonelli-Shanks iteration. Starting with r = e, the following loop | ||
497 | * invariants hold at the start of the loop. | ||
498 | * | ||
499 | * a b = x^2 (mod p) | ||
500 | * y^[2^(r-1)] = -1 (mod p) | ||
501 | * b^[2^(r-1)] = 1 (mod p) | ||
502 | * | ||
503 | * In particular, if b = 1 (mod p), x is a square root of a. | ||
504 | * | ||
505 | * Since p - 1 = 2^e q, we have 2^(e-1) q = (p - 1) / 2, so in the first | ||
506 | * iteration this follows from (a/p) = 1, (n/p) = -1, y = n^q, b = a^q. | ||
507 | * | ||
508 | * In subsequent iterations, t = y^[2^(r-m-1)], where m is the smallest | ||
509 | * m such that b^(2^m) = 1. With x = xt (mod p) and b = bt^2 (mod p) the | ||
510 | * first invariant is preserved, the second and third follow from | ||
511 | * y = t^2 (mod p) and r = m as well as the choice of m. | ||
512 | * | ||
513 | * Finally, r is strictly decreasing in each iteration. If p is prime, | ||
514 | * let S be the 2-Sylow subgroup of GF(p)*. We can prove the algorithm | ||
515 | * stops: Let S_r be the subgroup of S consisting of elements of order | ||
516 | * dividing 2^r. Then S_r = <y> and b is in S_(r-1). The S_r form a | ||
517 | * descending filtration of S and when r = 1, then b = 1. | ||
518 | */ | ||
519 | |||
520 | for (r = e; r >= 1; r = m) { | ||
521 | /* | ||
522 | * Termination condition. If b == 1 then x is a square root. | ||
523 | */ | ||
524 | if (BN_is_one(b)) | ||
525 | goto done; | ||
526 | |||
527 | /* Find smallest exponent 1 <= m < r such that b^(2^m) == 1. */ | ||
528 | if (!bn_mod_sqrt_tonelli_shanks_find_exponent(&m, b, p, r, ctx)) | ||
529 | goto err; | ||
530 | |||
531 | /* | ||
532 | * With t = y^[2^(r-m-1)], update x = xt, y = t^2, b = by. | ||
533 | */ | ||
534 | if (!bn_mod_sqrt_tonelli_shanks_update(b, x, y, p, m, r, ctx)) | ||
535 | goto err; | ||
536 | |||
537 | /* | ||
538 | * Sanity check to make sure we don't loop indefinitely. | ||
539 | * bn_mod_sqrt_tonelli_shanks_find_exponent() ensures m < r. | ||
540 | */ | ||
541 | if (r <= m) | ||
542 | goto err; | ||
543 | } | ||
544 | |||
545 | /* | ||
546 | * If p is prime, we should not get here. | ||
547 | */ | ||
548 | |||
549 | BNerror(BN_R_NOT_A_SQUARE); | ||
550 | goto err; | ||
551 | |||
552 | done: | ||
553 | if (!bn_copy(out_sqrt, x)) | ||
554 | goto err; | ||
555 | |||
556 | ret = 1; | ||
557 | |||
558 | err: | ||
559 | BN_CTX_end(ctx); | ||
560 | |||
561 | return ret; | ||
562 | } | ||
563 | |||
564 | /* | ||
565 | * Choose the smaller of sqrt and |p| - sqrt. | ||
566 | */ | ||
567 | |||
568 | static int | ||
569 | bn_mod_sqrt_normalize(BIGNUM *sqrt, const BIGNUM *p, BN_CTX *ctx) | ||
570 | { | ||
571 | BIGNUM *x; | ||
572 | int ret = 0; | ||
573 | |||
574 | BN_CTX_start(ctx); | ||
575 | |||
576 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
577 | goto err; | ||
578 | |||
579 | if (!BN_lshift1(x, sqrt)) | ||
580 | goto err; | ||
581 | |||
582 | if (BN_ucmp(x, p) > 0) { | ||
583 | if (!BN_usub(sqrt, p, sqrt)) | ||
584 | goto err; | ||
585 | } | ||
586 | |||
587 | ret = 1; | ||
588 | |||
589 | err: | ||
590 | BN_CTX_end(ctx); | ||
591 | |||
592 | return ret; | ||
593 | } | ||
594 | |||
595 | /* | ||
596 | * Verify that a = (sqrt_a)^2 (mod p). Requires that a is reduced (mod p). | ||
597 | */ | ||
598 | |||
599 | static int | ||
600 | bn_mod_sqrt_verify(const BIGNUM *a, const BIGNUM *sqrt_a, const BIGNUM *p, | ||
601 | BN_CTX *ctx) | ||
602 | { | ||
603 | BIGNUM *x; | ||
604 | int ret = 0; | ||
605 | |||
606 | BN_CTX_start(ctx); | ||
607 | |||
608 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
609 | goto err; | ||
610 | |||
611 | if (!BN_mod_sqr(x, sqrt_a, p, ctx)) | ||
612 | goto err; | ||
613 | |||
614 | if (BN_cmp(x, a) != 0) { | ||
615 | BNerror(BN_R_NOT_A_SQUARE); | ||
616 | goto err; | ||
617 | } | ||
618 | |||
619 | ret = 1; | ||
620 | |||
621 | err: | ||
622 | BN_CTX_end(ctx); | ||
623 | |||
624 | return ret; | ||
625 | } | ||
626 | |||
627 | static int | ||
628 | bn_mod_sqrt_internal(BIGNUM *out_sqrt, const BIGNUM *a, const BIGNUM *p, | ||
629 | BN_CTX *ctx) | ||
630 | { | ||
631 | BIGNUM *a_mod_p, *sqrt; | ||
632 | BN_ULONG lsw; | ||
633 | int done; | ||
634 | int kronecker; | ||
635 | int ret = 0; | ||
636 | |||
637 | BN_CTX_start(ctx); | ||
638 | |||
639 | if ((a_mod_p = BN_CTX_get(ctx)) == NULL) | ||
640 | goto err; | ||
641 | if ((sqrt = BN_CTX_get(ctx)) == NULL) | ||
642 | goto err; | ||
643 | |||
644 | if (!BN_nnmod(a_mod_p, a, p, ctx)) | ||
645 | goto err; | ||
646 | |||
647 | if (!bn_mod_sqrt_trivial_cases(&done, sqrt, a_mod_p, p, ctx)) | ||
648 | goto err; | ||
649 | if (done) | ||
650 | goto verify; | ||
651 | |||
652 | /* | ||
653 | * Make sure that the Kronecker symbol (a/p) == 1. In case p is prime | ||
654 | * this is equivalent to a having a square root (mod p). The cost of | ||
655 | * BN_kronecker() is O(log^2(n)). This is small compared to the cost | ||
656 | * O(log^4(n)) of Tonelli-Shanks. | ||
657 | */ | ||
658 | |||
659 | if ((kronecker = BN_kronecker(a_mod_p, p, ctx)) == -2) | ||
660 | goto err; | ||
661 | if (kronecker <= 0) { | ||
662 | /* This error is only accurate if p is known to be a prime. */ | ||
663 | BNerror(BN_R_NOT_A_SQUARE); | ||
664 | goto err; | ||
665 | } | ||
666 | |||
667 | lsw = BN_lsw(p); | ||
668 | |||
669 | if (lsw % 4 == 3) { | ||
670 | if (!bn_mod_sqrt_p_is_3_mod_4(sqrt, a_mod_p, p, ctx)) | ||
671 | goto err; | ||
672 | } else if (lsw % 8 == 5) { | ||
673 | if (!bn_mod_sqrt_p_is_5_mod_8(sqrt, a_mod_p, p, ctx)) | ||
674 | goto err; | ||
675 | } else if (lsw % 8 == 1) { | ||
676 | if (!bn_mod_sqrt_p_is_1_mod_8(sqrt, a_mod_p, p, ctx)) | ||
677 | goto err; | ||
678 | } else { | ||
679 | /* Impossible to hit since the trivial cases ensure p is odd. */ | ||
680 | BNerror(BN_R_P_IS_NOT_PRIME); | ||
681 | goto err; | ||
682 | } | ||
683 | |||
684 | if (!bn_mod_sqrt_normalize(sqrt, p, ctx)) | ||
685 | goto err; | ||
686 | |||
687 | verify: | ||
688 | if (!bn_mod_sqrt_verify(a_mod_p, sqrt, p, ctx)) | ||
689 | goto err; | ||
690 | |||
691 | if (!bn_copy(out_sqrt, sqrt)) | ||
692 | goto err; | ||
693 | |||
694 | ret = 1; | ||
695 | |||
696 | err: | ||
697 | BN_CTX_end(ctx); | ||
698 | |||
699 | return ret; | ||
700 | } | ||
701 | |||
702 | BIGNUM * | ||
703 | BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
704 | { | ||
705 | BIGNUM *out_sqrt; | ||
706 | |||
707 | if ((out_sqrt = in) == NULL) | ||
708 | out_sqrt = BN_new(); | ||
709 | if (out_sqrt == NULL) | ||
710 | goto err; | ||
711 | |||
712 | if (!bn_mod_sqrt_internal(out_sqrt, a, p, ctx)) | ||
713 | goto err; | ||
714 | |||
715 | return out_sqrt; | ||
716 | |||
717 | err: | ||
718 | if (out_sqrt != in) | ||
719 | BN_free(out_sqrt); | ||
720 | |||
721 | return NULL; | ||
722 | } | ||
723 | LCRYPTO_ALIAS(BN_mod_sqrt); | ||
diff --git a/src/lib/libcrypto/bn/bn_mont.c b/src/lib/libcrypto/bn/bn_mont.c deleted file mode 100644 index edd7bcd0c8..0000000000 --- a/src/lib/libcrypto/bn/bn_mont.c +++ /dev/null | |||
@@ -1,621 +0,0 @@ | |||
1 | /* $OpenBSD: bn_mont.c,v 1.66 2025/03/09 15:22:40 tb Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | /* | ||
113 | * Details about Montgomery multiplication algorithms can be found at | ||
114 | * http://security.ece.orst.edu/publications.html, e.g. | ||
115 | * http://security.ece.orst.edu/koc/papers/j37acmon.pdf and | ||
116 | * sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf | ||
117 | */ | ||
118 | |||
119 | #include <stdio.h> | ||
120 | #include <stdint.h> | ||
121 | #include <string.h> | ||
122 | |||
123 | #include "bn_internal.h" | ||
124 | #include "bn_local.h" | ||
125 | |||
126 | BN_MONT_CTX * | ||
127 | BN_MONT_CTX_new(void) | ||
128 | { | ||
129 | BN_MONT_CTX *mctx; | ||
130 | |||
131 | if ((mctx = calloc(1, sizeof(BN_MONT_CTX))) == NULL) | ||
132 | return NULL; | ||
133 | mctx->flags = BN_FLG_MALLOCED; | ||
134 | |||
135 | BN_init(&mctx->RR); | ||
136 | BN_init(&mctx->N); | ||
137 | |||
138 | return mctx; | ||
139 | } | ||
140 | LCRYPTO_ALIAS(BN_MONT_CTX_new); | ||
141 | |||
142 | void | ||
143 | BN_MONT_CTX_free(BN_MONT_CTX *mctx) | ||
144 | { | ||
145 | if (mctx == NULL) | ||
146 | return; | ||
147 | |||
148 | BN_free(&mctx->RR); | ||
149 | BN_free(&mctx->N); | ||
150 | |||
151 | if (mctx->flags & BN_FLG_MALLOCED) | ||
152 | free(mctx); | ||
153 | } | ||
154 | LCRYPTO_ALIAS(BN_MONT_CTX_free); | ||
155 | |||
156 | BN_MONT_CTX * | ||
157 | BN_MONT_CTX_create(const BIGNUM *bn, BN_CTX *bn_ctx) | ||
158 | { | ||
159 | BN_MONT_CTX *mctx; | ||
160 | |||
161 | if ((mctx = BN_MONT_CTX_new()) == NULL) | ||
162 | goto err; | ||
163 | if (!BN_MONT_CTX_set(mctx, bn, bn_ctx)) | ||
164 | goto err; | ||
165 | |||
166 | return mctx; | ||
167 | |||
168 | err: | ||
169 | BN_MONT_CTX_free(mctx); | ||
170 | |||
171 | return NULL; | ||
172 | } | ||
173 | |||
174 | BN_MONT_CTX * | ||
175 | BN_MONT_CTX_copy(BN_MONT_CTX *dst, const BN_MONT_CTX *src) | ||
176 | { | ||
177 | if (dst == src) | ||
178 | return dst; | ||
179 | |||
180 | if (!bn_copy(&dst->RR, &src->RR)) | ||
181 | return NULL; | ||
182 | if (!bn_copy(&dst->N, &src->N)) | ||
183 | return NULL; | ||
184 | |||
185 | dst->ri = src->ri; | ||
186 | dst->n0[0] = src->n0[0]; | ||
187 | dst->n0[1] = src->n0[1]; | ||
188 | |||
189 | return dst; | ||
190 | } | ||
191 | LCRYPTO_ALIAS(BN_MONT_CTX_copy); | ||
192 | |||
193 | int | ||
194 | BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) | ||
195 | { | ||
196 | BIGNUM *N, *Ninv, *Rinv, *R; | ||
197 | int ret = 0; | ||
198 | |||
199 | BN_CTX_start(ctx); | ||
200 | |||
201 | if ((N = BN_CTX_get(ctx)) == NULL) | ||
202 | goto err; | ||
203 | if ((Ninv = BN_CTX_get(ctx)) == NULL) | ||
204 | goto err; | ||
205 | if ((R = BN_CTX_get(ctx)) == NULL) | ||
206 | goto err; | ||
207 | if ((Rinv = BN_CTX_get(ctx)) == NULL) | ||
208 | goto err; | ||
209 | |||
210 | /* Save modulus and determine length of R. */ | ||
211 | if (BN_is_zero(mod)) | ||
212 | goto err; | ||
213 | if (!bn_copy(&mont->N, mod)) | ||
214 | goto err; | ||
215 | mont->N.neg = 0; | ||
216 | mont->ri = ((BN_num_bits(mod) + BN_BITS2 - 1) / BN_BITS2) * BN_BITS2; | ||
217 | if (mont->ri * 2 < mont->ri) | ||
218 | goto err; | ||
219 | |||
220 | /* | ||
221 | * Compute Ninv = (R * Rinv - 1)/N mod R, for R = 2^64. This provides | ||
222 | * a single or double word result (dependent on BN word size), that is | ||
223 | * later used to implement Montgomery reduction. | ||
224 | */ | ||
225 | BN_zero(R); | ||
226 | if (!BN_set_bit(R, 64)) | ||
227 | goto err; | ||
228 | |||
229 | /* N = N mod R. */ | ||
230 | if (!bn_wexpand(N, 2)) | ||
231 | goto err; | ||
232 | if (!BN_set_word(N, mod->d[0])) | ||
233 | goto err; | ||
234 | #if BN_BITS2 == 32 | ||
235 | if (mod->top > 1) { | ||
236 | N->d[1] = mod->d[1]; | ||
237 | N->top += bn_ct_ne_zero(N->d[1]); | ||
238 | } | ||
239 | #endif | ||
240 | |||
241 | /* Rinv = R^-1 mod N */ | ||
242 | if ((BN_mod_inverse_ct(Rinv, R, N, ctx)) == NULL) | ||
243 | goto err; | ||
244 | |||
245 | /* Ninv = (R * Rinv - 1) / N */ | ||
246 | if (!BN_lshift(Ninv, Rinv, 64)) | ||
247 | goto err; | ||
248 | if (BN_is_zero(Ninv)) { | ||
249 | /* R * Rinv == 0, set to R so that R * Rinv - 1 is mod R. */ | ||
250 | if (!BN_set_bit(Ninv, 64)) | ||
251 | goto err; | ||
252 | } | ||
253 | if (!BN_sub_word(Ninv, 1)) | ||
254 | goto err; | ||
255 | if (!BN_div_ct(Ninv, NULL, Ninv, N, ctx)) | ||
256 | goto err; | ||
257 | |||
258 | /* Store least significant word(s) of Ninv. */ | ||
259 | mont->n0[0] = mont->n0[1] = 0; | ||
260 | if (Ninv->top > 0) | ||
261 | mont->n0[0] = Ninv->d[0]; | ||
262 | #if BN_BITS2 == 32 | ||
263 | /* Some BN_BITS2 == 32 platforms (namely parisc) use two words of Ninv. */ | ||
264 | if (Ninv->top > 1) | ||
265 | mont->n0[1] = Ninv->d[1]; | ||
266 | #endif | ||
267 | |||
268 | /* Compute RR = R * R mod N, for use when converting to Montgomery form. */ | ||
269 | BN_zero(&mont->RR); | ||
270 | if (!BN_set_bit(&mont->RR, mont->ri * 2)) | ||
271 | goto err; | ||
272 | if (!BN_mod_ct(&mont->RR, &mont->RR, &mont->N, ctx)) | ||
273 | goto err; | ||
274 | |||
275 | ret = 1; | ||
276 | err: | ||
277 | BN_CTX_end(ctx); | ||
278 | |||
279 | return ret; | ||
280 | } | ||
281 | LCRYPTO_ALIAS(BN_MONT_CTX_set); | ||
282 | |||
283 | BN_MONT_CTX * | ||
284 | BN_MONT_CTX_set_locked(BN_MONT_CTX **pmctx, int lock, const BIGNUM *mod, | ||
285 | BN_CTX *ctx) | ||
286 | { | ||
287 | BN_MONT_CTX *mctx = NULL; | ||
288 | |||
289 | CRYPTO_r_lock(lock); | ||
290 | mctx = *pmctx; | ||
291 | CRYPTO_r_unlock(lock); | ||
292 | |||
293 | if (mctx != NULL) | ||
294 | goto done; | ||
295 | |||
296 | if ((mctx = BN_MONT_CTX_create(mod, ctx)) == NULL) | ||
297 | goto err; | ||
298 | |||
299 | CRYPTO_w_lock(lock); | ||
300 | if (*pmctx != NULL) { | ||
301 | /* Someone else raced us... */ | ||
302 | BN_MONT_CTX_free(mctx); | ||
303 | mctx = *pmctx; | ||
304 | } else { | ||
305 | *pmctx = mctx; | ||
306 | } | ||
307 | CRYPTO_w_unlock(lock); | ||
308 | |||
309 | goto done; | ||
310 | err: | ||
311 | BN_MONT_CTX_free(mctx); | ||
312 | mctx = NULL; | ||
313 | done: | ||
314 | return mctx; | ||
315 | } | ||
316 | LCRYPTO_ALIAS(BN_MONT_CTX_set_locked); | ||
317 | |||
318 | /* | ||
319 | * bn_montgomery_reduce() performs Montgomery reduction, reducing the input | ||
320 | * from its Montgomery form aR to a, returning the result in r. Note that the | ||
321 | * input is mutated in the process of performing the reduction, destroying its | ||
322 | * original value. | ||
323 | */ | ||
324 | static int | ||
325 | bn_montgomery_reduce(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mctx) | ||
326 | { | ||
327 | BIGNUM *n; | ||
328 | BN_ULONG *ap, *rp, n0, v, carry, mask; | ||
329 | int i, max, n_len; | ||
330 | |||
331 | n = &mctx->N; | ||
332 | n_len = mctx->N.top; | ||
333 | |||
334 | if (n_len == 0) { | ||
335 | BN_zero(r); | ||
336 | return 1; | ||
337 | } | ||
338 | |||
339 | if (!bn_wexpand(r, n_len)) | ||
340 | return 0; | ||
341 | |||
342 | /* | ||
343 | * Expand a to twice the length of the modulus, zero if necessary. | ||
344 | * XXX - make this a requirement of the caller. | ||
345 | */ | ||
346 | if ((max = 2 * n_len) < n_len) | ||
347 | return 0; | ||
348 | if (!bn_wexpand(a, max)) | ||
349 | return 0; | ||
350 | for (i = a->top; i < max; i++) | ||
351 | a->d[i] = 0; | ||
352 | |||
353 | carry = 0; | ||
354 | n0 = mctx->n0[0]; | ||
355 | |||
356 | /* Add multiples of the modulus, so that it becomes divisible by R. */ | ||
357 | for (i = 0; i < n_len; i++) { | ||
358 | v = bn_mul_add_words(&a->d[i], n->d, n_len, a->d[i] * n0); | ||
359 | bn_addw_addw(v, a->d[i + n_len], carry, &carry, | ||
360 | &a->d[i + n_len]); | ||
361 | } | ||
362 | |||
363 | /* Divide by R (this is the equivalent of right shifting by n_len). */ | ||
364 | ap = &a->d[n_len]; | ||
365 | |||
366 | /* | ||
367 | * The output is now in the range of [0, 2N). Attempt to reduce once by | ||
368 | * subtracting the modulus. If the reduction was necessary then the | ||
369 | * result is already in r, otherwise copy the value prior to reduction | ||
370 | * from the top half of a. | ||
371 | */ | ||
372 | mask = carry - bn_sub_words(r->d, ap, n->d, n_len); | ||
373 | |||
374 | rp = r->d; | ||
375 | for (i = 0; i < n_len; i++) { | ||
376 | *rp = (*rp & ~mask) | (*ap & mask); | ||
377 | rp++; | ||
378 | ap++; | ||
379 | } | ||
380 | r->top = n_len; | ||
381 | |||
382 | bn_correct_top(r); | ||
383 | |||
384 | BN_set_negative(r, a->neg ^ n->neg); | ||
385 | |||
386 | return 1; | ||
387 | } | ||
388 | |||
389 | static int | ||
390 | bn_mod_mul_montgomery_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
391 | BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
392 | { | ||
393 | BIGNUM *tmp; | ||
394 | int ret = 0; | ||
395 | |||
396 | BN_CTX_start(ctx); | ||
397 | |||
398 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
399 | goto err; | ||
400 | |||
401 | if (a == b) { | ||
402 | if (!BN_sqr(tmp, a, ctx)) | ||
403 | goto err; | ||
404 | } else { | ||
405 | if (!BN_mul(tmp, a, b, ctx)) | ||
406 | goto err; | ||
407 | } | ||
408 | |||
409 | /* Reduce from aRR to aR. */ | ||
410 | if (!bn_montgomery_reduce(r, tmp, mctx)) | ||
411 | goto err; | ||
412 | |||
413 | ret = 1; | ||
414 | err: | ||
415 | BN_CTX_end(ctx); | ||
416 | |||
417 | return ret; | ||
418 | } | ||
419 | |||
420 | static void | ||
421 | bn_montgomery_multiply_word(const BN_ULONG *ap, BN_ULONG b, const BN_ULONG *np, | ||
422 | BN_ULONG *tp, BN_ULONG w, BN_ULONG *carry_a, BN_ULONG *carry_n, int n_len) | ||
423 | { | ||
424 | BN_ULONG x3, x2, x1, x0; | ||
425 | |||
426 | *carry_a = *carry_n = 0; | ||
427 | |||
428 | while (n_len & ~3) { | ||
429 | bn_qwmulw_addqw_addw(ap[3], ap[2], ap[1], ap[0], b, | ||
430 | tp[3], tp[2], tp[1], tp[0], *carry_a, carry_a, | ||
431 | &x3, &x2, &x1, &x0); | ||
432 | bn_qwmulw_addqw_addw(np[3], np[2], np[1], np[0], w, | ||
433 | x3, x2, x1, x0, *carry_n, carry_n, | ||
434 | &tp[3], &tp[2], &tp[1], &tp[0]); | ||
435 | ap += 4; | ||
436 | np += 4; | ||
437 | tp += 4; | ||
438 | n_len -= 4; | ||
439 | } | ||
440 | while (n_len > 0) { | ||
441 | bn_mulw_addw_addw(ap[0], b, tp[0], *carry_a, carry_a, &x0); | ||
442 | bn_mulw_addw_addw(np[0], w, x0, *carry_n, carry_n, &tp[0]); | ||
443 | ap++; | ||
444 | np++; | ||
445 | tp++; | ||
446 | n_len--; | ||
447 | } | ||
448 | } | ||
449 | |||
450 | /* | ||
451 | * bn_montgomery_multiply_words() computes r = aR * bR * R^-1 = abR for the | ||
452 | * given word arrays. The caller must ensure that rp, ap, bp and np are all | ||
453 | * n_len words in length, while tp must be n_len * 2 + 2 words in length. | ||
454 | */ | ||
455 | static void | ||
456 | bn_montgomery_multiply_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, | ||
457 | const BN_ULONG *np, BN_ULONG *tp, BN_ULONG n0, int n_len) | ||
458 | { | ||
459 | BN_ULONG a0, b, carry_a, carry_n, carry, mask, w; | ||
460 | int i; | ||
461 | |||
462 | carry = 0; | ||
463 | |||
464 | for (i = 0; i < n_len; i++) | ||
465 | tp[i] = 0; | ||
466 | |||
467 | a0 = ap[0]; | ||
468 | |||
469 | for (i = 0; i < n_len; i++) { | ||
470 | b = bp[i]; | ||
471 | |||
472 | /* Compute new t[0] * n0, as we need it for this iteration. */ | ||
473 | w = (a0 * b + tp[0]) * n0; | ||
474 | |||
475 | bn_montgomery_multiply_word(ap, b, np, tp, w, &carry_a, | ||
476 | &carry_n, n_len); | ||
477 | bn_addw_addw(carry_a, carry_n, carry, &carry, &tp[n_len]); | ||
478 | |||
479 | tp++; | ||
480 | } | ||
481 | tp[n_len] = carry; | ||
482 | |||
483 | /* | ||
484 | * The output is now in the range of [0, 2N). Attempt to reduce once by | ||
485 | * subtracting the modulus. If the reduction was necessary then the | ||
486 | * result is already in r, otherwise copy the value prior to reduction | ||
487 | * from tp. | ||
488 | */ | ||
489 | mask = bn_ct_ne_zero(tp[n_len]) - bn_sub_words(rp, tp, np, n_len); | ||
490 | |||
491 | for (i = 0; i < n_len; i++) { | ||
492 | *rp = (*rp & ~mask) | (*tp & mask); | ||
493 | rp++; | ||
494 | tp++; | ||
495 | } | ||
496 | } | ||
497 | |||
498 | /* | ||
499 | * bn_montgomery_multiply() computes r = aR * bR * R^-1 = abR for the given | ||
500 | * BIGNUMs. The caller must ensure that the modulus is two or more words in | ||
501 | * length and that a and b have the same number of words as the modulus. | ||
502 | */ | ||
503 | static int | ||
504 | bn_montgomery_multiply(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
