diff options
author | cvs2svn <admin@example.com> | 2012-07-13 17:49:55 +0000 |
---|---|---|
committer | cvs2svn <admin@example.com> | 2012-07-13 17:49:55 +0000 |
commit | 6fdb436ab2cd5b35066babb3a03be7ad0daf1ae2 (patch) | |
tree | a760cf389e7ea59961bb306a1f50bf5443205176 /src/lib/libcrypto/bn | |
parent | 9204e59073bcf27e1487ec4ac46e981902ddd904 (diff) | |
download | openbsd-OPENBSD_5_2_BASE.tar.gz openbsd-OPENBSD_5_2_BASE.tar.bz2 openbsd-OPENBSD_5_2_BASE.zip |
This commit was manufactured by cvs2git to create tag 'OPENBSD_5_2_BASE'.OPENBSD_5_2_BASE
Diffstat (limited to 'src/lib/libcrypto/bn')
59 files changed, 0 insertions, 32341 deletions
diff --git a/src/lib/libcrypto/bn/asm/alpha-mont.pl b/src/lib/libcrypto/bn/asm/alpha-mont.pl deleted file mode 100644 index 03596e2014..0000000000 --- a/src/lib/libcrypto/bn/asm/alpha-mont.pl +++ /dev/null | |||
@@ -1,321 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # On 21264 RSA sign performance improves by 70/35/20/15 percent for | ||
11 | # 512/1024/2048/4096 bit key lengths. This is against vendor compiler | ||
12 | # instructed to '-tune host' code with in-line assembler. Other | ||
13 | # benchmarks improve by 15-20%. To anchor it to something else, the | ||
14 | # code provides approximately the same performance per GHz as AMD64. | ||
15 | # I.e. if you compare 1GHz 21264 and 2GHz Opteron, you'll observe ~2x | ||
16 | # difference. | ||
17 | |||
18 | # int bn_mul_mont( | ||
19 | $rp="a0"; # BN_ULONG *rp, | ||
20 | $ap="a1"; # const BN_ULONG *ap, | ||
21 | $bp="a2"; # const BN_ULONG *bp, | ||
22 | $np="a3"; # const BN_ULONG *np, | ||
23 | $n0="a4"; # const BN_ULONG *n0, | ||
24 | $num="a5"; # int num); | ||
25 | |||
26 | $lo0="t0"; | ||
27 | $hi0="t1"; | ||
28 | $lo1="t2"; | ||
29 | $hi1="t3"; | ||
30 | $aj="t4"; | ||
31 | $bi="t5"; | ||
32 | $nj="t6"; | ||
33 | $tp="t7"; | ||
34 | $alo="t8"; | ||
35 | $ahi="t9"; | ||
36 | $nlo="t10"; | ||
37 | $nhi="t11"; | ||
38 | $tj="t12"; | ||
39 | $i="s3"; | ||
40 | $j="s4"; | ||
41 | $m1="s5"; | ||
42 | |||
43 | $code=<<___; | ||
44 | #ifdef __linux__ | ||
45 | #include <asm/regdef.h> | ||
46 | #else | ||
47 | #include <asm.h> | ||
48 | #include <regdef.h> | ||
49 | #endif | ||
50 | |||
51 | .text | ||
52 | |||
53 | .set noat | ||
54 | .set noreorder | ||
55 | |||
56 | .globl bn_mul_mont | ||
57 | .align 5 | ||
58 | .ent bn_mul_mont | ||
59 | bn_mul_mont: | ||
60 | lda sp,-48(sp) | ||
61 | stq ra,0(sp) | ||
62 | stq s3,8(sp) | ||
63 | stq s4,16(sp) | ||
64 | stq s5,24(sp) | ||
65 | stq fp,32(sp) | ||
66 | mov sp,fp | ||
67 | .mask 0x0400f000,-48 | ||
68 | .frame fp,48,ra | ||
69 | .prologue 0 | ||
70 | |||
71 | .align 4 | ||
72 | .set reorder | ||
73 | sextl $num,$num | ||
74 | mov 0,v0 | ||
75 | cmplt $num,4,AT | ||
76 | bne AT,.Lexit | ||
77 | |||
78 | ldq $hi0,0($ap) # ap[0] | ||
79 | s8addq $num,16,AT | ||
80 | ldq $aj,8($ap) | ||
81 | subq sp,AT,sp | ||
82 | ldq $bi,0($bp) # bp[0] | ||
83 | lda AT,-4096(zero) # mov -4096,AT | ||
84 | ldq $n0,0($n0) | ||
85 | and sp,AT,sp | ||
86 | |||
87 | mulq $hi0,$bi,$lo0 | ||
88 | ldq $hi1,0($np) # np[0] | ||
89 | umulh $hi0,$bi,$hi0 | ||
90 | ldq $nj,8($np) | ||
91 | |||
92 | mulq $lo0,$n0,$m1 | ||
93 | |||
94 | mulq $hi1,$m1,$lo1 | ||
95 | umulh $hi1,$m1,$hi1 | ||
96 | |||
97 | addq $lo1,$lo0,$lo1 | ||
98 | cmpult $lo1,$lo0,AT | ||
99 | addq $hi1,AT,$hi1 | ||
100 | |||
101 | mulq $aj,$bi,$alo | ||
102 | mov 2,$j | ||
103 | umulh $aj,$bi,$ahi | ||
104 | mov sp,$tp | ||
105 | |||
106 | mulq $nj,$m1,$nlo | ||
107 | s8addq $j,$ap,$aj | ||
108 | umulh $nj,$m1,$nhi | ||
109 | s8addq $j,$np,$nj | ||
110 | .align 4 | ||
111 | .L1st: | ||
112 | .set noreorder | ||
113 | ldq $aj,0($aj) | ||
114 | addl $j,1,$j | ||
115 | ldq $nj,0($nj) | ||
116 | lda $tp,8($tp) | ||
117 | |||
118 | addq $alo,$hi0,$lo0 | ||
119 | mulq $aj,$bi,$alo | ||
120 | cmpult $lo0,$hi0,AT | ||
121 | addq $nlo,$hi1,$lo1 | ||
122 | |||
123 | mulq $nj,$m1,$nlo | ||
124 | addq $ahi,AT,$hi0 | ||
125 | cmpult $lo1,$hi1,v0 | ||
126 | cmplt $j,$num,$tj | ||
127 | |||
128 | umulh $aj,$bi,$ahi | ||
129 | addq $nhi,v0,$hi1 | ||
130 | addq $lo1,$lo0,$lo1 | ||
131 | s8addq $j,$ap,$aj | ||
132 | |||
133 | umulh $nj,$m1,$nhi | ||
134 | cmpult $lo1,$lo0,v0 | ||
135 | addq $hi1,v0,$hi1 | ||
136 | s8addq $j,$np,$nj | ||
137 | |||
138 | stq $lo1,-8($tp) | ||
139 | nop | ||
140 | unop | ||
141 | bne $tj,.L1st | ||
142 | .set reorder | ||
143 | |||
144 | addq $alo,$hi0,$lo0 | ||
145 | addq $nlo,$hi1,$lo1 | ||
146 | cmpult $lo0,$hi0,AT | ||
147 | cmpult $lo1,$hi1,v0 | ||
148 | addq $ahi,AT,$hi0 | ||
149 | addq $nhi,v0,$hi1 | ||
150 | |||
151 | addq $lo1,$lo0,$lo1 | ||
152 | cmpult $lo1,$lo0,v0 | ||
153 | addq $hi1,v0,$hi1 | ||
154 | |||
155 | stq $lo1,0($tp) | ||
156 | |||
157 | addq $hi1,$hi0,$hi1 | ||
158 | cmpult $hi1,$hi0,AT | ||
159 | stq $hi1,8($tp) | ||
160 | stq AT,16($tp) | ||
161 | |||
162 | mov 1,$i | ||
163 | .align 4 | ||
164 | .Louter: | ||
165 | s8addq $i,$bp,$bi | ||
166 | ldq $hi0,0($ap) | ||
167 | ldq $aj,8($ap) | ||
168 | ldq $bi,0($bi) | ||
169 | ldq $hi1,0($np) | ||
170 | ldq $nj,8($np) | ||
171 | ldq $tj,0(sp) | ||
172 | |||
173 | mulq $hi0,$bi,$lo0 | ||
174 | umulh $hi0,$bi,$hi0 | ||
175 | |||
176 | addq $lo0,$tj,$lo0 | ||
177 | cmpult $lo0,$tj,AT | ||
178 | addq $hi0,AT,$hi0 | ||
179 | |||
180 | mulq $lo0,$n0,$m1 | ||
181 | |||
182 | mulq $hi1,$m1,$lo1 | ||
183 | umulh $hi1,$m1,$hi1 | ||
184 | |||
185 | addq $lo1,$lo0,$lo1 | ||
186 | cmpult $lo1,$lo0,AT | ||
187 | mov 2,$j | ||
188 | addq $hi1,AT,$hi1 | ||
189 | |||
190 | mulq $aj,$bi,$alo | ||
191 | mov sp,$tp | ||
192 | umulh $aj,$bi,$ahi | ||
193 | |||
194 | mulq $nj,$m1,$nlo | ||
195 | s8addq $j,$ap,$aj | ||
196 | umulh $nj,$m1,$nhi | ||
197 | .align 4 | ||
198 | .Linner: | ||
199 | .set noreorder | ||
200 | ldq $tj,8($tp) #L0 | ||
201 | nop #U1 | ||
202 | ldq $aj,0($aj) #L1 | ||
203 | s8addq $j,$np,$nj #U0 | ||
204 | |||
205 | ldq $nj,0($nj) #L0 | ||
206 | nop #U1 | ||
207 | addq $alo,$hi0,$lo0 #L1 | ||
208 | lda $tp,8($tp) | ||
209 | |||
210 | mulq $aj,$bi,$alo #U1 | ||
211 | cmpult $lo0,$hi0,AT #L0 | ||
212 | addq $nlo,$hi1,$lo1 #L1 | ||
213 | addl $j,1,$j | ||
214 | |||
215 | mulq $nj,$m1,$nlo #U1 | ||
216 | addq $ahi,AT,$hi0 #L0 | ||
217 | addq $lo0,$tj,$lo0 #L1 | ||
218 | cmpult $lo1,$hi1,v0 #U0 | ||
219 | |||
220 | umulh $aj,$bi,$ahi #U1 | ||
221 | cmpult $lo0,$tj,AT #L0 | ||
222 | addq $lo1,$lo0,$lo1 #L1 | ||
223 | addq $nhi,v0,$hi1 #U0 | ||
224 | |||
225 | umulh $nj,$m1,$nhi #U1 | ||
226 | s8addq $j,$ap,$aj #L0 | ||
227 | cmpult $lo1,$lo0,v0 #L1 | ||
228 | cmplt $j,$num,$tj #U0 # borrow $tj | ||
229 | |||
230 | addq $hi0,AT,$hi0 #L0 | ||
231 | addq $hi1,v0,$hi1 #U1 | ||
232 | stq $lo1,-8($tp) #L1 | ||
233 | bne $tj,.Linner #U0 | ||
234 | .set reorder | ||
235 | |||
236 | ldq $tj,8($tp) | ||
237 | addq $alo,$hi0,$lo0 | ||
238 | addq $nlo,$hi1,$lo1 | ||
239 | cmpult $lo0,$hi0,AT | ||
240 | cmpult $lo1,$hi1,v0 | ||
241 | addq $ahi,AT,$hi0 | ||
242 | addq $nhi,v0,$hi1 | ||
243 | |||
244 | addq $lo0,$tj,$lo0 | ||
245 | cmpult $lo0,$tj,AT | ||
246 | addq $hi0,AT,$hi0 | ||
247 | |||
248 | ldq $tj,16($tp) | ||
249 | addq $lo1,$lo0,$j | ||
250 | cmpult $j,$lo0,v0 | ||
251 | addq $hi1,v0,$hi1 | ||
252 | |||
253 | addq $hi1,$hi0,$lo1 | ||
254 | stq $j,0($tp) | ||
255 | cmpult $lo1,$hi0,$hi1 | ||
256 | addq $lo1,$tj,$lo1 | ||
257 | cmpult $lo1,$tj,AT | ||
258 | addl $i,1,$i | ||
259 | addq $hi1,AT,$hi1 | ||
260 | stq $lo1,8($tp) | ||
261 | cmplt $i,$num,$tj # borrow $tj | ||
262 | stq $hi1,16($tp) | ||
263 | bne $tj,.Louter | ||
264 | |||
265 | s8addq $num,sp,$tj # &tp[num] | ||
266 | mov $rp,$bp # put rp aside | ||
267 | mov sp,$tp | ||
268 | mov sp,$ap | ||
269 | mov 0,$hi0 # clear borrow bit | ||
270 | |||
271 | .align 4 | ||
272 | .Lsub: ldq $lo0,0($tp) | ||
273 | ldq $lo1,0($np) | ||
274 | lda $tp,8($tp) | ||
275 | lda $np,8($np) | ||
276 | subq $lo0,$lo1,$lo1 # tp[i]-np[i] | ||
277 | cmpult $lo0,$lo1,AT | ||
278 | subq $lo1,$hi0,$lo0 | ||
279 | cmpult $lo1,$lo0,$hi0 | ||
280 | or $hi0,AT,$hi0 | ||
281 | stq $lo0,0($rp) | ||
282 | cmpult $tp,$tj,v0 | ||
283 | lda $rp,8($rp) | ||
284 | bne v0,.Lsub | ||
285 | |||
286 | subq $hi1,$hi0,$hi0 # handle upmost overflow bit | ||
287 | mov sp,$tp | ||
288 | mov $bp,$rp # restore rp | ||
289 | |||
290 | and sp,$hi0,$ap | ||
291 | bic $bp,$hi0,$bp | ||
292 | bis $bp,$ap,$ap # ap=borrow?tp:rp | ||
293 | |||
294 | .align 4 | ||
295 | .Lcopy: ldq $aj,0($ap) # copy or in-place refresh | ||
296 | lda $tp,8($tp) | ||
297 | lda $rp,8($rp) | ||
298 | lda $ap,8($ap) | ||
299 | stq zero,-8($tp) # zap tp | ||
300 | cmpult $tp,$tj,AT | ||
301 | stq $aj,-8($rp) | ||
302 | bne AT,.Lcopy | ||
303 | mov 1,v0 | ||
304 | |||
305 | .Lexit: | ||
306 | .set noreorder | ||
307 | mov fp,sp | ||
308 | /*ldq ra,0(sp)*/ | ||
309 | ldq s3,8(sp) | ||
310 | ldq s4,16(sp) | ||
311 | ldq s5,24(sp) | ||
312 | ldq fp,32(sp) | ||
313 | lda sp,48(sp) | ||
314 | ret (ra) | ||
315 | .end bn_mul_mont | ||
316 | .ascii "Montgomery Multiplication for Alpha, CRYPTOGAMS by <appro\@openssl.org>" | ||
317 | .align 2 | ||
318 | ___ | ||
319 | |||
320 | print $code; | ||
321 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/armv4-mont.pl b/src/lib/libcrypto/bn/asm/armv4-mont.pl deleted file mode 100644 index 14e0d2d1dd..0000000000 --- a/src/lib/libcrypto/bn/asm/armv4-mont.pl +++ /dev/null | |||
@@ -1,201 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # January 2007. | ||
11 | |||
12 | # Montgomery multiplication for ARMv4. | ||
13 | # | ||
14 | # Performance improvement naturally varies among CPU implementations | ||
15 | # and compilers. The code was observed to provide +65-35% improvement | ||
16 | # [depending on key length, less for longer keys] on ARM920T, and | ||
17 | # +115-80% on Intel IXP425. This is compared to pre-bn_mul_mont code | ||
18 | # base and compiler generated code with in-lined umull and even umlal | ||
19 | # instructions. The latter means that this code didn't really have an | ||
20 | # "advantage" of utilizing some "secret" instruction. | ||
21 | # | ||
22 | # The code is interoperable with Thumb ISA and is rather compact, less | ||
23 | # than 1/2KB. Windows CE port would be trivial, as it's exclusively | ||
24 | # about decorations, ABI and instruction syntax are identical. | ||
25 | |||
26 | $num="r0"; # starts as num argument, but holds &tp[num-1] | ||
27 | $ap="r1"; | ||
28 | $bp="r2"; $bi="r2"; $rp="r2"; | ||
29 | $np="r3"; | ||
30 | $tp="r4"; | ||
31 | $aj="r5"; | ||
32 | $nj="r6"; | ||
33 | $tj="r7"; | ||
34 | $n0="r8"; | ||
35 | ########### # r9 is reserved by ELF as platform specific, e.g. TLS pointer | ||
36 | $alo="r10"; # sl, gcc uses it to keep @GOT | ||
37 | $ahi="r11"; # fp | ||
38 | $nlo="r12"; # ip | ||
39 | ########### # r13 is stack pointer | ||
40 | $nhi="r14"; # lr | ||
41 | ########### # r15 is program counter | ||
42 | |||
43 | #### argument block layout relative to &tp[num-1], a.k.a. $num | ||
44 | $_rp="$num,#12*4"; | ||
45 | # ap permanently resides in r1 | ||
46 | $_bp="$num,#13*4"; | ||
47 | # np permanently resides in r3 | ||
48 | $_n0="$num,#14*4"; | ||
49 | $_num="$num,#15*4"; $_bpend=$_num; | ||
50 | |||
51 | $code=<<___; | ||
52 | .text | ||
53 | |||
54 | .global bn_mul_mont | ||
55 | .type bn_mul_mont,%function | ||
56 | |||
57 | .align 2 | ||
58 | bn_mul_mont: | ||
59 | stmdb sp!,{r0,r2} @ sp points at argument block | ||
60 | ldr $num,[sp,#3*4] @ load num | ||
61 | cmp $num,#2 | ||
62 | movlt r0,#0 | ||
63 | addlt sp,sp,#2*4 | ||
64 | blt .Labrt | ||
65 | |||
66 | stmdb sp!,{r4-r12,lr} @ save 10 registers | ||
67 | |||
68 | mov $num,$num,lsl#2 @ rescale $num for byte count | ||
69 | sub sp,sp,$num @ alloca(4*num) | ||
70 | sub sp,sp,#4 @ +extra dword | ||
71 | sub $num,$num,#4 @ "num=num-1" | ||
72 | add $tp,$bp,$num @ &bp[num-1] | ||
73 | |||
74 | add $num,sp,$num @ $num to point at &tp[num-1] | ||
75 | ldr $n0,[$_n0] @ &n0 | ||
76 | ldr $bi,[$bp] @ bp[0] | ||
77 | ldr $aj,[$ap],#4 @ ap[0],ap++ | ||
78 | ldr $nj,[$np],#4 @ np[0],np++ | ||
79 | ldr $n0,[$n0] @ *n0 | ||
80 | str $tp,[$_bpend] @ save &bp[num] | ||
81 | |||
82 | umull $alo,$ahi,$aj,$bi @ ap[0]*bp[0] | ||
83 | str $n0,[$_n0] @ save n0 value | ||
84 | mul $n0,$alo,$n0 @ "tp[0]"*n0 | ||
85 | mov $nlo,#0 | ||
86 | umlal $alo,$nlo,$nj,$n0 @ np[0]*n0+"t[0]" | ||
87 | mov $tp,sp | ||
88 | |||
89 | .L1st: | ||
90 | ldr $aj,[$ap],#4 @ ap[j],ap++ | ||
91 | mov $alo,$ahi | ||
92 | mov $ahi,#0 | ||
93 | umlal $alo,$ahi,$aj,$bi @ ap[j]*bp[0] | ||
94 | ldr $nj,[$np],#4 @ np[j],np++ | ||
95 | mov $nhi,#0 | ||
96 | umlal $nlo,$nhi,$nj,$n0 @ np[j]*n0 | ||
97 | adds $nlo,$nlo,$alo | ||
98 | str $nlo,[$tp],#4 @ tp[j-1]=,tp++ | ||
99 | adc $nlo,$nhi,#0 | ||
100 | cmp $tp,$num | ||
101 | bne .L1st | ||
102 | |||
103 | adds $nlo,$nlo,$ahi | ||
104 | mov $nhi,#0 | ||
105 | adc $nhi,$nhi,#0 | ||
106 | ldr $tp,[$_bp] @ restore bp | ||
107 | str $nlo,[$num] @ tp[num-1]= | ||
108 | ldr $n0,[$_n0] @ restore n0 | ||
109 | str $nhi,[$num,#4] @ tp[num]= | ||
110 | |||
111 | .Louter: | ||
112 | sub $tj,$num,sp @ "original" $num-1 value | ||
113 | sub $ap,$ap,$tj @ "rewind" ap to &ap[1] | ||
114 | sub $np,$np,$tj @ "rewind" np to &np[1] | ||
115 | ldr $bi,[$tp,#4]! @ *(++bp) | ||
116 | ldr $aj,[$ap,#-4] @ ap[0] | ||
117 | ldr $nj,[$np,#-4] @ np[0] | ||
118 | ldr $alo,[sp] @ tp[0] | ||
119 | ldr $tj,[sp,#4] @ tp[1] | ||
120 | |||
121 | mov $ahi,#0 | ||
122 | umlal $alo,$ahi,$aj,$bi @ ap[0]*bp[i]+tp[0] | ||
123 | str $tp,[$_bp] @ save bp | ||
124 | mul $n0,$alo,$n0 | ||
125 | mov $nlo,#0 | ||
126 | umlal $alo,$nlo,$nj,$n0 @ np[0]*n0+"tp[0]" | ||
127 | mov $tp,sp | ||
128 | |||
129 | .Linner: | ||
130 | ldr $aj,[$ap],#4 @ ap[j],ap++ | ||
131 | adds $alo,$ahi,$tj @ +=tp[j] | ||
132 | mov $ahi,#0 | ||
133 | umlal $alo,$ahi,$aj,$bi @ ap[j]*bp[i] | ||
134 | ldr $nj,[$np],#4 @ np[j],np++ | ||
135 | mov $nhi,#0 | ||
136 | umlal $nlo,$nhi,$nj,$n0 @ np[j]*n0 | ||
137 | ldr $tj,[$tp,#8] @ tp[j+1] | ||
138 | adc $ahi,$ahi,#0 | ||
139 | adds $nlo,$nlo,$alo | ||
140 | str $nlo,[$tp],#4 @ tp[j-1]=,tp++ | ||
141 | adc $nlo,$nhi,#0 | ||
142 | cmp $tp,$num | ||
143 | bne .Linner | ||
144 | |||
145 | adds $nlo,$nlo,$ahi | ||
146 | mov $nhi,#0 | ||
147 | adc $nhi,$nhi,#0 | ||
148 | adds $nlo,$nlo,$tj | ||
149 | adc $nhi,$nhi,#0 | ||
150 | ldr $tp,[$_bp] @ restore bp | ||
151 | ldr $tj,[$_bpend] @ restore &bp[num] | ||
152 | str $nlo,[$num] @ tp[num-1]= | ||
153 | ldr $n0,[$_n0] @ restore n0 | ||
154 | str $nhi,[$num,#4] @ tp[num]= | ||
155 | |||
156 | cmp $tp,$tj | ||
157 | bne .Louter | ||
158 | |||
159 | ldr $rp,[$_rp] @ pull rp | ||
160 | add $num,$num,#4 @ $num to point at &tp[num] | ||
161 | sub $aj,$num,sp @ "original" num value | ||
162 | mov $tp,sp @ "rewind" $tp | ||
163 | mov $ap,$tp @ "borrow" $ap | ||
164 | sub $np,$np,$aj @ "rewind" $np to &np[0] | ||
165 | |||
166 | subs $tj,$tj,$tj @ "clear" carry flag | ||
167 | .Lsub: ldr $tj,[$tp],#4 | ||
168 | ldr $nj,[$np],#4 | ||
169 | sbcs $tj,$tj,$nj @ tp[j]-np[j] | ||
170 | str $tj,[$rp],#4 @ rp[j]= | ||
171 | teq $tp,$num @ preserve carry | ||
172 | bne .Lsub | ||
173 | sbcs $nhi,$nhi,#0 @ upmost carry | ||
