diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_isqrt.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_isqrt.c | 234 |
1 files changed, 0 insertions, 234 deletions
diff --git a/src/lib/libcrypto/bn/bn_isqrt.c b/src/lib/libcrypto/bn/bn_isqrt.c deleted file mode 100644 index 018d5f34bd..0000000000 --- a/src/lib/libcrypto/bn/bn_isqrt.c +++ /dev/null | |||
@@ -1,234 +0,0 @@ | |||
1 | /* $OpenBSD: bn_isqrt.c,v 1.10 2023/06/04 17:28:35 tb Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2022 Theo Buehler <tb@openbsd.org> | ||
4 | * | ||
5 | * Permission to use, copy, modify, and distribute this software for any | ||
6 | * purpose with or without fee is hereby granted, provided that the above | ||
7 | * copyright notice and this permission notice appear in all copies. | ||
8 | * | ||
9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
16 | */ | ||
17 | |||
18 | #include <stddef.h> | ||
19 | #include <stdint.h> | ||
20 | |||
21 | #include <openssl/bn.h> | ||
22 | #include <openssl/err.h> | ||
23 | |||
24 | #include "bn_local.h" | ||
25 | #include "crypto_internal.h" | ||
26 | |||
27 | /* | ||
28 | * Calculate integer square root of |n| using a variant of Newton's method. | ||
29 | * | ||
30 | * Returns the integer square root of |n| in the caller-provided |out_sqrt|; | ||
31 | * |*out_perfect| is set to 1 if and only if |n| is a perfect square. | ||
32 | * One of |out_sqrt| and |out_perfect| can be NULL; |in_ctx| can be NULL. | ||
33 | * | ||
34 | * Returns 0 on error, 1 on success. | ||
35 | * | ||
36 | * Adapted from pure Python describing cpython's math.isqrt(), without bothering | ||
37 | * with any of the optimizations in the C code. A correctness proof is here: | ||
38 | * https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean | ||
39 | * The comments in the Python code also give a rather detailed proof. | ||
40 | */ | ||
41 | |||
42 | int | ||
43 | bn_isqrt(BIGNUM *out_sqrt, int *out_perfect, const BIGNUM *n, BN_CTX *in_ctx) | ||
44 | { | ||
45 | BN_CTX *ctx = NULL; | ||
46 | BIGNUM *a, *b; | ||
47 | int c, d, e, s; | ||
48 | int cmp, perfect; | ||
49 | int ret = 0; | ||
50 | |||
51 | if (out_perfect == NULL && out_sqrt == NULL) { | ||
52 | BNerror(ERR_R_PASSED_NULL_PARAMETER); | ||
53 | goto err; | ||
54 | } | ||
55 | |||
56 | if (BN_is_negative(n)) { | ||
57 | BNerror(BN_R_INVALID_RANGE); | ||
58 | goto err; | ||
59 | } | ||
60 | |||
61 | if ((ctx = in_ctx) == NULL) | ||
62 | ctx = BN_CTX_new(); | ||
63 | if (ctx == NULL) | ||
64 | goto err; | ||
65 | |||
66 | BN_CTX_start(ctx); | ||
67 | |||
68 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
69 | goto err; | ||
70 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
71 | goto err; | ||
72 | |||
73 | if (BN_is_zero(n)) { | ||
74 | perfect = 1; | ||
75 | BN_zero(a); | ||
76 | goto done; | ||
77 | } | ||
78 | |||
79 | if (!BN_one(a)) | ||
80 | goto err; | ||
81 | |||
82 | c = (BN_num_bits(n) - 1) / 2; | ||
83 | d = 0; | ||
84 | |||
85 | /* Calculate s = floor(log(c)). */ | ||
86 | if (!BN_set_word(b, c)) | ||
87 | goto err; | ||
88 | s = BN_num_bits(b) - 1; | ||
89 | |||
90 | /* | ||
91 | * By definition, the loop below is run <= floor(log(log(n))) times. | ||
92 | * Comments in the cpython code establish the loop invariant that | ||
93 | * | ||
94 | * (a - 1)^2 < n / 4^(c - d) < (a + 1)^2 | ||
95 | * | ||
96 | * holds true in every iteration. Once this is proved via induction, | ||
97 | * correctness of the algorithm is easy. | ||
98 | * | ||
99 | * Roughly speaking, A = (a << (d - e)) is used for one Newton step | ||
100 | * "a = (A >> 1) + (m >> 1) / A" approximating m = (n >> 2 * (c - d)). | ||
101 | */ | ||
102 | |||
103 | for (; s >= 0; s--) { | ||
104 | e = d; | ||
105 | d = c >> s; | ||
106 | |||
107 | if (!BN_rshift(b, n, 2 * c - d - e + 1)) | ||
108 | goto err; | ||
109 | |||
110 | if (!BN_div_ct(b, NULL, b, a, ctx)) | ||
111 | goto err; | ||
112 | |||
113 | if (!BN_lshift(a, a, d - e - 1)) | ||
114 | goto err; | ||
115 | |||
116 | if (!BN_add(a, a, b)) | ||