505 | BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
506 | { | ||
507 | BIGNUM *t; | ||
508 | int ret = 0; | ||
509 | |||
510 | BN_CTX_start(ctx); | ||
511 | |||
512 | if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top) | ||
513 | goto err; | ||
514 | if (!bn_wexpand(r, mctx->N.top)) | ||
515 | goto err; | ||
516 | |||
517 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
518 | goto err; | ||
519 | if (!bn_wexpand(t, mctx->N.top * 2 + 2)) | ||
520 | goto err; | ||
521 | |||
522 | bn_montgomery_multiply_words(r->d, a->d, b->d, mctx->N.d, t->d, | ||
523 | mctx->n0[0], mctx->N.top); | ||
524 | |||
525 | r->top = mctx->N.top; | ||
526 | bn_correct_top(r); | ||
527 | |||
528 | BN_set_negative(r, a->neg ^ b->neg); | ||
529 | |||
530 | ret = 1; | ||
531 | err: | ||
532 | BN_CTX_end(ctx); | ||
533 | |||
534 | return ret; | ||
535 | } | ||
536 | |||
537 | #ifndef OPENSSL_BN_ASM_MONT | ||
538 | static int | ||
539 | bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
540 | BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
541 | { | ||
542 | if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top) | ||
543 | return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx); | ||
544 | |||
545 | return bn_montgomery_multiply(r, a, b, mctx, ctx); | ||
546 | } | ||
547 | #else | ||
548 | |||
549 | static int | ||
550 | bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
551 | BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
552 | { | ||
553 | if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top) | ||
554 | return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx); | ||
555 | |||
556 | /* | ||
557 | * Legacy bn_mul_mont() performs stack based allocation, without | ||
558 | * size limitation. Allowing a large size results in the stack | ||
559 | * being blown. | ||
560 | */ | ||
561 | if (mctx->N.top > (8 * 1024 / sizeof(BN_ULONG))) | ||
562 | return bn_montgomery_multiply(r, a, b, mctx, ctx); | ||
563 | |||
564 | if (!bn_wexpand(r, mctx->N.top)) | ||
565 | return 0; | ||
566 | |||
567 | /* | ||
568 | * Legacy bn_mul_mont() can indicate that we should "fallback" to | ||
569 | * another implementation. | ||
570 | */ | ||
571 | if (!bn_mul_mont(r->d, a->d, b->d, mctx->N.d, mctx->n0, mctx->N.top)) | ||
572 | return bn_montgomery_multiply(r, a, b, mctx, ctx); | ||
573 | |||
574 | r->top = mctx->N.top; | ||
575 | bn_correct_top(r); | ||
576 | |||
577 | BN_set_negative(r, a->neg ^ b->neg); | ||
578 | |||
579 | return (1); | ||
580 | } | ||
581 | #endif | ||
582 | |||
583 | int | ||
584 | BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
585 | BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
586 | { | ||
587 | /* Compute r = aR * bR * R^-1 mod N = abR mod N */ | ||
588 | return bn_mod_mul_montgomery(r, a, b, mctx, ctx); | ||
589 | } | ||
590 | LCRYPTO_ALIAS(BN_mod_mul_montgomery); | ||
591 | |||
592 | int | ||
593 | BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
594 | { | ||
595 | /* Compute r = a * R * R * R^-1 mod N = aR mod N */ | ||
596 | return bn_mod_mul_montgomery(r, a, &mctx->RR, mctx, ctx); | ||
597 | } | ||
598 | LCRYPTO_ALIAS(BN_to_montgomery); | ||
599 | |||
600 | int | ||
601 | BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
602 | { | ||
603 | BIGNUM *tmp; | ||
604 | int ret = 0; | ||
605 | |||
606 | BN_CTX_start(ctx); | ||
607 | |||
608 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
609 | goto err; | ||
610 | if (!bn_copy(tmp, a)) | ||
611 | goto err; | ||
612 | if (!bn_montgomery_reduce(r, tmp, mctx)) | ||
613 | goto err; | ||
614 | |||
615 | ret = 1; | ||
616 | err: | ||
617 | BN_CTX_end(ctx); | ||
618 | |||
619 | return ret; | ||
620 | } | ||
621 | LCRYPTO_ALIAS(BN_from_montgomery); | ||
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c deleted file mode 100644 index bdeb9b0fe8..0000000000 --- a/src/lib/libcrypto/bn/bn_mul.c +++ /dev/null | |||
@@ -1,370 +0,0 @@ | |||
1 | /* $OpenBSD: bn_mul.c,v 1.39 2023/07/08 12:21:58 beck Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <assert.h> | ||
60 | #include <stdio.h> | ||
61 | #include <string.h> | ||
62 | |||
63 | #include <openssl/opensslconf.h> | ||
64 | |||
65 | #include "bn_arch.h" | ||
66 | #include "bn_internal.h" | ||
67 | #include "bn_local.h" | ||
68 | |||
69 | /* | ||
70 | * bn_mul_comba4() computes r[] = a[] * b[] using Comba multiplication | ||
71 | * (https://everything2.com/title/Comba+multiplication), where a and b are both | ||
72 | * four word arrays, producing an eight word array result. | ||
73 | */ | ||
74 | #ifndef HAVE_BN_MUL_COMBA4 | ||
75 | void | ||
76 | bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
77 | { | ||
78 | BN_ULONG c0, c1, c2; | ||
79 | |||
80 | bn_mulw_addtw(a[0], b[0], 0, 0, 0, &c2, &c1, &r[0]); | ||
81 | |||
82 | bn_mulw_addtw(a[0], b[1], 0, c2, c1, &c2, &c1, &c0); | ||
83 | bn_mulw_addtw(a[1], b[0], c2, c1, c0, &c2, &c1, &r[1]); | ||
84 | |||
85 | bn_mulw_addtw(a[2], b[0], 0, c2, c1, &c2, &c1, &c0); | ||
86 | bn_mulw_addtw(a[1], b[1], c2, c1, c0, &c2, &c1, &c0); | ||
87 | bn_mulw_addtw(a[0], b[2], c2, c1, c0, &c2, &c1, &r[2]); | ||
88 | |||
89 | bn_mulw_addtw(a[0], b[3], 0, c2, c1, &c2, &c1, &c0); | ||
90 | bn_mulw_addtw(a[1], b[2], c2, c1, c0, &c2, &c1, &c0); | ||
91 | bn_mulw_addtw(a[2], b[1], c2, c1, c0, &c2, &c1, &c0); | ||
92 | bn_mulw_addtw(a[3], b[0], c2, c1, c0, &c2, &c1, &r[3]); | ||
93 | |||
94 | bn_mulw_addtw(a[3], b[1], 0, c2, c1, &c2, &c1, &c0); | ||
95 | bn_mulw_addtw(a[2], b[2], c2, c1, c0, &c2, &c1, &c0); | ||
96 | bn_mulw_addtw(a[1], b[3], c2, c1, c0, &c2, &c1, &r[4]); | ||
97 | |||
98 | bn_mulw_addtw(a[2], b[3], 0, c2, c1, &c2, &c1, &c0); | ||
99 | bn_mulw_addtw(a[3], b[2], c2, c1, c0, &c2, &c1, &r[5]); | ||
100 | |||
101 | bn_mulw_addtw(a[3], b[3], 0, c2, c1, &c2, &r[7], &r[6]); | ||
102 | } | ||
103 | #endif | ||
104 | |||
105 | /* | ||
106 | * bn_mul_comba8() computes r[] = a[] * b[] using Comba multiplication | ||
107 | * (https://everything2.com/title/Comba+multiplication), where a and b are both | ||
108 | * eight word arrays, producing a 16 word array result. | ||
109 | */ | ||
110 | #ifndef HAVE_BN_MUL_COMBA8 | ||
111 | void | ||
112 | bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
113 | { | ||
114 | BN_ULONG c0, c1, c2; | ||
115 | |||
116 | bn_mulw_addtw(a[0], b[0], 0, 0, 0, &c2, &c1, &r[0]); | ||
117 | |||
118 | bn_mulw_addtw(a[0], b[1], 0, c2, c1, &c2, &c1, &c0); | ||
119 | bn_mulw_addtw(a[1], b[0], c2, c1, c0, &c2, &c1, &r[1]); | ||
120 | |||
121 | bn_mulw_addtw(a[2], b[0], 0, c2, c1, &c2, &c1, &c0); | ||
122 | bn_mulw_addtw(a[1], b[1], c2, c1, c0, &c2, &c1, &c0); | ||
123 | bn_mulw_addtw(a[0], b[2], c2, c1, c0, &c2, &c1, &r[2]); | ||
124 | |||
125 | bn_mulw_addtw(a[0], b[3], 0, c2, c1, &c2, &c1, &c0); | ||
126 | bn_mulw_addtw(a[1], b[2], c2, c1, c0, &c2, &c1, &c0); | ||
127 | bn_mulw_addtw(a[2], b[1], c2, c1, c0, &c2, &c1, &c0); | ||
128 | bn_mulw_addtw(a[3], b[0], c2, c1, c0, &c2, &c1, &r[3]); | ||
129 | |||
130 | bn_mulw_addtw(a[4], b[0], 0, c2, c1, &c2, &c1, &c0); | ||
131 | bn_mulw_addtw(a[3], b[1], c2, c1, c0, &c2, &c1, &c0); | ||
132 | bn_mulw_addtw(a[2], b[2], c2, c1, c0, &c2, &c1, &c0); | ||
133 | bn_mulw_addtw(a[1], b[3], c2, c1, c0, &c2, &c1, &c0); | ||
134 | bn_mulw_addtw(a[0], b[4], c2, c1, c0, &c2, &c1, &r[4]); | ||
135 | |||
136 | bn_mulw_addtw(a[0], b[5], 0, c2, c1, &c2, &c1, &c0); | ||
137 | bn_mulw_addtw(a[1], b[4], c2, c1, c0, &c2, &c1, &c0); | ||
138 | bn_mulw_addtw(a[2], b[3], c2, c1, c0, &c2, &c1, &c0); | ||
139 | bn_mulw_addtw(a[3], b[2], c2, c1, c0, &c2, &c1, &c0); | ||
140 | bn_mulw_addtw(a[4], b[1], c2, c1, c0, &c2, &c1, &c0); | ||
141 | bn_mulw_addtw(a[5], b[0], c2, c1, c0, &c2, &c1, &r[5]); | ||
142 | |||
143 | bn_mulw_addtw(a[6], b[0], 0, c2, c1, &c2, &c1, &c0); | ||
144 | bn_mulw_addtw(a[5], b[1], c2, c1, c0, &c2, &c1, &c0); | ||
145 | bn_mulw_addtw(a[4], b[2], c2, c1, c0, &c2, &c1, &c0); | ||
146 | bn_mulw_addtw(a[3], b[3], c2, c1, c0, &c2, &c1, &c0); | ||
147 | bn_mulw_addtw(a[2], b[4], c2, c1, c0, &c2, &c1, &c0); | ||
148 | bn_mulw_addtw(a[1], b[5], c2, c1, c0, &c2, &c1, &c0); | ||
149 | bn_mulw_addtw(a[0], b[6], c2, c1, c0, &c2, &c1, &r[6]); | ||
150 | |||
151 | bn_mulw_addtw(a[0], b[7], 0, c2, c1, &c2, &c1, &c0); | ||
152 | bn_mulw_addtw(a[1], b[6], c2, c1, c0, &c2, &c1, &c0); | ||
153 | bn_mulw_addtw(a[2], b[5], c2, c1, c0, &c2, &c1, &c0); | ||
154 | bn_mulw_addtw(a[3], b[4], c2, c1, c0, &c2, &c1, &c0); | ||
155 | bn_mulw_addtw(a[4], b[3], c2, c1, c0, &c2, &c1, &c0); | ||
156 | bn_mulw_addtw(a[5], b[2], c2, c1, c0, &c2, &c1, &c0); | ||
157 | bn_mulw_addtw(a[6], b[1], c2, c1, c0, &c2, &c1, &c0); | ||
158 | bn_mulw_addtw(a[7], b[0], c2, c1, c0, &c2, &c1, &r[7]); | ||
159 | |||
160 | bn_mulw_addtw(a[7], b[1], 0, c2, c1, &c2, &c1, &c0); | ||
161 | bn_mulw_addtw(a[6], b[2], c2, c1, c0, &c2, &c1, &c0); | ||
162 | bn_mulw_addtw(a[5], b[3], c2, c1, c0, &c2, &c1, &c0); | ||
163 | bn_mulw_addtw(a[4], b[4], c2, c1, c0, &c2, &c1, &c0); | ||
164 | bn_mulw_addtw(a[3], b[5], c2, c1, c0, &c2, &c1, &c0); | ||
165 | bn_mulw_addtw(a[2], b[6], c2, c1, c0, &c2, &c1, &c0); | ||
166 | bn_mulw_addtw(a[1], b[7], c2, c1, c0, &c2, &c1, &r[8]); | ||
167 | |||
168 | bn_mulw_addtw(a[2], b[7], 0, c2, c1, &c2, &c1, &c0); | ||
169 | bn_mulw_addtw(a[3], b[6], c2, c1, c0, &c2, &c1, &c0); | ||
170 | bn_mulw_addtw(a[4], b[5], c2, c1, c0, &c2, &c1, &c0); | ||
171 | bn_mulw_addtw(a[5], b[4], c2, c1, c0, &c2, &c1, &c0); | ||
172 | bn_mulw_addtw(a[6], b[3], c2, c1, c0, &c2, &c1, &c0); | ||
173 | bn_mulw_addtw(a[7], b[2], c2, c1, c0, &c2, &c1, &r[9]); | ||
174 | |||
175 | bn_mulw_addtw(a[7], b[3], 0, c2, c1, &c2, &c1, &c0); | ||
176 | bn_mulw_addtw(a[6], b[4], c2, c1, c0, &c2, &c1, &c0); | ||
177 | bn_mulw_addtw(a[5], b[5], c2, c1, c0, &c2, &c1, &c0); | ||
178 | bn_mulw_addtw(a[4], b[6], c2, c1, c0, &c2, &c1, &c0); | ||
179 | bn_mulw_addtw(a[3], b[7], c2, c1, c0, &c2, &c1, &r[10]); | ||
180 | |||
181 | bn_mulw_addtw(a[4], b[7], 0, c2, c1, &c2, &c1, &c0); | ||
182 | bn_mulw_addtw(a[5], b[6], c2, c1, c0, &c2, &c1, &c0); | ||
183 | bn_mulw_addtw(a[6], b[5], c2, c1, c0, &c2, &c1, &c0); | ||
184 | bn_mulw_addtw(a[7], b[4], c2, c1, c0, &c2, &c1, &r[11]); | ||
185 | |||
186 | bn_mulw_addtw(a[7], b[5], 0, c2, c1, &c2, &c1, &c0); | ||
187 | bn_mulw_addtw(a[6], b[6], c2, c1, c0, &c2, &c1, &c0); | ||
188 | bn_mulw_addtw(a[5], b[7], c2, c1, c0, &c2, &c1, &r[12]); | ||
189 | |||
190 | bn_mulw_addtw(a[6], b[7], 0, c2, c1, &c2, &c1, &c0); | ||
191 | bn_mulw_addtw(a[7], b[6], c2, c1, c0, &c2, &c1, &r[13]); | ||
192 | |||
193 | bn_mulw_addtw(a[7], b[7], 0, c2, c1, &c2, &r[15], &r[14]); | ||
194 | } | ||
195 | #endif | ||
196 | |||
197 | /* | ||
198 | * bn_mul_words() computes (carry:r[i]) = a[i] * w + carry, where a is an array | ||
199 | * of words and w is a single word. This should really be called bn_mulw_words() | ||
200 | * since only one input is an array. This is used as a step in the multiplication | ||
201 | * of word arrays. | ||
202 | */ | ||
203 | #ifndef HAVE_BN_MUL_WORDS | ||
204 | BN_ULONG | ||
205 | bn_mul_words(BN_ULONG *r, const BN_ULONG *a, int num, BN_ULONG w) | ||
206 | { | ||
207 | BN_ULONG carry = 0; | ||
208 | |||
209 | assert(num >= 0); | ||
210 | if (num <= 0) | ||
211 | return 0; | ||
212 | |||
213 | while (num & ~3) { | ||
214 | bn_qwmulw_addw(a[3], a[2], a[1], a[0], w, carry, &carry, | ||
215 | &r[3], &r[2], &r[1], &r[0]); | ||
216 | a += 4; | ||
217 | r += 4; | ||
218 | num -= 4; | ||
219 | } | ||
220 | while (num) { | ||
221 | bn_mulw_addw(a[0], w, carry, &carry, &r[0]); | ||
222 | a++; | ||
223 | r++; | ||
224 | num--; | ||
225 | } | ||
226 | return carry; | ||
227 | } | ||
228 | #endif | ||
229 | |||
230 | /* | ||
231 | * bn_mul_add_words() computes (carry:r[i]) = a[i] * w + r[i] + carry, where | ||
232 | * a is an array of words and w is a single word. This should really be called | ||
233 | * bn_mulw_add_words() since only one input is an array. This is used as a step | ||
234 | * in the multiplication of word arrays. | ||
235 | */ | ||
236 | #ifndef HAVE_BN_MUL_ADD_WORDS | ||
237 | BN_ULONG | ||
238 | bn_mul_add_words(BN_ULONG *r, const BN_ULONG *a, int num, BN_ULONG w) | ||
239 | { | ||
240 | BN_ULONG carry = 0; | ||
241 | |||
242 | assert(num >= 0); | ||
243 | if (num <= 0) | ||
244 | return 0; | ||
245 | |||
246 | while (num & ~3) { | ||
247 | bn_qwmulw_addqw_addw(a[3], a[2], a[1], a[0], w, | ||
248 | r[3], r[2], r[1], r[0], carry, &carry, | ||
249 | &r[3], &r[2], &r[1], &r[0]); | ||
250 | a += 4; | ||
251 | r += 4; | ||
252 | num -= 4; | ||
253 | } | ||
254 | while (num) { | ||
255 | bn_mulw_addw_addw(a[0], w, r[0], carry, &carry, &r[0]); | ||
256 | a++; | ||
257 | r++; | ||
258 | num--; | ||
259 | } | ||
260 | |||
261 | return carry; | ||
262 | } | ||
263 | #endif | ||
264 | |||
265 | void | ||
266 | bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | ||
267 | { | ||
268 | BN_ULONG *rr; | ||
269 | |||
270 | |||
271 | if (na < nb) { | ||
272 | int itmp; | ||
273 | BN_ULONG *ltmp; | ||
274 | |||
275 | itmp = na; | ||
276 | na = nb; | ||
277 | nb = itmp; | ||
278 | ltmp = a; | ||
279 | a = b; | ||
280 | b = ltmp; | ||
281 | |||
282 | } | ||
283 | rr = &(r[na]); | ||
284 | if (nb <= 0) { | ||
285 | (void)bn_mul_words(r, a, na, 0); | ||
286 | return; | ||
287 | } else | ||
288 | rr[0] = bn_mul_words(r, a, na, b[0]); | ||
289 | |||
290 | for (;;) { | ||
291 | if (--nb <= 0) | ||
292 | return; | ||
293 | rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); | ||
294 | if (--nb <= 0) | ||
295 | return; | ||
296 | rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); | ||
297 | if (--nb <= 0) | ||
298 | return; | ||
299 | rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); | ||
300 | if (--nb <= 0) | ||
301 | return; | ||
302 | rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); | ||
303 | rr += 4; | ||
304 | r += 4; | ||
305 | b += 4; | ||
306 | } | ||
307 | } | ||
308 | |||
309 | |||
310 | #ifndef HAVE_BN_MUL | ||
311 | int | ||
312 | bn_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, int rn, BN_CTX *ctx) | ||
313 | { | ||
314 | bn_mul_normal(r->d, a->d, a->top, b->d, b->top); | ||
315 | |||
316 | return 1; | ||
317 | } | ||
318 | |||
319 | #endif /* HAVE_BN_MUL */ | ||
320 | |||
321 | int | ||
322 | BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
323 | { | ||
324 | BIGNUM *rr; | ||
325 | int rn; | ||
326 | int ret = 0; | ||
327 | |||
328 | BN_CTX_start(ctx); | ||
329 | |||
330 | if (BN_is_zero(a) || BN_is_zero(b)) { | ||
331 | BN_zero(r); | ||
332 | goto done; | ||
333 | } | ||
334 | |||
335 | rr = r; | ||
336 | if (rr == a || rr == b) | ||
337 | rr = BN_CTX_get(ctx); | ||
338 | if (rr == NULL) | ||
339 | goto err; | ||
340 | |||
341 | rn = a->top + b->top; | ||
342 | if (rn < a->top) | ||
343 | goto err; | ||
344 | if (!bn_wexpand(rr, rn)) | ||
345 | goto err; | ||
346 | |||
347 | if (a->top == 4 && b->top == 4) { | ||
348 | bn_mul_comba4(rr->d, a->d, b->d); | ||
349 | } else if (a->top == 8 && b->top == 8) { | ||
350 | bn_mul_comba8(rr->d, a->d, b->d); | ||
351 | } else { | ||
352 | if (!bn_mul(rr, a, b, rn, ctx)) | ||
353 | goto err; | ||
354 | } | ||
355 | |||
356 | rr->top = rn; | ||
357 | bn_correct_top(rr); | ||
358 | |||
359 | BN_set_negative(rr, a->neg ^ b->neg); | ||
360 | |||
361 | if (!bn_copy(r, rr)) | ||
362 | goto err; | ||
363 | done: | ||
364 | ret = 1; | ||
365 | err: | ||
366 | BN_CTX_end(ctx); | ||
367 | |||
368 | return ret; | ||
369 | } | ||
370 | LCRYPTO_ALIAS(BN_mul); | ||
diff --git a/src/lib/libcrypto/bn/bn_prime.c b/src/lib/libcrypto/bn/bn_prime.c deleted file mode 100644 index 5a4aa50bf1..0000000000 --- a/src/lib/libcrypto/bn/bn_prime.c +++ /dev/null | |||
@@ -1,423 +0,0 @@ | |||
1 | /* $OpenBSD: bn_prime.c,v 1.34 2023/07/20 06:26:27 tb Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include <stdio.h> | ||
113 | #include <time.h> | ||
114 | |||
115 | #include <openssl/err.h> | ||
116 | |||
117 | #include "bn_local.h" | ||
118 | |||
119 | /* The quick sieve algorithm approach to weeding out primes is | ||
120 | * Philip Zimmermann's, as implemented in PGP. I have had a read of | ||
121 | * his comments and implemented my own version. | ||
122 | */ | ||
123 | #include "bn_prime.h" | ||
124 | |||
125 | static int probable_prime(BIGNUM *rnd, int bits); | ||
126 | static int probable_prime_dh(BIGNUM *rnd, int bits, | ||
127 | const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); | ||
128 | static int probable_prime_dh_safe(BIGNUM *rnd, int bits, | ||
129 | const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); | ||
130 | |||
131 | int | ||
132 | BN_GENCB_call(BN_GENCB *cb, int a, int b) | ||
133 | { | ||
134 | /* No callback means continue */ | ||
135 | if (!cb) | ||
136 | return 1; | ||
137 | switch (cb->ver) { | ||
138 | case 1: | ||
139 | /* Deprecated-style callbacks */ | ||
140 | if (!cb->cb.cb_1) | ||
141 | return 1; | ||
142 | cb->cb.cb_1(a, b, cb->arg); | ||
143 | return 1; | ||
144 | case 2: | ||
145 | /* New-style callbacks */ | ||
146 | return cb->cb.cb_2(a, b, cb); | ||
147 | default: | ||
148 | break; | ||
149 | } | ||
150 | /* Unrecognised callback type */ | ||
151 | return 0; | ||
152 | } | ||
153 | LCRYPTO_ALIAS(BN_GENCB_call); | ||
154 | |||
155 | int | ||
156 | BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, | ||
157 | const BIGNUM *rem, BN_GENCB *cb) | ||
158 | { | ||
159 | BN_CTX *ctx; | ||
160 | BIGNUM *p; | ||
161 | int is_prime; | ||
162 | int loops = 0; | ||
163 | int found = 0; | ||
164 | |||
165 | if (bits < 2 || (bits == 2 && safe)) { | ||
166 | /* | ||
167 | * There are no prime numbers smaller than 2, and the smallest | ||
168 | * safe prime (7) spans three bits. | ||
169 | */ | ||
170 | BNerror(BN_R_BITS_TOO_SMALL); | ||
171 | return 0; | ||
172 | } | ||
173 | |||
174 | if ((ctx = BN_CTX_new()) == NULL) | ||
175 | goto err; | ||
176 | BN_CTX_start(ctx); | ||
177 | if ((p = BN_CTX_get(ctx)) == NULL) | ||
178 | goto err; | ||
179 | |||
180 | loop: | ||
181 | /* Make a random number and set the top and bottom bits. */ | ||
182 | if (add == NULL) { | ||
183 | if (!probable_prime(ret, bits)) | ||
184 | goto err; | ||
185 | } else { | ||
186 | if (safe) { | ||
187 | if (!probable_prime_dh_safe(ret, bits, add, rem, ctx)) | ||
188 | goto err; | ||
189 | } else { | ||
190 | if (!probable_prime_dh(ret, bits, add, rem, ctx)) | ||
191 | goto err; | ||
192 | } | ||
193 | } | ||
194 | |||
195 | if (!BN_GENCB_call(cb, 0, loops++)) | ||
196 | goto err; | ||
197 | |||
198 | if (!safe) { | ||
199 | if (!bn_is_prime_bpsw(&is_prime, ret, ctx, 1)) | ||
200 | goto err; | ||
201 | if (!is_prime) | ||
202 | goto loop; | ||
203 | } else { | ||
204 | if (!bn_is_prime_bpsw(&is_prime, ret, ctx, 1)) | ||
205 | goto err; | ||
206 | if (!is_prime) | ||
207 | goto loop; | ||
208 | |||
209 | /* | ||
210 | * For safe prime generation, check that p = (ret-1)/2 is prime. | ||
211 | * Since this prime has >= 3 bits, it is odd, and we can simply | ||
212 | * divide by 2. | ||
213 | */ | ||
214 | if (!BN_rshift1(p, ret)) | ||
215 | goto err; | ||
216 | |||
217 | if (!bn_is_prime_bpsw(&is_prime, p, ctx, 1)) | ||
218 | goto err; | ||
219 | if (!is_prime) | ||
220 | goto loop; | ||
221 | |||
222 | if (!BN_GENCB_call(cb, 2, loops - 1)) | ||
223 | goto err; | ||
224 | } | ||
225 | |||
226 | found = 1; | ||
227 | |||
228 | err: | ||
229 | BN_CTX_end(ctx); | ||