174 | mov $tp,sp @ "rewind" $tp | ||
175 | sub $rp,$rp,$aj @ "rewind" $rp | ||
176 | |||
177 | and $ap,$tp,$nhi | ||
178 | bic $np,$rp,$nhi | ||
179 | orr $ap,$ap,$np @ ap=borrow?tp:rp | ||
180 | |||
181 | .Lcopy: ldr $tj,[$ap],#4 @ copy or in-place refresh | ||
182 | str sp,[$tp],#4 @ zap tp | ||
183 | str $tj,[$rp],#4 | ||
184 | cmp $tp,$num | ||
185 | bne .Lcopy | ||
186 | |||
187 | add sp,$num,#4 @ skip over tp[num+1] | ||
188 | ldmia sp!,{r4-r12,lr} @ restore registers | ||
189 | add sp,sp,#2*4 @ skip over {r0,r2} | ||
190 | mov r0,#1 | ||
191 | .Labrt: tst lr,#1 | ||
192 | moveq pc,lr @ be binary compatible with V4, yet | ||
193 | bx lr @ interoperable with Thumb ISA:-) | ||
194 | .size bn_mul_mont,.-bn_mul_mont | ||
195 | .asciz "Montgomery multiplication for ARMv4, CRYPTOGAMS by <appro\@openssl.org>" | ||
196 | .align 2 | ||
197 | ___ | ||
198 | |||
199 | $code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4 | ||
200 | print $code; | ||
201 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/bn-586.pl b/src/lib/libcrypto/bn/asm/bn-586.pl deleted file mode 100644 index 332ef3e91d..0000000000 --- a/src/lib/libcrypto/bn/asm/bn-586.pl +++ /dev/null | |||
@@ -1,774 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | |||
3 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
4 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
5 | require "x86asm.pl"; | ||
6 | |||
7 | &asm_init($ARGV[0],$0); | ||
8 | |||
9 | $sse2=0; | ||
10 | for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } | ||
11 | |||
12 | &external_label("OPENSSL_ia32cap_P") if ($sse2); | ||
13 | |||
14 | &bn_mul_add_words("bn_mul_add_words"); | ||
15 | &bn_mul_words("bn_mul_words"); | ||
16 | &bn_sqr_words("bn_sqr_words"); | ||
17 | &bn_div_words("bn_div_words"); | ||
18 | &bn_add_words("bn_add_words"); | ||
19 | &bn_sub_words("bn_sub_words"); | ||
20 | &bn_sub_part_words("bn_sub_part_words"); | ||
21 | |||
22 | &asm_finish(); | ||
23 | |||
24 | sub bn_mul_add_words | ||
25 | { | ||
26 | local($name)=@_; | ||
27 | |||
28 | &function_begin_B($name,$sse2?"EXTRN\t_OPENSSL_ia32cap_P:DWORD":""); | ||
29 | |||
30 | $r="eax"; | ||
31 | $a="edx"; | ||
32 | $c="ecx"; | ||
33 | |||
34 | if ($sse2) { | ||
35 | &picmeup("eax","OPENSSL_ia32cap_P"); | ||
36 | &bt(&DWP(0,"eax"),26); | ||
37 | &jnc(&label("maw_non_sse2")); | ||
38 | |||
39 | &mov($r,&wparam(0)); | ||
40 | &mov($a,&wparam(1)); | ||
41 | &mov($c,&wparam(2)); | ||
42 | &movd("mm0",&wparam(3)); # mm0 = w | ||
43 | &pxor("mm1","mm1"); # mm1 = carry_in | ||
44 | &jmp(&label("maw_sse2_entry")); | ||
45 | |||
46 | &set_label("maw_sse2_unrolled",16); | ||
47 | &movd("mm3",&DWP(0,$r,"",0)); # mm3 = r[0] | ||
48 | &paddq("mm1","mm3"); # mm1 = carry_in + r[0] | ||
49 | &movd("mm2",&DWP(0,$a,"",0)); # mm2 = a[0] | ||
50 | &pmuludq("mm2","mm0"); # mm2 = w*a[0] | ||
51 | &movd("mm4",&DWP(4,$a,"",0)); # mm4 = a[1] | ||
52 | &pmuludq("mm4","mm0"); # mm4 = w*a[1] | ||
53 | &movd("mm6",&DWP(8,$a,"",0)); # mm6 = a[2] | ||
54 | &pmuludq("mm6","mm0"); # mm6 = w*a[2] | ||
55 | &movd("mm7",&DWP(12,$a,"",0)); # mm7 = a[3] | ||
56 | &pmuludq("mm7","mm0"); # mm7 = w*a[3] | ||
57 | &paddq("mm1","mm2"); # mm1 = carry_in + r[0] + w*a[0] | ||
58 | &movd("mm3",&DWP(4,$r,"",0)); # mm3 = r[1] | ||
59 | &paddq("mm3","mm4"); # mm3 = r[1] + w*a[1] | ||
60 | &movd("mm5",&DWP(8,$r,"",0)); # mm5 = r[2] | ||
61 | &paddq("mm5","mm6"); # mm5 = r[2] + w*a[2] | ||
62 | &movd("mm4",&DWP(12,$r,"",0)); # mm4 = r[3] | ||
63 | &paddq("mm7","mm4"); # mm7 = r[3] + w*a[3] | ||
64 | &movd(&DWP(0,$r,"",0),"mm1"); | ||
65 | &movd("mm2",&DWP(16,$a,"",0)); # mm2 = a[4] | ||
66 | &pmuludq("mm2","mm0"); # mm2 = w*a[4] | ||
67 | &psrlq("mm1",32); # mm1 = carry0 | ||
68 | &movd("mm4",&DWP(20,$a,"",0)); # mm4 = a[5] | ||
69 | &pmuludq("mm4","mm0"); # mm4 = w*a[5] | ||
70 | &paddq("mm1","mm3"); # mm1 = carry0 + r[1] + w*a[1] | ||
71 | &movd("mm6",&DWP(24,$a,"",0)); # mm6 = a[6] | ||
72 | &pmuludq("mm6","mm0"); # mm6 = w*a[6] | ||
73 | &movd(&DWP(4,$r,"",0),"mm1"); | ||
74 | &psrlq("mm1",32); # mm1 = carry1 | ||
75 | &movd("mm3",&DWP(28,$a,"",0)); # mm3 = a[7] | ||
76 | &add($a,32); | ||
77 | &pmuludq("mm3","mm0"); # mm3 = w*a[7] | ||
78 | &paddq("mm1","mm5"); # mm1 = carry1 + r[2] + w*a[2] | ||
79 | &movd("mm5",&DWP(16,$r,"",0)); # mm5 = r[4] | ||
80 | &paddq("mm2","mm5"); # mm2 = r[4] + w*a[4] | ||
81 | &movd(&DWP(8,$r,"",0),"mm1"); | ||
82 | &psrlq("mm1",32); # mm1 = carry2 | ||
83 | &paddq("mm1","mm7"); # mm1 = carry2 + r[3] + w*a[3] | ||
84 | &movd("mm5",&DWP(20,$r,"",0)); # mm5 = r[5] | ||
85 | &paddq("mm4","mm5"); # mm4 = r[5] + w*a[5] | ||
86 | &movd(&DWP(12,$r,"",0),"mm1"); | ||
87 | &psrlq("mm1",32); # mm1 = carry3 | ||
88 | &paddq("mm1","mm2"); # mm1 = carry3 + r[4] + w*a[4] | ||
89 | &movd("mm5",&DWP(24,$r,"",0)); # mm5 = r[6] | ||
90 | &paddq("mm6","mm5"); # mm6 = r[6] + w*a[6] | ||
91 | &movd(&DWP(16,$r,"",0),"mm1"); | ||
92 | &psrlq("mm1",32); # mm1 = carry4 | ||
93 | &paddq("mm1","mm4"); # mm1 = carry4 + r[5] + w*a[5] | ||
94 | &movd("mm5",&DWP(28,$r,"",0)); # mm5 = r[7] | ||
95 | &paddq("mm3","mm5"); # mm3 = r[7] + w*a[7] | ||
96 | &movd(&DWP(20,$r,"",0),"mm1"); | ||
97 | &psrlq("mm1",32); # mm1 = carry5 | ||
98 | &paddq("mm1","mm6"); # mm1 = carry5 + r[6] + w*a[6] | ||
99 | &movd(&DWP(24,$r,"",0),"mm1"); | ||
100 | &psrlq("mm1",32); # mm1 = carry6 | ||
101 | &paddq("mm1","mm3"); # mm1 = carry6 + r[7] + w*a[7] | ||
102 | &movd(&DWP(28,$r,"",0),"mm1"); | ||
103 | &lea($r,&DWP(32,$r)); | ||
104 | &psrlq("mm1",32); # mm1 = carry_out | ||
105 | |||
106 | &sub($c,8); | ||
107 | &jz(&label("maw_sse2_exit")); | ||
108 | &set_label("maw_sse2_entry"); | ||
109 | &test($c,0xfffffff8); | ||
110 | &jnz(&label("maw_sse2_unrolled")); | ||
111 | |||
112 | &set_label("maw_sse2_loop",4); | ||
113 | &movd("mm2",&DWP(0,$a)); # mm2 = a[i] | ||
114 | &movd("mm3",&DWP(0,$r)); # mm3 = r[i] | ||
115 | &pmuludq("mm2","mm0"); # a[i] *= w | ||
116 | &lea($a,&DWP(4,$a)); | ||
117 | &paddq("mm1","mm3"); # carry += r[i] | ||
118 | &paddq("mm1","mm2"); # carry += a[i]*w | ||
119 | &movd(&DWP(0,$r),"mm1"); # r[i] = carry_low | ||
120 | &sub($c,1); | ||
121 | &psrlq("mm1",32); # carry = carry_high | ||
122 | &lea($r,&DWP(4,$r)); | ||
123 | &jnz(&label("maw_sse2_loop")); | ||
124 | &set_label("maw_sse2_exit"); | ||
125 | &movd("eax","mm1"); # c = carry_out | ||
126 | &emms(); | ||
127 | &ret(); | ||
128 | |||
129 | &set_label("maw_non_sse2",16); | ||
130 | } | ||
131 | |||
132 | # function_begin prologue | ||
133 | &push("ebp"); | ||
134 | &push("ebx"); | ||
135 | &push("esi"); | ||
136 | &push("edi"); | ||
137 | |||
138 | &comment(""); | ||
139 | $Low="eax"; | ||
140 | $High="edx"; | ||
141 | $a="ebx"; | ||
142 | $w="ebp"; | ||
143 | $r="edi"; | ||
144 | $c="esi"; | ||
145 | |||
146 | &xor($c,$c); # clear carry | ||
147 | &mov($r,&wparam(0)); # | ||
148 | |||
149 | &mov("ecx",&wparam(2)); # | ||
150 | &mov($a,&wparam(1)); # | ||
151 | |||
152 | &and("ecx",0xfffffff8); # num / 8 | ||
153 | &mov($w,&wparam(3)); # | ||
154 | |||
155 | &push("ecx"); # Up the stack for a tmp variable | ||
156 | |||
157 | &jz(&label("maw_finish")); | ||
158 | |||
159 | &set_label("maw_loop",16); | ||
160 | |||
161 | for ($i=0; $i<32; $i+=4) | ||
162 | { | ||
163 | &comment("Round $i"); | ||
164 | |||
165 | &mov("eax",&DWP($i,$a)); # *a | ||
166 | &mul($w); # *a * w | ||
167 | &add("eax",$c); # L(t)+= c | ||
168 | &adc("edx",0); # H(t)+=carry | ||
169 | &add("eax",&DWP($i,$r)); # L(t)+= *r | ||
170 | &adc("edx",0); # H(t)+=carry | ||
171 | &mov(&DWP($i,$r),"eax"); # *r= L(t); | ||
172 | &mov($c,"edx"); # c= H(t); | ||
173 | } | ||
174 | |||
175 | &comment(""); | ||
176 | &sub("ecx",8); | ||
177 | &lea($a,&DWP(32,$a)); | ||
178 | &lea($r,&DWP(32,$r)); | ||
179 | &jnz(&label("maw_loop")); | ||
180 | |||
181 | &set_label("maw_finish",0); | ||
182 | &mov("ecx",&wparam(2)); # get num | ||
183 | &and("ecx",7); | ||
184 | &jnz(&label("maw_finish2")); # helps branch prediction | ||
185 | &jmp(&label("maw_end")); | ||
186 | |||
187 | &set_label("maw_finish2",1); | ||
188 | for ($i=0; $i<7; $i++) | ||
189 | { | ||
190 | &comment("Tail Round $i"); | ||
191 | &mov("eax",&DWP($i*4,$a)); # *a | ||
192 | &mul($w); # *a * w | ||
193 | &add("eax",$c); # L(t)+=c | ||
194 | &adc("edx",0); # H(t)+=carry | ||
195 | &add("eax",&DWP($i*4,$r)); # L(t)+= *r | ||
196 | &adc("edx",0); # H(t)+=carry | ||
197 | &dec("ecx") if ($i != 7-1); | ||
198 | &mov(&DWP($i*4,$r),"eax"); # *r= L(t); | ||
199 | &mov($c,"edx"); # c= H(t); | ||
200 | &jz(&label("maw_end")) if ($i != 7-1); | ||
201 | } | ||
202 | &set_label("maw_end",0); | ||
203 | &mov("eax",$c); | ||
204 | |||
205 | &pop("ecx"); # clear variable from | ||
206 | |||
207 | &function_end($name); | ||
208 | } | ||
209 | |||
210 | sub bn_mul_words | ||
211 | { | ||
212 | local($name)=@_; | ||
213 | |||
214 | &function_begin_B($name,$sse2?"EXTRN\t_OPENSSL_ia32cap_P:DWORD":""); | ||
215 | |||
216 | $r="eax"; | ||
217 | $a="edx"; | ||
218 | $c="ecx"; | ||
219 | |||
220 | if ($sse2) { | ||
221 | &picmeup("eax","OPENSSL_ia32cap_P"); | ||
222 | &bt(&DWP(0,"eax"),26); | ||
223 | &jnc(&label("mw_non_sse2")); | ||
224 | |||
225 | &mov($r,&wparam(0)); | ||
226 | &mov($a,&wparam(1)); | ||
227 | &mov($c,&wparam(2)); | ||
228 | &movd("mm0",&wparam(3)); # mm0 = w | ||
229 | &pxor("mm1","mm1"); # mm1 = carry = 0 | ||
230 | |||
231 | &set_label("mw_sse2_loop",16); | ||
232 | &movd("mm2",&DWP(0,$a)); # mm2 = a[i] | ||
233 | &pmuludq("mm2","mm0"); # a[i] *= w | ||
234 | &lea($a,&DWP(4,$a)); | ||
235 | &paddq("mm1","mm2"); # carry += a[i]*w | ||
236 | &movd(&DWP(0,$r),"mm1"); # r[i] = carry_low | ||
237 | &sub($c,1); | ||
238 | &psrlq("mm1",32); # carry = carry_high | ||
239 | &lea($r,&DWP(4,$r)); | ||
240 | &jnz(&label("mw_sse2_loop")); | ||
241 | |||
242 | &movd("eax","mm1"); # return carry | ||
243 | &emms(); | ||
244 | &ret(); | ||
245 | &set_label("mw_non_sse2",16); | ||
246 | } | ||
247 | |||
248 | # function_begin prologue | ||
249 | &push("ebp"); | ||
250 | &push("ebx"); | ||
251 | &push("esi"); | ||
252 | &push("edi"); | ||
253 | |||
254 | &comment(""); | ||
255 | $Low="eax"; | ||
256 | $High="edx"; | ||
257 | $a="ebx"; | ||
258 | $w="ecx"; | ||
259 | $r="edi"; | ||
260 | $c="esi"; | ||
261 | $num="ebp"; | ||
262 | |||
263 | &xor($c,$c); # clear carry | ||
264 | &mov($r,&wparam(0)); # | ||
265 | &mov($a,&wparam(1)); # | ||
266 | &mov($num,&wparam(2)); # | ||
267 | &mov($w,&wparam(3)); # | ||
268 | |||
269 | &and($num,0xfffffff8); # num / 8 | ||
270 | &jz(&label("mw_finish")); | ||
271 | |||
272 | &set_label("mw_loop",0); | ||
273 | for ($i=0; $i<32; $i+=4) | ||
274 | { | ||
275 | &comment("Round $i"); | ||
276 | |||
277 | &mov("eax",&DWP($i,$a,"",0)); # *a | ||
278 | &mul($w); # *a * w | ||
279 | &add("eax",$c); # L(t)+=c | ||
280 | # XXX | ||
281 | |||
282 | &adc("edx",0); # H(t)+=carry | ||
283 | &mov(&DWP($i,$r,"",0),"eax"); # *r= L(t); | ||
284 | |||
285 | &mov($c,"edx"); # c= H(t); | ||
286 | } | ||
287 | |||
288 | &comment(""); | ||
289 | &add($a,32); | ||
290 | &add($r,32); | ||
291 | &sub($num,8); | ||
292 | &jz(&label("mw_finish")); | ||
293 | &jmp(&label("mw_loop")); | ||
294 | |||
295 | &set_label("mw_finish",0); | ||
296 | &mov($num,&wparam(2)); # get num | ||
297 | &and($num,7); | ||
298 | &jnz(&label("mw_finish2")); | ||
299 | &jmp(&label("mw_end")); | ||
300 | |||
301 | &set_label("mw_finish2",1); | ||
302 | for ($i=0; $i<7; $i++) | ||
303 | { | ||
304 | &comment("Tail Round $i"); | ||
305 | &mov("eax",&DWP($i*4,$a,"",0));# *a | ||
306 | &mul($w); # *a * w | ||
307 | &add("eax",$c); # L(t)+=c | ||
308 | # XXX | ||
309 | &adc("edx",0); # H(t)+=carry | ||
310 | &mov(&DWP($i*4,$r,"",0),"eax");# *r= L(t); | ||
311 | &mov($c,"edx"); # c= H(t); | ||
312 | &dec($num) if ($i != 7-1); | ||
313 | &jz(&label("mw_end")) if ($i != 7-1); | ||
314 | } | ||
315 | &set_label("mw_end",0); | ||
316 | &mov("eax",$c); | ||
317 | |||
318 | &function_end($name); | ||
319 | } | ||
320 | |||
321 | sub bn_sqr_words | ||
322 | { | ||
323 | local($name)=@_; | ||
324 | |||
325 | &function_begin_B($name,$sse2?"EXTRN\t_OPENSSL_ia32cap_P:DWORD":""); | ||
326 | |||
327 | $r="eax"; | ||
328 | $a="edx"; | ||
329 | $c="ecx"; | ||
330 | |||
331 | if ($sse2) { | ||
332 | &picmeup("eax","OPENSSL_ia32cap_P"); | ||
333 | &bt(&DWP(0,"eax"),26); | ||
334 | &jnc(&label("sqr_non_sse2")); | ||
335 | |||
336 | &mov($r,&wparam(0)); | ||
337 | &mov($a,&wparam(1)); | ||
338 | &mov($c,&wparam(2)); | ||
339 | |||
340 | &set_label("sqr_sse2_loop",16); | ||
341 | &movd("mm0",&DWP(0,$a)); # mm0 = a[i] | ||
342 | &pmuludq("mm0","mm0"); # a[i] *= a[i] | ||
343 | &lea($a,&DWP(4,$a)); # a++ | ||
344 | &movq(&QWP(0,$r),"mm0"); # r[i] = a[i]*a[i] | ||
345 | &sub($c,1); | ||
346 | &lea($r,&DWP(8,$r)); # r += 2 | ||
347 | &jnz(&label("sqr_sse2_loop")); | ||
348 | |||
349 | &emms(); | ||
350 | &ret(); | ||
351 | &set_label("sqr_non_sse2",16); | ||
352 | } | ||
353 | |||
354 | # function_begin prologue | ||
355 | &push("ebp"); | ||
356 | &push("ebx"); | ||
357 | &push("esi"); | ||
358 | &push("edi"); | ||
359 | |||
360 | &comment(""); | ||
361 | $r="esi"; | ||
362 | $a="edi"; | ||
363 | $num="ebx"; | ||
364 | |||
365 | &mov($r,&wparam(0)); # | ||
366 | &mov($a,&wparam(1)); # | ||
367 | &mov($num,&wparam(2)); # | ||
368 | |||
369 | &and($num,0xfffffff8); # num / 8 | ||
370 | &jz(&label("sw_finish")); | ||
371 | |||
372 | &set_label("sw_loop",0); | ||
373 | for ($i=0; $i<32; $i+=4) | ||
374 | { | ||
375 | &comment("Round $i"); | ||
376 | &mov("eax",&DWP($i,$a,"",0)); # *a | ||
377 | # XXX | ||
378 | &mul("eax"); # *a * *a | ||
379 | &mov(&DWP($i*2,$r,"",0),"eax"); # | ||
380 | &mov(&DWP($i*2+4,$r,"",0),"edx");# | ||
381 | } | ||
382 | |||
383 | &comment(""); | ||
384 | &add($a,32); | ||
385 | &add($r,64); | ||
386 | &sub($num,8); | ||
387 | &jnz(&label("sw_loop")); | ||
388 | |||
389 | &set_label("sw_finish",0); | ||
390 | &mov($num,&wparam(2)); # get num | ||
391 | &and($num,7); | ||
392 | &jz(&label("sw_end")); | ||
393 | |||
394 | for ($i=0; $i<7; $i++) | ||
395 | { | ||
396 | &comment("Tail Round $i"); | ||
397 | &mov("eax",&DWP($i*4,$a,"",0)); # *a | ||
398 | # XXX | ||
399 | &mul("eax"); # *a * *a | ||
400 | &mov(&DWP($i*8,$r,"",0),"eax"); # | ||
401 | &dec($num) if ($i != 7-1); | ||
402 | &mov(&DWP($i*8+4,$r,"",0),"edx"); | ||
403 | &jz(&label("sw_end")) if ($i != 7-1); | ||
404 | } | ||
405 | &set_label("sw_end",0); | ||
406 | |||
407 | &function_end($name); | ||
408 | } | ||
409 | |||
410 | sub bn_div_words | ||
411 | { | ||
412 | local($name)=@_; | ||
413 | |||
414 | &function_begin_B($name,""); | ||
415 | &mov("edx",&wparam(0)); # | ||
416 | &mov("eax",&wparam(1)); # | ||
417 | &mov("ecx",&wparam(2)); # | ||
418 | &div("ecx"); | ||
419 | &ret(); | ||
420 | &function_end_B($name); | ||
421 | } | ||
422 | |||
423 | sub bn_add_words | ||
424 | { | ||
425 | local($name)=@_; | ||
426 | |||
427 | &function_begin($name,""); | ||
428 | |||
429 | &comment(""); | ||
430 | $a="esi"; | ||
431 | $b="edi"; | ||
432 | $c="eax"; | ||
433 | $r="ebx"; | ||
434 | $tmp1="ecx"; | ||
435 | $tmp2="edx"; | ||