117 | goto err; | ||
118 | } | ||
119 | |||
120 | /* | ||
121 | * The loop invariant implies that either a or a - 1 is isqrt(n). | ||
122 | * Figure out which one it is. The invariant also implies that for | ||
123 | * a perfect square n, a must be the square root. | ||
124 | */ | ||
125 | |||
126 | if (!BN_sqr(b, a, ctx)) | ||
127 | goto err; | ||
128 | |||
129 | /* If a^2 > n, we must have isqrt(n) == a - 1. */ | ||
130 | if ((cmp = BN_cmp(b, n)) > 0) { | ||
131 | if (!BN_sub_word(a, 1)) | ||
132 | goto err; | ||
133 | } | ||
134 | |||
135 | perfect = cmp == 0; | ||
136 | |||
137 | done: | ||
138 | if (out_perfect != NULL) | ||
139 | *out_perfect = perfect; | ||
140 | |||
141 | if (out_sqrt != NULL) { | ||
142 | if (!bn_copy(out_sqrt, a)) | ||
143 | goto err; | ||
144 | } | ||
145 | |||
146 | ret = 1; | ||
147 | |||
148 | err: | ||
149 | BN_CTX_end(ctx); | ||
150 | |||
151 | if (ctx != in_ctx) | ||
152 | BN_CTX_free(ctx); | ||
153 | |||
154 | return ret; | ||
155 | } | ||
156 | |||
157 | /* | ||
158 | * is_square_mod_N[r % N] indicates whether r % N has a square root modulo N. | ||
159 | * The tables are generated in regress/lib/libcrypto/bn/bn_isqrt.c. | ||
160 | */ | ||
161 | |||
162 | const uint8_t is_square_mod_11[] = { | ||
163 | 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, | ||
164 | }; | ||
165 | CTASSERT(sizeof(is_square_mod_11) == 11); | ||
166 | |||
167 | const uint8_t is_square_mod_63[] = { | ||
168 | 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, | ||
169 | 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, | ||
170 | 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, | ||
171 | 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, | ||
172 | }; | ||
173 | CTASSERT(sizeof(is_square_mod_63) == 63); | ||
174 | |||
175 | const uint8_t is_square_mod_64[] = { | ||
176 | 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, | ||
177 | 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, | ||
178 | 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, | ||
179 | 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, | ||
180 | }; | ||
181 | CTASSERT(sizeof(is_square_mod_64) == 64); | ||
182 | |||
183 | const uint8_t is_square_mod_65[] = { | ||
184 | 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, | ||
185 | 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, | ||
186 | 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, | ||
187 | 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, | ||
188 | 1, | ||
189 | }; | ||
190 | CTASSERT(sizeof(is_square_mod_65) == 65); | ||
191 | |||
192 | /* | ||
193 | * Determine whether n is a perfect square or not. | ||
194 | * | ||
195 | * Returns 1 on success and 0 on error. In case of success, |*out_perfect| is | ||
196 | * set to 1 if and only if |n| is a perfect square. | ||
197 | */ | ||
198 | |||
199 | int | ||
200 | bn_is_perfect_square(int *out_perfect, const BIGNUM *n, BN_CTX *ctx) | ||
201 | { | ||
202 | BN_ULONG r; | ||
203 | |||
204 | *out_perfect = 0; | ||
205 | |||
206 | if (BN_is_negative(n)) | ||
207 | return 1; | ||
208 | |||
209 | /* | ||
210 | * Before performing an expensive bn_isqrt() operation, weed out many | ||
211 | * obvious non-squares. See H. Cohen, "A course in computational | ||
212 | * algebraic number theory", Algorithm 1.7.3. | ||
213 | * | ||
214 | * The idea is that a square remains a square when reduced modulo any | ||
215 | * number. The moduli are chosen in such a way that a non-square has | ||
216 | * probability < 1% of passing the four table lookups. | ||
217 | */ | ||
218 | |||
219 | /* n % 64 */ | ||
220 | r = BN_lsw(n) & 0x3f; | ||
221 | |||
222 | if (!is_square_mod_64[r % 64]) | ||
223 | return 1; | ||
224 | |||
225 | if ((r = BN_mod_word(n, 11 * 63 * 65)) == (BN_ULONG)-1) | ||
226 | return 0; | ||
227 | |||
228 | if (!is_square_mod_63[r % 63] || | ||
229 | !is_square_mod_65[r % 65] || | ||
230 | !is_square_mod_11[r % 11]) | ||
231 | return 1; | ||
232 | |||
233 | return bn_isqrt(NULL, out_perfect, n, ctx); | ||
234 | } | ||