230 | BN_CTX_free(ctx); | ||
231 | |||
232 | return found; | ||
233 | } | ||
234 | LCRYPTO_ALIAS(BN_generate_prime_ex); | ||
235 | |||
236 | int | ||
237 | BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, BN_GENCB *cb) | ||
238 | { | ||
239 | return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb); | ||
240 | } | ||
241 | LCRYPTO_ALIAS(BN_is_prime_ex); | ||
242 | |||
243 | #define BN_PRIME_MAXIMUM_BITS (32 * 1024) | ||
244 | |||
245 | int | ||
246 | BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, | ||
247 | int do_trial_division, BN_GENCB *cb) | ||
248 | { | ||
249 | int is_prime; | ||
250 | |||
251 | if (checks < 0) | ||
252 | return -1; | ||
253 | |||
254 | /* | ||
255 | * Prime numbers this large do not appear in everyday cryptography | ||
256 | * and checking such numbers for primality is very expensive. | ||
257 | */ | ||
258 | if (BN_num_bits(a) > BN_PRIME_MAXIMUM_BITS) { | ||
259 | BNerror(BN_R_BIGNUM_TOO_LONG); | ||
260 | return -1; | ||
261 | } | ||
262 | |||
263 | if (checks == BN_prime_checks) | ||
264 | checks = BN_prime_checks_for_size(BN_num_bits(a)); | ||
265 | |||
266 | /* XXX - tickle BN_GENCB in bn_is_prime_bpsw(). */ | ||
267 | if (!bn_is_prime_bpsw(&is_prime, a, ctx_passed, checks)) | ||
268 | return -1; | ||
269 | |||
270 | return is_prime; | ||
271 | } | ||
272 | LCRYPTO_ALIAS(BN_is_prime_fasttest_ex); | ||
273 | |||
274 | static int | ||
275 | probable_prime(BIGNUM *rnd, int bits) | ||
276 | { | ||
277 | int i; | ||
278 | BN_ULONG mods[NUMPRIMES]; | ||
279 | BN_ULONG delta, maxdelta; | ||
280 | |||
281 | again: | ||
282 | if (!BN_rand(rnd, bits, 1, 1)) | ||
283 | return (0); | ||
284 | /* we now have a random number 'rand' to test. */ | ||
285 | for (i = 1; i < NUMPRIMES; i++) { | ||
286 | BN_ULONG mod = BN_mod_word(rnd, primes[i]); | ||
287 | if (mod == (BN_ULONG)-1) | ||
288 | return (0); | ||
289 | mods[i] = mod; | ||
290 | } | ||
291 | maxdelta = BN_MASK2 - primes[NUMPRIMES - 1]; | ||
292 | delta = 0; | ||
293 | loop: | ||
294 | for (i = 1; i < NUMPRIMES; i++) { | ||
295 | /* check that rnd is not a prime and also | ||
296 | * that gcd(rnd-1,primes) == 1 (except for 2) */ | ||
297 | if (((mods[i] + delta) % primes[i]) <= 1) { | ||
298 | delta += 2; | ||
299 | if (delta > maxdelta) | ||
300 | goto again; | ||
301 | goto loop; | ||
302 | } | ||
303 | } | ||
304 | if (!BN_add_word(rnd, delta)) | ||
305 | return (0); | ||
306 | return (1); | ||
307 | } | ||
308 | |||
309 | static int | ||
310 | probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add, const BIGNUM *rem, | ||
311 | BN_CTX *ctx) | ||
312 | { | ||
313 | int i, ret = 0; | ||
314 | BIGNUM *t1; | ||
315 | |||
316 | BN_CTX_start(ctx); | ||
317 | if ((t1 = BN_CTX_get(ctx)) == NULL) | ||
318 | goto err; | ||
319 | |||
320 | if (!BN_rand(rnd, bits, 0, 1)) | ||
321 | goto err; | ||
322 | |||
323 | /* we need ((rnd-rem) % add) == 0 */ | ||
324 | |||
325 | if (!BN_mod_ct(t1, rnd, add, ctx)) | ||
326 | goto err; | ||
327 | if (!BN_sub(rnd, rnd, t1)) | ||
328 | goto err; | ||
329 | if (rem == NULL) { | ||
330 | if (!BN_add_word(rnd, 1)) | ||
331 | goto err; | ||
332 | } else { | ||
333 | if (!BN_add(rnd, rnd, rem)) | ||
334 | goto err; | ||
335 | } | ||
336 | |||
337 | /* we now have a random number 'rand' to test. */ | ||
338 | |||
339 | loop: | ||
340 | for (i = 1; i < NUMPRIMES; i++) { | ||
341 | /* check that rnd is a prime */ | ||
342 | BN_LONG mod = BN_mod_word(rnd, primes[i]); | ||
343 | if (mod == (BN_ULONG)-1) | ||
344 | goto err; | ||
345 | if (mod <= 1) { | ||
346 | if (!BN_add(rnd, rnd, add)) | ||
347 | goto err; | ||
348 | goto loop; | ||
349 | } | ||
350 | } | ||
351 | ret = 1; | ||
352 | |||
353 | err: | ||
354 | BN_CTX_end(ctx); | ||
355 | return (ret); | ||
356 | } | ||
357 | |||
358 | static int | ||
359 | probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd, | ||
360 | const BIGNUM *rem, BN_CTX *ctx) | ||
361 | { | ||
362 | int i, ret = 0; | ||
363 | BIGNUM *t1, *qadd, *q; | ||
364 | |||
365 | bits--; | ||
366 | BN_CTX_start(ctx); | ||
367 | if ((t1 = BN_CTX_get(ctx)) == NULL) | ||
368 | goto err; | ||
369 | if ((q = BN_CTX_get(ctx)) == NULL) | ||
370 | goto err; | ||
371 | if ((qadd = BN_CTX_get(ctx)) == NULL) | ||
372 | goto err; | ||
373 | |||
374 | if (!BN_rshift1(qadd, padd)) | ||
375 | goto err; | ||
376 | |||
377 | if (!BN_rand(q, bits, 0, 1)) | ||
378 | goto err; | ||
379 | |||
380 | /* we need ((rnd-rem) % add) == 0 */ | ||
381 | if (!BN_mod_ct(t1, q,qadd, ctx)) | ||
382 | goto err; | ||
383 | if (!BN_sub(q, q, t1)) | ||
384 | goto err; | ||
385 | if (rem == NULL) { | ||
386 | if (!BN_add_word(q, 1)) | ||
387 | goto err; | ||
388 | } else { | ||
389 | if (!BN_rshift1(t1, rem)) | ||
390 | goto err; | ||
391 | if (!BN_add(q, q, t1)) | ||
392 | goto err; | ||
393 | } | ||
394 | |||
395 | /* we now have a random number 'rand' to test. */ | ||
396 | if (!BN_lshift1(p, q)) | ||
397 | goto err; | ||
398 | if (!BN_add_word(p, 1)) | ||
399 | goto err; | ||
400 | |||
401 | loop: | ||
402 | for (i = 1; i < NUMPRIMES; i++) { | ||
403 | /* check that p and q are prime */ | ||
404 | /* check that for p and q | ||
405 | * gcd(p-1,primes) == 1 (except for 2) */ | ||
406 | BN_ULONG pmod = BN_mod_word(p, primes[i]); | ||
407 | BN_ULONG qmod = BN_mod_word(q, primes[i]); | ||
408 | if (pmod == (BN_ULONG)-1 || qmod == (BN_ULONG)-1) | ||
409 | goto err; | ||
410 | if (pmod == 0 || qmod == 0) { | ||
411 | if (!BN_add(p, p, padd)) | ||
412 | goto err; | ||
413 | if (!BN_add(q, q, qadd)) | ||
414 | goto err; | ||
415 | goto loop; | ||
416 | } | ||
417 | } | ||
418 | ret = 1; | ||
419 | |||
420 | err: | ||
421 | BN_CTX_end(ctx); | ||
422 | return (ret); | ||
423 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_prime.h b/src/lib/libcrypto/bn/bn_prime.h deleted file mode 100644 index 4ea2d47948..0000000000 --- a/src/lib/libcrypto/bn/bn_prime.h +++ /dev/null | |||
@@ -1,14 +0,0 @@ | |||
1 | /* $OpenBSD: bn_prime.h,v 1.9 2022/11/10 10:24:50 tb Exp $ */ | ||
2 | /* | ||
3 | * Public domain. | ||
4 | */ | ||
5 | |||
6 | #include <stdint.h> | ||
7 | |||
8 | __BEGIN_HIDDEN_DECLS | ||
9 | |||
10 | #define NUMPRIMES 2048 | ||
11 | |||
12 | extern const uint16_t primes[NUMPRIMES]; | ||
13 | |||
14 | __END_HIDDEN_DECLS | ||
diff --git a/src/lib/libcrypto/bn/bn_prime.pl b/src/lib/libcrypto/bn/bn_prime.pl deleted file mode 100644 index f638e4a9a4..0000000000 --- a/src/lib/libcrypto/bn/bn_prime.pl +++ /dev/null | |||
@@ -1,100 +0,0 @@ | |||
1 | #!/usr/bin/perl | ||
2 | # $OpenBSD: bn_prime.pl,v 1.12 2023/03/26 08:04:57 tb Exp $ | ||
3 | # | ||
4 | # Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) | ||
5 | # All rights reserved. | ||
6 | # | ||
7 | # This package is an SSL implementation written | ||
8 | # by Eric Young (eay@cryptsoft.com). | ||
9 | # The implementation was written so as to conform with Netscapes SSL. | ||
10 | # | ||
11 | # This library is free for commercial and non-commercial use as long as | ||
12 | # the following conditions are aheared to. The following conditions | ||
13 | # apply to all code found in this distribution, be it the RC4, RSA, | ||
14 | # lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
15 | # included with this distribution is covered by the same copyright terms | ||
16 | # except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
17 | # | ||
18 | # Copyright remains Eric Young's, and as such any Copyright notices in | ||
19 | # the code are not to be removed. | ||
20 | # If this package is used in a product, Eric Young should be given attribution | ||
21 | # as the author of the parts of the library used. | ||
22 | # This can be in the form of a textual message at program startup or | ||
23 | # in documentation (online or textual) provided with the package. | ||
24 | # | ||
25 | # Redistribution and use in source and binary forms, with or without | ||
26 | # modification, are permitted provided that the following conditions | ||
27 | # are met: | ||
28 | # 1. Redistributions of source code must retain the copyright | ||
29 | # notice, this list of conditions and the following disclaimer. | ||
30 | # 2. Redistributions in binary form must reproduce the above copyright | ||
31 | # notice, this list of conditions and the following disclaimer in the | ||
32 | # documentation and/or other materials provided with the distribution. | ||
33 | # 3. All advertising materials mentioning features or use of this software | ||
34 | # must display the following acknowledgement: | ||
35 | # "This product includes cryptographic software written by | ||
36 | # Eric Young (eay@cryptsoft.com)" | ||
37 | # The word 'cryptographic' can be left out if the rouines from the library | ||
38 | # being used are not cryptographic related :-). | ||
39 | # 4. If you include any Windows specific code (or a derivative thereof) from | ||
40 | # the apps directory (application code) you must include an acknowledgement: | ||
41 | # "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
42 | # | ||
43 | # THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
44 | # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
45 | # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
46 | # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
47 | # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
48 | # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
49 | # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
50 | # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
51 | # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
52 | # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
53 | # SUCH DAMAGE. | ||
54 | # | ||
55 | # The licence and distribution terms for any publically available version or | ||
56 | # derivative of this code cannot be changed. i.e. this code cannot simply be | ||
57 | # copied and put under another distribution licence | ||
58 | # [including the GNU Public Licence.] | ||
59 | |||
60 | use strict; | ||
61 | use warnings; | ||
62 | |||
63 | my ($i, $num, $p, $s, @primes); | ||
64 | |||
65 | $num = 2048; | ||
66 | $num = $ARGV[0] if $#ARGV >= 0; | ||
67 | |||
68 | # The 6543rd prime is 2^16 + 1. | ||
69 | die "$num must be smaller than 6543" if $num >= 6543; | ||
70 | |||
71 | push(@primes, 2); | ||
72 | $p = 1; | ||
73 | |||
74 | loop: | ||
75 | while ($#primes < $num - 1) { | ||
76 | $p += 2; | ||
77 | $s = int(sqrt($p)); | ||
78 | |||
79 | for ($i = 0; defined($primes[$i]) && $primes[$i] <= $s; $i++) { | ||
80 | next loop if $p % $primes[$i] == 0; | ||
81 | } | ||
82 | |||
83 | die "\$primes[$i] is too large: $primes[$i]" if $primes[$i] > 65535; | ||
84 | push(@primes, $p); | ||
85 | } | ||
86 | |||
87 | printf("/*\t\$" . "OpenBSD" . "\$ */\n"); | ||
88 | print <<\EOF; | ||
89 | /* | ||
90 | * Public domain, generated by bn_prime.pl. | ||
91 | */ | ||
92 | |||
93 | EOF | ||
94 | |||
95 | print "#include \"bn_prime.h\"\n\n"; | ||
96 | print "const uint16_t primes[NUMPRIMES] = {"; | ||
97 | for ($i = 0; $i <= $#primes; $i++) { | ||
98 | printf("%s%5d,", $i % 8 == 0 ? "\n\t" : " ", $primes[$i]); | ||
99 | } | ||
100 | print "\n};\n"; | ||
diff --git a/src/lib/libcrypto/bn/bn_primitives.c b/src/lib/libcrypto/bn/bn_primitives.c deleted file mode 100644 index 66427a9046..0000000000 --- a/src/lib/libcrypto/bn/bn_primitives.c +++ /dev/null | |||
@@ -1,65 +0,0 @@ | |||
1 | /* $OpenBSD: bn_primitives.c,v 1.2 2023/06/21 07:48:41 jsing Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #include <openssl/bn.h> | ||
19 | |||
20 | #include "bn_arch.h" | ||
21 | #include "bn_internal.h" | ||
22 | #include "bn_local.h" | ||
23 | |||
24 | #ifndef HAVE_BN_CLZW | ||
25 | #ifndef HAVE_BN_WORD_CLZ | ||
26 | int | ||
27 | bn_word_clz(BN_ULONG w) | ||
28 | { | ||
29 | BN_ULONG bits, mask, shift; | ||
30 | |||
31 | bits = shift = BN_BITS2; | ||
32 | mask = 0; | ||
33 | |||
34 | while ((shift >>= 1) != 0) { | ||
35 | bits += (shift & mask) - (shift & ~mask); | ||
36 | mask = bn_ct_ne_zero_mask(w >> bits); | ||
37 | } | ||
38 | bits += 1 & mask; | ||
39 | |||
40 | bits -= bn_ct_eq_zero(w); | ||
41 | |||
42 | return BN_BITS2 - bits; | ||
43 | } | ||
44 | #endif | ||
45 | #endif | ||
46 | |||
47 | #ifndef HAVE_BN_BITSIZE | ||
48 | int | ||
49 | bn_bitsize(const BIGNUM *bn) | ||
50 | { | ||
51 | BN_ULONG n = 0, x = 0; | ||
52 | BN_ULONG mask, w; | ||
53 | int i = 0; | ||
54 | |||
55 | while (i < bn->top) { | ||
56 | w = bn->d[i]; | ||
57 | mask = bn_ct_ne_zero_mask(w); | ||
58 | n = ((BN_ULONG)i & mask) | (n & ~mask); | ||
59 | x = (w & mask) | (x & ~mask); | ||
60 | i++; | ||
61 | } | ||
62 | |||
63 | return (n + 1) * BN_BITS2 - bn_clzw(x); | ||
64 | } | ||
65 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_print.c b/src/lib/libcrypto/bn/bn_print.c deleted file mode 100644 index cd8b663602..0000000000 --- a/src/lib/libcrypto/bn/bn_print.c +++ /dev/null | |||
@@ -1,191 +0,0 @@ | |||
1 | /* $OpenBSD: bn_print.c,v 1.47 2024/03/02 09:18:28 tb Exp $ */ | ||
2 | |||
3 | /* | ||
4 | * Copyright (c) 2023 Theo Buehler <tb@openbsd.org> | ||
5 | * | ||
6 | * Permission to use, copy, modify, and distribute this software for any | ||
7 | * purpose with or without fee is hereby granted, provided that the above | ||
8 | * copyright notice and this permission notice appear in all copies. | ||
9 | * | ||
10 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
11 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
12 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
13 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
14 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
15 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
16 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
17 | */ | ||
18 | |||
19 | #include <ctype.h> | ||
20 | #include <stdarg.h> | ||
21 | #include <stdio.h> | ||
22 | #include <stdint.h> | ||
23 | #include <stdlib.h> | ||
24 | |||
25 | #include <openssl/bio.h> | ||
26 | #include <openssl/bn.h> | ||
27 | |||
28 | #include "bio_local.h" | ||
29 | #include "bn_local.h" | ||
30 | #include "bytestring.h" | ||
31 | |||
32 | static int | ||
33 | bn_print_zero(BIO *bio, const BIGNUM *bn) | ||
34 | { | ||
35 | if (!BN_is_zero(bn)) | ||
36 | return 0; | ||
37 | if (BIO_printf(bio, " 0\n") <= 0) | ||
38 | return 0; | ||
39 | return 1; | ||
40 | } | ||
41 | |||
42 | static int | ||
43 | bn_print_word(BIO *bio, const BIGNUM *bn) | ||
44 | { | ||
45 | unsigned long long word; | ||
46 | const char *neg = ""; | ||
47 | |||
48 | if (BN_is_zero(bn) || BN_num_bytes(bn) > BN_BYTES) | ||
49 | return 0; | ||
50 | |||
51 | if (BN_is_negative(bn)) | ||
52 | neg = "-"; | ||
53 | |||
54 | word = BN_get_word(bn); | ||
55 | if (BIO_printf(bio, " %s%llu (%s0x%llx)\n", neg, word, neg, word) <= 0) | ||
56 | return 0; | ||
57 | |||
58 | return 1; | ||
59 | } | ||
60 | |||
61 | static int | ||
62 | bn_print_bignum(BIO *bio, const BIGNUM *bn, int indent) | ||
63 | { | ||
64 | CBS cbs; | ||
65 | char *hex = NULL; | ||
66 | size_t hex_len = 0; | ||
67 | size_t octets = 0; | ||
68 | uint8_t hi, lo; | ||
69 | const char *sep = ":"; | ||
70 | int ret = 0; | ||
71 | |||
72 | if (BN_num_bytes(bn) <= BN_BYTES) | ||
73 | goto err; | ||
74 | |||
75 | /* Secondary indent is 4 spaces, capped at 128. */ | ||
76 | if (indent > 124) | ||
77 | indent = 124; | ||
78 | indent += 4; | ||
79 | if (indent < 0) | ||
80 | indent = 0; | ||
81 | |||
82 | if (!bn_bn2hex_nosign(bn, &hex, &hex_len)) | ||
83 | goto err; | ||
84 | |||
85 | CBS_init(&cbs, hex, hex_len); | ||
86 | |||
87 | if (BN_is_negative(bn)) { | ||
88 | if (BIO_printf(bio, " (Negative)") <= 0) | ||
89 | goto err; | ||
90 | } | ||
91 | |||
92 | while (CBS_len(&cbs) > 0) { | ||
93 | if (!CBS_get_u8(&cbs, &hi)) | ||
94 | goto err; | ||
95 | if (!CBS_get_u8(&cbs, &lo)) | ||
96 | goto err; | ||
97 | if (octets++ % 15 == 0) { | ||
98 | if (BIO_printf(bio, "\n%*s", indent, "") <= 0) | ||
99 | goto err; | ||
100 | } | ||
101 | /* First nibble has the high bit set. Insert leading 0 octet. */ | ||
102 | if (octets == 1 && hi >= '8') { | ||
103 | if (BIO_printf(bio, "00:") <= 0) | ||
104 | goto err; | ||
105 | octets++; | ||
106 | } | ||
107 | if (CBS_len(&cbs) == 0) | ||
108 | sep = ""; | ||
109 | if (BIO_printf(bio, "%c%c%s", tolower(hi), tolower(lo), sep) <= 0) | ||
110 | goto err; | ||
111 | } | ||
112 | |||
113 | if (BIO_printf(bio, "\n") <= 0) | ||
114 | goto err; | ||
115 | |||
116 | ret = 1; | ||
117 | |||
118 | err: | ||
119 | freezero(hex, hex_len); | ||
120 | |||
121 | return ret; | ||
122 | } | ||
123 | |||
124 | int | ||
125 | bn_printf(BIO *bio, const BIGNUM *bn, int indent, const char *fmt, ...) | ||
126 | { | ||
127 | va_list ap; | ||
128 | int rv; | ||
129 | |||
130 | if (bn == NULL) | ||
131 | return 1; | ||
132 | |||
133 | if (!BIO_indent(bio, indent, 128)) | ||
134 | return 0; | ||
135 | |||
136 | va_start(ap, fmt); | ||
137 | rv = BIO_vprintf(bio, fmt, ap); | ||
138 | va_end(ap); | ||
139 | if (rv < 0) | ||
140 | return 0; | ||
141 | |||
142 | if (BN_is_zero(bn)) | ||
143 | return bn_print_zero(bio, bn); | ||
144 | |||
145 | if (BN_num_bytes(bn) <= BN_BYTES) | ||
146 | return bn_print_word(bio, bn); | ||
147 | |||
148 | return bn_print_bignum(bio, bn, indent); | ||
149 | } | ||
150 | |||
151 | int | ||
152 | BN_print(BIO *bio, const BIGNUM *bn) | ||
153 | { | ||
154 | char *hex = NULL; | ||
155 | size_t hex_len = 0; | ||
156 | int ret = 0; | ||
157 | |||
158 | if (!bn_bn2hex_nibbles(bn, &hex, &hex_len)) | ||
159 | goto err; | ||
160 | if (BIO_printf(bio, "%s", hex) <= 0) | ||
161 | goto err; | ||
162 | |||
163 | ret = 1; | ||
164 | |||
165 | err: | ||
166 | freezero(hex, hex_len); | ||
167 | |||
168 | return ret; | ||
169 | } | ||
170 | LCRYPTO_ALIAS(BN_print); | ||
171 | |||
172 | int | ||
173 | BN_print_fp(FILE *fp, const BIGNUM *bn) | ||
174 | { | ||
175 | char *hex = NULL; | ||
176 | size_t hex_len = 0; | ||
177 | int ret = 0; | ||
178 | |||
179 | if (!bn_bn2hex_nibbles(bn, &hex, &hex_len)) | ||
180 | goto err; | ||
181 | if (fprintf(fp, "%s", hex) < 0) | ||
182 | goto err; | ||
183 | |||
184 | ret = 1; | ||
185 | |||
186 | err: | ||
187 | freezero(hex, hex_len); | ||
188 | |||
189 | return ret; | ||
190 | } | ||
191 | LCRYPTO_ALIAS(BN_print_fp); | ||
diff --git a/src/lib/libcrypto/bn/bn_rand.c b/src/lib/libcrypto/bn/bn_rand.c deleted file mode 100644 index 9cfcd8e2c0..0000000000 --- a/src/lib/libcrypto/bn/bn_rand.c +++ /dev/null | |||
@@ -1,340 +0,0 @@ | |||
1 | /* $OpenBSD: bn_rand.c,v 1.30 2024/03/16 20:42:33 tb Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include <limits.h> | ||
113 | #include <stdio.h> | ||
114 | #include <stdlib.h> | ||
115 | #include <string.h> | ||
116 | #include <time.h> | ||
117 | |||
118 | #include <openssl/err.h> | ||
119 | |||
120 | #include "bn_local.h" | ||
121 | |||
122 | static int | ||
123 | bnrand(int pseudorand, BIGNUM *rnd, int bits, int top, int bottom) | ||
124 | { | ||
125 | unsigned char *buf = NULL; | ||
126 | int ret = 0, bit, bytes, mask; | ||
127 | |||
128 | if (rnd == NULL) { | ||
129 | BNerror(ERR_R_PASSED_NULL_PARAMETER); | ||
130 | return (0); | ||
131 | } | ||
132 | |||
133 | if (bits < 0 || (bits == 1 && top > 0)) { | ||
134 | BNerror(BN_R_BITS_TOO_SMALL); | ||
135 | return (0); | ||
136 | } | ||
137 | if (bits > INT_MAX - 7) { | ||
138 | BNerror(BN_R_BIGNUM_TOO_LONG); | ||
139 | return (0); | ||
140 | } | ||
141 | |||