436 | $num="ebp"; | ||
437 | |||
438 | &mov($r,&wparam(0)); # get r | ||
439 | &mov($a,&wparam(1)); # get a | ||
440 | &mov($b,&wparam(2)); # get b | ||
441 | &mov($num,&wparam(3)); # get num | ||
442 | &xor($c,$c); # clear carry | ||
443 | &and($num,0xfffffff8); # num / 8 | ||
444 | |||
445 | &jz(&label("aw_finish")); | ||
446 | |||
447 | &set_label("aw_loop",0); | ||
448 | for ($i=0; $i<8; $i++) | ||
449 | { | ||
450 | &comment("Round $i"); | ||
451 | |||
452 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
453 | &mov($tmp2,&DWP($i*4,$b,"",0)); # *b | ||
454 | &add($tmp1,$c); | ||
455 | &mov($c,0); | ||
456 | &adc($c,$c); | ||
457 | &add($tmp1,$tmp2); | ||
458 | &adc($c,0); | ||
459 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
460 | } | ||
461 | |||
462 | &comment(""); | ||
463 | &add($a,32); | ||
464 | &add($b,32); | ||
465 | &add($r,32); | ||
466 | &sub($num,8); | ||
467 | &jnz(&label("aw_loop")); | ||
468 | |||
469 | &set_label("aw_finish",0); | ||
470 | &mov($num,&wparam(3)); # get num | ||
471 | &and($num,7); | ||
472 | &jz(&label("aw_end")); | ||
473 | |||
474 | for ($i=0; $i<7; $i++) | ||
475 | { | ||
476 | &comment("Tail Round $i"); | ||
477 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
478 | &mov($tmp2,&DWP($i*4,$b,"",0));# *b | ||
479 | &add($tmp1,$c); | ||
480 | &mov($c,0); | ||
481 | &adc($c,$c); | ||
482 | &add($tmp1,$tmp2); | ||
483 | &adc($c,0); | ||
484 | &dec($num) if ($i != 6); | ||
485 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
486 | &jz(&label("aw_end")) if ($i != 6); | ||
487 | } | ||
488 | &set_label("aw_end",0); | ||
489 | |||
490 | # &mov("eax",$c); # $c is "eax" | ||
491 | |||
492 | &function_end($name); | ||
493 | } | ||
494 | |||
495 | sub bn_sub_words | ||
496 | { | ||
497 | local($name)=@_; | ||
498 | |||
499 | &function_begin($name,""); | ||
500 | |||
501 | &comment(""); | ||
502 | $a="esi"; | ||
503 | $b="edi"; | ||
504 | $c="eax"; | ||
505 | $r="ebx"; | ||
506 | $tmp1="ecx"; | ||
507 | $tmp2="edx"; | ||
508 | $num="ebp"; | ||
509 | |||
510 | &mov($r,&wparam(0)); # get r | ||
511 | &mov($a,&wparam(1)); # get a | ||
512 | &mov($b,&wparam(2)); # get b | ||
513 | &mov($num,&wparam(3)); # get num | ||
514 | &xor($c,$c); # clear carry | ||
515 | &and($num,0xfffffff8); # num / 8 | ||
516 | |||
517 | &jz(&label("aw_finish")); | ||
518 | |||
519 | &set_label("aw_loop",0); | ||
520 | for ($i=0; $i<8; $i++) | ||
521 | { | ||
522 | &comment("Round $i"); | ||
523 | |||
524 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
525 | &mov($tmp2,&DWP($i*4,$b,"",0)); # *b | ||
526 | &sub($tmp1,$c); | ||
527 | &mov($c,0); | ||
528 | &adc($c,$c); | ||
529 | &sub($tmp1,$tmp2); | ||
530 | &adc($c,0); | ||
531 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
532 | } | ||
533 | |||
534 | &comment(""); | ||
535 | &add($a,32); | ||
536 | &add($b,32); | ||
537 | &add($r,32); | ||
538 | &sub($num,8); | ||
539 | &jnz(&label("aw_loop")); | ||
540 | |||
541 | &set_label("aw_finish",0); | ||
542 | &mov($num,&wparam(3)); # get num | ||
543 | &and($num,7); | ||
544 | &jz(&label("aw_end")); | ||
545 | |||
546 | for ($i=0; $i<7; $i++) | ||
547 | { | ||
548 | &comment("Tail Round $i"); | ||
549 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
550 | &mov($tmp2,&DWP($i*4,$b,"",0));# *b | ||
551 | &sub($tmp1,$c); | ||
552 | &mov($c,0); | ||
553 | &adc($c,$c); | ||
554 | &sub($tmp1,$tmp2); | ||
555 | &adc($c,0); | ||
556 | &dec($num) if ($i != 6); | ||
557 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
558 | &jz(&label("aw_end")) if ($i != 6); | ||
559 | } | ||
560 | &set_label("aw_end",0); | ||
561 | |||
562 | # &mov("eax",$c); # $c is "eax" | ||
563 | |||
564 | &function_end($name); | ||
565 | } | ||
566 | |||
567 | sub bn_sub_part_words | ||
568 | { | ||
569 | local($name)=@_; | ||
570 | |||
571 | &function_begin($name,""); | ||
572 | |||
573 | &comment(""); | ||
574 | $a="esi"; | ||
575 | $b="edi"; | ||
576 | $c="eax"; | ||
577 | $r="ebx"; | ||
578 | $tmp1="ecx"; | ||
579 | $tmp2="edx"; | ||
580 | $num="ebp"; | ||
581 | |||
582 | &mov($r,&wparam(0)); # get r | ||
583 | &mov($a,&wparam(1)); # get a | ||
584 | &mov($b,&wparam(2)); # get b | ||
585 | &mov($num,&wparam(3)); # get num | ||
586 | &xor($c,$c); # clear carry | ||
587 | &and($num,0xfffffff8); # num / 8 | ||
588 | |||
589 | &jz(&label("aw_finish")); | ||
590 | |||
591 | &set_label("aw_loop",0); | ||
592 | for ($i=0; $i<8; $i++) | ||
593 | { | ||
594 | &comment("Round $i"); | ||
595 | |||
596 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
597 | &mov($tmp2,&DWP($i*4,$b,"",0)); # *b | ||
598 | &sub($tmp1,$c); | ||
599 | &mov($c,0); | ||
600 | &adc($c,$c); | ||
601 | &sub($tmp1,$tmp2); | ||
602 | &adc($c,0); | ||
603 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
604 | } | ||
605 | |||
606 | &comment(""); | ||
607 | &add($a,32); | ||
608 | &add($b,32); | ||
609 | &add($r,32); | ||
610 | &sub($num,8); | ||
611 | &jnz(&label("aw_loop")); | ||
612 | |||
613 | &set_label("aw_finish",0); | ||
614 | &mov($num,&wparam(3)); # get num | ||
615 | &and($num,7); | ||
616 | &jz(&label("aw_end")); | ||
617 | |||
618 | for ($i=0; $i<7; $i++) | ||
619 | { | ||
620 | &comment("Tail Round $i"); | ||
621 | &mov($tmp1,&DWP(0,$a,"",0)); # *a | ||
622 | &mov($tmp2,&DWP(0,$b,"",0));# *b | ||
623 | &sub($tmp1,$c); | ||
624 | &mov($c,0); | ||
625 | &adc($c,$c); | ||
626 | &sub($tmp1,$tmp2); | ||
627 | &adc($c,0); | ||
628 | &mov(&DWP(0,$r,"",0),$tmp1); # *r | ||
629 | &add($a, 4); | ||
630 | &add($b, 4); | ||
631 | &add($r, 4); | ||
632 | &dec($num) if ($i != 6); | ||
633 | &jz(&label("aw_end")) if ($i != 6); | ||
634 | } | ||
635 | &set_label("aw_end",0); | ||
636 | |||
637 | &cmp(&wparam(4),0); | ||
638 | &je(&label("pw_end")); | ||
639 | |||
640 | &mov($num,&wparam(4)); # get dl | ||
641 | &cmp($num,0); | ||
642 | &je(&label("pw_end")); | ||
643 | &jge(&label("pw_pos")); | ||
644 | |||
645 | &comment("pw_neg"); | ||
646 | &mov($tmp2,0); | ||
647 | &sub($tmp2,$num); | ||
648 | &mov($num,$tmp2); | ||
649 | &and($num,0xfffffff8); # num / 8 | ||
650 | &jz(&label("pw_neg_finish")); | ||
651 | |||
652 | &set_label("pw_neg_loop",0); | ||
653 | for ($i=0; $i<8; $i++) | ||
654 | { | ||
655 | &comment("dl<0 Round $i"); | ||
656 | |||
657 | &mov($tmp1,0); | ||
658 | &mov($tmp2,&DWP($i*4,$b,"",0)); # *b | ||
659 | &sub($tmp1,$c); | ||
660 | &mov($c,0); | ||
661 | &adc($c,$c); | ||
662 | &sub($tmp1,$tmp2); | ||
663 | &adc($c,0); | ||
664 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
665 | } | ||
666 | |||
667 | &comment(""); | ||
668 | &add($b,32); | ||
669 | &add($r,32); | ||
670 | &sub($num,8); | ||
671 | &jnz(&label("pw_neg_loop")); | ||
672 | |||
673 | &set_label("pw_neg_finish",0); | ||
674 | &mov($tmp2,&wparam(4)); # get dl | ||
675 | &mov($num,0); | ||
676 | &sub($num,$tmp2); | ||
677 | &and($num,7); | ||
678 | &jz(&label("pw_end")); | ||
679 | |||
680 | for ($i=0; $i<7; $i++) | ||
681 | { | ||
682 | &comment("dl<0 Tail Round $i"); | ||
683 | &mov($tmp1,0); | ||
684 | &mov($tmp2,&DWP($i*4,$b,"",0));# *b | ||
685 | &sub($tmp1,$c); | ||
686 | &mov($c,0); | ||
687 | &adc($c,$c); | ||
688 | &sub($tmp1,$tmp2); | ||
689 | &adc($c,0); | ||
690 | &dec($num) if ($i != 6); | ||
691 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
692 | &jz(&label("pw_end")) if ($i != 6); | ||
693 | } | ||
694 | |||
695 | &jmp(&label("pw_end")); | ||
696 | |||
697 | &set_label("pw_pos",0); | ||
698 | |||
699 | &and($num,0xfffffff8); # num / 8 | ||
700 | &jz(&label("pw_pos_finish")); | ||
701 | |||
702 | &set_label("pw_pos_loop",0); | ||
703 | |||
704 | for ($i=0; $i<8; $i++) | ||
705 | { | ||
706 | &comment("dl>0 Round $i"); | ||
707 | |||
708 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
709 | &sub($tmp1,$c); | ||
710 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
711 | &jnc(&label("pw_nc".$i)); | ||
712 | } | ||
713 | |||
714 | &comment(""); | ||
715 | &add($a,32); | ||
716 | &add($r,32); | ||
717 | &sub($num,8); | ||
718 | &jnz(&label("pw_pos_loop")); | ||
719 | |||
720 | &set_label("pw_pos_finish",0); | ||
721 | &mov($num,&wparam(4)); # get dl | ||
722 | &and($num,7); | ||
723 | &jz(&label("pw_end")); | ||
724 | |||
725 | for ($i=0; $i<7; $i++) | ||
726 | { | ||
727 | &comment("dl>0 Tail Round $i"); | ||
728 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
729 | &sub($tmp1,$c); | ||
730 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
731 | &jnc(&label("pw_tail_nc".$i)); | ||
732 | &dec($num) if ($i != 6); | ||
733 | &jz(&label("pw_end")) if ($i != 6); | ||
734 | } | ||
735 | &mov($c,1); | ||
736 | &jmp(&label("pw_end")); | ||
737 | |||
738 | &set_label("pw_nc_loop",0); | ||
739 | for ($i=0; $i<8; $i++) | ||
740 | { | ||
741 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
742 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
743 | &set_label("pw_nc".$i,0); | ||
744 | } | ||
745 | |||
746 | &comment(""); | ||
747 | &add($a,32); | ||
748 | &add($r,32); | ||
749 | &sub($num,8); | ||
750 | &jnz(&label("pw_nc_loop")); | ||
751 | |||
752 | &mov($num,&wparam(4)); # get dl | ||
753 | &and($num,7); | ||
754 | &jz(&label("pw_nc_end")); | ||
755 | |||
756 | for ($i=0; $i<7; $i++) | ||
757 | { | ||
758 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
759 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
760 | &set_label("pw_tail_nc".$i,0); | ||
761 | &dec($num) if ($i != 6); | ||
762 | &jz(&label("pw_nc_end")) if ($i != 6); | ||
763 | } | ||
764 | |||
765 | &set_label("pw_nc_end",0); | ||
766 | &mov($c,0); | ||
767 | |||
768 | &set_label("pw_end",0); | ||
769 | |||
770 | # &mov("eax",$c); # $c is "eax" | ||
771 | |||
772 | &function_end($name); | ||
773 | } | ||
774 | |||
diff --git a/src/lib/libcrypto/bn/asm/co-586.pl b/src/lib/libcrypto/bn/asm/co-586.pl deleted file mode 100644 index 57101a6bd7..0000000000 --- a/src/lib/libcrypto/bn/asm/co-586.pl +++ /dev/null | |||
@@ -1,287 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | |||
3 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
4 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
5 | require "x86asm.pl"; | ||
6 | |||
7 | &asm_init($ARGV[0],$0); | ||
8 | |||
9 | &bn_mul_comba("bn_mul_comba8",8); | ||
10 | &bn_mul_comba("bn_mul_comba4",4); | ||
11 | &bn_sqr_comba("bn_sqr_comba8",8); | ||
12 | &bn_sqr_comba("bn_sqr_comba4",4); | ||
13 | |||
14 | &asm_finish(); | ||
15 | |||
16 | sub mul_add_c | ||
17 | { | ||
18 | local($a,$ai,$b,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; | ||
19 | |||
20 | # pos == -1 if eax and edx are pre-loaded, 0 to load from next | ||
21 | # words, and 1 if load return value | ||
22 | |||
23 | &comment("mul a[$ai]*b[$bi]"); | ||
24 | |||
25 | # "eax" and "edx" will always be pre-loaded. | ||
26 | # &mov("eax",&DWP($ai*4,$a,"",0)) ; | ||
27 | # &mov("edx",&DWP($bi*4,$b,"",0)); | ||
28 | |||
29 | &mul("edx"); | ||
30 | &add($c0,"eax"); | ||
31 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # laod next a | ||
32 | &mov("eax",&wparam(0)) if $pos > 0; # load r[] | ||
33 | ### | ||
34 | &adc($c1,"edx"); | ||
35 | &mov("edx",&DWP(($nb)*4,$b,"",0)) if $pos == 0; # laod next b | ||
36 | &mov("edx",&DWP(($nb)*4,$b,"",0)) if $pos == 1; # laod next b | ||
37 | ### | ||
38 | &adc($c2,0); | ||
39 | # is pos > 1, it means it is the last loop | ||
40 | &mov(&DWP($i*4,"eax","",0),$c0) if $pos > 0; # save r[]; | ||
41 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # laod next a | ||
42 | } | ||
43 | |||
44 | sub sqr_add_c | ||
45 | { | ||
46 | local($r,$a,$ai,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; | ||
47 | |||
48 | # pos == -1 if eax and edx are pre-loaded, 0 to load from next | ||
49 | # words, and 1 if load return value | ||
50 | |||
51 | &comment("sqr a[$ai]*a[$bi]"); | ||
52 | |||
53 | # "eax" and "edx" will always be pre-loaded. | ||
54 | # &mov("eax",&DWP($ai*4,$a,"",0)) ; | ||
55 | # &mov("edx",&DWP($bi*4,$b,"",0)); | ||
56 | |||
57 | if ($ai == $bi) | ||
58 | { &mul("eax");} | ||
59 | else | ||
60 | { &mul("edx");} | ||
61 | &add($c0,"eax"); | ||
62 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a | ||
63 | ### | ||
64 | &adc($c1,"edx"); | ||
65 | &mov("edx",&DWP(($nb)*4,$a,"",0)) if ($pos == 1) && ($na != $nb); | ||
66 | ### | ||
67 | &adc($c2,0); | ||
68 | # is pos > 1, it means it is the last loop | ||
69 | &mov(&DWP($i*4,$r,"",0),$c0) if $pos > 0; # save r[]; | ||
70 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next b | ||
71 | } | ||
72 | |||
73 | sub sqr_add_c2 | ||
74 | { | ||
75 | local($r,$a,$ai,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; | ||
76 | |||
77 | # pos == -1 if eax and edx are pre-loaded, 0 to load from next | ||
78 | # words, and 1 if load return value | ||
79 | |||
80 | &comment("sqr a[$ai]*a[$bi]"); | ||
81 | |||
82 | # "eax" and "edx" will always be pre-loaded. | ||
83 | # &mov("eax",&DWP($ai*4,$a,"",0)) ; | ||
84 | # &mov("edx",&DWP($bi*4,$a,"",0)); | ||
85 | |||
86 | if ($ai == $bi) | ||
87 | { &mul("eax");} | ||
88 | else | ||
89 | { &mul("edx");} | ||
90 | &add("eax","eax"); | ||
91 | ### | ||
92 | &adc("edx","edx"); | ||
93 | ### | ||
94 | &adc($c2,0); | ||
95 | &add($c0,"eax"); | ||
96 | &adc($c1,"edx"); | ||
97 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a | ||
98 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next b | ||
99 | &adc($c2,0); | ||
100 | &mov(&DWP($i*4,$r,"",0),$c0) if $pos > 0; # save r[]; | ||
101 | &mov("edx",&DWP(($nb)*4,$a,"",0)) if ($pos <= 1) && ($na != $nb); | ||
102 | ### | ||
103 | } | ||
104 | |||
105 | sub bn_mul_comba | ||
106 | { | ||
107 | local($name,$num)=@_; | ||
108 | local($a,$b,$c0,$c1,$c2); | ||
109 | local($i,$as,$ae,$bs,$be,$ai,$bi); | ||
110 | local($tot,$end); | ||
111 | |||
112 | &function_begin_B($name,""); | ||
113 | |||
114 | $c0="ebx"; | ||
115 | $c1="ecx"; | ||
116 | $c2="ebp"; | ||
117 | $a="esi"; | ||
118 | $b="edi"; | ||
119 | |||
120 | $as=0; | ||
121 | $ae=0; | ||
122 | $bs=0; | ||
123 | $be=0; | ||
124 | $tot=$num+$num-1; | ||
125 | |||
126 | &push("esi"); | ||
127 | &mov($a,&wparam(1)); | ||
128 | &push("edi"); | ||
129 | &mov($b,&wparam(2)); | ||
130 | &push("ebp"); | ||
131 | &push("ebx"); | ||
132 | |||
133 | &xor($c0,$c0); | ||
134 | &mov("eax",&DWP(0,$a,"",0)); # load the first word | ||
135 | &xor($c1,$c1); | ||
136 | &mov("edx",&DWP(0,$b,"",0)); # load the first second | ||
137 | |||
138 | for ($i=0; $i<$tot; $i++) | ||
139 | { | ||
140 | $ai=$as; | ||
141 | $bi=$bs; | ||
142 | $end=$be+1; | ||
143 | |||
144 | &comment("################## Calculate word $i"); | ||
145 | |||
146 | for ($j=$bs; $j<$end; $j++) | ||
147 | { | ||
148 | &xor($c2,$c2) if ($j == $bs); | ||
149 | if (($j+1) == $end) | ||
150 | { | ||
151 | $v=1; | ||
152 | $v=2 if (($i+1) == $tot); | ||
153 | } | ||
154 | else | ||
155 | { $v=0; } | ||
156 | if (($j+1) != $end) | ||
157 | { | ||
158 | $na=($ai-1); | ||
159 | $nb=($bi+1); | ||
160 | } | ||
161 | else | ||
162 | { | ||
163 | $na=$as+($i < ($num-1)); | ||
164 | $nb=$bs+($i >= ($num-1)); | ||
165 | } | ||
166 | #printf STDERR "[$ai,$bi] -> [$na,$nb]\n"; | ||
167 | &mul_add_c($a,$ai,$b,$bi,$c0,$c1,$c2,$v,$i,$na,$nb); | ||
168 | if ($v) | ||
169 | { | ||
170 | &comment("saved r[$i]"); | ||
171 | # &mov("eax",&wparam(0)); | ||
172 | # &mov(&DWP($i*4,"eax","",0),$c0); | ||
173 | ($c0,$c1,$c2)=($c1,$c2,$c0); | ||
174 | } | ||
175 | $ai--; | ||
176 | $bi++; | ||
177 | } | ||
178 | $as++ if ($i < ($num-1)); | ||
179 | $ae++ if ($i >= ($num-1)); | ||
180 | |||
181 | $bs++ if ($i >= ($num-1)); | ||
182 | $be++ if ($i < ($num-1)); | ||
183 | } | ||
184 | &comment("save r[$i]"); | ||
185 | # &mov("eax",&wparam(0)); | ||
186 | &mov(&DWP($i*4,"eax","",0),$c0); | ||
187 | |||
188 | &pop("ebx"); | ||
189 | &pop("ebp"); | ||
190 | &pop("edi"); | ||
191 | &pop("esi"); | ||
192 | &ret(); | ||
193 | &function_end_B($name); | ||
194 | } | ||
195 | |||
196 | sub bn_sqr_comba | ||
197 | { | ||
198 | local($name,$num)=@_; | ||
199 | local($r,$a,$c0,$c1,$c2)=@_; | ||
200 | local($i,$as,$ae,$bs,$be,$ai,$bi); | ||
201 | local($b,$tot,$end,$half); | ||
202 | |||
203 | &function_begin_B($name,""); | ||
204 | |||
205 | $c0="ebx"; | ||
206 | $c1="ecx"; | ||
207 | $c2="ebp"; | ||
208 | $a="esi"; | ||
209 | $r="edi"; | ||
210 | |||
211 | &push("esi"); | ||
212 | &push("edi"); | ||
213 | &push("ebp"); | ||
214 | &push("ebx"); | ||
215 | &mov($r,&wparam(0)); | ||
216 | &mov($a,&wparam(1)); | ||
217 | &xor($c0,$c0); | ||
218 | &xor($c1,$c1); | ||
219 | &mov("eax",&DWP(0,$a,"",0)); # load the first word | ||
220 | |||
221 | $as=0; | ||
222 | $ae=0; | ||
223 | $bs=0; | ||
224 | $be=0; | ||
225 | $tot=$num+$num-1; | ||
226 | |||
227 | for ($i=0; $i<$tot; $i++) | ||
228 | { | ||
229 | $ai=$as; | ||
230 | $bi=$bs; | ||
231 | $end=$be+1; | ||
232 | |||
233 | &comment("############### Calculate word $i"); | ||
234 | for ($j=$bs; $j<$end; $j++) | ||
235 | { | ||
236 | &xor($c2,$c2) if ($j == $bs); | ||
237 | if (($ai-1) < ($bi+1)) | ||
238 | { | ||
239 | $v=1; | ||
240 | $v=2 if ($i+1) == $tot; | ||
241 | } | ||
242 | else | ||
243 | { $v=0; } | ||
244 | if (!$v) | ||
245 | { | ||
246 | $na=$ai-1; | ||
247 | $nb=$bi+1; | ||
248 | } | ||
249 | else | ||
250 | { | ||
251 | $na=$as+($i < ($num-1)); | ||
252 | $nb=$bs+($i >= ($num-1)); | ||
253 | } | ||
254 | if ($ai == $bi) | ||
255 | { | ||
256 | &sqr_add_c($r,$a,$ai,$bi, | ||
257 | $c0,$c1,$c2,$v,$i,$na,$nb); | ||
258 | } | ||
259 | else | ||
260 | { | ||
261 | &sqr_add_c2($r,$a,$ai,$bi, | ||
262 | $c0,$c1,$c2,$v,$i,$na,$nb); | ||
263 | } | ||
264 | if ($v) | ||
265 | { | ||
266 | &comment("saved r[$i]"); | ||
267 | #&mov(&DWP($i*4,$r,"",0),$c0); | ||
268 | ($c0,$c1,$c2)=($c1,$c2,$c0); | ||
269 | last; | ||
270 | } | ||
271 | $ai--; | ||
272 | $bi++; | ||
273 | } | ||
274 | $as++ if ($i < ($num-1)); | ||
275 | $ae++ if ($i >= ($num-1)); | ||
276 | |||
277 | $bs++ if ($i >= ($num-1)); | ||
278 | $be++ if ($i < ($num-1)); | ||
279 | } | ||
280 | &mov(&DWP($i*4,$r,"",0),$c0); | ||
281 | &pop("ebx"); | ||
282 | &pop("ebp"); | ||
283 | &pop("edi"); | ||
284 | &pop("esi"); | ||
285 | &ret(); | ||
286 | &function_end_B($name); | ||
287 | } | ||
diff --git a/src/lib/libcrypto/bn/asm/ia64.S b/src/lib/libcrypto/bn/asm/ia64.S deleted file mode 100644 index 951abc53ea..0000000000 --- a/src/lib/libcrypto/bn/asm/ia64.S +++ /dev/null | |||
@@ -1,1555 +0,0 @@ | |||
1 | .explicit | ||
2 | .text | ||
3 | .ident "ia64.S, Version 2.1" | ||
4 | .ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>" | ||
5 | |||
6 | // | ||
7 | // ==================================================================== | ||
8 | // Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
9 | // project. | ||
10 | // | ||
11 | // Rights for redistribution and usage in source and binary forms are | ||
12 | // granted according to the OpenSSL license. Warranty of any kind is | ||
13 | // disclaimed. | ||
14 | // ==================================================================== | ||
15 | // | ||
16 | // Version 2.x is Itanium2 re-tune. Few words about how Itanum2 is | ||
17 | // different from Itanium to this module viewpoint. Most notably, is it | ||
18 | // "wider" than Itanium? Can you experience loop scalability as | ||
19 | // discussed in commentary sections? Not really:-( Itanium2 has 6 | ||
20 | // integer ALU ports, i.e. it's 2 ports wider, but it's not enough to | ||
21 | // spin twice as fast, as I need 8 IALU ports. Amount of floating point | ||
22 | // ports is the same, i.e. 2, while I need 4. In other words, to this | ||
23 | // module Itanium2 remains effectively as "wide" as Itanium. Yet it's | ||
24 | // essentially different in respect to this module, and a re-tune was | ||
25 | // required. Well, because some intruction latencies has changed. Most | ||
26 | // noticeably those intensively used: | ||
27 | // | ||
28 | // Itanium Itanium2 | ||
29 | // ldf8 9 6 L2 hit | ||
30 | // ld8 2 1 L1 hit | ||
31 | // getf 2 5 | ||
32 | // xma[->getf] 7[+1] 4[+0] | ||
33 | // add[->st8] 1[+1] 1[+0] | ||
34 | // | ||
35 | // What does it mean? You might ratiocinate that the original code | ||
36 | // should run just faster... Because sum of latencies is smaller... | ||
37 | // Wrong! Note that getf latency increased. This means that if a loop is | ||
38 | // scheduled for lower latency (as they were), then it will suffer from | ||
39 | // stall condition and the code will therefore turn anti-scalable, e.g. | ||
40 | // original bn_mul_words spun at 5*n or 2.5 times slower than expected | ||
41 | // on Itanium2! What to do? Reschedule loops for Itanium2? But then | ||
42 | // Itanium would exhibit anti-scalability. So I've chosen to reschedule | ||
43 | // for worst latency for every instruction aiming for best *all-round* | ||
44 | // performance. | ||
45 | |||
46 | // Q. How much faster does it get? | ||
47 | // A. Here is the output from 'openssl speed rsa dsa' for vanilla | ||
48 | // 0.9.6a compiled with gcc version 2.96 20000731 (Red Hat | ||
49 | // Linux 7.1 2.96-81): | ||
50 | // | ||
51 | // sign verify sign/s verify/s | ||
52 | // rsa 512 bits 0.0036s 0.0003s 275.3 2999.2 | ||
53 | // rsa 1024 bits 0.0203s 0.0011s 49.3 894.1 | ||
54 | // rsa 2048 bits 0.1331s 0.0040s 7.5 250.9 | ||
55 | // rsa 4096 bits 0.9270s 0.0147s 1.1 68.1 | ||
56 | // sign verify sign/s verify/s | ||
57 | // dsa 512 bits 0.0035s 0.0043s 288.3 234.8 | ||
58 | // dsa 1024 bits 0.0111s 0.0135s 90.0 74.2 | ||
59 | // | ||
60 | // And here is similar output but for this assembler | ||
61 | // implementation:-) | ||
62 | // | ||
63 | // sign verify sign/s verify/s | ||
64 | // rsa 512 bits 0.0021s 0.0001s 549.4 9638.5 | ||
65 | // rsa 1024 bits 0.0055s 0.0002s 183.8 4481.1 | ||
66 | // rsa 2048 bits 0.0244s 0.0006s 41.4 1726.3 | ||
67 | // rsa 4096 bits 0.1295s 0.0018s 7.7 561.5 | ||
68 | // sign verify sign/s verify/s | ||
69 | // dsa 512 bits 0.0012s 0.0013s 891.9 756.6 | ||
70 | // dsa 1024 bits 0.0023s 0.0028s 440.4 376.2 | ||
71 | // | ||
72 | // Yes, you may argue that it's not fair comparison as it's | ||
73 | // possible to craft the C implementation with BN_UMULT_HIGH | ||
74 | // inline assembler macro. But of course! Here is the output | ||
75 | // with the macro: | ||
76 | // | ||
77 | // sign verify sign/s verify/s | ||
78 | // rsa 512 bits 0.0020s 0.0002s 495.0 6561.0 | ||
79 | // rsa 1024 bits 0.0086s 0.0004s 116.2 2235.7 | ||
80 | // rsa 2048 bits 0.0519s 0.0015s 19.3 667.3 | ||
81 | // rsa 4096 bits 0.3464s 0.0053s 2.9 187.7 | ||
82 | // sign verify sign/s verify/s | ||
83 | // dsa 512 bits 0.0016s 0.0020s 613.1 510.5 | ||
84 | // dsa 1024 bits 0.0045s 0.0054s 221.0 183.9 | ||
85 | // | ||
86 | // My code is still way faster, huh:-) And I believe that even | ||
87 | // higher performance can be achieved. Note that as keys get | ||
88 | // longer, performance gain is larger. Why? According to the | ||
89 | // profiler there is another player in the field, namely | ||
90 | // BN_from_montgomery consuming larger and larger portion of CPU | ||
91 | // time as keysize decreases. I therefore consider putting effort | ||
92 | // to assembler implementation of the following routine: | ||
93 | // | ||
94 | // void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0) | ||
95 | // { | ||
96 | // int i,j; | ||
97 | // BN_ULONG v; | ||
98 | // | ||
99 | // for (i=0; i<nl; i++) | ||
100 | // { | ||
101 | // v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2); | ||
102 | // nrp++; | ||
103 | // rp++; | ||
104 | // if (((nrp[-1]+=v)&BN_MASK2) < v) | ||
105 | // for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ; | ||
106 | // } | ||
107 | // } | ||
108 | // | ||
109 | // It might as well be beneficial to implement even combaX | ||
110 | // variants, as it appears as it can literally unleash the | ||
111 | // performance (see comment section to bn_mul_comba8 below). | ||
112 | // | ||
113 | // And finally for your reference the output for 0.9.6a compiled | ||
114 | // with SGIcc version 0.01.0-12 (keep in mind that for the moment | ||
115 | // of this writing it's not possible to convince SGIcc to use | ||
116 | // BN_UMULT_HIGH inline assembler macro, yet the code is fast, | ||
117 | // i.e. for a compiler generated one:-): | ||
118 | // | ||
119 | // sign verify sign/s verify/s | ||
120 | // rsa 512 bits 0.0022s 0.0002s 452.7 5894.3 | ||
121 | // rsa 1024 bits 0.0097s 0.0005s 102.7 2002.9 | ||
122 | // rsa 2048 bits 0.0578s 0.0017s 17.3 600.2 | ||
123 | // rsa 4096 bits 0.3838s 0.0061s 2.6 164.5 | ||
124 | // sign verify sign/s verify/s | ||
125 | // dsa 512 bits 0.0018s 0.0022s 547.3 459.6 | ||
126 | // dsa 1024 bits 0.0051s 0.0062s 196.6 161.3 | ||
127 | // | ||
128 | // Oh! Benchmarks were performed on 733MHz Lion-class Itanium | ||
129 | // system running Redhat Linux 7.1 (very special thanks to Ray | ||
130 | // McCaffity of Williams Communications for providing an account). | ||
131 | // | ||
132 | // Q. What's the heck with 'rum 1<<5' at the end of every function? | ||
133 | // A. Well, by clearing the "upper FP registers written" bit of the | ||
134 | // User Mask I want to excuse the kernel from preserving upper | ||
135 | // (f32-f128) FP register bank over process context switch, thus | ||
136 | // minimizing bus bandwidth consumption during the switch (i.e. | ||
137 | // after PKI opration completes and the program is off doing | ||
138 | // something else like bulk symmetric encryption). Having said | ||
139 | // this, I also want to point out that it might be good idea | ||
140 | // to compile the whole toolkit (as well as majority of the | ||
141 | // programs for that matter) with -mfixed-range=f32-f127 command | ||
142 | // line option. No, it doesn't prevent the compiler from writing | ||
143 | // to upper bank, but at least discourages to do so. If you don't | ||
144 | // like the idea you have the option to compile the module with | ||
145 | // -Drum=nop.m in command line. | ||
146 | // | ||
147 | |||
148 | #if defined(_HPUX_SOURCE) && !defined(_LP64) | ||
149 | #define ADDP addp4 | ||
150 | #else | ||
151 | #define ADDP add | ||
152 | #endif | ||
153 | |||
154 | #if 1 | ||
155 | // | ||
156 | // bn_[add|sub]_words routines. | ||
157 | // | ||
158 | // Loops are spinning in 2*(n+5) ticks on Itanuim (provided that the | ||
159 | // data reside in L1 cache, i.e. 2 ticks away). It's possible to | ||
160 | // compress the epilogue and get down to 2*n+6, but at the cost of | ||
161 | // scalability (the neat feature of this implementation is that it | ||
162 | // shall automagically spin in n+5 on "wider" IA-64 implementations:-) | ||
163 | // I consider that the epilogue is short enough as it is to trade tiny | ||
164 | // performance loss on Itanium for scalability. | ||
165 | // | ||
166 | // BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num) | ||
167 | // | ||
168 | .global bn_add_words# | ||
169 | .proc bn_add_words# | ||
170 | .align 64 | ||
171 | .skip 32 // makes the loop body aligned at 64-byte boundary | ||
172 | bn_add_words: | ||
173 | .prologue | ||
174 | .save ar.pfs,r2 | ||
175 | { .mii; alloc r2=ar.pfs,4,12,0,16 | ||
176 | cmp4.le p6,p0=r35,r0 };; | ||
177 | { .mfb; mov r8=r0 // return value | ||
178 | (p6) br.ret.spnt.many b0 };; | ||
179 | |||
180 | { .mib; sub r10=r35,r0,1 | ||
181 | .save ar.lc,r3 | ||
182 | mov r3=ar.lc | ||
183 | brp.loop.imp .L_bn_add_words_ctop,.L_bn_add_words_cend-16 | ||
184 | } | ||
185 | { .mib; ADDP r14=0,r32 // rp | ||
186 | .save pr,r9 | ||
187 | mov r9=pr };; | ||
188 | .body | ||
189 | { .mii; ADDP r15=0,r33 // ap | ||
190 | mov ar.lc=r10 | ||
191 | mov ar.ec=6 } | ||
192 | { .mib; ADDP r16=0,r34 // bp | ||
193 | mov pr.rot=1<<16 };; | ||
194 | |||
195 | .L_bn_add_words_ctop: | ||
196 | { .mii; (p16) ld8 r32=[r16],8 // b=*(bp++) | ||
197 | (p18) add r39=r37,r34 | ||
198 | (p19) cmp.ltu.unc p56,p0=r40,r38 } | ||
199 | { .mfb; (p0) nop.m 0x0 | ||
200 | (p0) nop.f 0x0 | ||
201 | (p0) nop.b 0x0 } | ||
202 | { .mii; (p16) ld8 r35=[r15],8 // a=*(ap++) | ||
203 | (p58) cmp.eq.or p57,p0=-1,r41 // (p20) | ||
204 | (p58) add r41=1,r41 } // (p20) | ||
205 | { .mfb; (p21) st8 [r14]=r42,8 // *(rp++)=r | ||
206 | (p0) nop.f 0x0 | ||
207 | br.ctop.sptk .L_bn_add_words_ctop };; | ||
208 | .L_bn_add_words_cend: | ||
209 | |||
210 | { .mii; | ||
211 | (p59) add r8=1,r8 // return value | ||
212 | mov pr=r9,0x1ffff | ||
213 | mov ar.lc=r3 } | ||
214 | { .mbb; nop.b 0x0 | ||
215 | br.ret.sptk.many b0 };; | ||
216 | .endp bn_add_words# | ||
217 | |||
218 | // | ||
219 | // BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num) | ||
220 | // | ||
221 | .global bn_sub_words# | ||
222 | .proc bn_sub_words# | ||
223 | .align 64 | ||
224 | .skip 32 // makes the loop body aligned at 64-byte boundary | ||
225 | bn_sub_words: | ||
226 | .prologue | ||
227 | .save ar.pfs,r2 | ||
228 | { .mii; alloc r2=ar.pfs,4,12,0,16 | ||
229 | cmp4.le p6,p0=r35,r0 };; | ||
230 | { .mfb; mov r8=r0 // return value | ||
231 | (p6) br.ret.spnt.many b0 };; | ||
232 | |||
233 | { .mib; sub r10=r35,r0,1 | ||
234 | .save ar.lc,r3 | ||
235 | mov r3=ar.lc | ||
236 | brp.loop.imp .L_bn_sub_words_ctop,.L_bn_sub_words_cend-16 | ||
237 | } | ||
238 | { .mib; ADDP r14=0,r32 // rp | ||
239 | .save pr,r9 | ||
240 | mov r9=pr };; | ||
241 | .body | ||
242 | { .mii; ADDP r15=0,r33 // ap | ||
243 | mov ar.lc=r10 | ||
244 | mov ar.ec=6 } | ||
245 | { .mib; ADDP r16=0,r34 // bp | ||
246 | mov pr.rot=1<<16 };; | ||
247 | |||
248 | .L_bn_sub_words_ctop: | ||
249 | { .mii; (p16) ld8 r32=[r16],8 // b=*(bp++) | ||
250 | (p18) sub r39=r37,r34 | ||
251 | (p19) cmp.gtu.unc p56,p0=r40,r38 } | ||
252 | { .mfb; (p0) nop.m 0x0 | ||
253 | (p0) nop.f 0x0 | ||
254 | (p0) nop.b 0x0 } | ||
255 | { .mii; (p16) ld8 r35=[r15],8 // a=*(ap++) | ||
256 | (p58) cmp.eq.or p57,p0=0,r41 // (p20) | ||
257 | (p58) add r41=-1,r41 } // (p20) | ||
258 | { .mbb; (p21) st8 [r14]=r42,8 // *(rp++)=r | ||
259 | (p0) nop.b 0x0 | ||
260 | br.ctop.sptk .L_bn_sub_words_ctop };; | ||
261 | .L_bn_sub_words_cend: | ||
262 | |||
263 | { .mii; | ||
264 | (p59) add r8=1,r8 // return value | ||
265 | mov pr=r9,0x1ffff | ||
266 | mov ar.lc=r3 } | ||
267 | { .mbb; nop.b 0x0 | ||
268 | br.ret.sptk.many b0 };; | ||
269 | .endp bn_sub_words# | ||
270 | #endif | ||
271 | |||
272 | #if 0 | ||