142 | if (bits == 0) { | ||
143 | BN_zero(rnd); | ||
144 | return (1); | ||
145 | } | ||
146 | |||
147 | bytes = (bits + 7) / 8; | ||
148 | bit = (bits - 1) % 8; | ||
149 | mask = 0xff << (bit + 1); | ||
150 | |||
151 | buf = malloc(bytes); | ||
152 | if (buf == NULL) { | ||
153 | BNerror(ERR_R_MALLOC_FAILURE); | ||
154 | goto err; | ||
155 | } | ||
156 | |||
157 | /* make a random number and set the top and bottom bits */ | ||
158 | arc4random_buf(buf, bytes); | ||
159 | |||
160 | #if 1 | ||
161 | if (pseudorand == 2) { | ||
162 | /* generate patterns that are more likely to trigger BN | ||
163 | library bugs */ | ||
164 | int i; | ||
165 | unsigned char c; | ||
166 | |||
167 | for (i = 0; i < bytes; i++) { | ||
168 | arc4random_buf(&c, 1); | ||
169 | if (c >= 128 && i > 0) | ||
170 | buf[i] = buf[i - 1]; | ||
171 | else if (c < 42) | ||
172 | buf[i] = 0; | ||
173 | else if (c < 84) | ||
174 | buf[i] = 255; | ||
175 | } | ||
176 | } | ||
177 | #endif | ||
178 | |||
179 | if (top > 0) { | ||
180 | if (bit == 0) { | ||
181 | buf[0] = 1; | ||
182 | buf[1] |= 0x80; | ||
183 | } else { | ||
184 | buf[0] |= (3 << (bit - 1)); | ||
185 | } | ||
186 | } | ||
187 | if (top == 0) | ||
188 | buf[0] |= (1 << bit); | ||
189 | buf[0] &= ~mask; | ||
190 | if (bottom) /* set bottom bit if requested */ | ||
191 | buf[bytes - 1] |= 1; | ||
192 | if (BN_bin2bn(buf, bytes, rnd) == NULL) | ||
193 | goto err; | ||
194 | ret = 1; | ||
195 | |||
196 | err: | ||
197 | freezero(buf, bytes); | ||
198 | return (ret); | ||
199 | } | ||
200 | |||
201 | int | ||
202 | BN_rand(BIGNUM *rnd, int bits, int top, int bottom) | ||
203 | { | ||
204 | return bnrand(0, rnd, bits, top, bottom); | ||
205 | } | ||
206 | LCRYPTO_ALIAS(BN_rand); | ||
207 | |||
208 | int | ||
209 | BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom) | ||
210 | { | ||
211 | return bnrand(1, rnd, bits, top, bottom); | ||
212 | } | ||
213 | LCRYPTO_ALIAS(BN_pseudo_rand); | ||
214 | |||
215 | #if 1 | ||
216 | int | ||
217 | BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom) | ||
218 | { | ||
219 | return bnrand(2, rnd, bits, top, bottom); | ||
220 | } | ||
221 | #endif | ||
222 | |||
223 | |||
224 | /* random number r: 0 <= r < range */ | ||
225 | static int | ||
226 | bn_rand_range(int pseudo, BIGNUM *r, const BIGNUM *range) | ||
227 | { | ||
228 | int (*bn_rand)(BIGNUM *, int, int, int) = pseudo ? BN_pseudo_rand : BN_rand; | ||
229 | int n; | ||
230 | int count = 100; | ||
231 | |||
232 | if (range->neg || BN_is_zero(range)) { | ||
233 | BNerror(BN_R_INVALID_RANGE); | ||
234 | return 0; | ||
235 | } | ||
236 | |||
237 | n = BN_num_bits(range); /* n > 0 */ | ||
238 | |||
239 | /* BN_is_bit_set(range, n - 1) always holds */ | ||
240 | |||
241 | if (n == 1) | ||
242 | BN_zero(r); | ||
243 | else if (!BN_is_bit_set(range, n - 2) && !BN_is_bit_set(range, n - 3)) { | ||
244 | /* range = 100..._2, | ||
245 | * so 3*range (= 11..._2) is exactly one bit longer than range */ | ||
246 | do { | ||
247 | if (!bn_rand(r, n + 1, -1, 0)) | ||
248 | return 0; | ||
249 | /* If r < 3*range, use r := r MOD range | ||
250 | * (which is either r, r - range, or r - 2*range). | ||
251 | * Otherwise, iterate once more. | ||
252 | * Since 3*range = 11..._2, each iteration succeeds with | ||
253 | * probability >= .75. */ | ||
254 | if (BN_cmp(r, range) >= 0) { | ||
255 | if (!BN_sub(r, r, range)) | ||
256 | return 0; | ||
257 | if (BN_cmp(r, range) >= 0) | ||
258 | if (!BN_sub(r, r, range)) | ||
259 | return 0; | ||
260 | } | ||
261 | |||
262 | if (!--count) { | ||
263 | BNerror(BN_R_TOO_MANY_ITERATIONS); | ||
264 | return 0; | ||
265 | } | ||
266 | |||
267 | } while (BN_cmp(r, range) >= 0); | ||
268 | } else { | ||
269 | do { | ||
270 | /* range = 11..._2 or range = 101..._2 */ | ||
271 | if (!bn_rand(r, n, -1, 0)) | ||
272 | return 0; | ||
273 | |||
274 | if (!--count) { | ||
275 | BNerror(BN_R_TOO_MANY_ITERATIONS); | ||
276 | return 0; | ||
277 | } | ||
278 | } while (BN_cmp(r, range) >= 0); | ||
279 | } | ||
280 | |||
281 | return 1; | ||
282 | } | ||
283 | |||
284 | int | ||
285 | BN_rand_range(BIGNUM *r, const BIGNUM *range) | ||
286 | { | ||
287 | return bn_rand_range(0, r, range); | ||
288 | } | ||
289 | LCRYPTO_ALIAS(BN_rand_range); | ||
290 | |||
291 | int | ||
292 | bn_rand_in_range(BIGNUM *rnd, const BIGNUM *lower_inc, const BIGNUM *upper_exc) | ||
293 | { | ||
294 | BIGNUM *len; | ||
295 | int ret = 0; | ||
296 | |||
297 | if ((len = BN_new()) == NULL) | ||
298 | goto err; | ||
299 | if (!BN_sub(len, upper_exc, lower_inc)) | ||
300 | goto err; | ||
301 | if (!BN_rand_range(rnd, len)) | ||
302 | goto err; | ||
303 | if (!BN_add(rnd, rnd, lower_inc)) | ||
304 | goto err; | ||
305 | |||
306 | ret = 1; | ||
307 | |||
308 | err: | ||
309 | BN_free(len); | ||
310 | |||
311 | return ret; | ||
312 | } | ||
313 | |||
314 | int | ||
315 | bn_rand_interval(BIGNUM *rnd, BN_ULONG lower_word, const BIGNUM *upper_exc) | ||
316 | { | ||
317 | BIGNUM *lower_inc = NULL; | ||
318 | int ret = 0; | ||
319 | |||
320 | if ((lower_inc = BN_new()) == NULL) | ||
321 | goto err; | ||
322 | if (!BN_set_word(lower_inc, lower_word)) | ||
323 | goto err; | ||
324 | if (!bn_rand_in_range(rnd, lower_inc, upper_exc)) | ||
325 | goto err; | ||
326 | |||
327 | ret = 1; | ||
328 | |||
329 | err: | ||
330 | BN_free(lower_inc); | ||
331 | |||
332 | return ret; | ||
333 | } | ||
334 | |||
335 | int | ||
336 | BN_pseudo_rand_range(BIGNUM *r, const BIGNUM *range) | ||
337 | { | ||
338 | return bn_rand_range(1, r, range); | ||
339 | } | ||
340 | LCRYPTO_ALIAS(BN_pseudo_rand_range); | ||
diff --git a/src/lib/libcrypto/bn/bn_recp.c b/src/lib/libcrypto/bn/bn_recp.c deleted file mode 100644 index e3f22c52a9..0000000000 --- a/src/lib/libcrypto/bn/bn_recp.c +++ /dev/null | |||
@@ -1,222 +0,0 @@ | |||
1 | /* $OpenBSD: bn_recp.c,v 1.33 2025/02/04 20:22:20 tb Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | |||
61 | #include <openssl/err.h> | ||
62 | |||
63 | #include "bn_local.h" | ||
64 | |||
65 | struct bn_recp_ctx_st { | ||
66 | BIGNUM *N; /* the divisor */ | ||
67 | BIGNUM *Nr; /* the reciprocal 2^shift / N */ | ||
68 | int num_bits; /* number of bits in N */ | ||
69 | int shift; | ||
70 | } /* BN_RECP_CTX */; | ||
71 | |||
72 | BN_RECP_CTX * | ||
73 | BN_RECP_CTX_create(const BIGNUM *N) | ||
74 | { | ||
75 | BN_RECP_CTX *recp; | ||
76 | |||
77 | if ((recp = calloc(1, sizeof(*recp))) == NULL) | ||
78 | goto err; | ||
79 | |||
80 | if ((recp->N = BN_dup(N)) == NULL) | ||
81 | goto err; | ||
82 | BN_set_negative(recp->N, 0); | ||
83 | recp->num_bits = BN_num_bits(recp->N); | ||
84 | |||
85 | if ((recp->Nr = BN_new()) == NULL) | ||
86 | goto err; | ||
87 | |||
88 | return recp; | ||
89 | |||
90 | err: | ||
91 | BN_RECP_CTX_free(recp); | ||
92 | |||
93 | return NULL; | ||
94 | } | ||
95 | |||
96 | void | ||
97 | BN_RECP_CTX_free(BN_RECP_CTX *recp) | ||
98 | { | ||
99 | if (recp == NULL) | ||
100 | return; | ||
101 | |||
102 | BN_free(recp->N); | ||
103 | BN_free(recp->Nr); | ||
104 | freezero(recp, sizeof(*recp)); | ||
105 | } | ||
106 | |||
107 | int | ||
108 | BN_div_reciprocal(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, BN_RECP_CTX *recp, | ||
109 | BN_CTX *ctx) | ||
110 | { | ||
111 | int i, j, ret = 0; | ||
112 | BIGNUM *a, *b, *d, *r; | ||
113 | |||
114 | if (BN_ucmp(m, recp->N) < 0) { | ||
115 | if (dv != NULL) | ||
116 | BN_zero(dv); | ||
117 | if (rem != NULL) | ||
118 | return bn_copy(rem, m); | ||
119 | return 1; | ||
120 | } | ||
121 | |||
122 | BN_CTX_start(ctx); | ||
123 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
124 | goto err; | ||
125 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
126 | goto err; | ||
127 | |||
128 | if ((d = dv) == NULL) | ||
129 | d = BN_CTX_get(ctx); | ||
130 | if (d == NULL) | ||
131 | goto err; | ||
132 | |||
133 | if ((r = rem) == NULL) | ||
134 | r = BN_CTX_get(ctx); | ||
135 | if (r == NULL) | ||
136 | goto err; | ||
137 | |||
138 | /* | ||
139 | * We want the remainder. Given input of ABCDEF / ab we need to | ||
140 | * multiply ABCDEF by 3 digits of the reciprocal of ab. | ||
141 | */ | ||
142 | |||
143 | /* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */ | ||
144 | i = BN_num_bits(m); | ||
145 | j = recp->num_bits << 1; | ||
146 | if (j > i) | ||
147 | i = j; | ||
148 | |||
149 | /* Compute Nr := (1 << i) / N if necessary. */ | ||
150 | if (i != recp->shift) { | ||
151 | BN_zero(recp->Nr); | ||
152 | if (!BN_set_bit(recp->Nr, i)) | ||
153 | goto err; | ||
154 | if (!BN_div_ct(recp->Nr, NULL, recp->Nr, recp->N, ctx)) | ||
155 | goto err; | ||
156 | recp->shift = i; | ||
157 | } | ||
158 | |||
159 | /* | ||
160 | * d := |((m >> BN_num_bits(N)) * recp->Nr) >> (i - BN_num_bits(N))| | ||
161 | * = |((m >> BN_num_bits(N)) * (1 << i) / N) >> (i - BN_num_bits(N))| | ||
162 | * <= |(m / 2^BN_num_bits(N)) * (2^i / N) * 2^BN_num_bits(N) / 2^i | | ||
163 | * = |m / N| | ||
164 | */ | ||
165 | if (!BN_rshift(a, m, recp->num_bits)) | ||
166 | goto err; | ||
167 | if (!BN_mul(b, a, recp->Nr, ctx)) | ||
168 | goto err; | ||
169 | if (!BN_rshift(d, b, i - recp->num_bits)) | ||
170 | goto err; | ||
171 | d->neg = 0; | ||
172 | |||
173 | if (!BN_mul(b, recp->N, d, ctx)) | ||
174 | goto err; | ||
175 | if (!BN_usub(r, m, b)) | ||
176 | goto err; | ||
177 | r->neg = 0; | ||
178 | |||
179 | #if 1 | ||
180 | j = 0; | ||
181 | while (BN_ucmp(r, recp->N) >= 0) { | ||
182 | if (j++ > 2) { | ||
183 | BNerror(BN_R_BAD_RECIPROCAL); | ||
184 | goto err; | ||
185 | } | ||
186 | if (!BN_usub(r, r, recp->N)) | ||
187 | goto err; | ||
188 | if (!BN_add_word(d, 1)) | ||
189 | goto err; | ||
190 | } | ||
191 | #endif | ||
192 | |||
193 | BN_set_negative(r, m->neg); | ||
194 | BN_set_negative(d, m->neg ^ recp->N->neg); | ||
195 | |||
196 | ret = 1; | ||
197 | |||
198 | err: | ||
199 | BN_CTX_end(ctx); | ||
200 | return ret; | ||
201 | } | ||
202 | |||
203 | /* Compute r = (x * y) % m. */ | ||
204 | int | ||
205 | BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, | ||
206 | BN_RECP_CTX *recp, BN_CTX *ctx) | ||
207 | { | ||
208 | if (!BN_mul(r, x, y, ctx)) | ||
209 | return 0; | ||
210 | |||
211 | return BN_div_reciprocal(NULL, r, r, recp, ctx); | ||
212 | } | ||
213 | |||
214 | /* Compute r = x^2 % m. */ | ||
215 | int | ||
216 | BN_mod_sqr_reciprocal(BIGNUM *r, const BIGNUM *x, BN_RECP_CTX *recp, BN_CTX *ctx) | ||
217 | { | ||
218 | if (!BN_sqr(r, x, ctx)) | ||
219 | return 0; | ||
220 | |||
221 | return BN_div_reciprocal(NULL, r, r, recp, ctx); | ||
222 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_shift.c b/src/lib/libcrypto/bn/bn_shift.c deleted file mode 100644 index 12edc7c0a0..0000000000 --- a/src/lib/libcrypto/bn/bn_shift.c +++ /dev/null | |||
@@ -1,175 +0,0 @@ | |||
1 | /* $OpenBSD: bn_shift.c,v 1.22 2023/07/08 12:21:58 beck Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2022, 2023 Joel Sing <jsing@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #include <openssl/bn.h> | ||
19 | #include <openssl/err.h> | ||
20 | |||
21 | #include "bn_local.h" | ||
22 | |||
23 | static inline int | ||
24 | bn_lshift(BIGNUM *r, const BIGNUM *a, int n) | ||
25 | { | ||
26 | size_t count, shift_bits, shift_words; | ||
27 | size_t lshift, rshift; | ||
28 | ssize_t rstride; | ||
29 | BN_ULONG *dst, *src; | ||
30 | |||
31 | if (n < 0) { | ||
32 | BNerror(BN_R_INVALID_LENGTH); | ||
33 | return 0; | ||
34 | } | ||
35 | shift_bits = n; | ||
36 | |||
37 | /* | ||
38 | * Left bit shift, potentially across word boundaries. | ||
39 | * | ||
40 | * When shift is not an exact multiple of BN_BITS2, the bottom bits of | ||
41 | * the previous word need to be right shifted and combined with the left | ||
42 | * shifted bits using bitwise OR. If shift is an exact multiple of | ||
43 | * BN_BITS2, the source for the left and right shifts are the same | ||
44 | * and the shifts become zero bits (which is effectively a memmove). | ||
45 | */ | ||
46 | shift_words = shift_bits / BN_BITS2; | ||
47 | lshift = shift_bits % BN_BITS2; | ||
48 | rshift = (BN_BITS2 - lshift) % BN_BITS2; | ||
49 | rstride = 0 - (lshift + rshift) / BN_BITS2; | ||
50 | |||
51 | if (a->top < 1) { | ||
52 | BN_zero(r); | ||
53 | return 1; | ||
54 | } | ||
55 | |||
56 | count = a->top + shift_words + 1; | ||
57 | |||
58 | if (count < shift_words) | ||
59 | return 0; | ||
60 | |||
61 | if (!bn_wexpand(r, count)) | ||
62 | return 0; | ||
63 | |||
64 | src = a->d + a->top - 1; | ||
65 | dst = r->d + a->top + shift_words; | ||
66 | |||
67 | /* Handle right shift for top most word. */ | ||
68 | *dst = (*src >> rshift) & rstride; | ||
69 | dst--; | ||
70 | |||
71 | /* Handle left shift and right shift for remaining words. */ | ||
72 | while (src > a->d) { | ||
73 | *dst = *src << lshift | src[rstride] >> rshift; | ||
74 | src--; | ||
75 | dst--; | ||
76 | } | ||
77 | *dst = *src << lshift; | ||
78 | |||
79 | /* Zero any additional words resulting from the left shift. */ | ||
80 | while (dst > r->d) { | ||
81 | dst--; | ||
82 | *dst = 0; | ||
83 | } | ||
84 | |||
85 | r->top = count; | ||
86 | bn_correct_top(r); | ||
87 | |||
88 | BN_set_negative(r, a->neg); | ||
89 | |||
90 | return 1; | ||
91 | } | ||
92 | |||
93 | static inline int | ||
94 | bn_rshift(BIGNUM *r, const BIGNUM *a, int n) | ||
95 | { | ||
96 | size_t count, shift_bits, shift_words; | ||
97 | size_t lshift, rshift; | ||
98 | ssize_t lstride; | ||
99 | BN_ULONG *dst, *src; | ||
100 | size_t i; | ||
101 | |||
102 | if (n < 0) { | ||
103 | BNerror(BN_R_INVALID_LENGTH); | ||
104 | return 0; | ||
105 | } | ||
106 | shift_bits = n; | ||
107 | |||
108 | /* | ||
109 | * Right bit shift, potentially across word boundaries. | ||
110 | * | ||
111 | * When shift is not an exact multiple of BN_BITS2, the top bits of | ||
112 | * the next word need to be left shifted and combined with the right | ||
113 | * shifted bits using bitwise OR. If shift is an exact multiple of | ||
114 | * BN_BITS2, the source for the left and right shifts are the same | ||
115 | * and the shifts become zero (which is effectively a memmove). | ||
116 | */ | ||
117 | shift_words = shift_bits / BN_BITS2; | ||
118 | rshift = shift_bits % BN_BITS2; | ||
119 | lshift = (BN_BITS2 - rshift) % BN_BITS2; | ||
120 | lstride = (lshift + rshift) / BN_BITS2; | ||
121 | |||
122 | if (a->top <= shift_words) { | ||
123 | BN_zero(r); | ||
124 | return 1; | ||
125 | } | ||
126 | count = a->top - shift_words; | ||
127 | |||
128 | if (!bn_wexpand(r, count)) | ||
129 | return 0; | ||
130 | |||
131 | src = a->d + shift_words; | ||
132 | dst = r->d; | ||
133 | |||
134 | for (i = 1; i < count; i++) { | ||
135 | *dst = src[lstride] << lshift | *src >> rshift; | ||
136 | src++; | ||
137 | dst++; | ||
138 | } | ||
139 | *dst = *src >> rshift; | ||
140 | |||
141 | r->top = count; | ||
142 | bn_correct_top(r); | ||
143 | |||
144 | BN_set_negative(r, a->neg); | ||
145 | |||
146 | return 1; | ||
147 | } | ||
148 | |||
149 | int | ||
150 | BN_lshift1(BIGNUM *r, const BIGNUM *a) | ||
151 | { | ||
152 | return bn_lshift(r, a, 1); | ||
153 | } | ||
154 | LCRYPTO_ALIAS(BN_lshift1); | ||
155 | |||
156 | int | ||
157 | BN_lshift(BIGNUM *r, const BIGNUM *a, int n) | ||
158 | { | ||
159 | return bn_lshift(r, a, n); | ||
160 | } | ||
161 | LCRYPTO_ALIAS(BN_lshift); | ||
162 | |||
163 | int | ||
164 | BN_rshift1(BIGNUM *r, const BIGNUM *a) | ||
165 | { | ||
166 | return bn_rshift(r, a, 1); | ||
167 | } | ||
168 | LCRYPTO_ALIAS(BN_rshift1); | ||
169 | |||
170 | int | ||
171 | BN_rshift(BIGNUM *r, const BIGNUM *a, int n) | ||
172 | { | ||
173 | return bn_rshift(r, a, n); | ||
174 | } | ||
175 | LCRYPTO_ALIAS(BN_rshift); | ||
diff --git a/src/lib/libcrypto/bn/bn_small_primes.c b/src/lib/libcrypto/bn/bn_small_primes.c deleted file mode 100644 index bfb7903a54..0000000000 --- a/src/lib/libcrypto/bn/bn_small_primes.c +++ /dev/null | |||
@@ -1,265 +0,0 @@ | |||
1 | /* $OpenBSD: bn_small_primes.c,v 1.1 2022/11/09 22:52:51 tb Exp $ */ | ||
2 | /* | ||
3 | * Public domain, generated by bn_prime.pl. | ||
4 | */ | ||
5 | |||
6 | #include "bn_prime.h" | ||
7 | |||
8 | const uint16_t primes[NUMPRIMES] = { | ||
9 | 2, 3, 5, 7, 11, 13, 17, 19, | ||
10 | 23, 29, 31, 37, 41, 43, 47, 53, | ||
11 | 59, 61, 67, 71, 73, 79, 83, 89, | ||
12 | 97, 101, 103, 107, 109, 113, 127, 131, | ||
13 | 137, 139, 149, 151, 157, 163, 167, 173, | ||
14 | 179, 181, 191, 193, 197, 199, 211, 223, | ||
15 | 227, 229, 233, 239, 241, 251, 257, 263, | ||
16 | 269, 271, 277, 281, 283, 293, 307, 311, | ||
17 | 313, 317, 331, 337, 347, 349, 353, 359, | ||
18 | 367, 373, 379, 383, 389, 397, 401, 409, | ||
19 | 419, 421, 431, 433, 439, 443, 449, 457, | ||
20 | 461, 463, 467, 479, 487, 491, 499, 503, | ||
21 | 509, 521, 523, 541, 547, 557, 563, 569, | ||
22 | 571, 577, 587, 593, 599, 601, 607, 613, | ||
23 | 617, 619, 631, 641, 643, 647, 653, 659, | ||
24 | 661, 673, 677, 683, 691, 701, 709, 719, | ||
25 | 727, 733, 739, 743, 751, 757, 761, 769, | ||
26 | 773, 787, 797, 809, 811, 821, 823, 827, | ||
27 | 829, 839, 853, 857, 859, 863, 877, 881, | ||
28 | 883, 887, 907, 911, 919, 929, 937, 941, | ||
29 | 947, 953, 967, 971, 977, 983, 991, 997, | ||
30 | 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, | ||
31 | 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, | ||
32 | 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, | ||
33 | 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, | ||
34 | 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, | ||
35 | 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, | ||
36 | 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, | ||
37 | 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, | ||
38 | 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, | ||
39 | 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, | ||
40 | 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, | ||
41 | 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, | ||
42 | 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, | ||
43 | 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, | ||
44 | 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, | ||
45 | 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, | ||
46 | 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, | ||
47 | 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, | ||
48 | 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, | ||
49 | 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, | ||
50 | 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, | ||
51 | 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, | ||
52 | 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, | ||
53 | 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, | ||
54 | 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, | ||
55 | 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, | ||
56 | 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, | ||
57 | 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, | ||
58 | 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, | ||
59 | 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, | ||
60 | 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, | ||
61 | 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, | ||
62 | 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, | ||
63 | 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, | ||
64 | 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, | ||