273 | #define XMA_TEMPTATION | ||
274 | #endif | ||
275 | |||
276 | #if 1 | ||
277 | // | ||
278 | // BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) | ||
279 | // | ||
280 | .global bn_mul_words# | ||
281 | .proc bn_mul_words# | ||
282 | .align 64 | ||
283 | .skip 32 // makes the loop body aligned at 64-byte boundary | ||
284 | bn_mul_words: | ||
285 | .prologue | ||
286 | .save ar.pfs,r2 | ||
287 | #ifdef XMA_TEMPTATION | ||
288 | { .mfi; alloc r2=ar.pfs,4,0,0,0 };; | ||
289 | #else | ||
290 | { .mfi; alloc r2=ar.pfs,4,12,0,16 };; | ||
291 | #endif | ||
292 | { .mib; mov r8=r0 // return value | ||
293 | cmp4.le p6,p0=r34,r0 | ||
294 | (p6) br.ret.spnt.many b0 };; | ||
295 | |||
296 | { .mii; sub r10=r34,r0,1 | ||
297 | .save ar.lc,r3 | ||
298 | mov r3=ar.lc | ||
299 | .save pr,r9 | ||
300 | mov r9=pr };; | ||
301 | |||
302 | .body | ||
303 | { .mib; setf.sig f8=r35 // w | ||
304 | mov pr.rot=0x800001<<16 | ||
305 | // ------^----- serves as (p50) at first (p27) | ||
306 | brp.loop.imp .L_bn_mul_words_ctop,.L_bn_mul_words_cend-16 | ||
307 | } | ||
308 | |||
309 | #ifndef XMA_TEMPTATION | ||
310 | |||
311 | { .mmi; ADDP r14=0,r32 // rp | ||
312 | ADDP r15=0,r33 // ap | ||
313 | mov ar.lc=r10 } | ||
314 | { .mmi; mov r40=0 // serves as r35 at first (p27) | ||
315 | mov ar.ec=13 };; | ||
316 | |||
317 | // This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium | ||
318 | // L2 cache (i.e. 9 ticks away) as floating point load/store instructions | ||
319 | // bypass L1 cache and L2 latency is actually best-case scenario for | ||
320 | // ldf8. The loop is not scalable and shall run in 2*(n+12) even on | ||
321 | // "wider" IA-64 implementations. It's a trade-off here. n+24 loop | ||
322 | // would give us ~5% in *overall* performance improvement on "wider" | ||
323 | // IA-64, but would hurt Itanium for about same because of longer | ||
324 | // epilogue. As it's a matter of few percents in either case I've | ||
325 | // chosen to trade the scalability for development time (you can see | ||
326 | // this very instruction sequence in bn_mul_add_words loop which in | ||
327 | // turn is scalable). | ||
328 | .L_bn_mul_words_ctop: | ||
329 | { .mfi; (p25) getf.sig r36=f52 // low | ||
330 | (p21) xmpy.lu f48=f37,f8 | ||
331 | (p28) cmp.ltu p54,p50=r41,r39 } | ||
332 | { .mfi; (p16) ldf8 f32=[r15],8 | ||
333 | (p21) xmpy.hu f40=f37,f8 | ||
334 | (p0) nop.i 0x0 };; | ||
335 | { .mii; (p25) getf.sig r32=f44 // high | ||
336 | .pred.rel "mutex",p50,p54 | ||
337 | (p50) add r40=r38,r35 // (p27) | ||
338 | (p54) add r40=r38,r35,1 } // (p27) | ||
339 | { .mfb; (p28) st8 [r14]=r41,8 | ||
340 | (p0) nop.f 0x0 | ||
341 | br.ctop.sptk .L_bn_mul_words_ctop };; | ||
342 | .L_bn_mul_words_cend: | ||
343 | |||
344 | { .mii; nop.m 0x0 | ||
345 | .pred.rel "mutex",p51,p55 | ||
346 | (p51) add r8=r36,r0 | ||
347 | (p55) add r8=r36,r0,1 } | ||
348 | { .mfb; nop.m 0x0 | ||
349 | nop.f 0x0 | ||
350 | nop.b 0x0 } | ||
351 | |||
352 | #else // XMA_TEMPTATION | ||
353 | |||
354 | setf.sig f37=r0 // serves as carry at (p18) tick | ||
355 | mov ar.lc=r10 | ||
356 | mov ar.ec=5;; | ||
357 | |||
358 | // Most of you examining this code very likely wonder why in the name | ||
359 | // of Intel the following loop is commented out? Indeed, it looks so | ||
360 | // neat that you find it hard to believe that it's something wrong | ||
361 | // with it, right? The catch is that every iteration depends on the | ||
362 | // result from previous one and the latter isn't available instantly. | ||
363 | // The loop therefore spins at the latency of xma minus 1, or in other | ||
364 | // words at 6*(n+4) ticks:-( Compare to the "production" loop above | ||
365 | // that runs in 2*(n+11) where the low latency problem is worked around | ||
366 | // by moving the dependency to one-tick latent interger ALU. Note that | ||
367 | // "distance" between ldf8 and xma is not latency of ldf8, but the | ||
368 | // *difference* between xma and ldf8 latencies. | ||
369 | .L_bn_mul_words_ctop: | ||
370 | { .mfi; (p16) ldf8 f32=[r33],8 | ||
371 | (p18) xma.hu f38=f34,f8,f39 } | ||
372 | { .mfb; (p20) stf8 [r32]=f37,8 | ||
373 | (p18) xma.lu f35=f34,f8,f39 | ||
374 | br.ctop.sptk .L_bn_mul_words_ctop };; | ||
375 | .L_bn_mul_words_cend: | ||
376 | |||
377 | getf.sig r8=f41 // the return value | ||
378 | |||
379 | #endif // XMA_TEMPTATION | ||
380 | |||
381 | { .mii; nop.m 0x0 | ||
382 | mov pr=r9,0x1ffff | ||
383 | mov ar.lc=r3 } | ||
384 | { .mfb; rum 1<<5 // clear um.mfh | ||
385 | nop.f 0x0 | ||
386 | br.ret.sptk.many b0 };; | ||
387 | .endp bn_mul_words# | ||
388 | #endif | ||
389 | |||
390 | #if 1 | ||
391 | // | ||
392 | // BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) | ||
393 | // | ||
394 | .global bn_mul_add_words# | ||
395 | .proc bn_mul_add_words# | ||
396 | .align 64 | ||
397 | .skip 48 // makes the loop body aligned at 64-byte boundary | ||
398 | bn_mul_add_words: | ||
399 | .prologue | ||
400 | .save ar.pfs,r2 | ||
401 | { .mmi; alloc r2=ar.pfs,4,4,0,8 | ||
402 | cmp4.le p6,p0=r34,r0 | ||
403 | .save ar.lc,r3 | ||
404 | mov r3=ar.lc };; | ||
405 | { .mib; mov r8=r0 // return value | ||
406 | sub r10=r34,r0,1 | ||
407 | (p6) br.ret.spnt.many b0 };; | ||
408 | |||
409 | { .mib; setf.sig f8=r35 // w | ||
410 | .save pr,r9 | ||
411 | mov r9=pr | ||
412 | brp.loop.imp .L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16 | ||
413 | } | ||
414 | .body | ||
415 | { .mmi; ADDP r14=0,r32 // rp | ||
416 | ADDP r15=0,r33 // ap | ||
417 | mov ar.lc=r10 } | ||
418 | { .mii; ADDP r16=0,r32 // rp copy | ||
419 | mov pr.rot=0x2001<<16 | ||
420 | // ------^----- serves as (p40) at first (p27) | ||
421 | mov ar.ec=11 };; | ||
422 | |||
423 | // This loop spins in 3*(n+10) ticks on Itanium and in 2*(n+10) on | ||
424 | // Itanium 2. Yes, unlike previous versions it scales:-) Previous | ||
425 | // version was peforming *all* additions in IALU and was starving | ||
426 | // for those even on Itanium 2. In this version one addition is | ||
427 | // moved to FPU and is folded with multiplication. This is at cost | ||
428 | // of propogating the result from previous call to this subroutine | ||
429 | // to L2 cache... In other words negligible even for shorter keys. | ||
430 | // *Overall* performance improvement [over previous version] varies | ||
431 | // from 11 to 22 percent depending on key length. | ||
432 | .L_bn_mul_add_words_ctop: | ||
433 | .pred.rel "mutex",p40,p42 | ||
434 | { .mfi; (p23) getf.sig r36=f45 // low | ||
435 | (p20) xma.lu f42=f36,f8,f50 // low | ||
436 | (p40) add r39=r39,r35 } // (p27) | ||
437 | { .mfi; (p16) ldf8 f32=[r15],8 // *(ap++) | ||
438 | (p20) xma.hu f36=f36,f8,f50 // high | ||
439 | (p42) add r39=r39,r35,1 };; // (p27) | ||
440 | { .mmi; (p24) getf.sig r32=f40 // high | ||
441 | (p16) ldf8 f46=[r16],8 // *(rp1++) | ||
442 | (p40) cmp.ltu p41,p39=r39,r35 } // (p27) | ||
443 | { .mib; (p26) st8 [r14]=r39,8 // *(rp2++) | ||
444 | (p42) cmp.leu p41,p39=r39,r35 // (p27) | ||
445 | br.ctop.sptk .L_bn_mul_add_words_ctop};; | ||
446 | .L_bn_mul_add_words_cend: | ||
447 | |||
448 | { .mmi; .pred.rel "mutex",p40,p42 | ||
449 | (p40) add r8=r35,r0 | ||
450 | (p42) add r8=r35,r0,1 | ||
451 | mov pr=r9,0x1ffff } | ||
452 | { .mib; rum 1<<5 // clear um.mfh | ||
453 | mov ar.lc=r3 | ||
454 | br.ret.sptk.many b0 };; | ||
455 | .endp bn_mul_add_words# | ||
456 | #endif | ||
457 | |||
458 | #if 1 | ||
459 | // | ||
460 | // void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num) | ||
461 | // | ||
462 | .global bn_sqr_words# | ||
463 | .proc bn_sqr_words# | ||
464 | .align 64 | ||
465 | .skip 32 // makes the loop body aligned at 64-byte boundary | ||
466 | bn_sqr_words: | ||
467 | .prologue | ||
468 | .save ar.pfs,r2 | ||
469 | { .mii; alloc r2=ar.pfs,3,0,0,0 | ||
470 | sxt4 r34=r34 };; | ||
471 | { .mii; cmp.le p6,p0=r34,r0 | ||
472 | mov r8=r0 } // return value | ||
473 | { .mfb; ADDP r32=0,r32 | ||
474 | nop.f 0x0 | ||
475 | (p6) br.ret.spnt.many b0 };; | ||
476 | |||
477 | { .mii; sub r10=r34,r0,1 | ||
478 | .save ar.lc,r3 | ||
479 | mov r3=ar.lc | ||
480 | .save pr,r9 | ||
481 | mov r9=pr };; | ||
482 | |||
483 | .body | ||
484 | { .mib; ADDP r33=0,r33 | ||
485 | mov pr.rot=1<<16 | ||
486 | brp.loop.imp .L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16 | ||
487 | } | ||
488 | { .mii; add r34=8,r32 | ||
489 | mov ar.lc=r10 | ||
490 | mov ar.ec=18 };; | ||
491 | |||
492 | // 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's | ||
493 | // possible to compress the epilogue (I'm getting tired to write this | ||
494 | // comment over and over) and get down to 2*n+16 at the cost of | ||
495 | // scalability. The decision will very likely be reconsidered after the | ||
496 | // benchmark program is profiled. I.e. if perfomance gain on Itanium | ||
497 | // will appear larger than loss on "wider" IA-64, then the loop should | ||
498 | // be explicitely split and the epilogue compressed. | ||
499 | .L_bn_sqr_words_ctop: | ||
500 | { .mfi; (p16) ldf8 f32=[r33],8 | ||
501 | (p25) xmpy.lu f42=f41,f41 | ||
502 | (p0) nop.i 0x0 } | ||
503 | { .mib; (p33) stf8 [r32]=f50,16 | ||
504 | (p0) nop.i 0x0 | ||
505 | (p0) nop.b 0x0 } | ||
506 | { .mfi; (p0) nop.m 0x0 | ||
507 | (p25) xmpy.hu f52=f41,f41 | ||
508 | (p0) nop.i 0x0 } | ||
509 | { .mib; (p33) stf8 [r34]=f60,16 | ||
510 | (p0) nop.i 0x0 | ||
511 | br.ctop.sptk .L_bn_sqr_words_ctop };; | ||
512 | .L_bn_sqr_words_cend: | ||
513 | |||
514 | { .mii; nop.m 0x0 | ||
515 | mov pr=r9,0x1ffff | ||
516 | mov ar.lc=r3 } | ||
517 | { .mfb; rum 1<<5 // clear um.mfh | ||
518 | nop.f 0x0 | ||
519 | br.ret.sptk.many b0 };; | ||
520 | .endp bn_sqr_words# | ||
521 | #endif | ||
522 | |||
523 | #if 1 | ||
524 | // Apparently we win nothing by implementing special bn_sqr_comba8. | ||
525 | // Yes, it is possible to reduce the number of multiplications by | ||
526 | // almost factor of two, but then the amount of additions would | ||
527 | // increase by factor of two (as we would have to perform those | ||
528 | // otherwise performed by xma ourselves). Normally we would trade | ||
529 | // anyway as multiplications are way more expensive, but not this | ||
530 | // time... Multiplication kernel is fully pipelined and as we drain | ||
531 | // one 128-bit multiplication result per clock cycle multiplications | ||
532 | // are effectively as inexpensive as additions. Special implementation | ||
533 | // might become of interest for "wider" IA-64 implementation as you'll | ||
534 | // be able to get through the multiplication phase faster (there won't | ||
535 | // be any stall issues as discussed in the commentary section below and | ||
536 | // you therefore will be able to employ all 4 FP units)... But these | ||
537 | // Itanium days it's simply too hard to justify the effort so I just | ||
538 | // drop down to bn_mul_comba8 code:-) | ||
539 | // | ||
540 | // void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a) | ||
541 | // | ||
542 | .global bn_sqr_comba8# | ||
543 | .proc bn_sqr_comba8# | ||
544 | .align 64 | ||
545 | bn_sqr_comba8: | ||
546 | .prologue | ||
547 | .save ar.pfs,r2 | ||
548 | #if defined(_HPUX_SOURCE) && !defined(_LP64) | ||
549 | { .mii; alloc r2=ar.pfs,2,1,0,0 | ||
550 | addp4 r33=0,r33 | ||
551 | addp4 r32=0,r32 };; | ||
552 | { .mii; | ||
553 | #else | ||
554 | { .mii; alloc r2=ar.pfs,2,1,0,0 | ||
555 | #endif | ||
556 | mov r34=r33 | ||
557 | add r14=8,r33 };; | ||
558 | .body | ||
559 | { .mii; add r17=8,r34 | ||
560 | add r15=16,r33 | ||
561 | add r18=16,r34 } | ||
562 | { .mfb; add r16=24,r33 | ||
563 | br .L_cheat_entry_point8 };; | ||
564 | .endp bn_sqr_comba8# | ||
565 | #endif | ||
566 | |||
567 | #if 1 | ||
568 | // I've estimated this routine to run in ~120 ticks, but in reality | ||
569 | // (i.e. according to ar.itc) it takes ~160 ticks. Are those extra | ||
570 | // cycles consumed for instructions fetch? Or did I misinterpret some | ||
571 | // clause in Itanium µ-architecture manual? Comments are welcomed and | ||
572 | // highly appreciated. | ||
573 | // | ||
574 | // On Itanium 2 it takes ~190 ticks. This is because of stalls on | ||
575 | // result from getf.sig. I do nothing about it at this point for | ||
576 | // reasons depicted below. | ||
577 | // | ||
578 | // However! It should be noted that even 160 ticks is darn good result | ||
579 | // as it's over 10 (yes, ten, spelled as t-e-n) times faster than the | ||
580 | // C version (compiled with gcc with inline assembler). I really | ||
581 | // kicked compiler's butt here, didn't I? Yeah! This brings us to the | ||
582 | // following statement. It's damn shame that this routine isn't called | ||
583 | // very often nowadays! According to the profiler most CPU time is | ||
584 | // consumed by bn_mul_add_words called from BN_from_montgomery. In | ||
585 | // order to estimate what we're missing, I've compared the performance | ||
586 | // of this routine against "traditional" implementation, i.e. against | ||
587 | // following routine: | ||
588 | // | ||
589 | // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
590 | // { r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]); | ||
591 | // r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]); | ||
592 | // r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]); | ||
593 | // r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]); | ||
594 | // r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]); | ||
595 | // r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]); | ||
596 | // r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]); | ||
597 | // r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]); | ||
598 | // } | ||
599 | // | ||
600 | // The one below is over 8 times faster than the one above:-( Even | ||
601 | // more reasons to "combafy" bn_mul_add_mont... | ||
602 | // | ||
603 | // And yes, this routine really made me wish there were an optimizing | ||
604 | // assembler! It also feels like it deserves a dedication. | ||
605 | // | ||
606 | // To my wife for being there and to my kids... | ||
607 | // | ||
608 | // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
609 | // | ||
610 | #define carry1 r14 | ||
611 | #define carry2 r15 | ||
612 | #define carry3 r34 | ||
613 | .global bn_mul_comba8# | ||
614 | .proc bn_mul_comba8# | ||
615 | .align 64 | ||
616 | bn_mul_comba8: | ||
617 | .prologue | ||
618 | .save ar.pfs,r2 | ||
619 | #if defined(_HPUX_SOURCE) && !defined(_LP64) | ||
620 | { .mii; alloc r2=ar.pfs,3,0,0,0 | ||
621 | addp4 r33=0,r33 | ||
622 | addp4 r34=0,r34 };; | ||
623 | { .mii; addp4 r32=0,r32 | ||
624 | #else | ||
625 | { .mii; alloc r2=ar.pfs,3,0,0,0 | ||
626 | #endif | ||
627 | add r14=8,r33 | ||
628 | add r17=8,r34 } | ||
629 | .body | ||
630 | { .mii; add r15=16,r33 | ||
631 | add r18=16,r34 | ||
632 | add r16=24,r33 } | ||
633 | .L_cheat_entry_point8: | ||
634 | { .mmi; add r19=24,r34 | ||
635 | |||
636 | ldf8 f32=[r33],32 };; | ||
637 | |||
638 | { .mmi; ldf8 f120=[r34],32 | ||
639 | ldf8 f121=[r17],32 } | ||
640 | { .mmi; ldf8 f122=[r18],32 | ||
641 | ldf8 f123=[r19],32 };; | ||
642 | { .mmi; ldf8 f124=[r34] | ||
643 | ldf8 f125=[r17] } | ||
644 | { .mmi; ldf8 f126=[r18] | ||
645 | ldf8 f127=[r19] } | ||
646 | |||
647 | { .mmi; ldf8 f33=[r14],32 | ||
648 | ldf8 f34=[r15],32 } | ||
649 | { .mmi; ldf8 f35=[r16],32;; | ||
650 | ldf8 f36=[r33] } | ||
651 | { .mmi; ldf8 f37=[r14] | ||
652 | ldf8 f38=[r15] } | ||
653 | { .mfi; ldf8 f39=[r16] | ||
654 | // -------\ Entering multiplier's heaven /------- | ||
655 | // ------------\ /------------ | ||
656 | // -----------------\ /----------------- | ||
657 | // ----------------------\/---------------------- | ||
658 | xma.hu f41=f32,f120,f0 } | ||
659 | { .mfi; xma.lu f40=f32,f120,f0 };; // (*) | ||
660 | { .mfi; xma.hu f51=f32,f121,f0 } | ||
661 | { .mfi; xma.lu f50=f32,f121,f0 };; | ||
662 | { .mfi; xma.hu f61=f32,f122,f0 } | ||
663 | { .mfi; xma.lu f60=f32,f122,f0 };; | ||
664 | { .mfi; xma.hu f71=f32,f123,f0 } | ||
665 | { .mfi; xma.lu f70=f32,f123,f0 };; | ||
666 | { .mfi; xma.hu f81=f32,f124,f0 } | ||
667 | { .mfi; xma.lu f80=f32,f124,f0 };; | ||
668 | { .mfi; xma.hu f91=f32,f125,f0 } | ||
669 | { .mfi; xma.lu f90=f32,f125,f0 };; | ||
670 | { .mfi; xma.hu f101=f32,f126,f0 } | ||
671 | { .mfi; xma.lu f100=f32,f126,f0 };; | ||
672 | { .mfi; xma.hu f111=f32,f127,f0 } | ||
673 | { .mfi; xma.lu f110=f32,f127,f0 };;// | ||
674 | // (*) You can argue that splitting at every second bundle would | ||
675 | // prevent "wider" IA-64 implementations from achieving the peak | ||
676 | // performance. Well, not really... The catch is that if you | ||
677 | // intend to keep 4 FP units busy by splitting at every fourth | ||
678 | // bundle and thus perform these 16 multiplications in 4 ticks, | ||
679 | // the first bundle *below* would stall because the result from | ||
680 | // the first xma bundle *above* won't be available for another 3 | ||
681 | // ticks (if not more, being an optimist, I assume that "wider" | ||
682 | // implementation will have same latency:-). This stall will hold | ||
683 | // you back and the performance would be as if every second bundle | ||
684 | // were split *anyway*... | ||
685 | { .mfi; getf.sig r16=f40 | ||
686 | xma.hu f42=f33,f120,f41 | ||
687 | add r33=8,r32 } | ||
688 | { .mfi; xma.lu f41=f33,f120,f41 };; | ||
689 | { .mfi; getf.sig r24=f50 | ||
690 | xma.hu f52=f33,f121,f51 } | ||
691 | { .mfi; xma.lu f51=f33,f121,f51 };; | ||
692 | { .mfi; st8 [r32]=r16,16 | ||
693 | xma.hu f62=f33,f122,f61 } | ||
694 | { .mfi; xma.lu f61=f33,f122,f61 };; | ||
695 | { .mfi; xma.hu f72=f33,f123,f71 } | ||
696 | { .mfi; xma.lu f71=f33,f123,f71 };; | ||
697 | { .mfi; xma.hu f82=f33,f124,f81 } | ||
698 | { .mfi; xma.lu f81=f33,f124,f81 };; | ||
699 | { .mfi; xma.hu f92=f33,f125,f91 } | ||
700 | { .mfi; xma.lu f91=f33,f125,f91 };; | ||
701 | { .mfi; xma.hu f102=f33,f126,f101 } | ||
702 | { .mfi; xma.lu f101=f33,f126,f101 };; | ||
703 | { .mfi; xma.hu f112=f33,f127,f111 } | ||
704 | { .mfi; xma.lu f111=f33,f127,f111 };;// | ||
705 | //-------------------------------------------------// | ||
706 | { .mfi; getf.sig r25=f41 | ||
707 | xma.hu f43=f34,f120,f42 } | ||
708 | { .mfi; xma.lu f42=f34,f120,f42 };; | ||
709 | { .mfi; getf.sig r16=f60 | ||
710 | xma.hu f53=f34,f121,f52 } | ||
711 | { .mfi; xma.lu f52=f34,f121,f52 };; | ||
712 | { .mfi; getf.sig r17=f51 | ||
713 | xma.hu f63=f34,f122,f62 | ||
714 | add r25=r25,r24 } | ||
715 | { .mfi; xma.lu f62=f34,f122,f62 | ||
716 | mov carry1=0 };; | ||
717 | { .mfi; cmp.ltu p6,p0=r25,r24 | ||
718 | xma.hu f73=f34,f123,f72 } | ||
719 | { .mfi; xma.lu f72=f34,f123,f72 };; | ||
720 | { .mfi; st8 [r33]=r25,16 | ||
721 | xma.hu f83=f34,f124,f82 | ||
722 | (p6) add carry1=1,carry1 } | ||
723 | { .mfi; xma.lu f82=f34,f124,f82 };; | ||
724 | { .mfi; xma.hu f93=f34,f125,f92 } | ||
725 | { .mfi; xma.lu f92=f34,f125,f92 };; | ||
726 | { .mfi; xma.hu f103=f34,f126,f102 } | ||
727 | { .mfi; xma.lu f102=f34,f126,f102 };; | ||
728 | { .mfi; xma.hu f113=f34,f127,f112 } | ||
729 | { .mfi; xma.lu f112=f34,f127,f112 };;// | ||
730 | //-------------------------------------------------// | ||
731 | { .mfi; getf.sig r18=f42 | ||
732 | xma.hu f44=f35,f120,f43 | ||
733 | add r17=r17,r16 } | ||
734 | { .mfi; xma.lu f43=f35,f120,f43 };; | ||
735 | { .mfi; getf.sig r24=f70 | ||
736 | xma.hu f54=f35,f121,f53 } | ||
737 | { .mfi; mov carry2=0 | ||
738 | xma.lu f53=f35,f121,f53 };; | ||
739 | { .mfi; getf.sig r25=f61 | ||
740 | xma.hu f64=f35,f122,f63 | ||
741 | cmp.ltu p7,p0=r17,r16 } | ||
742 | { .mfi; add r18=r18,r17 | ||
743 | xma.lu f63=f35,f122,f63 };; | ||
744 | { .mfi; getf.sig r26=f52 | ||
745 | xma.hu f74=f35,f123,f73 | ||
746 | (p7) add carry2=1,carry2 } | ||
747 | { .mfi; cmp.ltu p7,p0=r18,r17 | ||
748 | xma.lu f73=f35,f123,f73 | ||
749 | add r18=r18,carry1 };; | ||
750 | { .mfi; | ||
751 | xma.hu f84=f35,f124,f83 | ||
752 | (p7) add carry2=1,carry2 } | ||
753 | { .mfi; cmp.ltu p7,p0=r18,carry1 | ||
754 | xma.lu f83=f35,f124,f83 };; | ||
755 | { .mfi; st8 [r32]=r18,16 | ||
756 | xma.hu f94=f35,f125,f93 | ||
757 | (p7) add carry2=1,carry2 } | ||
758 | { .mfi; xma.lu f93=f35,f125,f93 };; | ||
759 | { .mfi; xma.hu f104=f35,f126,f103 } | ||
760 | { .mfi; xma.lu f103=f35,f126,f103 };; | ||
761 | { .mfi; xma.hu f114=f35,f127,f113 } | ||
762 | { .mfi; mov carry1=0 | ||
763 | xma.lu f113=f35,f127,f113 | ||
764 | add r25=r25,r24 };;// | ||
765 | //-------------------------------------------------// | ||
766 | { .mfi; getf.sig r27=f43 | ||
767 | xma.hu f45=f36,f120,f44 | ||
768 | cmp.ltu p6,p0=r25,r24 } | ||
769 | { .mfi; xma.lu f44=f36,f120,f44 | ||
770 | add r26=r26,r25 };; | ||
771 | { .mfi; getf.sig r16=f80 | ||
772 | xma.hu f55=f36,f121,f54 | ||
773 | (p6) add carry1=1,carry1 } | ||
774 | { .mfi; xma.lu f54=f36,f121,f54 };; | ||
775 | { .mfi; getf.sig r17=f71 | ||
776 | xma.hu f65=f36,f122,f64 | ||
777 | cmp.ltu p6,p0=r26,r25 } | ||
778 | { .mfi; xma.lu f64=f36,f122,f64 | ||
779 | add r27=r27,r26 };; | ||
780 | { .mfi; getf.sig r18=f62 | ||
781 | xma.hu f75=f36,f123,f74 | ||
782 | (p6) add carry1=1,carry1 } | ||
783 | { .mfi; cmp.ltu p6,p0=r27,r26 | ||
784 | xma.lu f74=f36,f123,f74 | ||
785 | add r27=r27,carry2 };; | ||
786 | { .mfi; getf.sig r19=f53 | ||
787 | xma.hu f85=f36,f124,f84 | ||
788 | (p6) add carry1=1,carry1 } | ||
789 | { .mfi; xma.lu f84=f36,f124,f84 | ||
790 | cmp.ltu p6,p0=r27,carry2 };; | ||
791 | { .mfi; st8 [r33]=r27,16 | ||
792 | xma.hu f95=f36,f125,f94 | ||
793 | (p6) add carry1=1,carry1 } | ||
794 | { .mfi; xma.lu f94=f36,f125,f94 };; | ||
795 | { .mfi; xma.hu f105=f36,f126,f104 } | ||
796 | { .mfi; mov carry2=0 | ||
797 | xma.lu f104=f36,f126,f104 | ||
798 | add r17=r17,r16 };; | ||
799 | { .mfi; xma.hu f115=f36,f127,f114 | ||
800 | cmp.ltu p7,p0=r17,r16 } | ||
801 | { .mfi; xma.lu f114=f36,f127,f114 | ||
802 | add r18=r18,r17 };;// | ||
803 | //-------------------------------------------------// | ||
804 | { .mfi; getf.sig r20=f44 | ||
805 | xma.hu f46=f37,f120,f45 | ||
806 | (p7) add carry2=1,carry2 } | ||
807 | { .mfi; cmp.ltu p7,p0=r18,r17 | ||
808 | xma.lu f45=f37,f120,f45 | ||
809 | add r19=r19,r18 };; | ||
810 | { .mfi; getf.sig r24=f90 | ||
811 | xma.hu f56=f37,f121,f55 } | ||
812 | { .mfi; xma.lu f55=f37,f121,f55 };; | ||
813 | { .mfi; getf.sig r25=f81 | ||
814 | xma.hu f66=f37,f122,f65 | ||
815 | (p7) add carry2=1,carry2 } | ||
816 | { .mfi; cmp.ltu p7,p0=r19,r18 | ||
817 | xma.lu f65=f37,f122,f65 | ||
818 | add r20=r20,r19 };; | ||
819 | { .mfi; getf.sig r26=f72 | ||
820 | xma.hu f76=f37,f123,f75 | ||
821 | (p7) add carry2=1,carry2 } | ||
822 | { .mfi; cmp.ltu p7,p0=r20,r19 | ||
823 | xma.lu f75=f37,f123,f75 | ||
824 | add r20=r20,carry1 };; | ||
825 | { .mfi; getf.sig r27=f63 | ||
826 | xma.hu f86=f37,f124,f85 | ||
827 | (p7) add carry2=1,carry2 } | ||
828 | { .mfi; xma.lu f85=f37,f124,f85 | ||
829 | cmp.ltu p7,p0=r20,carry1 };; | ||
830 | { .mfi; getf.sig r28=f54 | ||
831 | xma.hu f96=f37,f125,f95 | ||
832 | (p7) add carry2=1,carry2 } | ||
833 | { .mfi; st8 [r32]=r20,16 | ||
834 | xma.lu f95=f37,f125,f95 };; | ||
835 | { .mfi; xma.hu f106=f37,f126,f105 } | ||
836 | { .mfi; mov carry1=0 | ||
837 | xma.lu f105=f37,f126,f105 | ||
838 | add r25=r25,r24 };; | ||
839 | { .mfi; xma.hu f116=f37,f127,f115 | ||
840 | cmp.ltu p6,p0=r25,r24 } | ||
841 | { .mfi; xma.lu f115=f37,f127,f115 | ||
842 | add r26=r26,r25 };;// | ||
843 | //-------------------------------------------------// | ||
844 | { .mfi; getf.sig r29=f45 | ||
845 | xma.hu f47=f38,f120,f46 | ||
846 | (p6) add carry1=1,carry1 } | ||
847 | { .mfi; cmp.ltu p6,p0=r26,r25 | ||
848 | xma.lu f46=f38,f120,f46 | ||
849 | add r27=r27,r26 };; | ||
850 | { .mfi; getf.sig r16=f100 | ||
851 | xma.hu f57=f38,f121,f56 | ||
852 | (p6) add carry1=1,carry1 } | ||
853 | { .mfi; cmp.ltu p6,p0=r27,r26 | ||
854 | xma.lu f56=f38,f121,f56 | ||
855 | add r28=r28,r27 };; | ||
856 | { .mfi; getf.sig r17=f91 | ||
857 | xma.hu f67=f38,f122,f66 | ||
858 | (p6) add carry1=1,carry1 } | ||
859 | { .mfi; cmp.ltu p6,p0=r28,r27 | ||
860 | xma.lu f66=f38,f122,f66 | ||
861 | add r29=r29,r28 };; | ||
862 | { .mfi; getf.sig r18=f82 | ||
863 | xma.hu f77=f38,f123,f76 | ||
864 | (p6) add carry1=1,carry1 } | ||
865 | { .mfi; cmp.ltu p6,p0=r29,r28 | ||
866 | xma.lu f76=f38,f123,f76 | ||
867 | add r29=r29,carry2 };; | ||
868 | { .mfi; getf.sig r19=f73 | ||
869 | xma.hu f87=f38,f124,f86 | ||
870 | (p6) add carry1=1,carry1 } | ||
871 | { .mfi; xma.lu f86=f38,f124,f86 | ||
872 | cmp.ltu p6,p0=r29,carry2 };; | ||
873 | { .mfi; getf.sig r20=f64 | ||
874 | xma.hu f97=f38,f125,f96 | ||
875 | (p6) add carry1=1,carry1 } | ||
876 | { .mfi; st8 [r33]=r29,16 | ||
877 | xma.lu f96=f38,f125,f96 };; | ||
878 | { .mfi; getf.sig r21=f55 | ||
879 | xma.hu f107=f38,f126,f106 } | ||
880 | { .mfi; mov carry2=0 | ||
881 | xma.lu f106=f38,f126,f106 | ||
882 | add r17=r17,r16 };; | ||
883 | { .mfi; xma.hu f117=f38,f127,f116 | ||
884 | cmp.ltu p7,p0=r17,r16 } | ||
885 | { .mfi; xma.lu f116=f38,f127,f116 | ||
886 | add r18=r18,r17 };;// | ||
887 | //-------------------------------------------------// | ||
888 | { .mfi; getf.sig r22=f46 | ||
889 | xma.hu f48=f39,f120,f47 | ||
890 | (p7) add carry2=1,carry2 } | ||
891 | { .mfi; cmp.ltu p7,p0=r18,r17 | ||
892 | xma.lu f47=f39,f120,f47 | ||
893 | add r19=r19,r18 };; | ||
894 | { .mfi; getf.sig r24=f110 | ||
895 | xma.hu f58=f39,f121,f57 | ||
896 | (p7) add carry2=1,carry2 } | ||
897 | { .mfi; cmp.ltu p7,p0=r19,r18 | ||
898 | xma.lu f57=f39,f121,f57 | ||
899 | add r20=r20,r19 };; | ||
900 | { .mfi; getf.sig r25=f101 | ||
901 | xma.hu f68=f39,f122,f67 | ||
902 | (p7) add carry2=1,carry2 } | ||
903 | { .mfi; cmp.ltu p7,p0=r20,r19 | ||
904 | xma.lu f67=f39,f122,f67 | ||
905 | add r21=r21,r20 };; | ||
906 | { .mfi; getf.sig r26=f92 | ||
907 | xma.hu f78=f39,f123,f77 | ||
908 | (p7) add carry2=1,carry2 } | ||
909 | { .mfi; cmp.ltu p7,p0=r21,r20 | ||
910 | xma.lu f77=f39,f123,f77 | ||
911 | add r22=r22,r21 };; | ||
912 | { .mfi; getf.sig r27=f83 | ||
913 | xma.hu f88=f39,f124,f87 | ||
914 | (p7) add carry2=1,carry2 } | ||
915 | { .mfi; cmp.ltu p7,p0=r22,r21 | ||
916 | xma.lu f87=f39,f124,f87 | ||
917 | add r22=r22,carry1 };; | ||
918 | { .mfi; getf.sig r28=f74 | ||
919 | xma.hu f98=f39,f125,f97 | ||
920 | (p7) add carry2=1,carry2 } | ||
921 | { .mfi; xma.lu f97=f39,f125,f97 | ||
922 | cmp.ltu p7,p0=r22,carry1 };; | ||
923 | { .mfi; getf.sig r29=f65 | ||
924 | xma.hu f108=f39,f126,f107 | ||
925 | (p7) add carry2=1,carry2 } | ||
926 | { .mfi; st8 [r32]=r22,16 | ||
927 | xma.lu f107=f39,f126,f107 };; | ||
928 | { .mfi; getf.sig r30=f56 | ||
929 | xma.hu f118=f39,f127,f117 } | ||
930 | { .mfi; xma.lu f117=f39,f127,f117 };;// | ||
931 | //-------------------------------------------------// | ||
932 | // Leaving muliplier's heaven... Quite a ride, huh? | ||
933 | |||
934 | { .mii; getf.sig r31=f47 | ||
935 | add r25=r25,r24 | ||
936 | mov carry1=0 };; | ||
937 | { .mii; getf.sig r16=f111 | ||
938 | cmp.ltu p6,p0=r25,r24 | ||
939 | add r26=r26,r25 };; | ||
940 | { .mfb; getf.sig r17=f102 } | ||
941 | { .mii; | ||
942 | (p6) add carry1=1,carry1 | ||
943 | cmp.ltu p6,p0=r26,r25 | ||
944 | add r27=r27,r26 };; | ||
945 | { .mfb; nop.m 0x0 } | ||
946 | { .mii; | ||
947 | (p6) add carry1=1,carry1 | ||
948 | cmp.ltu p6,p0=r27,r26 | ||
949 | add r28=r28,r27 };; | ||
950 | { .mii; getf.sig r18=f93 | ||
951 | add r17=r17,r16 | ||
952 | mov carry3=0 } | ||
953 | { .mii; | ||
954 | (p6) add carry1=1,carry1 | ||
955 | cmp.ltu p6,p0=r28,r27 | ||
956 | add r29=r29,r28 };; | ||
957 | { .mii; getf.sig r19=f84 | ||
958 | cmp.ltu p7,p0=r17,r16 } | ||
959 | { .mii; | ||
960 | (p6) add carry1=1,carry1 | ||
961 | cmp.ltu p6,p0=r29,r28 | ||
962 | add r30=r30,r29 };; | ||
963 | { .mii; getf.sig r20=f75 | ||
964 | add r18=r18,r17 } | ||
965 | { .mii; | ||
966 | (p6) add carry1=1,carry1 | ||
967 | cmp.ltu p6,p0=r30,r29 | ||
968 | add r31=r31,r30 };; | ||
969 | { .mfb; getf.sig r21=f66 } | ||
970 | { .mii; (p7) add carry3=1,carry3 | ||
971 | cmp.ltu p7,p0=r18,r17 | ||
972 | add r19=r19,r18 } | ||
973 | { .mfb; nop.m 0x0 } | ||
974 | { .mii; | ||
975 | (p6) add carry1=1,carry1 | ||
976 | cmp.ltu p6,p0=r31,r30 | ||
977 | add r31=r31,carry2 };; | ||
978 | { .mfb; getf.sig r22=f57 } | ||
979 | { .mii; (p7) add carry3=1,carry3 | ||
980 | cmp.ltu p7,p0=r19,r18 | ||
981 | add r20=r20,r19 } | ||
982 | { .mfb; nop.m 0x0 } | ||
983 | { .mii; | ||
984 | (p6) add carry1=1,carry1 | ||
985 | cmp.ltu p6,p0=r31,carry2 };; | ||
986 | { .mfb; getf.sig r23=f48 } | ||
987 | { .mii; (p7) add carry3=1,carry3 | ||
988 | cmp.ltu p7,p0=r20,r19 | ||
989 | add r21=r21,r20 } | ||
990 | { .mii; | ||
991 | (p6) add carry1=1,carry1 } | ||
992 | { .mfb; st8 [r33]=r31,16 };; | ||
993 | |||
994 | { .mfb; getf.sig r24=f112 } | ||
995 | { .mii; (p7) add carry3=1,carry3 | ||
996 | cmp.ltu p7,p0=r21,r20 | ||
997 | add r22=r22,r21 };; | ||
998 | { .mfb; getf.sig r25=f103 } | ||
999 | { .mii; (p7) add carry3=1,carry3 | ||
1000 | cmp.ltu p7,p0=r22,r21 | ||
1001 | add r23=r23,r22 };; | ||
1002 | { .mfb; getf.sig r26=f94 } | ||
1003 | { .mii; (p7) add carry3=1,carry3 | ||
1004 | cmp.ltu p7,p0=r23,r22 | ||
1005 | add r23=r23,carry1 };; | ||
1006 | { .mfb; getf.sig r27=f85 } | ||
1007 | { .mii; (p7) add carry3=1,carry3 | ||
1008 | cmp.ltu p7,p8=r23,carry1};; | ||
1009 | { .mii; getf.sig r28=f76 | ||
1010 | add r25=r25,r24 | ||
1011 | mov carry1=0 } | ||
1012 | { .mii; st8 [r32]=r23,16 | ||
1013 | (p7) add carry2=1,carry3 | ||
1014 | (p8) add carry2=0,carry3 };; | ||
1015 | |||
1016 | { .mfb; nop.m 0x0 } | ||
1017 | { .mii; getf.sig r29=f67 | ||
1018 | cmp.ltu p6,p0=r25,r24 | ||
1019 | add r26=r26,r25 };; | ||
1020 | { .mfb; getf.sig r30=f58 } | ||
1021 | { .mii; | ||
1022 | (p6) add carry1=1,carry1 | ||
1023 | cmp.ltu p6,p0=r26,r25 | ||
1024 | add r27=r27,r26 };; | ||
1025 | { .mfb; getf.sig r16=f113 } | ||
1026 | { .mii; | ||
1027 | (p6) add carry1=1,carry1 | ||
1028 | cmp.ltu p6,p0=r27,r26 | ||
1029 | add r28=r28,r27 };; | ||
1030 | { .mfb; getf.sig r17=f104 } | ||
1031 | { .mii; | ||
1032 | (p6) add carry1=1,carry1 | ||
1033 | cmp.ltu p6,p0=r28,r27 | ||
1034 | add r29=r29,r28 };; | ||