65 | 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, | ||
66 | 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, | ||
67 | 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, | ||
68 | 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, | ||
69 | 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, | ||
70 | 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, | ||
71 | 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, | ||
72 | 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, | ||
73 | 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, | ||
74 | 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, | ||
75 | 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, | ||
76 | 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, | ||
77 | 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, | ||
78 | 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, | ||
79 | 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, | ||
80 | 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, | ||
81 | 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, | ||
82 | 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, | ||
83 | 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, | ||
84 | 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, | ||
85 | 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, | ||
86 | 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, | ||
87 | 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, | ||
88 | 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, | ||
89 | 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, | ||
90 | 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, | ||
91 | 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, | ||
92 | 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, | ||
93 | 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, | ||
94 | 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, | ||
95 | 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, | ||
96 | 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, | ||
97 | 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, | ||
98 | 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, | ||
99 | 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, | ||
100 | 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, | ||
101 | 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, | ||
102 | 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, | ||
103 | 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, | ||
104 | 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, | ||
105 | 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, | ||
106 | 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, | ||
107 | 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, | ||
108 | 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, | ||
109 | 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, | ||
110 | 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, | ||
111 | 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, | ||
112 | 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, | ||
113 | 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, | ||
114 | 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, | ||
115 | 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, | ||
116 | 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, | ||
117 | 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, | ||
118 | 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, | ||
119 | 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, | ||
120 | 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, | ||
121 | 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, | ||
122 | 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, | ||
123 | 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, | ||
124 | 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, | ||
125 | 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, | ||
126 | 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, | ||
127 | 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, | ||
128 | 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, | ||
129 | 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, | ||
130 | 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, | ||
131 | 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, | ||
132 | 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, | ||
133 | 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, | ||
134 | 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, | ||
135 | 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, | ||
136 | 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, | ||
137 | 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, | ||
138 | 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, | ||
139 | 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, | ||
140 | 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, | ||
141 | 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, | ||
142 | 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, | ||
143 | 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, | ||
144 | 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, | ||
145 | 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, | ||
146 | 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, | ||
147 | 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, | ||
148 | 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, | ||
149 | 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, | ||
150 | 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, | ||
151 | 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, | ||
152 | 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, | ||
153 | 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, | ||
154 | 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, | ||
155 | 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, | ||
156 | 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, | ||
157 | 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, | ||
158 | 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, | ||
159 | 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, | ||
160 | 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, | ||
161 | 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, | ||
162 | 9931, 9941, 9949, 9967, 9973, 10007, 10009, 10037, | ||
163 | 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, | ||
164 | 10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, | ||
165 | 10169, 10177, 10181, 10193, 10211, 10223, 10243, 10247, | ||
166 | 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, | ||
167 | 10313, 10321, 10331, 10333, 10337, 10343, 10357, 10369, | ||
168 | 10391, 10399, 10427, 10429, 10433, 10453, 10457, 10459, | ||
169 | 10463, 10477, 10487, 10499, 10501, 10513, 10529, 10531, | ||
170 | 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, | ||
171 | 10631, 10639, 10651, 10657, 10663, 10667, 10687, 10691, | ||
172 | 10709, 10711, 10723, 10729, 10733, 10739, 10753, 10771, | ||
173 | 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, | ||
174 | 10861, 10867, 10883, 10889, 10891, 10903, 10909, 10937, | ||
175 | 10939, 10949, 10957, 10973, 10979, 10987, 10993, 11003, | ||
176 | 11027, 11047, 11057, 11059, 11069, 11071, 11083, 11087, | ||
177 | 11093, 11113, 11117, 11119, 11131, 11149, 11159, 11161, | ||
178 | 11171, 11173, 11177, 11197, 11213, 11239, 11243, 11251, | ||
179 | 11257, 11261, 11273, 11279, 11287, 11299, 11311, 11317, | ||
180 | 11321, 11329, 11351, 11353, 11369, 11383, 11393, 11399, | ||
181 | 11411, 11423, 11437, 11443, 11447, 11467, 11471, 11483, | ||
182 | 11489, 11491, 11497, 11503, 11519, 11527, 11549, 11551, | ||
183 | 11579, 11587, 11593, 11597, 11617, 11621, 11633, 11657, | ||
184 | 11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731, | ||
185 | 11743, 11777, 11779, 11783, 11789, 11801, 11807, 11813, | ||
186 | 11821, 11827, 11831, 11833, 11839, 11863, 11867, 11887, | ||
187 | 11897, 11903, 11909, 11923, 11927, 11933, 11939, 11941, | ||
188 | 11953, 11959, 11969, 11971, 11981, 11987, 12007, 12011, | ||
189 | 12037, 12041, 12043, 12049, 12071, 12073, 12097, 12101, | ||
190 | 12107, 12109, 12113, 12119, 12143, 12149, 12157, 12161, | ||
191 | 12163, 12197, 12203, 12211, 12227, 12239, 12241, 12251, | ||
192 | 12253, 12263, 12269, 12277, 12281, 12289, 12301, 12323, | ||
193 | 12329, 12343, 12347, 12373, 12377, 12379, 12391, 12401, | ||
194 | 12409, 12413, 12421, 12433, 12437, 12451, 12457, 12473, | ||
195 | 12479, 12487, 12491, 12497, 12503, 12511, 12517, 12527, | ||
196 | 12539, 12541, 12547, 12553, 12569, 12577, 12583, 12589, | ||
197 | 12601, 12611, 12613, 12619, 12637, 12641, 12647, 12653, | ||
198 | 12659, 12671, 12689, 12697, 12703, 12713, 12721, 12739, | ||
199 | 12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, | ||
200 | 12823, 12829, 12841, 12853, 12889, 12893, 12899, 12907, | ||
201 | 12911, 12917, 12919, 12923, 12941, 12953, 12959, 12967, | ||
202 | 12973, 12979, 12983, 13001, 13003, 13007, 13009, 13033, | ||
203 | 13037, 13043, 13049, 13063, 13093, 13099, 13103, 13109, | ||
204 | 13121, 13127, 13147, 13151, 13159, 13163, 13171, 13177, | ||
205 | 13183, 13187, 13217, 13219, 13229, 13241, 13249, 13259, | ||
206 | 13267, 13291, 13297, 13309, 13313, 13327, 13331, 13337, | ||
207 | 13339, 13367, 13381, 13397, 13399, 13411, 13417, 13421, | ||
208 | 13441, 13451, 13457, 13463, 13469, 13477, 13487, 13499, | ||
209 | 13513, 13523, 13537, 13553, 13567, 13577, 13591, 13597, | ||
210 | 13613, 13619, 13627, 13633, 13649, 13669, 13679, 13681, | ||
211 | 13687, 13691, 13693, 13697, 13709, 13711, 13721, 13723, | ||
212 | 13729, 13751, 13757, 13759, 13763, 13781, 13789, 13799, | ||
213 | 13807, 13829, 13831, 13841, 13859, 13873, 13877, 13879, | ||
214 | 13883, 13901, 13903, 13907, 13913, 13921, 13931, 13933, | ||
215 | 13963, 13967, 13997, 13999, 14009, 14011, 14029, 14033, | ||
216 | 14051, 14057, 14071, 14081, 14083, 14087, 14107, 14143, | ||
217 | 14149, 14153, 14159, 14173, 14177, 14197, 14207, 14221, | ||
218 | 14243, 14249, 14251, 14281, 14293, 14303, 14321, 14323, | ||
219 | 14327, 14341, 14347, 14369, 14387, 14389, 14401, 14407, | ||
220 | 14411, 14419, 14423, 14431, 14437, 14447, 14449, 14461, | ||
221 | 14479, 14489, 14503, 14519, 14533, 14537, 14543, 14549, | ||
222 | 14551, 14557, 14561, 14563, 14591, 14593, 14621, 14627, | ||
223 | 14629, 14633, 14639, 14653, 14657, 14669, 14683, 14699, | ||
224 | 14713, 14717, 14723, 14731, 14737, 14741, 14747, 14753, | ||
225 | 14759, 14767, 14771, 14779, 14783, 14797, 14813, 14821, | ||
226 | 14827, 14831, 14843, 14851, 14867, 14869, 14879, 14887, | ||
227 | 14891, 14897, 14923, 14929, 14939, 14947, 14951, 14957, | ||
228 | 14969, 14983, 15013, 15017, 15031, 15053, 15061, 15073, | ||
229 | 15077, 15083, 15091, 15101, 15107, 15121, 15131, 15137, | ||
230 | 15139, 15149, 15161, 15173, 15187, 15193, 15199, 15217, | ||
231 | 15227, 15233, 15241, 15259, 15263, 15269, 15271, 15277, | ||
232 | 15287, 15289, 15299, 15307, 15313, 15319, 15329, 15331, | ||
233 | 15349, 15359, 15361, 15373, 15377, 15383, 15391, 15401, | ||
234 | 15413, 15427, 15439, 15443, 15451, 15461, 15467, 15473, | ||
235 | 15493, 15497, 15511, 15527, 15541, 15551, 15559, 15569, | ||
236 | 15581, 15583, 15601, 15607, 15619, 15629, 15641, 15643, | ||
237 | 15647, 15649, 15661, 15667, 15671, 15679, 15683, 15727, | ||
238 | 15731, 15733, 15737, 15739, 15749, 15761, 15767, 15773, | ||
239 | 15787, 15791, 15797, 15803, 15809, 15817, 15823, 15859, | ||
240 | 15877, 15881, 15887, 15889, 15901, 15907, 15913, 15919, | ||
241 | 15923, 15937, 15959, 15971, 15973, 15991, 16001, 16007, | ||
242 | 16033, 16057, 16061, 16063, 16067, 16069, 16073, 16087, | ||
243 | 16091, 16097, 16103, 16111, 16127, 16139, 16141, 16183, | ||
244 | 16187, 16189, 16193, 16217, 16223, 16229, 16231, 16249, | ||
245 | 16253, 16267, 16273, 16301, 16319, 16333, 16339, 16349, | ||
246 | 16361, 16363, 16369, 16381, 16411, 16417, 16421, 16427, | ||
247 | 16433, 16447, 16451, 16453, 16477, 16481, 16487, 16493, | ||
248 | 16519, 16529, 16547, 16553, 16561, 16567, 16573, 16603, | ||
249 | 16607, 16619, 16631, 16633, 16649, 16651, 16657, 16661, | ||
250 | 16673, 16691, 16693, 16699, 16703, 16729, 16741, 16747, | ||
251 | 16759, 16763, 16787, 16811, 16823, 16829, 16831, 16843, | ||
252 | 16871, 16879, 16883, 16889, 16901, 16903, 16921, 16927, | ||
253 | 16931, 16937, 16943, 16963, 16979, 16981, 16987, 16993, | ||
254 | 17011, 17021, 17027, 17029, 17033, 17041, 17047, 17053, | ||
255 | 17077, 17093, 17099, 17107, 17117, 17123, 17137, 17159, | ||
256 | 17167, 17183, 17189, 17191, 17203, 17207, 17209, 17231, | ||
257 | 17239, 17257, 17291, 17293, 17299, 17317, 17321, 17327, | ||
258 | 17333, 17341, 17351, 17359, 17377, 17383, 17387, 17389, | ||
259 | 17393, 17401, 17417, 17419, 17431, 17443, 17449, 17467, | ||
260 | 17471, 17477, 17483, 17489, 17491, 17497, 17509, 17519, | ||
261 | 17539, 17551, 17569, 17573, 17579, 17581, 17597, 17599, | ||
262 | 17609, 17623, 17627, 17657, 17659, 17669, 17681, 17683, | ||
263 | 17707, 17713, 17729, 17737, 17747, 17749, 17761, 17783, | ||
264 | 17789, 17791, 17807, 17827, 17837, 17839, 17851, 17863, | ||
265 | }; | ||
diff --git a/src/lib/libcrypto/bn/bn_sqr.c b/src/lib/libcrypto/bn/bn_sqr.c deleted file mode 100644 index 0dbccbf85d..0000000000 --- a/src/lib/libcrypto/bn/bn_sqr.c +++ /dev/null | |||
@@ -1,305 +0,0 @@ | |||
1 | /* $OpenBSD: bn_sqr.c,v 1.36 2023/07/08 12:21:58 beck Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <assert.h> | ||
60 | #include <stdio.h> | ||
61 | #include <string.h> | ||
62 | |||
63 | #include "bn_arch.h" | ||
64 | #include "bn_local.h" | ||
65 | #include "bn_internal.h" | ||
66 | |||
67 | int bn_sqr(BIGNUM *r, const BIGNUM *a, int max, BN_CTX *ctx); | ||
68 | |||
69 | /* | ||
70 | * bn_sqr_comba4() computes r[] = a[] * a[] using Comba multiplication | ||
71 | * (https://everything2.com/title/Comba+multiplication), where a is a | ||
72 | * four word array, producing an eight word array result. | ||
73 | */ | ||
74 | #ifndef HAVE_BN_SQR_COMBA4 | ||
75 | void | ||
76 | bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) | ||
77 | { | ||
78 | BN_ULONG c2, c1, c0; | ||
79 | |||
80 | bn_mulw_addtw(a[0], a[0], 0, 0, 0, &c2, &c1, &r[0]); | ||
81 | |||
82 | bn_mul2_mulw_addtw(a[1], a[0], 0, c2, c1, &c2, &c1, &r[1]); | ||
83 | |||
84 | bn_mulw_addtw(a[1], a[1], 0, c2, c1, &c2, &c1, &c0); | ||
85 | bn_mul2_mulw_addtw(a[2], a[0], c2, c1, c0, &c2, &c1, &r[2]); | ||
86 | |||
87 | bn_mul2_mulw_addtw(a[3], a[0], 0, c2, c1, &c2, &c1, &c0); | ||
88 | bn_mul2_mulw_addtw(a[2], a[1], c2, c1, c0, &c2, &c1, &r[3]); | ||
89 | |||
90 | bn_mulw_addtw(a[2], a[2], 0, c2, c1, &c2, &c1, &c0); | ||
91 | bn_mul2_mulw_addtw(a[3], a[1], c2, c1, c0, &c2, &c1, &r[4]); | ||
92 | |||
93 | bn_mul2_mulw_addtw(a[3], a[2], 0, c2, c1, &c2, &c1, &r[5]); | ||
94 | |||
95 | bn_mulw_addtw(a[3], a[3], 0, c2, c1, &c2, &r[7], &r[6]); | ||
96 | } | ||
97 | #endif | ||
98 | |||
99 | /* | ||
100 | * bn_sqr_comba8() computes r[] = a[] * a[] using Comba multiplication | ||
101 | * (https://everything2.com/title/Comba+multiplication), where a is an | ||
102 | * eight word array, producing an 16 word array result. | ||
103 | */ | ||
104 | #ifndef HAVE_BN_SQR_COMBA8 | ||
105 | void | ||
106 | bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) | ||
107 | { | ||
108 | BN_ULONG c2, c1, c0; | ||
109 | |||
110 | bn_mulw_addtw(a[0], a[0], 0, 0, 0, &c2, &c1, &r[0]); | ||
111 | |||
112 | bn_mul2_mulw_addtw(a[1], a[0], 0, c2, c1, &c2, &c1, &r[1]); | ||
113 | |||
114 | bn_mulw_addtw(a[1], a[1], 0, c2, c1, &c2, &c1, &c0); | ||
115 | bn_mul2_mulw_addtw(a[2], a[0], c2, c1, c0, &c2, &c1, &r[2]); | ||
116 | |||
117 | bn_mul2_mulw_addtw(a[3], a[0], 0, c2, c1, &c2, &c1, &c0); | ||
118 | bn_mul2_mulw_addtw(a[2], a[1], c2, c1, c0, &c2, &c1, &r[3]); | ||
119 | |||
120 | bn_mulw_addtw(a[2], a[2], 0, c2, c1, &c2, &c1, &c0); | ||
121 | bn_mul2_mulw_addtw(a[3], a[1], c2, c1, c0, &c2, &c1, &c0); | ||
122 | bn_mul2_mulw_addtw(a[4], a[0], c2, c1, c0, &c2, &c1, &r[4]); | ||
123 | |||
124 | bn_mul2_mulw_addtw(a[5], a[0], 0, c2, c1, &c2, &c1, &c0); | ||
125 | bn_mul2_mulw_addtw(a[4], a[1], c2, c1, c0, &c2, &c1, &c0); | ||
126 | bn_mul2_mulw_addtw(a[3], a[2], c2, c1, c0, &c2, &c1, &r[5]); | ||
127 | |||
128 | bn_mulw_addtw(a[3], a[3], 0, c2, c1, &c2, &c1, &c0); | ||
129 | bn_mul2_mulw_addtw(a[4], a[2], c2, c1, c0, &c2, &c1, &c0); | ||
130 | bn_mul2_mulw_addtw(a[5], a[1], c2, c1, c0, &c2, &c1, &c0); | ||
131 | bn_mul2_mulw_addtw(a[6], a[0], c2, c1, c0, &c2, &c1, &r[6]); | ||
132 | |||
133 | bn_mul2_mulw_addtw(a[7], a[0], 0, c2, c1, &c2, &c1, &c0); | ||
134 | bn_mul2_mulw_addtw(a[6], a[1], c2, c1, c0, &c2, &c1, &c0); | ||
135 | bn_mul2_mulw_addtw(a[5], a[2], c2, c1, c0, &c2, &c1, &c0); | ||
136 | bn_mul2_mulw_addtw(a[4], a[3], c2, c1, c0, &c2, &c1, &r[7]); | ||
137 | |||
138 | bn_mulw_addtw(a[4], a[4], 0, c2, c1, &c2, &c1, &c0); | ||
139 | bn_mul2_mulw_addtw(a[5], a[3], c2, c1, c0, &c2, &c1, &c0); | ||
140 | bn_mul2_mulw_addtw(a[6], a[2], c2, c1, c0, &c2, &c1, &c0); | ||
141 | bn_mul2_mulw_addtw(a[7], a[1], c2, c1, c0, &c2, &c1, &r[8]); | ||
142 | |||
143 | bn_mul2_mulw_addtw(a[7], a[2], 0, c2, c1, &c2, &c1, &c0); | ||
144 | bn_mul2_mulw_addtw(a[6], a[3], c2, c1, c0, &c2, &c1, &c0); | ||
145 | bn_mul2_mulw_addtw(a[5], a[4], c2, c1, c0, &c2, &c1, &r[9]); | ||
146 | |||
147 | bn_mulw_addtw(a[5], a[5], 0, c2, c1, &c2, &c1, &c0); | ||
148 | bn_mul2_mulw_addtw(a[6], a[4], c2, c1, c0, &c2, &c1, &c0); | ||
149 | bn_mul2_mulw_addtw(a[7], a[3], c2, c1, c0, &c2, &c1, &r[10]); | ||
150 | |||
151 | bn_mul2_mulw_addtw(a[7], a[4], 0, c2, c1, &c2, &c1, &c0); | ||
152 | bn_mul2_mulw_addtw(a[6], a[5], c2, c1, c0, &c2, &c1, &r[11]); | ||
153 | |||
154 | bn_mulw_addtw(a[6], a[6], 0, c2, c1, &c2, &c1, &c0); | ||
155 | bn_mul2_mulw_addtw(a[7], a[5], c2, c1, c0, &c2, &c1, &r[12]); | ||
156 | |||
157 | bn_mul2_mulw_addtw(a[7], a[6], 0, c2, c1, &c2, &c1, &r[13]); | ||
158 | |||
159 | bn_mulw_addtw(a[7], a[7], 0, c2, c1, &c2, &r[15], &r[14]); | ||
160 | } | ||
161 | #endif | ||
162 | |||
163 | #ifndef HAVE_BN_SQR | ||
164 | /* | ||
165 | * bn_sqr_add_words() computes (r[i*2+1]:r[i*2]) = (r[i*2+1]:r[i*2]) + a[i] * a[i]. | ||
166 | */ | ||
167 | static void | ||
168 | bn_sqr_add_words(BN_ULONG *r, const BN_ULONG *a, int n) | ||
169 | { | ||
170 | BN_ULONG x3, x2, x1, x0; | ||
171 | BN_ULONG carry = 0; | ||
172 | |||
173 | assert(n >= 0); | ||
174 | if (n <= 0) | ||
175 | return; | ||
176 | |||
177 | while (n & ~3) { | ||
178 | bn_mulw(a[0], a[0], &x1, &x0); | ||
179 | bn_mulw(a[1], a[1], &x3, &x2); | ||
180 | bn_qwaddqw(x3, x2, x1, x0, r[3], r[2], r[1], r[0], carry, | ||
181 | &carry, &r[3], &r[2], &r[1], &r[0]); | ||
182 | bn_mulw(a[2], a[2], &x1, &x0); | ||
183 | bn_mulw(a[3], a[3], &x3, &x2); | ||
184 | bn_qwaddqw(x3, x2, x1, x0, r[7], r[6], r[5], r[4], carry, | ||
185 | &carry, &r[7], &r[6], &r[5], &r[4]); | ||
186 | |||
187 | a += 4; | ||
188 | r += 8; | ||
189 | n -= 4; | ||
190 | } | ||
191 | while (n) { | ||
192 | bn_mulw_addw_addw(a[0], a[0], r[0], carry, &carry, &r[0]); | ||
193 | bn_addw(r[1], carry, &carry, &r[1]); | ||
194 | a++; | ||
195 | r += 2; | ||
196 | n--; | ||
197 | } | ||
198 | } | ||
199 | |||
200 | static void | ||
201 | bn_sqr_normal(BN_ULONG *r, int r_len, const BN_ULONG *a, int a_len) | ||
202 | { | ||
203 | const BN_ULONG *ap; | ||
204 | BN_ULONG *rp; | ||
205 | BN_ULONG w; | ||
206 | int n; | ||
207 | |||
208 | if (a_len <= 0) | ||
209 | return; | ||
210 | |||
211 | ap = a; | ||
212 | w = ap[0]; | ||
213 | ap++; | ||
214 | |||
215 | rp = r; | ||
216 | rp[0] = rp[r_len - 1] = 0; | ||
217 | rp++; | ||
218 | |||
219 | /* Compute initial product - r[n:1] = a[n:1] * a[0] */ | ||
220 | n = a_len - 1; | ||
221 | if (n > 0) { | ||
222 | rp[n] = bn_mul_words(rp, ap, n, w); | ||
223 | } | ||
224 | rp += 2; | ||
225 | n--; | ||
226 | |||
227 | /* Compute and sum remaining products. */ | ||
228 | while (n > 0) { | ||
229 | w = ap[0]; | ||
230 | ap++; | ||
231 | |||
232 | rp[n] = bn_mul_add_words(rp, ap, n, w); | ||
233 | rp += 2; | ||
234 | n--; | ||
235 | } | ||
236 | |||
237 | /* Double the sum of products. */ | ||
238 | bn_add_words(r, r, r, r_len); | ||
239 | |||
240 | /* Add squares. */ | ||
241 | bn_sqr_add_words(r, a, a_len); | ||
242 | } | ||
243 | |||
244 | /* | ||
245 | * bn_sqr() computes a * a, storing the result in r. The caller must ensure that | ||
246 | * r is not the same BIGNUM as a and that r has been expanded to rn = a->top * 2 | ||
247 | * words. | ||
248 | */ | ||
249 | int | ||
250 | bn_sqr(BIGNUM *r, const BIGNUM *a, int r_len, BN_CTX *ctx) | ||
251 | { | ||
252 | bn_sqr_normal(r->d, r_len, a->d, a->top); | ||
253 | |||
254 | return 1; | ||
255 | } | ||
256 | #endif | ||
257 | |||
258 | int | ||
259 | BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) | ||
260 | { | ||
261 | BIGNUM *rr; | ||
262 | int r_len; | ||
263 | int ret = 1; | ||
264 | |||
265 | BN_CTX_start(ctx); | ||
266 | |||
267 | if (a->top < 1) { | ||
268 | BN_zero(r); | ||
269 | goto done; | ||
270 | } | ||
271 | |||
272 | if ((rr = r) == a) | ||
273 | rr = BN_CTX_get(ctx); | ||
274 | if (rr == NULL) | ||
275 | goto err; | ||
276 | |||
277 | if ((r_len = a->top * 2) < a->top) | ||
278 | goto err; | ||
279 | if (!bn_wexpand(rr, r_len)) | ||
280 | goto err; | ||
281 | |||
282 | if (a->top == 4) { | ||
283 | bn_sqr_comba4(rr->d, a->d); | ||
284 | } else if (a->top == 8) { | ||
285 | bn_sqr_comba8(rr->d, a->d); | ||
286 | } else { | ||
287 | if (!bn_sqr(rr, a, r_len, ctx)) | ||
288 | goto err; | ||
289 | } | ||
290 | |||
291 | rr->top = r_len; | ||
292 | bn_correct_top(rr); | ||
293 | |||
294 | rr->neg = 0; | ||
295 | |||
296 | if (!bn_copy(r, rr)) | ||
297 | goto err; | ||
298 | done: | ||
299 | ret = 1; | ||
300 | err: | ||
301 | BN_CTX_end(ctx); | ||
302 | |||
303 | return ret; | ||
304 | } | ||
305 | LCRYPTO_ALIAS(BN_sqr); | ||
diff --git a/src/lib/libcrypto/bn/bn_word.c b/src/lib/libcrypto/bn/bn_word.c deleted file mode 100644 index a82b911e67..0000000000 --- a/src/lib/libcrypto/bn/bn_word.c +++ /dev/null | |||
@@ -1,245 +0,0 @@ | |||
1 | /* $OpenBSD: bn_word.c,v 1.21 2023/07/08 12:21:58 beck Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | |||
61 | #include "bn_local.h" | ||
62 | |||
63 | BN_ULONG | ||
64 | BN_mod_word(const BIGNUM *a, BN_ULONG w) | ||
65 | { | ||
66 | #ifndef BN_LLONG | ||
67 | BN_ULONG ret = 0; | ||
68 | #else | ||
69 | BN_ULLONG ret = 0; | ||
70 | #endif | ||
71 | int i; | ||
72 | |||
73 | if (w == 0) | ||
74 | return (BN_ULONG) - 1; | ||
75 | |||
76 | #ifndef BN_ULLONG | ||
77 | /* If |w| is too long and we don't have |BN_ULLONG| then we need to fall back | ||
78 | * to using |BN_div_word|. */ | ||
79 | if (w > ((BN_ULONG)1 << BN_BITS4)) { | ||
80 | BIGNUM *tmp = BN_dup(a); | ||
81 | if (tmp == NULL) { | ||
82 | return (BN_ULONG)-1; | ||
83 | } | ||
84 | ret = BN_div_word(tmp, w); | ||
85 | BN_free(tmp); | ||
86 | return ret; | ||
87 | } | ||
88 | #endif | ||
89 | |||
90 | w &= BN_MASK2; | ||
91 | for (i = a->top - 1; i >= 0; i--) { | ||
92 | #ifndef BN_LLONG | ||
93 | ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & | ||
94 | BN_MASK2l)) % w; | ||
95 | ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w; | ||
96 | #else | ||
97 | ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | | ||
98 | a->d[i]) % (BN_ULLONG)w); | ||
99 | #endif | ||
100 | } | ||
101 | return ((BN_ULONG)ret); | ||
102 | } | ||
103 | LCRYPTO_ALIAS(BN_mod_word); | ||
104 | |||
105 | BN_ULONG | ||
106 | BN_div_word(BIGNUM *a, BN_ULONG w) | ||
107 | { | ||
108 | BN_ULONG ret = 0; | ||
109 | int i, j; | ||
110 | |||
111 | w &= BN_MASK2; | ||
112 | |||
113 | if (!w) | ||
114 | /* actually this an error (division by zero) */ | ||
115 | return (BN_ULONG) - 1; | ||
116 | if (a->top == 0) | ||
117 | return 0; | ||
118 | |||
119 | /* normalize input (so bn_div_words doesn't complain) */ | ||
120 | j = BN_BITS2 - BN_num_bits_word(w); | ||
121 | w <<= j; | ||
122 | if (!BN_lshift(a, a, j)) | ||
123 | return (BN_ULONG) - 1; | ||
124 | |||
125 | for (i = a->top - 1; i >= 0; i--) { | ||
126 | BN_ULONG l, d; | ||
127 | |||
128 | l = a->d[i]; | ||
129 | bn_div_rem_words(ret, l, w, &d, &ret); | ||
130 | a->d[i] = d; | ||
131 | } | ||
132 | if ((a->top > 0) && (a->d[a->top - 1] == 0)) | ||
133 | a->top--; | ||
134 | ret >>= j; | ||
135 | |||
136 | /* Set negative again, to handle -0 case. */ | ||
137 | BN_set_negative(a, a->neg); | ||
138 | |||
139 | return (ret); | ||
140 | } | ||
141 | LCRYPTO_ALIAS(BN_div_word); | ||
142 | |||
143 | int | ||
144 | BN_add_word(BIGNUM *a, BN_ULONG w) | ||
145 | { | ||
146 | BN_ULONG l; | ||
147 | int i; | ||
148 | |||
149 | w &= BN_MASK2; | ||
150 | |||
151 | /* degenerate case: w is zero */ | ||
152 | if (!w) | ||
153 | return 1; | ||
154 | /* degenerate case: a is zero */ | ||
155 | if (BN_is_zero(a)) | ||
156 | return BN_set_word(a, w); | ||
157 | /* handle 'a' when negative */ | ||
158 | if (a->neg) { | ||
159 | a->neg = 0; | ||
160 | i = BN_sub_word(a, w); | ||
161 | BN_set_negative(a, !a->neg); | ||
162 | return (i); | ||
163 | } | ||
164 | for (i = 0; w != 0 && i < a->top; i++) { | ||
165 | a->d[i] = l = (a->d[i] + w) & BN_MASK2; | ||
166 | w = (w > l) ? 1 : 0; | ||
167 | } | ||
168 | if (w && i == a->top) { | ||
169 | if (!bn_wexpand(a, a->top + 1)) | ||
170 | return 0; | ||
171 | a->top++; | ||
172 | a->d[i] = w; | ||
173 | } | ||
174 | return (1); | ||
175 | } | ||
176 | LCRYPTO_ALIAS(BN_add_word); | ||
177 | |||
178 | int | ||
179 | BN_sub_word(BIGNUM *a, BN_ULONG w) | ||
180 | { | ||
181 | int i; | ||
182 | |||
183 | w &= BN_MASK2; | ||
184 | |||
185 | /* degenerate case: w is zero */ | ||
186 | if (!w) | ||
187 | return 1; | ||
188 | /* degenerate case: a is zero */ | ||
189 | if (BN_is_zero(a)) { | ||
190 | i = BN_set_word(a, w); | ||
191 | if (i != 0) | ||
192 | BN_set_negative(a, 1); | ||
193 | return i; | ||
194 | } | ||
195 | /* handle 'a' when negative */ | ||
196 | if (a->neg) { | ||
197 | a->neg = 0; | ||
198 | i = BN_add_word(a, w); | ||
199 | BN_set_negative(a, !a->neg); | ||
200 | return (i); | ||
201 | } | ||
202 | |||
203 | if ((a->top == 1) && (a->d[0] < w)) { | ||
204 | a->d[0] = w - a->d[0]; | ||
205 | BN_set_negative(a, 1); | ||
206 | return (1); | ||
207 | } | ||
208 | i = 0; | ||
209 | for (;;) { | ||
210 | if (a->d[i] >= w) { | ||
211 | a->d[i] -= w; | ||
212 | break; | ||
213 | } else { | ||
214 | a->d[i] = (a->d[i] - w) & BN_MASK2; | ||
215 | i++; | ||
216 | w = 1; | ||
217 | } | ||
218 | } | ||
219 | if ((a->d[i] == 0) && (i == (a->top - 1))) | ||
220 | a->top--; | ||
221 | return (1); | ||
222 | } | ||
223 | LCRYPTO_ALIAS(BN_sub_word); | ||
224 | |||
225 | int | ||
226 | BN_mul_word(BIGNUM *a, BN_ULONG w) | ||
227 | { | ||
228 | BN_ULONG ll; | ||
229 | |||
230 | w &= BN_MASK2; | ||
231 | if (a->top) { | ||
232 | if (w == 0) | ||
233 | BN_zero(a); | ||
234 | else { | ||
235 | ll = bn_mul_words(a->d, a->d, a->top, w); | ||
236 | if (ll) { | ||
237 | if (!bn_wexpand(a, a->top + 1)) | ||
238 | return (0); | ||
239 | a->d[a->top++] = ll; | ||
240 | } | ||
241 | } | ||
242 | } | ||
243 | return (1); | ||
244 | } | ||
245 | LCRYPTO_ALIAS(BN_mul_word); | ||
diff --git a/src/lib/libcrypto/bn/s2n_bignum.h b/src/lib/libcrypto/bn/s2n_bignum.h deleted file mode 100644 index ce6e8cdc94..0000000000 --- a/src/lib/libcrypto/bn/s2n_bignum.h +++ /dev/null | |||
@@ -1,856 +0,0 @@ | |||
1 | // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
2 | // | ||
3 | // Permission to use, copy, modify, and/or distribute this software for any | ||
4 | // purpose with or without fee is hereby granted, provided that the above | ||
5 | // copyright notice and this permission notice appear in all copies. | ||
6 | // | ||
7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
10 | // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
12 | // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
13 | // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
14 | |||
15 | // ---------------------------------------------------------------------------- | ||
16 | // C prototypes for s2n-bignum functions, so you can use them in C programs via | ||
17 | // | ||
18 | // #include "s2n-bignum.h" | ||
19 | // | ||
20 | // The functions are listed in alphabetical order with a brief description | ||
21 | // in comments for each one. For more detailed documentation see the comment | ||
22 | // banner at the top of the corresponding assembly (.S) file, and | ||
23 | // for the last word in what properties it satisfies see the spec in the | ||
24 | // formal proof (the .ml file in the architecture-specific directory). | ||
25 | // | ||
26 | // For some functions there are additional variants with names ending in | ||
27 | // "_alt". These have the same core mathematical functionality as their | ||
28 | // non-"alt" versions, but can be better suited to some microarchitectures: | ||
29 | // | ||
30 | // - On x86, the "_alt" forms avoid BMI and ADX instruction set | ||
31 | // extensions, so will run on any x86_64 machine, even older ones | ||
32 | // | ||
33 | // - On ARM, the "_alt" forms target machines with higher multiplier | ||
34 | // throughput, generally offering higher performance there. | ||
35 | // ---------------------------------------------------------------------------- | ||
36 | |||
37 | // Add, z := x + y | ||
38 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[p] | ||
39 | extern uint64_t bignum_add (uint64_t p, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
40 | |||
41 | // Add modulo p_25519, z := (x + y) mod p_25519, assuming x and y reduced | ||
42 | // Inputs x[4], y[4]; output z[4] | ||
43 | extern void bignum_add_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
44 | |||
45 | // Add modulo p_256, z := (x + y) mod p_256, assuming x and y reduced | ||
46 | // Inputs x[4], y[4]; output z[4] | ||
47 | extern void bignum_add_p256 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
48 | |||
49 | // Add modulo p_256k1, z := (x + y) mod p_256k1, assuming x and y reduced | ||
50 | // Inputs x[4], y[4]; output z[4] | ||
51 | extern void bignum_add_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
52 | |||
53 | // Add modulo p_384, z := (x + y) mod p_384, assuming x and y reduced | ||
54 | // Inputs x[6], y[6]; output z[6] | ||
55 | extern void bignum_add_p384 (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | ||
56 | |||
57 | // Add modulo p_521, z := (x + y) mod p_521, assuming x and y reduced | ||
58 | // Inputs x[9], y[9]; output z[9] | ||
59 | extern void bignum_add_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
60 | |||
61 | // Compute "amontification" constant z :== 2^{128k} (congruent mod m) | ||
62 | // Input m[k]; output z[k]; temporary buffer t[>=k] | ||
63 | extern void bignum_amontifier (uint64_t k, uint64_t *z, uint64_t *m, uint64_t *t); | ||
64 | |||
65 | // Almost-Montgomery multiply, z :== (x * y / 2^{64k}) (congruent mod m) | ||
66 | // Inputs x[k], y[k], m[k]; output z[k] | ||
67 | extern void bignum_amontmul (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | ||
68 | |||
69 | // Almost-Montgomery reduce, z :== (x' / 2^{64p}) (congruent mod m) | ||
70 | // Inputs x[n], m[k], p; output z[k] | ||
71 | extern void bignum_amontredc (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t *m, uint64_t p); | ||
72 | |||
73 | // Almost-Montgomery square, z :== (x^2 / 2^{64k}) (congruent mod m) | ||
74 | // Inputs x[k], m[k]; output z[k] | ||
75 | extern void bignum_amontsqr (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | ||
76 | |||
77 | // Convert 4-digit (256-bit) bignum to/from big-endian form | ||
78 | // Input x[4]; output z[4] | ||
79 | extern void bignum_bigendian_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
80 | |||
81 | // Convert 6-digit (384-bit) bignum to/from big-endian form | ||
82 | // Input x[6]; output z[6] | ||
83 | extern void bignum_bigendian_6 (uint64_t z[static 6], uint64_t x[static 6]); | ||
84 | |||
85 | // Select bitfield starting at bit n with length l <= 64 | ||
86 | // Inputs x[k], n, l; output function return | ||
87 | extern uint64_t bignum_bitfield (uint64_t k, uint64_t *x, uint64_t n, uint64_t l); | ||
88 | |||
89 | // Return size of bignum in bits | ||
90 | // Input x[k]; output function return | ||
91 | extern uint64_t bignum_bitsize (uint64_t k, uint64_t *x); | ||
92 | |||
93 | // Divide by a single (nonzero) word, z := x / m and return x mod m | ||
94 | // Inputs x[n], m; outputs function return (remainder) and z[k] | ||
95 | extern uint64_t bignum_cdiv (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t m); | ||
96 | |||
97 | // Divide by a single word, z := x / m when known to be exact | ||
98 | // Inputs x[n], m; output z[k] | ||
99 | extern void bignum_cdiv_exact (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t m); | ||
100 | |||
101 | // Count leading zero digits (64-bit words) | ||
102 | // Input x[k]; output function return | ||
103 | extern uint64_t bignum_cld (uint64_t k, uint64_t *x); | ||
104 | |||
105 | // Count leading zero bits | ||
106 | // Input x[k]; output function return | ||
107 | extern uint64_t bignum_clz (uint64_t k, uint64_t *x); | ||
108 | |||
109 | // Multiply-add with single-word multiplier, z := z + c * y | ||
110 | // Inputs c, y[n]; outputs function return (carry-out) and z[k] | ||
111 | extern uint64_t bignum_cmadd (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y); | ||
112 | |||
113 | // Negated multiply-add with single-word multiplier, z := z - c * y | ||
114 | // Inputs c, y[n]; outputs function return (negative carry-out) and z[k] | ||
115 | extern uint64_t bignum_cmnegadd (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y); | ||
116 | |||
117 | // Find modulus of bignum w.r.t. single nonzero word m, returning x mod m | ||
118 | // Input x[k], m; output function return | ||
119 | extern uint64_t bignum_cmod (uint64_t k, uint64_t *x, uint64_t m); | ||
120 | |||
121 | // Multiply by a single word, z := c * y | ||
122 | // Inputs c, y[n]; outputs function return (carry-out) and z[k] | ||
123 | extern uint64_t bignum_cmul (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y); | ||
124 | |||
125 | // Multiply by a single word modulo p_25519, z := (c * x) mod p_25519, assuming x reduced | ||
126 | // Inputs c, x[4]; output z[4] | ||
127 | extern void bignum_cmul_p25519 (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
128 | extern void bignum_cmul_p25519_alt (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
129 | |||
130 | // Multiply by a single word modulo p_256, z := (c * x) mod p_256, assuming x reduced | ||
131 | // Inputs c, x[4]; output z[4] | ||
132 | extern void bignum_cmul_p256 (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
133 | extern void bignum_cmul_p256_alt (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
134 | |||
135 | // Multiply by a single word modulo p_256k1, z := (c * x) mod p_256k1, assuming x reduced | ||
136 | // Inputs c, x[4]; output z[4] | ||
137 | extern void bignum_cmul_p256k1 (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
138 | extern void bignum_cmul_p256k1_alt (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
139 | |||
140 | // Multiply by a single word modulo p_384, z := (c * x) mod p_384, assuming x reduced | ||
141 | // Inputs c, x[6]; output z[6] | ||
142 | extern void bignum_cmul_p384 (uint64_t z[static 6], uint64_t c, uint64_t x[static 6]); | ||
143 | extern void bignum_cmul_p384_alt (uint64_t z[static 6], uint64_t c, uint64_t x[static 6]); | ||
144 | |||
145 | // Multiply by a single word modulo p_521, z := (c * x) mod p_521, assuming x reduced | ||
146 | // Inputs c, x[9]; output z[9] | ||
147 | extern void bignum_cmul_p521 (uint64_t z[static 9], uint64_t c, uint64_t x[static 9]); | ||
148 | extern void bignum_cmul_p521_alt (uint64_t z[static 9], uint64_t c, uint64_t x[static 9]); | ||
149 | |||
150 | // Test bignums for coprimality, gcd(x,y) = 1 | ||
151 | // Inputs x[m], y[n]; output function return; temporary buffer t[>=2*max(m,n)] | ||
152 | extern uint64_t bignum_coprime (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y, uint64_t *t); | ||
153 | |||
154 | // Copy bignum with zero-extension or truncation, z := x | ||
155 | // Input x[n]; output z[k] | ||
156 | extern void bignum_copy (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x); | ||
157 | |||
158 | // Count trailing zero digits (64-bit words) | ||
159 | // Input x[k]; output function return | ||
160 | extern uint64_t bignum_ctd (uint64_t k, uint64_t *x); | ||
161 | |||
162 | // Count trailing zero bits | ||
163 | // Input x[k]; output function return | ||
164 | extern uint64_t bignum_ctz (uint64_t k, uint64_t *x); | ||
165 | |||
166 | // Convert from almost-Montgomery form, z := (x / 2^256) mod p_256 | ||
167 | // Input x[4]; output z[4] | ||
168 | extern void bignum_deamont_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
169 | extern void bignum_deamont_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
170 | |||
171 | // Convert from almost-Montgomery form, z := (x / 2^256) mod p_256k1 | ||
172 | // Input x[4]; output z[4] | ||
173 | extern void bignum_deamont_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
174 | |||
175 | // Convert from almost-Montgomery form, z := (x / 2^384) mod p_384 | ||
176 | // Input x[6]; output z[6] | ||
177 | extern void bignum_deamont_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
178 | extern void bignum_deamont_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | ||
179 | |||
180 | // Convert from almost-Montgomery form z := (x / 2^576) mod p_521 | ||
181 | // Input x[9]; output z[9] | ||
182 | extern void bignum_deamont_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
183 | |||
184 | // Convert from (almost-)Montgomery form z := (x / 2^{64k}) mod m | ||
185 | // Inputs x[k], m[k]; output z[k] | ||
186 | extern void bignum_demont (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | ||
187 | |||
188 | // Convert from Montgomery form z := (x / 2^256) mod p_256, assuming x reduced | ||
189 | // Input x[4]; output z[4] | ||
190 | extern void bignum_demont_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
191 | extern void bignum_demont_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
192 | |||
193 | // Convert from Montgomery form z := (x / 2^256) mod p_256k1, assuming x reduced | ||
194 | // Input x[4]; output z[4] | ||
195 | extern void bignum_demont_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
196 | |||