1035 | { .mfb; getf.sig r18=f95 } | ||
1036 | { .mii; | ||
1037 | (p6) add carry1=1,carry1 | ||
1038 | cmp.ltu p6,p0=r29,r28 | ||
1039 | add r30=r30,r29 };; | ||
1040 | { .mii; getf.sig r19=f86 | ||
1041 | add r17=r17,r16 | ||
1042 | mov carry3=0 } | ||
1043 | { .mii; | ||
1044 | (p6) add carry1=1,carry1 | ||
1045 | cmp.ltu p6,p0=r30,r29 | ||
1046 | add r30=r30,carry2 };; | ||
1047 | { .mii; getf.sig r20=f77 | ||
1048 | cmp.ltu p7,p0=r17,r16 | ||
1049 | add r18=r18,r17 } | ||
1050 | { .mii; | ||
1051 | (p6) add carry1=1,carry1 | ||
1052 | cmp.ltu p6,p0=r30,carry2 };; | ||
1053 | { .mfb; getf.sig r21=f68 } | ||
1054 | { .mii; st8 [r33]=r30,16 | ||
1055 | (p6) add carry1=1,carry1 };; | ||
1056 | |||
1057 | { .mfb; getf.sig r24=f114 } | ||
1058 | { .mii; (p7) add carry3=1,carry3 | ||
1059 | cmp.ltu p7,p0=r18,r17 | ||
1060 | add r19=r19,r18 };; | ||
1061 | { .mfb; getf.sig r25=f105 } | ||
1062 | { .mii; (p7) add carry3=1,carry3 | ||
1063 | cmp.ltu p7,p0=r19,r18 | ||
1064 | add r20=r20,r19 };; | ||
1065 | { .mfb; getf.sig r26=f96 } | ||
1066 | { .mii; (p7) add carry3=1,carry3 | ||
1067 | cmp.ltu p7,p0=r20,r19 | ||
1068 | add r21=r21,r20 };; | ||
1069 | { .mfb; getf.sig r27=f87 } | ||
1070 | { .mii; (p7) add carry3=1,carry3 | ||
1071 | cmp.ltu p7,p0=r21,r20 | ||
1072 | add r21=r21,carry1 };; | ||
1073 | { .mib; getf.sig r28=f78 | ||
1074 | add r25=r25,r24 } | ||
1075 | { .mib; (p7) add carry3=1,carry3 | ||
1076 | cmp.ltu p7,p8=r21,carry1};; | ||
1077 | { .mii; st8 [r32]=r21,16 | ||
1078 | (p7) add carry2=1,carry3 | ||
1079 | (p8) add carry2=0,carry3 } | ||
1080 | |||
1081 | { .mii; mov carry1=0 | ||
1082 | cmp.ltu p6,p0=r25,r24 | ||
1083 | add r26=r26,r25 };; | ||
1084 | { .mfb; getf.sig r16=f115 } | ||
1085 | { .mii; | ||
1086 | (p6) add carry1=1,carry1 | ||
1087 | cmp.ltu p6,p0=r26,r25 | ||
1088 | add r27=r27,r26 };; | ||
1089 | { .mfb; getf.sig r17=f106 } | ||
1090 | { .mii; | ||
1091 | (p6) add carry1=1,carry1 | ||
1092 | cmp.ltu p6,p0=r27,r26 | ||
1093 | add r28=r28,r27 };; | ||
1094 | { .mfb; getf.sig r18=f97 } | ||
1095 | { .mii; | ||
1096 | (p6) add carry1=1,carry1 | ||
1097 | cmp.ltu p6,p0=r28,r27 | ||
1098 | add r28=r28,carry2 };; | ||
1099 | { .mib; getf.sig r19=f88 | ||
1100 | add r17=r17,r16 } | ||
1101 | { .mib; | ||
1102 | (p6) add carry1=1,carry1 | ||
1103 | cmp.ltu p6,p0=r28,carry2 };; | ||
1104 | { .mii; st8 [r33]=r28,16 | ||
1105 | (p6) add carry1=1,carry1 } | ||
1106 | |||
1107 | { .mii; mov carry2=0 | ||
1108 | cmp.ltu p7,p0=r17,r16 | ||
1109 | add r18=r18,r17 };; | ||
1110 | { .mfb; getf.sig r24=f116 } | ||
1111 | { .mii; (p7) add carry2=1,carry2 | ||
1112 | cmp.ltu p7,p0=r18,r17 | ||
1113 | add r19=r19,r18 };; | ||
1114 | { .mfb; getf.sig r25=f107 } | ||
1115 | { .mii; (p7) add carry2=1,carry2 | ||
1116 | cmp.ltu p7,p0=r19,r18 | ||
1117 | add r19=r19,carry1 };; | ||
1118 | { .mfb; getf.sig r26=f98 } | ||
1119 | { .mii; (p7) add carry2=1,carry2 | ||
1120 | cmp.ltu p7,p0=r19,carry1};; | ||
1121 | { .mii; st8 [r32]=r19,16 | ||
1122 | (p7) add carry2=1,carry2 } | ||
1123 | |||
1124 | { .mfb; add r25=r25,r24 };; | ||
1125 | |||
1126 | { .mfb; getf.sig r16=f117 } | ||
1127 | { .mii; mov carry1=0 | ||
1128 | cmp.ltu p6,p0=r25,r24 | ||
1129 | add r26=r26,r25 };; | ||
1130 | { .mfb; getf.sig r17=f108 } | ||
1131 | { .mii; | ||
1132 | (p6) add carry1=1,carry1 | ||
1133 | cmp.ltu p6,p0=r26,r25 | ||
1134 | add r26=r26,carry2 };; | ||
1135 | { .mfb; nop.m 0x0 } | ||
1136 | { .mii; | ||
1137 | (p6) add carry1=1,carry1 | ||
1138 | cmp.ltu p6,p0=r26,carry2 };; | ||
1139 | { .mii; st8 [r33]=r26,16 | ||
1140 | (p6) add carry1=1,carry1 } | ||
1141 | |||
1142 | { .mfb; add r17=r17,r16 };; | ||
1143 | { .mfb; getf.sig r24=f118 } | ||
1144 | { .mii; mov carry2=0 | ||
1145 | cmp.ltu p7,p0=r17,r16 | ||
1146 | add r17=r17,carry1 };; | ||
1147 | { .mii; (p7) add carry2=1,carry2 | ||
1148 | cmp.ltu p7,p0=r17,carry1};; | ||
1149 | { .mii; st8 [r32]=r17 | ||
1150 | (p7) add carry2=1,carry2 };; | ||
1151 | { .mfb; add r24=r24,carry2 };; | ||
1152 | { .mib; st8 [r33]=r24 } | ||
1153 | |||
1154 | { .mib; rum 1<<5 // clear um.mfh | ||
1155 | br.ret.sptk.many b0 };; | ||
1156 | .endp bn_mul_comba8# | ||
1157 | #undef carry3 | ||
1158 | #undef carry2 | ||
1159 | #undef carry1 | ||
1160 | #endif | ||
1161 | |||
1162 | #if 1 | ||
1163 | // It's possible to make it faster (see comment to bn_sqr_comba8), but | ||
1164 | // I reckon it doesn't worth the effort. Basically because the routine | ||
1165 | // (actually both of them) practically never called... So I just play | ||
1166 | // same trick as with bn_sqr_comba8. | ||
1167 | // | ||
1168 | // void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a) | ||
1169 | // | ||
1170 | .global bn_sqr_comba4# | ||
1171 | .proc bn_sqr_comba4# | ||
1172 | .align 64 | ||
1173 | bn_sqr_comba4: | ||
1174 | .prologue | ||
1175 | .save ar.pfs,r2 | ||
1176 | #if defined(_HPUX_SOURCE) && !defined(_LP64) | ||
1177 | { .mii; alloc r2=ar.pfs,2,1,0,0 | ||
1178 | addp4 r32=0,r32 | ||
1179 | addp4 r33=0,r33 };; | ||
1180 | { .mii; | ||
1181 | #else | ||
1182 | { .mii; alloc r2=ar.pfs,2,1,0,0 | ||
1183 | #endif | ||
1184 | mov r34=r33 | ||
1185 | add r14=8,r33 };; | ||
1186 | .body | ||
1187 | { .mii; add r17=8,r34 | ||
1188 | add r15=16,r33 | ||
1189 | add r18=16,r34 } | ||
1190 | { .mfb; add r16=24,r33 | ||
1191 | br .L_cheat_entry_point4 };; | ||
1192 | .endp bn_sqr_comba4# | ||
1193 | #endif | ||
1194 | |||
1195 | #if 1 | ||
1196 | // Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever... | ||
1197 | // | ||
1198 | // void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
1199 | // | ||
1200 | #define carry1 r14 | ||
1201 | #define carry2 r15 | ||
1202 | .global bn_mul_comba4# | ||
1203 | .proc bn_mul_comba4# | ||
1204 | .align 64 | ||
1205 | bn_mul_comba4: | ||
1206 | .prologue | ||
1207 | .save ar.pfs,r2 | ||
1208 | #if defined(_HPUX_SOURCE) && !defined(_LP64) | ||
1209 | { .mii; alloc r2=ar.pfs,3,0,0,0 | ||
1210 | addp4 r33=0,r33 | ||
1211 | addp4 r34=0,r34 };; | ||
1212 | { .mii; addp4 r32=0,r32 | ||
1213 | #else | ||
1214 | { .mii; alloc r2=ar.pfs,3,0,0,0 | ||
1215 | #endif | ||
1216 | add r14=8,r33 | ||
1217 | add r17=8,r34 } | ||
1218 | .body | ||
1219 | { .mii; add r15=16,r33 | ||
1220 | add r18=16,r34 | ||
1221 | add r16=24,r33 };; | ||
1222 | .L_cheat_entry_point4: | ||
1223 | { .mmi; add r19=24,r34 | ||
1224 | |||
1225 | ldf8 f32=[r33] } | ||
1226 | |||
1227 | { .mmi; ldf8 f120=[r34] | ||
1228 | ldf8 f121=[r17] };; | ||
1229 | { .mmi; ldf8 f122=[r18] | ||
1230 | ldf8 f123=[r19] } | ||
1231 | |||
1232 | { .mmi; ldf8 f33=[r14] | ||
1233 | ldf8 f34=[r15] } | ||
1234 | { .mfi; ldf8 f35=[r16] | ||
1235 | |||
1236 | xma.hu f41=f32,f120,f0 } | ||
1237 | { .mfi; xma.lu f40=f32,f120,f0 };; | ||
1238 | { .mfi; xma.hu f51=f32,f121,f0 } | ||
1239 | { .mfi; xma.lu f50=f32,f121,f0 };; | ||
1240 | { .mfi; xma.hu f61=f32,f122,f0 } | ||
1241 | { .mfi; xma.lu f60=f32,f122,f0 };; | ||
1242 | { .mfi; xma.hu f71=f32,f123,f0 } | ||
1243 | { .mfi; xma.lu f70=f32,f123,f0 };;// | ||
1244 | // Major stall takes place here, and 3 more places below. Result from | ||
1245 | // first xma is not available for another 3 ticks. | ||
1246 | { .mfi; getf.sig r16=f40 | ||
1247 | xma.hu f42=f33,f120,f41 | ||
1248 | add r33=8,r32 } | ||
1249 | { .mfi; xma.lu f41=f33,f120,f41 };; | ||
1250 | { .mfi; getf.sig r24=f50 | ||
1251 | xma.hu f52=f33,f121,f51 } | ||
1252 | { .mfi; xma.lu f51=f33,f121,f51 };; | ||
1253 | { .mfi; st8 [r32]=r16,16 | ||
1254 | xma.hu f62=f33,f122,f61 } | ||
1255 | { .mfi; xma.lu f61=f33,f122,f61 };; | ||
1256 | { .mfi; xma.hu f72=f33,f123,f71 } | ||
1257 | { .mfi; xma.lu f71=f33,f123,f71 };;// | ||
1258 | //-------------------------------------------------// | ||
1259 | { .mfi; getf.sig r25=f41 | ||
1260 | xma.hu f43=f34,f120,f42 } | ||
1261 | { .mfi; xma.lu f42=f34,f120,f42 };; | ||
1262 | { .mfi; getf.sig r16=f60 | ||
1263 | xma.hu f53=f34,f121,f52 } | ||
1264 | { .mfi; xma.lu f52=f34,f121,f52 };; | ||
1265 | { .mfi; getf.sig r17=f51 | ||
1266 | xma.hu f63=f34,f122,f62 | ||
1267 | add r25=r25,r24 } | ||
1268 | { .mfi; mov carry1=0 | ||
1269 | xma.lu f62=f34,f122,f62 };; | ||
1270 | { .mfi; st8 [r33]=r25,16 | ||
1271 | xma.hu f73=f34,f123,f72 | ||
1272 | cmp.ltu p6,p0=r25,r24 } | ||
1273 | { .mfi; xma.lu f72=f34,f123,f72 };;// | ||
1274 | //-------------------------------------------------// | ||
1275 | { .mfi; getf.sig r18=f42 | ||
1276 | xma.hu f44=f35,f120,f43 | ||
1277 | (p6) add carry1=1,carry1 } | ||
1278 | { .mfi; add r17=r17,r16 | ||
1279 | xma.lu f43=f35,f120,f43 | ||
1280 | mov carry2=0 };; | ||
1281 | { .mfi; getf.sig r24=f70 | ||
1282 | xma.hu f54=f35,f121,f53 | ||
1283 | cmp.ltu p7,p0=r17,r16 } | ||
1284 | { .mfi; xma.lu f53=f35,f121,f53 };; | ||
1285 | { .mfi; getf.sig r25=f61 | ||
1286 | xma.hu f64=f35,f122,f63 | ||
1287 | add r18=r18,r17 } | ||
1288 | { .mfi; xma.lu f63=f35,f122,f63 | ||
1289 | (p7) add carry2=1,carry2 };; | ||
1290 | { .mfi; getf.sig r26=f52 | ||
1291 | xma.hu f74=f35,f123,f73 | ||
1292 | cmp.ltu p7,p0=r18,r17 } | ||
1293 | { .mfi; xma.lu f73=f35,f123,f73 | ||
1294 | add r18=r18,carry1 };; | ||
1295 | //-------------------------------------------------// | ||
1296 | { .mii; st8 [r32]=r18,16 | ||
1297 | (p7) add carry2=1,carry2 | ||
1298 | cmp.ltu p7,p0=r18,carry1 };; | ||
1299 | |||
1300 | { .mfi; getf.sig r27=f43 // last major stall | ||
1301 | (p7) add carry2=1,carry2 };; | ||
1302 | { .mii; getf.sig r16=f71 | ||
1303 | add r25=r25,r24 | ||
1304 | mov carry1=0 };; | ||
1305 | { .mii; getf.sig r17=f62 | ||
1306 | cmp.ltu p6,p0=r25,r24 | ||
1307 | add r26=r26,r25 };; | ||
1308 | { .mii; | ||
1309 | (p6) add carry1=1,carry1 | ||
1310 | cmp.ltu p6,p0=r26,r25 | ||
1311 | add r27=r27,r26 };; | ||
1312 | { .mii; | ||
1313 | (p6) add carry1=1,carry1 | ||
1314 | cmp.ltu p6,p0=r27,r26 | ||
1315 | add r27=r27,carry2 };; | ||
1316 | { .mii; getf.sig r18=f53 | ||
1317 | (p6) add carry1=1,carry1 | ||
1318 | cmp.ltu p6,p0=r27,carry2 };; | ||
1319 | { .mfi; st8 [r33]=r27,16 | ||
1320 | (p6) add carry1=1,carry1 } | ||
1321 | |||
1322 | { .mii; getf.sig r19=f44 | ||
1323 | add r17=r17,r16 | ||
1324 | mov carry2=0 };; | ||
1325 | { .mii; getf.sig r24=f72 | ||
1326 | cmp.ltu p7,p0=r17,r16 | ||
1327 | add r18=r18,r17 };; | ||
1328 | { .mii; (p7) add carry2=1,carry2 | ||
1329 | cmp.ltu p7,p0=r18,r17 | ||
1330 | add r19=r19,r18 };; | ||
1331 | { .mii; (p7) add carry2=1,carry2 | ||
1332 | cmp.ltu p7,p0=r19,r18 | ||
1333 | add r19=r19,carry1 };; | ||
1334 | { .mii; getf.sig r25=f63 | ||
1335 | (p7) add carry2=1,carry2 | ||
1336 | cmp.ltu p7,p0=r19,carry1};; | ||
1337 | { .mii; st8 [r32]=r19,16 | ||
1338 | (p7) add carry2=1,carry2 } | ||
1339 | |||
1340 | { .mii; getf.sig r26=f54 | ||
1341 | add r25=r25,r24 | ||
1342 | mov carry1=0 };; | ||
1343 | { .mii; getf.sig r16=f73 | ||
1344 | cmp.ltu p6,p0=r25,r24 | ||
1345 | add r26=r26,r25 };; | ||
1346 | { .mii; | ||
1347 | (p6) add carry1=1,carry1 | ||
1348 | cmp.ltu p6,p0=r26,r25 | ||
1349 | add r26=r26,carry2 };; | ||
1350 | { .mii; getf.sig r17=f64 | ||
1351 | (p6) add carry1=1,carry1 | ||
1352 | cmp.ltu p6,p0=r26,carry2 };; | ||
1353 | { .mii; st8 [r33]=r26,16 | ||
1354 | (p6) add carry1=1,carry1 } | ||
1355 | |||
1356 | { .mii; getf.sig r24=f74 | ||
1357 | add r17=r17,r16 | ||
1358 | mov carry2=0 };; | ||
1359 | { .mii; cmp.ltu p7,p0=r17,r16 | ||
1360 | add r17=r17,carry1 };; | ||
1361 | |||
1362 | { .mii; (p7) add carry2=1,carry2 | ||
1363 | cmp.ltu p7,p0=r17,carry1};; | ||
1364 | { .mii; st8 [r32]=r17,16 | ||
1365 | (p7) add carry2=1,carry2 };; | ||
1366 | |||
1367 | { .mii; add r24=r24,carry2 };; | ||
1368 | { .mii; st8 [r33]=r24 } | ||
1369 | |||
1370 | { .mib; rum 1<<5 // clear um.mfh | ||
1371 | br.ret.sptk.many b0 };; | ||
1372 | .endp bn_mul_comba4# | ||
1373 | #undef carry2 | ||
1374 | #undef carry1 | ||
1375 | #endif | ||
1376 | |||
1377 | #if 1 | ||
1378 | // | ||
1379 | // BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
1380 | // | ||
1381 | // In the nutshell it's a port of my MIPS III/IV implementation. | ||
1382 | // | ||
1383 | #define AT r14 | ||
1384 | #define H r16 | ||
1385 | #define HH r20 | ||
1386 | #define L r17 | ||
1387 | #define D r18 | ||
1388 | #define DH r22 | ||
1389 | #define I r21 | ||
1390 | |||
1391 | #if 0 | ||
1392 | // Some preprocessors (most notably HP-UX) appear to be allergic to | ||
1393 | // macros enclosed to parenthesis [as these three were]. | ||
1394 | #define cont p16 | ||
1395 | #define break p0 // p20 | ||
1396 | #define equ p24 | ||
1397 | #else | ||
1398 | cont=p16 | ||
1399 | break=p0 | ||
1400 | equ=p24 | ||
1401 | #endif | ||
1402 | |||
1403 | .global abort# | ||
1404 | .global bn_div_words# | ||
1405 | .proc bn_div_words# | ||
1406 | .align 64 | ||
1407 | bn_div_words: | ||
1408 | .prologue | ||
1409 | .save ar.pfs,r2 | ||
1410 | { .mii; alloc r2=ar.pfs,3,5,0,8 | ||
1411 | .save b0,r3 | ||
1412 | mov r3=b0 | ||
1413 | .save pr,r10 | ||
1414 | mov r10=pr };; | ||
1415 | { .mmb; cmp.eq p6,p0=r34,r0 | ||
1416 | mov r8=-1 | ||
1417 | (p6) br.ret.spnt.many b0 };; | ||
1418 | |||
1419 | .body | ||
1420 | { .mii; mov H=r32 // save h | ||
1421 | mov ar.ec=0 // don't rotate at exit | ||
1422 | mov pr.rot=0 } | ||
1423 | { .mii; mov L=r33 // save l | ||
1424 | mov r36=r0 };; | ||
1425 | |||
1426 | .L_divw_shift: // -vv- note signed comparison | ||
1427 | { .mfi; (p0) cmp.lt p16,p0=r0,r34 // d | ||
1428 | (p0) shladd r33=r34,1,r0 } | ||
1429 | { .mfb; (p0) add r35=1,r36 | ||
1430 | (p0) nop.f 0x0 | ||
1431 | (p16) br.wtop.dpnt .L_divw_shift };; | ||
1432 | |||
1433 | { .mii; mov D=r34 | ||
1434 | shr.u DH=r34,32 | ||
1435 | sub r35=64,r36 };; | ||
1436 | { .mii; setf.sig f7=DH | ||
1437 | shr.u AT=H,r35 | ||
1438 | mov I=r36 };; | ||
1439 | { .mib; cmp.ne p6,p0=r0,AT | ||
1440 | shl H=H,r36 | ||
1441 | (p6) br.call.spnt.clr b0=abort };; // overflow, die... | ||
1442 | |||
1443 | { .mfi; fcvt.xuf.s1 f7=f7 | ||
1444 | shr.u AT=L,r35 };; | ||
1445 | { .mii; shl L=L,r36 | ||
1446 | or H=H,AT };; | ||
1447 | |||
1448 | { .mii; nop.m 0x0 | ||
1449 | cmp.leu p6,p0=D,H;; | ||
1450 | (p6) sub H=H,D } | ||
1451 | |||
1452 | { .mlx; setf.sig f14=D | ||
1453 | movl AT=0xffffffff };; | ||
1454 | /////////////////////////////////////////////////////////// | ||
1455 | { .mii; setf.sig f6=H | ||
1456 | shr.u HH=H,32;; | ||
1457 | cmp.eq p6,p7=HH,DH };; | ||
1458 | { .mfb; | ||
1459 | (p6) setf.sig f8=AT | ||
1460 | (p7) fcvt.xuf.s1 f6=f6 | ||
1461 | (p7) br.call.sptk b6=.L_udiv64_32_b6 };; | ||
1462 | |||
1463 | { .mfi; getf.sig r33=f8 // q | ||
1464 | xmpy.lu f9=f8,f14 } | ||
1465 | { .mfi; xmpy.hu f10=f8,f14 | ||
1466 | shrp H=H,L,32 };; | ||
1467 | |||
1468 | { .mmi; getf.sig r35=f9 // tl | ||
1469 | getf.sig r31=f10 };; // th | ||
1470 | |||
1471 | .L_divw_1st_iter: | ||
1472 | { .mii; (p0) add r32=-1,r33 | ||
1473 | (p0) cmp.eq equ,cont=HH,r31 };; | ||
1474 | { .mii; (p0) cmp.ltu p8,p0=r35,D | ||
1475 | (p0) sub r34=r35,D | ||
1476 | (equ) cmp.leu break,cont=r35,H };; | ||
1477 | { .mib; (cont) cmp.leu cont,break=HH,r31 | ||
1478 | (p8) add r31=-1,r31 | ||