197 | // Convert from Montgomery form z := (x / 2^384) mod p_384, assuming x reduced | ||
198 | // Input x[6]; output z[6] | ||
199 | extern void bignum_demont_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
200 | extern void bignum_demont_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | ||
201 | |||
202 | // Convert from Montgomery form z := (x / 2^576) mod p_521, assuming x reduced | ||
203 | // Input x[9]; output z[9] | ||
204 | extern void bignum_demont_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
205 | |||
206 | // Select digit x[n] | ||
207 | // Inputs x[k], n; output function return | ||
208 | extern uint64_t bignum_digit (uint64_t k, uint64_t *x, uint64_t n); | ||
209 | |||
210 | // Return size of bignum in digits (64-bit word) | ||
211 | // Input x[k]; output function return | ||
212 | extern uint64_t bignum_digitsize (uint64_t k, uint64_t *x); | ||
213 | |||
214 | // Divide bignum by 10: z' := z div 10, returning remainder z mod 10 | ||
215 | // Inputs z[k]; outputs function return (remainder) and z[k] | ||
216 | extern uint64_t bignum_divmod10 (uint64_t k, uint64_t *z); | ||
217 | |||
218 | // Double modulo p_25519, z := (2 * x) mod p_25519, assuming x reduced | ||
219 | // Input x[4]; output z[4] | ||
220 | extern void bignum_double_p25519 (uint64_t z[static 4], uint64_t x[static 4]); | ||
221 | |||
222 | // Double modulo p_256, z := (2 * x) mod p_256, assuming x reduced | ||
223 | // Input x[4]; output z[4] | ||
224 | extern void bignum_double_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
225 | |||
226 | // Double modulo p_256k1, z := (2 * x) mod p_256k1, assuming x reduced | ||
227 | // Input x[4]; output z[4] | ||
228 | extern void bignum_double_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
229 | |||
230 | // Double modulo p_384, z := (2 * x) mod p_384, assuming x reduced | ||
231 | // Input x[6]; output z[6] | ||
232 | extern void bignum_double_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
233 | |||
234 | // Double modulo p_521, z := (2 * x) mod p_521, assuming x reduced | ||
235 | // Input x[9]; output z[9] | ||
236 | extern void bignum_double_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
237 | |||
238 | // Extended Montgomery reduce, returning results in input-output buffer | ||
239 | // Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k] | ||
240 | extern uint64_t bignum_emontredc (uint64_t k, uint64_t *z, uint64_t *m, uint64_t w); | ||
241 | |||
242 | // Extended Montgomery reduce in 8-digit blocks, results in input-output buffer | ||
243 | // Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k] | ||
244 | extern uint64_t bignum_emontredc_8n (uint64_t k, uint64_t *z, uint64_t *m, uint64_t w); | ||
245 | |||
246 | // Test bignums for equality, x = y | ||
247 | // Inputs x[m], y[n]; output function return | ||
248 | extern uint64_t bignum_eq (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
249 | |||
250 | // Test bignum for even-ness | ||
251 | // Input x[k]; output function return | ||
252 | extern uint64_t bignum_even (uint64_t k, uint64_t *x); | ||
253 | |||
254 | // Convert 4-digit (256-bit) bignum from big-endian bytes | ||
255 | // Input x[32] (bytes); output z[4] | ||
256 | extern void bignum_frombebytes_4 (uint64_t z[static 4], uint8_t x[static 32]); | ||
257 | |||
258 | // Convert 6-digit (384-bit) bignum from big-endian bytes | ||
259 | // Input x[48] (bytes); output z[6] | ||
260 | extern void bignum_frombebytes_6 (uint64_t z[static 6], uint8_t x[static 48]); | ||
261 | |||
262 | // Convert 4-digit (256-bit) bignum from little-endian bytes | ||
263 | // Input x[32] (bytes); output z[4] | ||
264 | extern void bignum_fromlebytes_4 (uint64_t z[static 4], uint8_t x[static 32]); | ||
265 | |||
266 | // Convert 6-digit (384-bit) bignum from little-endian bytes | ||
267 | // Input x[48] (bytes); output z[6] | ||
268 | extern void bignum_fromlebytes_6 (uint64_t z[static 6], uint8_t x[static 48]); | ||
269 | |||
270 | // Convert little-endian bytes to 9-digit 528-bit bignum | ||
271 | // Input x[66] (bytes); output z[9] | ||
272 | extern void bignum_fromlebytes_p521 (uint64_t z[static 9],uint8_t x[static 66]); | ||
273 | |||
274 | // Compare bignums, x >= y | ||
275 | // Inputs x[m], y[n]; output function return | ||
276 | extern uint64_t bignum_ge (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
277 | |||
278 | // Compare bignums, x > y | ||
279 | // Inputs x[m], y[n]; output function return | ||
280 | extern uint64_t bignum_gt (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
281 | |||
282 | // Halve modulo p_256, z := (x / 2) mod p_256, assuming x reduced | ||
283 | // Input x[4]; output z[4] | ||
284 | extern void bignum_half_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
285 | |||
286 | // Halve modulo p_256k1, z := (x / 2) mod p_256k1, assuming x reduced | ||
287 | // Input x[4]; output z[4] | ||
288 | extern void bignum_half_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
289 | |||
290 | // Halve modulo p_384, z := (x / 2) mod p_384, assuming x reduced | ||
291 | // Input x[6]; output z[6] | ||
292 | extern void bignum_half_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
293 | |||
294 | // Halve modulo p_521, z := (x / 2) mod p_521, assuming x reduced | ||
295 | // Input x[9]; output z[9] | ||
296 | extern void bignum_half_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
297 | |||
298 | // Test bignum for zero-ness, x = 0 | ||
299 | // Input x[k]; output function return | ||
300 | extern uint64_t bignum_iszero (uint64_t k, uint64_t *x); | ||
301 | |||
302 | // Multiply z := x * y | ||
303 | // Inputs x[16], y[16]; output z[32]; temporary buffer t[>=32] | ||
304 | extern void bignum_kmul_16_32 (uint64_t z[static 32], uint64_t x[static 16], uint64_t y[static 16], uint64_t t[static 32]); | ||
305 | |||
306 | // Multiply z := x * y | ||
307 | // Inputs x[32], y[32]; output z[64]; temporary buffer t[>=96] | ||
308 | extern void bignum_kmul_32_64 (uint64_t z[static 64], uint64_t x[static 32], uint64_t y[static 32], uint64_t t[static 96]); | ||
309 | |||
310 | // Square, z := x^2 | ||
311 | // Input x[16]; output z[32]; temporary buffer t[>=24] | ||
312 | extern void bignum_ksqr_16_32 (uint64_t z[static 32], uint64_t x[static 16], uint64_t t[static 24]); | ||
313 | |||
314 | // Square, z := x^2 | ||
315 | // Input x[32]; output z[64]; temporary buffer t[>=72] | ||
316 | extern void bignum_ksqr_32_64 (uint64_t z[static 64], uint64_t x[static 32], uint64_t t[static 72]); | ||
317 | |||
318 | // Compare bignums, x <= y | ||
319 | // Inputs x[m], y[n]; output function return | ||
320 | extern uint64_t bignum_le (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
321 | |||
322 | // Convert 4-digit (256-bit) bignum to/from little-endian form | ||
323 | // Input x[4]; output z[4] | ||
324 | extern void bignum_littleendian_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
325 | |||
326 | // Convert 6-digit (384-bit) bignum to/from little-endian form | ||
327 | // Input x[6]; output z[6] | ||
328 | extern void bignum_littleendian_6 (uint64_t z[static 6], uint64_t x[static 6]); | ||
329 | |||
330 | // Compare bignums, x < y | ||
331 | // Inputs x[m], y[n]; output function return | ||
332 | extern uint64_t bignum_lt (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
333 | |||
334 | // Multiply-add, z := z + x * y | ||
335 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[k] | ||
336 | extern uint64_t bignum_madd (uint64_t k, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
337 | |||
338 | // Reduce modulo group order, z := x mod n_256 | ||
339 | // Input x[k]; output z[4] | ||
340 | extern void bignum_mod_n256 (uint64_t z[static 4], uint64_t k, uint64_t *x); | ||
341 | extern void bignum_mod_n256_alt (uint64_t z[static 4], uint64_t k, uint64_t *x); | ||
342 | |||
343 | // Reduce modulo group order, z := x mod n_256 | ||
344 | // Input x[4]; output z[4] | ||
345 | extern void bignum_mod_n256_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
346 | |||
347 | // Reduce modulo group order, z := x mod n_256k1 | ||
348 | // Input x[4]; output z[4] | ||
349 | extern void bignum_mod_n256k1_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
350 | |||
351 | // Reduce modulo group order, z := x mod n_384 | ||
352 | // Input x[k]; output z[6] | ||
353 | extern void bignum_mod_n384 (uint64_t z[static 6], uint64_t k, uint64_t *x); | ||
354 | extern void bignum_mod_n384_alt (uint64_t z[static 6], uint64_t k, uint64_t *x); | ||
355 | |||
356 | // Reduce modulo group order, z := x mod n_384 | ||
357 | // Input x[6]; output z[6] | ||
358 | extern void bignum_mod_n384_6 (uint64_t z[static 6], uint64_t x[static 6]); | ||
359 | |||
360 | // Reduce modulo group order, z := x mod n_521 | ||
361 | // Input x[9]; output z[9] | ||
362 | extern void bignum_mod_n521_9 (uint64_t z[static 9], uint64_t x[static 9]); | ||
363 | extern void bignum_mod_n521_9_alt (uint64_t z[static 9], uint64_t x[static 9]); | ||
364 | |||
365 | // Reduce modulo field characteristic, z := x mod p_25519 | ||
366 | // Input x[4]; output z[4] | ||
367 | extern void bignum_mod_p25519_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
368 | |||
369 | // Reduce modulo field characteristic, z := x mod p_256 | ||
370 | // Input x[k]; output z[4] | ||
371 | extern void bignum_mod_p256 (uint64_t z[static 4], uint64_t k, uint64_t *x); | ||
372 | extern void bignum_mod_p256_alt (uint64_t z[static 4], uint64_t k, uint64_t *x); | ||
373 | |||
374 | // Reduce modulo field characteristic, z := x mod p_256 | ||
375 | // Input x[4]; output z[4] | ||
376 | extern void bignum_mod_p256_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
377 | |||
378 | // Reduce modulo field characteristic, z := x mod p_256k1 | ||
379 | // Input x[4]; output z[4] | ||
380 | extern void bignum_mod_p256k1_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
381 | |||
382 | // Reduce modulo field characteristic, z := x mod p_384 | ||
383 | // Input x[k]; output z[6] | ||
384 | extern void bignum_mod_p384 (uint64_t z[static 6], uint64_t k, uint64_t *x); | ||
385 | extern void bignum_mod_p384_alt (uint64_t z[static 6], uint64_t k, uint64_t *x); | ||
386 | |||
387 | // Reduce modulo field characteristic, z := x mod p_384 | ||
388 | // Input x[6]; output z[6] | ||
389 | extern void bignum_mod_p384_6 (uint64_t z[static 6], uint64_t x[static 6]); | ||
390 | |||
391 | // Reduce modulo field characteristic, z := x mod p_521 | ||
392 | // Input x[9]; output z[9] | ||
393 | extern void bignum_mod_p521_9 (uint64_t z[static 9], uint64_t x[static 9]); | ||
394 | |||
395 | // Add modulo m, z := (x + y) mod m, assuming x and y reduced | ||
396 | // Inputs x[k], y[k], m[k]; output z[k] | ||
397 | extern void bignum_modadd (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | ||
398 | |||
399 | // Double modulo m, z := (2 * x) mod m, assuming x reduced | ||
400 | // Inputs x[k], m[k]; output z[k] | ||
401 | extern void bignum_moddouble (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | ||
402 | |||
403 | // Compute "modification" constant z := 2^{64k} mod m | ||
404 | // Input m[k]; output z[k]; temporary buffer t[>=k] | ||
405 | extern void bignum_modifier (uint64_t k, uint64_t *z, uint64_t *m, uint64_t *t); | ||
406 | |||
407 | // Invert modulo m, z = (1/a) mod b, assuming b is an odd number > 1, a coprime to b | ||
408 | // Inputs a[k], b[k]; output z[k]; temporary buffer t[>=3*k] | ||
409 | extern void bignum_modinv (uint64_t k, uint64_t *z, uint64_t *a, uint64_t *b, uint64_t *t); | ||
410 | |||
411 | // Optionally negate modulo m, z := (-x) mod m (if p nonzero) or z := x (if p zero), assuming x reduced | ||
412 | // Inputs p, x[k], m[k]; output z[k] | ||
413 | extern void bignum_modoptneg (uint64_t k, uint64_t *z, uint64_t p, uint64_t *x, uint64_t *m); | ||
414 | |||
415 | // Subtract modulo m, z := (x - y) mod m, assuming x and y reduced | ||
416 | // Inputs x[k], y[k], m[k]; output z[k] | ||
417 | extern void bignum_modsub (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | ||
418 | |||
419 | // Compute "montification" constant z := 2^{128k} mod m | ||
420 | // Input m[k]; output z[k]; temporary buffer t[>=k] | ||
421 | extern void bignum_montifier (uint64_t k, uint64_t *z, uint64_t *m, uint64_t *t); | ||
422 | |||
423 | // Montgomery multiply, z := (x * y / 2^{64k}) mod m | ||
424 | // Inputs x[k], y[k], m[k]; output z[k] | ||
425 | extern void bignum_montmul (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | ||
426 | |||
427 | // Montgomery multiply, z := (x * y / 2^256) mod p_256 | ||
428 | // Inputs x[4], y[4]; output z[4] | ||
429 | extern void bignum_montmul_p256 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
430 | extern void bignum_montmul_p256_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
431 | |||
432 | // Montgomery multiply, z := (x * y / 2^256) mod p_256k1 | ||
433 | // Inputs x[4], y[4]; output z[4] | ||
434 | extern void bignum_montmul_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
435 | extern void bignum_montmul_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
436 | |||
437 | // Montgomery multiply, z := (x * y / 2^384) mod p_384 | ||
438 | // Inputs x[6], y[6]; output z[6] | ||
439 | extern void bignum_montmul_p384 (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | ||
440 | extern void bignum_montmul_p384_alt (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | ||
441 | |||
442 | // Montgomery multiply, z := (x * y / 2^576) mod p_521 | ||
443 | // Inputs x[9], y[9]; output z[9] | ||
444 | extern void bignum_montmul_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
445 | extern void bignum_montmul_p521_alt (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
446 | |||
447 | // Montgomery reduce, z := (x' / 2^{64p}) MOD m | ||
448 | // Inputs x[n], m[k], p; output z[k] | ||
449 | extern void bignum_montredc (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t *m, uint64_t p); | ||
450 | |||
451 | // Montgomery square, z := (x^2 / 2^{64k}) mod m | ||
452 | // Inputs x[k], m[k]; output z[k] | ||
453 | extern void bignum_montsqr (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | ||
454 | |||
455 | // Montgomery square, z := (x^2 / 2^256) mod p_256 | ||
456 | // Input x[4]; output z[4] | ||
457 | extern void bignum_montsqr_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
458 | extern void bignum_montsqr_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
459 | |||
460 | // Montgomery square, z := (x^2 / 2^256) mod p_256k1 | ||
461 | // Input x[4]; output z[4] | ||
462 | extern void bignum_montsqr_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
463 | extern void bignum_montsqr_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
464 | |||
465 | // Montgomery square, z := (x^2 / 2^384) mod p_384 | ||
466 | // Input x[6]; output z[6] | ||
467 | extern void bignum_montsqr_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
468 | extern void bignum_montsqr_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | ||
469 | |||
470 | // Montgomery square, z := (x^2 / 2^576) mod p_521 | ||
471 | // Input x[9]; output z[9] | ||
472 | extern void bignum_montsqr_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
473 | extern void bignum_montsqr_p521_alt (uint64_t z[static 9], uint64_t x[static 9]); | ||
474 | |||
475 | // Multiply z := x * y | ||
476 | // Inputs x[m], y[n]; output z[k] | ||
477 | extern void bignum_mul (uint64_t k, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
478 | |||
479 | // Multiply z := x * y | ||
480 | // Inputs x[4], y[4]; output z[8] | ||
481 | extern void bignum_mul_4_8 (uint64_t z[static 8], uint64_t x[static 4], uint64_t y[static 4]); | ||
482 | extern void bignum_mul_4_8_alt (uint64_t z[static 8], uint64_t x[static 4], uint64_t y[static 4]); | ||
483 | |||
484 | // Multiply z := x * y | ||
485 | // Inputs x[6], y[6]; output z[12] | ||
486 | extern void bignum_mul_6_12 (uint64_t z[static 12], uint64_t x[static 6], uint64_t y[static 6]); | ||
487 | extern void bignum_mul_6_12_alt (uint64_t z[static 12], uint64_t x[static 6], uint64_t y[static 6]); | ||
488 | |||
489 | // Multiply z := x * y | ||
490 | // Inputs x[8], y[8]; output z[16] | ||
491 | extern void bignum_mul_8_16 (uint64_t z[static 16], uint64_t x[static 8], uint64_t y[static 8]); | ||
492 | extern void bignum_mul_8_16_alt (uint64_t z[static 16], uint64_t x[static 8], uint64_t y[static 8]); | ||
493 | |||
494 | // Multiply modulo p_25519, z := (x * y) mod p_25519 | ||
495 | // Inputs x[4], y[4]; output z[4] | ||
496 | extern void bignum_mul_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
497 | extern void bignum_mul_p25519_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
498 | |||
499 | // Multiply modulo p_256k1, z := (x * y) mod p_256k1 | ||
500 | // Inputs x[4], y[4]; output z[4] | ||
501 | extern void bignum_mul_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
502 | extern void bignum_mul_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
503 | |||
504 | // Multiply modulo p_521, z := (x * y) mod p_521, assuming x and y reduced | ||
505 | // Inputs x[9], y[9]; output z[9] | ||
506 | extern void bignum_mul_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
507 | extern void bignum_mul_p521_alt (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
508 | |||
509 | // Multiply bignum by 10 and add word: z := 10 * z + d | ||
510 | // Inputs z[k], d; outputs function return (carry) and z[k] | ||
511 | extern uint64_t bignum_muladd10 (uint64_t k, uint64_t *z, uint64_t d); | ||
512 | |||
513 | // Multiplex/select z := x (if p nonzero) or z := y (if p zero) | ||
514 | // Inputs p, x[k], y[k]; output z[k] | ||
515 | extern void bignum_mux (uint64_t p, uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y); | ||
516 | |||
517 | // 256-bit multiplex/select z := x (if p nonzero) or z := y (if p zero) | ||
518 | // Inputs p, x[4], y[4]; output z[4] | ||
519 | extern void bignum_mux_4 (uint64_t p, uint64_t z[static 4],uint64_t x[static 4], uint64_t y[static 4]); | ||
520 | |||
521 | // 384-bit multiplex/select z := x (if p nonzero) or z := y (if p zero) | ||
522 | // Inputs p, x[6], y[6]; output z[6] | ||
523 | extern void bignum_mux_6 (uint64_t p, uint64_t z[static 6],uint64_t x[static 6], uint64_t y[static 6]); | ||
524 | |||
525 | // Select element from 16-element table, z := xs[k*i] | ||
526 | // Inputs xs[16*k], i; output z[k] | ||
527 | extern void bignum_mux16 (uint64_t k, uint64_t *z, uint64_t *xs, uint64_t i); | ||
528 | |||
529 | // Negate modulo p_25519, z := (-x) mod p_25519, assuming x reduced | ||
530 | // Input x[4]; output z[4] | ||
531 | extern void bignum_neg_p25519 (uint64_t z[static 4], uint64_t x[static 4]); | ||
532 | |||
533 | // Negate modulo p_256, z := (-x) mod p_256, assuming x reduced | ||
534 | // Input x[4]; output z[4] | ||
535 | extern void bignum_neg_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
536 | |||
537 | // Negate modulo p_256k1, z := (-x) mod p_256k1, assuming x reduced | ||
538 | // Input x[4]; output z[4] | ||
539 | extern void bignum_neg_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
540 | |||
541 | // Negate modulo p_384, z := (-x) mod p_384, assuming x reduced | ||
542 | // Input x[6]; output z[6] | ||
543 | extern void bignum_neg_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
544 | |||
545 | // Negate modulo p_521, z := (-x) mod p_521, assuming x reduced | ||
546 | // Input x[9]; output z[9] | ||
547 | extern void bignum_neg_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
548 | |||
549 | // Negated modular inverse, z := (-1/x) mod 2^{64k} | ||
550 | // Input x[k]; output z[k] | ||
551 | extern void bignum_negmodinv (uint64_t k, uint64_t *z, uint64_t *x); | ||
552 | |||
553 | // Test bignum for nonzero-ness x =/= 0 | ||
554 | // Input x[k]; output function return | ||
555 | extern uint64_t bignum_nonzero (uint64_t k, uint64_t *x); | ||
556 | |||
557 | // Test 256-bit bignum for nonzero-ness x =/= 0 | ||
558 | // Input x[4]; output function return | ||
559 | extern uint64_t bignum_nonzero_4(uint64_t x[static 4]); | ||
560 | |||
561 | // Test 384-bit bignum for nonzero-ness x =/= 0 | ||
562 | // Input x[6]; output function return | ||
563 | extern uint64_t bignum_nonzero_6(uint64_t x[static 6]); | ||
564 | |||
565 | // Normalize bignum in-place by shifting left till top bit is 1 | ||
566 | // Input z[k]; outputs function return (bits shifted left) and z[k] | ||
567 | extern uint64_t bignum_normalize (uint64_t k, uint64_t *z); | ||
568 | |||
569 | // Test bignum for odd-ness | ||
570 | // Input x[k]; output function return | ||
571 | extern uint64_t bignum_odd (uint64_t k, uint64_t *x); | ||
572 | |||
573 | // Convert single digit to bignum, z := n | ||
574 | // Input n; output z[k] | ||
575 | extern void bignum_of_word (uint64_t k, uint64_t *z, uint64_t n); | ||
576 | |||
577 | // Optionally add, z := x + y (if p nonzero) or z := x (if p zero) | ||
578 | // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] | ||
579 | extern uint64_t bignum_optadd (uint64_t k, uint64_t *z, uint64_t *x, uint64_t p, uint64_t *y); | ||
580 | |||
581 | // Optionally negate, z := -x (if p nonzero) or z := x (if p zero) | ||
582 | // Inputs p, x[k]; outputs function return (nonzero input) and z[k] | ||
583 | extern uint64_t bignum_optneg (uint64_t k, uint64_t *z, uint64_t p, uint64_t *x); | ||
584 | |||
585 | // Optionally negate modulo p_25519, z := (-x) mod p_25519 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
586 | // Inputs p, x[4]; output z[4] | ||
587 | extern void bignum_optneg_p25519 (uint64_t z[static 4], uint64_t p, uint64_t x[static 4]); | ||
588 | |||
589 | // Optionally negate modulo p_256, z := (-x) mod p_256 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
590 | // Inputs p, x[4]; output z[4] | ||
591 | extern void bignum_optneg_p256 (uint64_t z[static 4], uint64_t p, uint64_t x[static 4]); | ||
592 | |||
593 | // Optionally negate modulo p_256k1, z := (-x) mod p_256k1 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
594 | // Inputs p, x[4]; output z[4] | ||
595 | extern void bignum_optneg_p256k1 (uint64_t z[static 4], uint64_t p, uint64_t x[static 4]); | ||
596 | |||
597 | // Optionally negate modulo p_384, z := (-x) mod p_384 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
598 | // Inputs p, x[6]; output z[6] | ||
599 | extern void bignum_optneg_p384 (uint64_t z[static 6], uint64_t p, uint64_t x[static 6]); | ||
600 | |||
601 | // Optionally negate modulo p_521, z := (-x) mod p_521 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
602 | // Inputs p, x[9]; output z[9] | ||
603 | extern void bignum_optneg_p521 (uint64_t z[static 9], uint64_t p, uint64_t x[static 9]); | ||
604 | |||
605 | // Optionally subtract, z := x - y (if p nonzero) or z := x (if p zero) | ||
606 | // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] | ||
607 | extern uint64_t bignum_optsub (uint64_t k, uint64_t *z, uint64_t *x, uint64_t p, uint64_t *y); | ||
608 | |||
609 | // Optionally subtract or add, z := x + sgn(p) * y interpreting p as signed | ||
610 | // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] | ||
611 | extern uint64_t bignum_optsubadd (uint64_t k, uint64_t *z, uint64_t *x, uint64_t p, uint64_t *y); | ||
612 | |||
613 | // Return bignum of power of 2, z := 2^n | ||
614 | // Input n; output z[k] | ||
615 | extern void bignum_pow2 (uint64_t k, uint64_t *z, uint64_t n); | ||
616 | |||
617 | // Shift bignum left by c < 64 bits z := x * 2^c | ||
618 | // Inputs x[n], c; outputs function return (carry-out) and z[k] | ||
619 | extern uint64_t bignum_shl_small (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t c); | ||
620 | |||
621 | // Shift bignum right by c < 64 bits z := floor(x / 2^c) | ||
622 | // Inputs x[n], c; outputs function return (bits shifted out) and z[k] | ||
623 | extern uint64_t bignum_shr_small (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t c); | ||
624 | |||
625 | // Square, z := x^2 | ||
626 | // Input x[n]; output z[k] | ||
627 | extern void bignum_sqr (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x); | ||
628 | |||
629 | // Square, z := x^2 | ||
630 | // Input x[4]; output z[8] | ||
631 | extern void bignum_sqr_4_8 (uint64_t z[static 8], uint64_t x[static 4]); | ||
632 | extern void bignum_sqr_4_8_alt (uint64_t z[static 8], uint64_t x[static 4]); | ||
633 | |||
634 | // Square, z := x^2 | ||
635 | // Input x[6]; output z[12] | ||
636 | extern void bignum_sqr_6_12 (uint64_t z[static 12], uint64_t x[static 6]); | ||
637 | extern void bignum_sqr_6_12_alt (uint64_t z[static 12], uint64_t x[static 6]); | ||
638 | |||
639 | // Square, z := x^2 | ||
640 | // Input x[8]; output z[16] | ||
641 | extern void bignum_sqr_8_16 (uint64_t z[static 16], uint64_t x[static 8]); | ||
642 | extern void bignum_sqr_8_16_alt (uint64_t z[static 16], uint64_t x[static 8]); | ||
643 | |||
644 | // Square modulo p_25519, z := (x^2) mod p_25519 | ||
645 | // Input x[4]; output z[4] | ||
646 | extern void bignum_sqr_p25519 (uint64_t z[static 4], uint64_t x[static 4]); | ||
647 | extern void bignum_sqr_p25519_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
648 | |||
649 | // Square modulo p_256k1, z := (x^2) mod p_256k1 | ||
650 | // Input x[4]; output z[4] | ||
651 | extern void bignum_sqr_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
652 | extern void bignum_sqr_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
653 | |||
654 | // Square modulo p_521, z := (x^2) mod p_521, assuming x reduced | ||
655 | // Input x[9]; output z[9] | ||
656 | extern void bignum_sqr_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
657 | extern void bignum_sqr_p521_alt (uint64_t z[static 9], uint64_t x[static 9]); | ||
658 | |||
659 | // Subtract, z := x - y | ||
660 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[p] | ||
661 | extern uint64_t bignum_sub (uint64_t p, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
662 | |||
663 | // Subtract modulo p_25519, z := (x - y) mod p_25519, assuming x and y reduced | ||
664 | // Inputs x[4], y[4]; output z[4] | ||
665 | extern void bignum_sub_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
666 | |||
667 | // Subtract modulo p_256, z := (x - y) mod p_256, assuming x and y reduced | ||
668 | // Inputs x[4], y[4]; output z[4] | ||
669 | extern void bignum_sub_p256 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
670 | |||
671 | // Subtract modulo p_256k1, z := (x - y) mod p_256k1, assuming x and y reduced | ||
672 | // Inputs x[4], y[4]; output z[4] | ||
673 | extern void bignum_sub_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
674 | |||
675 | // Subtract modulo p_384, z := (x - y) mod p_384, assuming x and y reduced | ||
676 | // Inputs x[6], y[6]; output z[6] | ||
677 | extern void bignum_sub_p384 (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | ||
678 | |||
679 | // Subtract modulo p_521, z := (x - y) mod p_521, assuming x and y reduced | ||
680 | // Inputs x[9], y[9]; output z[9] | ||
681 | extern void bignum_sub_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
682 | |||
683 | // Convert 4-digit (256-bit) bignum to big-endian bytes | ||
684 | // Input x[4]; output z[32] (bytes) | ||
685 | extern void bignum_tobebytes_4 (uint8_t z[static 32], uint64_t x[static 4]); | ||
686 | |||
687 | // Convert 6-digit (384-bit) bignum to big-endian bytes | ||
688 | // Input x[6]; output z[48] (bytes) | ||
689 | extern void bignum_tobebytes_6 (uint8_t z[static 48], uint64_t x[static 6]); | ||
690 | |||
691 | // Convert 4-digit (256-bit) bignum to little-endian bytes | ||
692 | // Input x[4]; output z[32] (bytes) | ||
693 | extern void bignum_tolebytes_4 (uint8_t z[static 32], uint64_t x[static 4]); | ||
694 | |||
695 | // Convert 6-digit (384-bit) bignum to little-endian bytes | ||
696 | // Input x[6]; output z[48] (bytes) | ||
697 | extern void bignum_tolebytes_6 (uint8_t z[static 48], uint64_t x[static 6]); | ||
698 | |||
699 | // Convert 9-digit 528-bit bignum to little-endian bytes | ||
700 | // Input x[6]; output z[66] (bytes) | ||
701 | extern void bignum_tolebytes_p521 (uint8_t z[static 66], uint64_t x[static 9]); | ||
702 | |||
703 | // Convert to Montgomery form z := (2^256 * x) mod p_256 | ||
704 | // Input x[4]; output z[4] | ||
705 | extern void bignum_tomont_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
706 | extern void bignum_tomont_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
707 | |||
708 | // Convert to Montgomery form z := (2^256 * x) mod p_256k1 | ||
709 | // Input x[4]; output z[4] | ||
710 | extern void bignum_tomont_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
711 | extern void bignum_tomont_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
712 | |||
713 | // Convert to Montgomery form z := (2^384 * x) mod p_384 | ||
714 | // Input x[6]; output z[6] | ||
715 | extern void bignum_tomont_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
716 | extern void bignum_tomont_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | ||
717 | |||
718 | // Convert to Montgomery form z := (2^576 * x) mod p_521 | ||
719 | // Input x[9]; output z[9] | ||
720 | extern void bignum_tomont_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
721 | |||
722 | // Triple modulo p_256, z := (3 * x) mod p_256 | ||
723 | // Input x[4]; output z[4] | ||
724 | extern void bignum_triple_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
725 | extern void bignum_triple_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
726 | |||
727 | // Triple modulo p_256k1, z := (3 * x) mod p_256k1 | ||
728 | // Input x[4]; output z[4] | ||
729 | extern void bignum_triple_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
730 | extern void bignum_triple_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
731 | |||
732 | // Triple modulo p_384, z := (3 * x) mod p_384 | ||
733 | // Input x[6]; output z[6] | ||
734 | extern void bignum_triple_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
735 | extern void bignum_triple_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | ||
736 | |||
737 | // Triple modulo p_521, z := (3 * x) mod p_521, assuming x reduced | ||
738 | // Input x[9]; output z[9] | ||
739 | extern void bignum_triple_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
740 | extern void bignum_triple_p521_alt (uint64_t z[static 9], uint64_t x[static 9]); | ||
741 | |||
742 | // Montgomery ladder step for curve25519 | ||
743 | // Inputs point[8], pp[16], b; output rr[16] | ||
744 | extern void curve25519_ladderstep(uint64_t rr[16],uint64_t point[8],uint64_t pp[16],uint64_t b); | ||
745 | extern void curve25519_ladderstep_alt(uint64_t rr[16],uint64_t point[8],uint64_t pp[16],uint64_t b); | ||
746 | |||
747 | // Projective scalar multiplication, x coordinate only, for curve25519 | ||
748 | // Inputs scalar[4], point[4]; output res[8] | ||
749 | extern void curve25519_pxscalarmul(uint64_t res[static 8],uint64_t scalar[static 4],uint64_t point[static 4]); | ||
750 | extern void curve25519_pxscalarmul_alt(uint64_t res[static 8],uint64_t scalar[static 4],uint64_t point[static 4]); | ||
751 | |||
752 | // x25519 function for curve25519 | ||
753 | // Inputs scalar[4], point[4]; output res[4] | ||
754 | extern void curve25519_x25519(uint64_t res[static 4],uint64_t scalar[static 4],uint64_t point[static 4]); | ||
755 | extern void curve25519_x25519_alt(uint64_t res[static 4],uint64_t scalar[static 4],uint64_t point[static 4]); | ||
756 | |||
757 | // x25519 function for curve25519 on base element 9 | ||
758 | // Input scalar[4]; output res[4] | ||
759 | extern void curve25519_x25519base(uint64_t res[static 4],uint64_t scalar[static 4]); | ||
760 | extern void curve25519_x25519base_alt(uint64_t res[static 4],uint64_t scalar[static 4]); | ||
761 | |||
762 | // Extended projective addition for edwards25519 | ||
763 | // Inputs p1[16], p2[16]; output p3[16] | ||
764 | extern void edwards25519_epadd(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 16]); | ||
765 | extern void edwards25519_epadd_alt(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 16]); | ||
766 | |||
767 | // Extended projective doubling for edwards25519 | ||
768 | // Inputs p1[12]; output p3[16] | ||
769 | extern void edwards25519_epdouble(uint64_t p3[static 16],uint64_t p1[static 12]); | ||
770 | extern void edwards25519_epdouble_alt(uint64_t p3[static 16],uint64_t p1[static 12]); | ||
771 | |||
772 | // Projective doubling for edwards25519 | ||
773 | // Inputs p1[12]; output p3[12] | ||
774 | extern void edwards25519_pdouble(uint64_t p3[static 12],uint64_t p1[static 12]); | ||
775 | extern void edwards25519_pdouble_alt(uint64_t p3[static 12],uint64_t p1[static 12]); | ||
776 | |||
777 | // Extended projective + precomputed mixed addition for edwards25519 | ||
778 | // Inputs p1[16], p2[12]; output p3[16] | ||
779 | extern void edwards25519_pepadd(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 12]); | ||
780 | extern void edwards25519_pepadd_alt(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 12]); | ||
781 | |||
782 | // Point addition on NIST curve P-256 in Montgomery-Jacobian coordinates | ||
783 | // Inputs p1[12], p2[12]; output p3[12] | ||
784 | extern void p256_montjadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 12]); | ||
785 | |||
786 | // Point doubling on NIST curve P-256 in Montgomery-Jacobian coordinates | ||
787 | // Inputs p1[12]; output p3[12] | ||
788 | extern void p256_montjdouble(uint64_t p3[static 12],uint64_t p1[static 12]); | ||
789 | |||
790 | // Point mixed addition on NIST curve P-256 in Montgomery-Jacobian coordinates | ||
791 | // Inputs p1[12], p2[8]; output p3[12] | ||
792 | extern void p256_montjmixadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 8]); | ||
793 | |||
794 | // Point addition on NIST curve P-384 in Montgomery-Jacobian coordinates | ||
795 | // Inputs p1[18], p2[18]; output p3[18] | ||
796 | extern void p384_montjadd(uint64_t p3[static 18],uint64_t p1[static 18],uint64_t p2[static 18]); | ||
797 | |||
798 | // Point doubling on NIST curve P-384 in Montgomery-Jacobian coordinates | ||
799 | // Inputs p1[18]; output p3[18] | ||
800 | extern void p384_montjdouble(uint64_t p3[static 18],uint64_t p1[static 18]); | ||
801 | |||
802 | // Point mixed addition on NIST curve P-384 in Montgomery-Jacobian coordinates | ||
803 | // Inputs p1[18], p2[12]; output p3[18] | ||
804 | extern void p384_montjmixadd(uint64_t p3[static 18],uint64_t p1[static 18],uint64_t p2[static 12]); | ||
805 | |||
806 | // Point addition on NIST curve P-521 in Jacobian coordinates | ||
807 | // Inputs p1[27], p2[27]; output p3[27] | ||
808 | extern void p521_jadd(uint64_t p3[static 27],uint64_t p1[static 27],uint64_t p2[static 27]); | ||
809 | |||
810 | // Point doubling on NIST curve P-521 in Jacobian coordinates | ||
811 | // Input p1[27]; output p3[27] | ||
812 | extern void p521_jdouble(uint64_t p3[static 27],uint64_t p1[static 27]); | ||
813 | |||
814 | // Point mixed addition on NIST curve P-521 in Jacobian coordinates | ||
815 | // Inputs p1[27], p2[18]; output p3[27] | ||
816 | extern void p521_jmixadd(uint64_t p3[static 27],uint64_t p1[static 27],uint64_t p2[static 18]); | ||
817 | |||
818 | // Point addition on SECG curve secp256k1 in Jacobian coordinates | ||
819 | // Inputs p1[12], p2[12]; output p3[12] | ||
820 | extern void secp256k1_jadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 12]); | ||
821 | |||
822 | // Point doubling on SECG curve secp256k1 in Jacobian coordinates | ||
823 | // Input p1[12]; output p3[12] | ||
824 | extern void secp256k1_jdouble(uint64_t p3[static 12],uint64_t p1[static 12]); | ||
825 | |||
826 | // Point mixed addition on SECG curve secp256k1 in Jacobian coordinates | ||
827 | // Inputs p1[12], p2[8]; output p3[12] | ||
828 | extern void secp256k1_jmixadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 8]); | ||
829 | |||
830 | // Reverse the bytes in a single word | ||
831 | // Input a; output function return | ||
832 | extern uint64_t word_bytereverse (uint64_t a); | ||
833 | |||
834 | // Count leading zero bits in a single word | ||
835 | // Input a; output function return | ||
836 | extern uint64_t word_clz (uint64_t a); | ||
837 | |||
838 | // Count trailing zero bits in a single word | ||
839 | // Input a; output function return | ||
840 | extern uint64_t word_ctz (uint64_t a); | ||
841 | |||
842 | // Return maximum of two unsigned 64-bit words | ||
843 | // Inputs a, b; output function return | ||
844 | extern uint64_t word_max (uint64_t a, uint64_t b); | ||
845 | |||
846 | // Return minimum of two unsigned 64-bit words | ||
847 | // Inputs a, b; output function return | ||
848 | extern uint64_t word_min (uint64_t a, uint64_t b); | ||
849 | |||
850 | // Single-word negated modular inverse (-1/a) mod 2^64 | ||
851 | // Input a; output function return | ||
852 | extern uint64_t word_negmodinv (uint64_t a); | ||
853 | |||
854 | // Single-word reciprocal, 2^64 + ret = ceil(2^128/a) - 1 if MSB of "a" is set | ||
855 | // Input a; output function return | ||
856 | extern uint64_t word_recip (uint64_t a); | ||
diff --git a/src/lib/libcrypto/bn/s2n_bignum_internal.h b/src/lib/libcrypto/bn/s2n_bignum_internal.h deleted file mode 100644 index b82db7d019..0000000000 --- a/src/lib/libcrypto/bn/s2n_bignum_internal.h +++ /dev/null | |||
@@ -1,36 +0,0 @@ | |||
1 | // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
2 | // | ||
3 | // Permission to use, copy, modify, and/or distribute this software for any | ||
4 | // purpose with or without fee is hereby granted, provided that the above | ||
5 | // copyright notice and this permission notice appear in all copies. | ||
6 | // | ||
7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
10 | // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
12 | // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
13 | // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
14 | |||
15 | #ifdef __APPLE__ | ||
16 | # define S2N_BN_SYMBOL(NAME) _##NAME | ||
17 | #else | ||
18 | # define S2N_BN_SYMBOL(name) name | ||
19 | #endif | ||
20 | |||
21 | #ifdef __CET__ | ||
22 | # include <cet.h> | ||
23 | #else | ||
24 | # define _CET_ENDBR | ||
25 | #endif | ||
26 | |||
27 | #define S2N_BN_SYM_VISIBILITY_DIRECTIVE(name) .globl S2N_BN_SYMBOL(name) | ||
28 | #ifdef S2N_BN_HIDE_SYMBOLS | ||
29 | # ifdef __APPLE__ | ||
30 | # define S2N_BN_SYM_PRIVACY_DIRECTIVE(name) .private_extern S2N_BN_SYMBOL(name) | ||
31 | # else | ||
32 | # define S2N_BN_SYM_PRIVACY_DIRECTIVE(name) .hidden S2N_BN_SYMBOL(name) | ||
33 | # endif | ||
34 | #else | ||
35 | # define S2N_BN_SYM_PRIVACY_DIRECTIVE(name) /* NO-OP: S2N_BN_SYM_PRIVACY_DIRECTIVE */ | ||
36 | #endif | ||