1479 | (cont) br.wtop.spnt .L_divw_1st_iter };; | ||
1480 | /////////////////////////////////////////////////////////// | ||
1481 | { .mii; sub H=H,r35 | ||
1482 | shl r8=r33,32 | ||
1483 | shl L=L,32 };; | ||
1484 | /////////////////////////////////////////////////////////// | ||
1485 | { .mii; setf.sig f6=H | ||
1486 | shr.u HH=H,32;; | ||
1487 | cmp.eq p6,p7=HH,DH };; | ||
1488 | { .mfb; | ||
1489 | (p6) setf.sig f8=AT | ||
1490 | (p7) fcvt.xuf.s1 f6=f6 | ||
1491 | (p7) br.call.sptk b6=.L_udiv64_32_b6 };; | ||
1492 | |||
1493 | { .mfi; getf.sig r33=f8 // q | ||
1494 | xmpy.lu f9=f8,f14 } | ||
1495 | { .mfi; xmpy.hu f10=f8,f14 | ||
1496 | shrp H=H,L,32 };; | ||
1497 | |||
1498 | { .mmi; getf.sig r35=f9 // tl | ||
1499 | getf.sig r31=f10 };; // th | ||
1500 | |||
1501 | .L_divw_2nd_iter: | ||
1502 | { .mii; (p0) add r32=-1,r33 | ||
1503 | (p0) cmp.eq equ,cont=HH,r31 };; | ||
1504 | { .mii; (p0) cmp.ltu p8,p0=r35,D | ||
1505 | (p0) sub r34=r35,D | ||
1506 | (equ) cmp.leu break,cont=r35,H };; | ||
1507 | { .mib; (cont) cmp.leu cont,break=HH,r31 | ||
1508 | (p8) add r31=-1,r31 | ||
1509 | (cont) br.wtop.spnt .L_divw_2nd_iter };; | ||
1510 | /////////////////////////////////////////////////////////// | ||
1511 | { .mii; sub H=H,r35 | ||
1512 | or r8=r8,r33 | ||
1513 | mov ar.pfs=r2 };; | ||
1514 | { .mii; shr.u r9=H,I // remainder if anybody wants it | ||
1515 | mov pr=r10,0x1ffff } | ||
1516 | { .mfb; br.ret.sptk.many b0 };; | ||
1517 | |||
1518 | // Unsigned 64 by 32 (well, by 64 for the moment) bit integer division | ||
1519 | // procedure. | ||
1520 | // | ||
1521 | // inputs: f6 = (double)a, f7 = (double)b | ||
1522 | // output: f8 = (int)(a/b) | ||
1523 | // clobbered: f8,f9,f10,f11,pred | ||
1524 | pred=p15 | ||
1525 | // One can argue that this snippet is copyrighted to Intel | ||
1526 | // Corporation, as it's essentially identical to one of those | ||
1527 | // found in "Divide, Square Root and Remainder" section at | ||
1528 | // http://www.intel.com/software/products/opensource/libraries/num.htm. | ||
1529 | // Yes, I admit that the referred code was used as template, | ||
1530 | // but after I realized that there hardly is any other instruction | ||
1531 | // sequence which would perform this operation. I mean I figure that | ||
1532 | // any independent attempt to implement high-performance division | ||
1533 | // will result in code virtually identical to the Intel code. It | ||
1534 | // should be noted though that below division kernel is 1 cycle | ||
1535 | // faster than Intel one (note commented splits:-), not to mention | ||
1536 | // original prologue (rather lack of one) and epilogue. | ||
1537 | .align 32 | ||
1538 | .skip 16 | ||
1539 | .L_udiv64_32_b6: | ||
1540 | frcpa.s1 f8,pred=f6,f7;; // [0] y0 = 1 / b | ||
1541 | |||
1542 | (pred) fnma.s1 f9=f7,f8,f1 // [5] e0 = 1 - b * y0 | ||
1543 | (pred) fmpy.s1 f10=f6,f8;; // [5] q0 = a * y0 | ||
1544 | (pred) fmpy.s1 f11=f9,f9 // [10] e1 = e0 * e0 | ||
1545 | (pred) fma.s1 f10=f9,f10,f10;; // [10] q1 = q0 + e0 * q0 | ||
1546 | (pred) fma.s1 f8=f9,f8,f8 //;; // [15] y1 = y0 + e0 * y0 | ||
1547 | (pred) fma.s1 f9=f11,f10,f10;; // [15] q2 = q1 + e1 * q1 | ||
1548 | (pred) fma.s1 f8=f11,f8,f8 //;; // [20] y2 = y1 + e1 * y1 | ||
1549 | (pred) fnma.s1 f10=f7,f9,f6;; // [20] r2 = a - b * q2 | ||
1550 | (pred) fma.s1 f8=f10,f8,f9;; // [25] q3 = q2 + r2 * y2 | ||
1551 | |||
1552 | fcvt.fxu.trunc.s1 f8=f8 // [30] q = trunc(q3) | ||
1553 | br.ret.sptk.many b6;; | ||
1554 | .endp bn_div_words# | ||
1555 | #endif | ||
diff --git a/src/lib/libcrypto/bn/asm/pa-risc2.s b/src/lib/libcrypto/bn/asm/pa-risc2.s deleted file mode 100644 index f3b16290eb..0000000000 --- a/src/lib/libcrypto/bn/asm/pa-risc2.s +++ /dev/null | |||
@@ -1,1618 +0,0 @@ | |||
1 | ; | ||
2 | ; PA-RISC 2.0 implementation of bn_asm code, based on the | ||
3 | ; 64-bit version of the code. This code is effectively the | ||
4 | ; same as the 64-bit version except the register model is | ||
5 | ; slightly different given all values must be 32-bit between | ||
6 | ; function calls. Thus the 64-bit return values are returned | ||
7 | ; in %ret0 and %ret1 vs just %ret0 as is done in 64-bit | ||
8 | ; | ||
9 | ; | ||
10 | ; This code is approximately 2x faster than the C version | ||
11 | ; for RSA/DSA. | ||
12 | ; | ||
13 | ; See http://devresource.hp.com/ for more details on the PA-RISC | ||
14 | ; architecture. Also see the book "PA-RISC 2.0 Architecture" | ||
15 | ; by Gerry Kane for information on the instruction set architecture. | ||
16 | ; | ||
17 | ; Code written by Chris Ruemmler (with some help from the HP C | ||
18 | ; compiler). | ||
19 | ; | ||
20 | ; The code compiles with HP's assembler | ||
21 | ; | ||
22 | |||
23 | .level 2.0N | ||
24 | .space $TEXT$ | ||
25 | .subspa $CODE$,QUAD=0,ALIGN=8,ACCESS=0x2c,CODE_ONLY | ||
26 | |||
27 | ; | ||
28 | ; Global Register definitions used for the routines. | ||
29 | ; | ||
30 | ; Some information about HP's runtime architecture for 32-bits. | ||
31 | ; | ||
32 | ; "Caller save" means the calling function must save the register | ||
33 | ; if it wants the register to be preserved. | ||
34 | ; "Callee save" means if a function uses the register, it must save | ||
35 | ; the value before using it. | ||
36 | ; | ||
37 | ; For the floating point registers | ||
38 | ; | ||
39 | ; "caller save" registers: fr4-fr11, fr22-fr31 | ||
40 | ; "callee save" registers: fr12-fr21 | ||
41 | ; "special" registers: fr0-fr3 (status and exception registers) | ||
42 | ; | ||
43 | ; For the integer registers | ||
44 | ; value zero : r0 | ||
45 | ; "caller save" registers: r1,r19-r26 | ||
46 | ; "callee save" registers: r3-r18 | ||
47 | ; return register : r2 (rp) | ||
48 | ; return values ; r28,r29 (ret0,ret1) | ||
49 | ; Stack pointer ; r30 (sp) | ||
50 | ; millicode return ptr ; r31 (also a caller save register) | ||
51 | |||
52 | |||
53 | ; | ||
54 | ; Arguments to the routines | ||
55 | ; | ||
56 | r_ptr .reg %r26 | ||
57 | a_ptr .reg %r25 | ||
58 | b_ptr .reg %r24 | ||
59 | num .reg %r24 | ||
60 | n .reg %r23 | ||
61 | |||
62 | ; | ||
63 | ; Note that the "w" argument for bn_mul_add_words and bn_mul_words | ||
64 | ; is passed on the stack at a delta of -56 from the top of stack | ||
65 | ; as the routine is entered. | ||
66 | ; | ||
67 | |||
68 | ; | ||
69 | ; Globals used in some routines | ||
70 | ; | ||
71 | |||
72 | top_overflow .reg %r23 | ||
73 | high_mask .reg %r22 ; value 0xffffffff80000000L | ||
74 | |||
75 | |||
76 | ;------------------------------------------------------------------------------ | ||
77 | ; | ||
78 | ; bn_mul_add_words | ||
79 | ; | ||
80 | ;BN_ULONG bn_mul_add_words(BN_ULONG *r_ptr, BN_ULONG *a_ptr, | ||
81 | ; int num, BN_ULONG w) | ||
82 | ; | ||
83 | ; arg0 = r_ptr | ||
84 | ; arg1 = a_ptr | ||
85 | ; arg3 = num | ||
86 | ; -56(sp) = w | ||
87 | ; | ||
88 | ; Local register definitions | ||
89 | ; | ||
90 | |||
91 | fm1 .reg %fr22 | ||
92 | fm .reg %fr23 | ||
93 | ht_temp .reg %fr24 | ||
94 | ht_temp_1 .reg %fr25 | ||
95 | lt_temp .reg %fr26 | ||
96 | lt_temp_1 .reg %fr27 | ||
97 | fm1_1 .reg %fr28 | ||
98 | fm_1 .reg %fr29 | ||
99 | |||
100 | fw_h .reg %fr7L | ||
101 | fw_l .reg %fr7R | ||
102 | fw .reg %fr7 | ||
103 | |||
104 | fht_0 .reg %fr8L | ||
105 | flt_0 .reg %fr8R | ||
106 | t_float_0 .reg %fr8 | ||
107 | |||
108 | fht_1 .reg %fr9L | ||
109 | flt_1 .reg %fr9R | ||
110 | t_float_1 .reg %fr9 | ||
111 | |||
112 | tmp_0 .reg %r31 | ||
113 | tmp_1 .reg %r21 | ||
114 | m_0 .reg %r20 | ||
115 | m_1 .reg %r19 | ||
116 | ht_0 .reg %r1 | ||
117 | ht_1 .reg %r3 | ||
118 | lt_0 .reg %r4 | ||
119 | lt_1 .reg %r5 | ||
120 | m1_0 .reg %r6 | ||
121 | m1_1 .reg %r7 | ||
122 | rp_val .reg %r8 | ||
123 | rp_val_1 .reg %r9 | ||
124 | |||
125 | bn_mul_add_words | ||
126 | .export bn_mul_add_words,entry,NO_RELOCATION,LONG_RETURN | ||
127 | .proc | ||
128 | .callinfo frame=128 | ||
129 | .entry | ||
130 | .align 64 | ||
131 | |||
132 | STD %r3,0(%sp) ; save r3 | ||
133 | STD %r4,8(%sp) ; save r4 | ||
134 | NOP ; Needed to make the loop 16-byte aligned | ||
135 | NOP ; needed to make the loop 16-byte aligned | ||
136 | |||
137 | STD %r5,16(%sp) ; save r5 | ||
138 | NOP | ||
139 | STD %r6,24(%sp) ; save r6 | ||
140 | STD %r7,32(%sp) ; save r7 | ||
141 | |||
142 | STD %r8,40(%sp) ; save r8 | ||
143 | STD %r9,48(%sp) ; save r9 | ||
144 | COPY %r0,%ret1 ; return 0 by default | ||
145 | DEPDI,Z 1,31,1,top_overflow ; top_overflow = 1 << 32 | ||
146 | |||
147 | CMPIB,>= 0,num,bn_mul_add_words_exit ; if (num <= 0) then exit | ||
148 | LDO 128(%sp),%sp ; bump stack | ||
149 | |||
150 | ; | ||
151 | ; The loop is unrolled twice, so if there is only 1 number | ||
152 | ; then go straight to the cleanup code. | ||
153 | ; | ||
154 | CMPIB,= 1,num,bn_mul_add_words_single_top | ||
155 | FLDD -184(%sp),fw ; (-56-128) load up w into fw (fw_h/fw_l) | ||
156 | |||
157 | ; | ||
158 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
159 | ; | ||
160 | ; PA-RISC 2.0 chips have two fully pipelined multipliers, thus | ||
161 | ; two 32-bit mutiplies can be issued per cycle. | ||
162 | ; | ||
163 | bn_mul_add_words_unroll2 | ||
164 | |||
165 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
166 | FLDD 8(a_ptr),t_float_1 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
167 | LDD 0(r_ptr),rp_val ; rp[0] | ||
168 | LDD 8(r_ptr),rp_val_1 ; rp[1] | ||
169 | |||
170 | XMPYU fht_0,fw_l,fm1 ; m1[0] = fht_0*fw_l | ||
171 | XMPYU fht_1,fw_l,fm1_1 ; m1[1] = fht_1*fw_l | ||
172 | FSTD fm1,-16(%sp) ; -16(sp) = m1[0] | ||
173 | FSTD fm1_1,-48(%sp) ; -48(sp) = m1[1] | ||
174 | |||
175 | XMPYU flt_0,fw_h,fm ; m[0] = flt_0*fw_h | ||
176 | XMPYU flt_1,fw_h,fm_1 ; m[1] = flt_1*fw_h | ||
177 | FSTD fm,-8(%sp) ; -8(sp) = m[0] | ||
178 | FSTD fm_1,-40(%sp) ; -40(sp) = m[1] | ||
179 | |||
180 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = fht_0*fw_h | ||
181 | XMPYU fht_1,fw_h,ht_temp_1 ; ht_temp_1 = fht_1*fw_h | ||
182 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht_temp | ||
183 | FSTD ht_temp_1,-56(%sp) ; -56(sp) = ht_temp_1 | ||
184 | |||
185 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
186 | XMPYU flt_1,fw_l,lt_temp_1 ; lt_temp = lt*fw_l | ||
187 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt_temp | ||
188 | FSTD lt_temp_1,-64(%sp) ; -64(sp) = lt_temp_1 | ||
189 | |||
190 | LDD -8(%sp),m_0 ; m[0] | ||
191 | LDD -40(%sp),m_1 ; m[1] | ||
192 | LDD -16(%sp),m1_0 ; m1[0] | ||
193 | LDD -48(%sp),m1_1 ; m1[1] | ||
194 | |||
195 | LDD -24(%sp),ht_0 ; ht[0] | ||
196 | LDD -56(%sp),ht_1 ; ht[1] | ||
197 | ADD,L m1_0,m_0,tmp_0 ; tmp_0 = m[0] + m1[0]; | ||
198 | ADD,L m1_1,m_1,tmp_1 ; tmp_1 = m[1] + m1[1]; | ||
199 | |||
200 | LDD -32(%sp),lt_0 | ||
201 | LDD -64(%sp),lt_1 | ||
202 | CMPCLR,*>>= tmp_0,m1_0, %r0 ; if (m[0] < m1[0]) | ||
203 | ADD,L ht_0,top_overflow,ht_0 ; ht[0] += (1<<32) | ||
204 | |||
205 | CMPCLR,*>>= tmp_1,m1_1,%r0 ; if (m[1] < m1[1]) | ||
206 | ADD,L ht_1,top_overflow,ht_1 ; ht[1] += (1<<32) | ||
207 | EXTRD,U tmp_0,31,32,m_0 ; m[0]>>32 | ||
208 | DEPD,Z tmp_0,31,32,m1_0 ; m1[0] = m[0]<<32 | ||
209 | |||
210 | EXTRD,U tmp_1,31,32,m_1 ; m[1]>>32 | ||
211 | DEPD,Z tmp_1,31,32,m1_1 ; m1[1] = m[1]<<32 | ||
212 | ADD,L ht_0,m_0,ht_0 ; ht[0]+= (m[0]>>32) | ||
213 | ADD,L ht_1,m_1,ht_1 ; ht[1]+= (m[1]>>32) | ||
214 | |||
215 | ADD lt_0,m1_0,lt_0 ; lt[0] = lt[0]+m1[0]; | ||
216 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
217 | ADD lt_1,m1_1,lt_1 ; lt[1] = lt[1]+m1[1]; | ||
218 | ADD,DC ht_1,%r0,ht_1 ; ht[1]++ | ||
219 | |||
220 | ADD %ret1,lt_0,lt_0 ; lt[0] = lt[0] + c; | ||
221 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
222 | ADD lt_0,rp_val,lt_0 ; lt[0] = lt[0]+rp[0] | ||
223 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
224 | |||
225 | LDO -2(num),num ; num = num - 2; | ||
226 | ADD ht_0,lt_1,lt_1 ; lt[1] = lt[1] + ht_0 (c); | ||
227 | ADD,DC ht_1,%r0,ht_1 ; ht[1]++ | ||
228 | STD lt_0,0(r_ptr) ; rp[0] = lt[0] | ||
229 | |||
230 | ADD lt_1,rp_val_1,lt_1 ; lt[1] = lt[1]+rp[1] | ||
231 | ADD,DC ht_1,%r0,%ret1 ; ht[1]++ | ||
232 | LDO 16(a_ptr),a_ptr ; a_ptr += 2 | ||
233 | |||
234 | STD lt_1,8(r_ptr) ; rp[1] = lt[1] | ||
235 | CMPIB,<= 2,num,bn_mul_add_words_unroll2 ; go again if more to do | ||
236 | LDO 16(r_ptr),r_ptr ; r_ptr += 2 | ||
237 | |||
238 | CMPIB,=,N 0,num,bn_mul_add_words_exit ; are we done, or cleanup last one | ||
239 | |||
240 | ; | ||
241 | ; Top of loop aligned on 64-byte boundary | ||
242 | ; | ||
243 | bn_mul_add_words_single_top | ||
244 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
245 | LDD 0(r_ptr),rp_val ; rp[0] | ||
246 | LDO 8(a_ptr),a_ptr ; a_ptr++ | ||
247 | XMPYU fht_0,fw_l,fm1 ; m1 = ht*fw_l | ||
248 | FSTD fm1,-16(%sp) ; -16(sp) = m1 | ||
249 | XMPYU flt_0,fw_h,fm ; m = lt*fw_h | ||
250 | FSTD fm,-8(%sp) ; -8(sp) = m | ||
251 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = ht*fw_h | ||
252 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht | ||
253 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
254 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt | ||
255 | |||
256 | LDD -8(%sp),m_0 | ||
257 | LDD -16(%sp),m1_0 ; m1 = temp1 | ||
258 | ADD,L m_0,m1_0,tmp_0 ; tmp_0 = m + m1; | ||
259 | LDD -24(%sp),ht_0 | ||
260 | LDD -32(%sp),lt_0 | ||
261 | |||
262 | CMPCLR,*>>= tmp_0,m1_0,%r0 ; if (m < m1) | ||
263 | ADD,L ht_0,top_overflow,ht_0 ; ht += (1<<32) | ||
264 | |||
265 | EXTRD,U tmp_0,31,32,m_0 ; m>>32 | ||
266 | DEPD,Z tmp_0,31,32,m1_0 ; m1 = m<<32 | ||
267 | |||
268 | ADD,L ht_0,m_0,ht_0 ; ht+= (m>>32) | ||
269 | ADD lt_0,m1_0,tmp_0 ; tmp_0 = lt+m1; | ||
270 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
271 | ADD %ret1,tmp_0,lt_0 ; lt = lt + c; | ||
272 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
273 | ADD lt_0,rp_val,lt_0 ; lt = lt+rp[0] | ||
274 | ADD,DC ht_0,%r0,%ret1 ; ht++ | ||
275 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
276 | |||
277 | bn_mul_add_words_exit | ||
278 | .EXIT | ||
279 | |||
280 | EXTRD,U %ret1,31,32,%ret0 ; for 32-bit, return in ret0/ret1 | ||
281 | LDD -80(%sp),%r9 ; restore r9 | ||
282 | LDD -88(%sp),%r8 ; restore r8 | ||
283 | LDD -96(%sp),%r7 ; restore r7 | ||
284 | LDD -104(%sp),%r6 ; restore r6 | ||
285 | LDD -112(%sp),%r5 ; restore r5 | ||
286 | LDD -120(%sp),%r4 ; restore r4 | ||
287 | BVE (%rp) | ||
288 | LDD,MB -128(%sp),%r3 ; restore r3 | ||
289 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
290 | |||
291 | ;---------------------------------------------------------------------------- | ||
292 | ; | ||
293 | ;BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) | ||
294 | ; | ||
295 | ; arg0 = rp | ||
296 | ; arg1 = ap | ||
297 | ; arg3 = num | ||
298 | ; w on stack at -56(sp) | ||
299 | |||
300 | bn_mul_words | ||
301 | .proc | ||
302 | .callinfo frame=128 | ||
303 | .entry | ||
304 | .EXPORT bn_mul_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
305 | .align 64 | ||
306 | |||
307 | STD %r3,0(%sp) ; save r3 | ||
308 | STD %r4,8(%sp) ; save r4 | ||
309 | NOP | ||
310 | STD %r5,16(%sp) ; save r5 | ||
311 | |||
312 | STD %r6,24(%sp) ; save r6 | ||
313 | STD %r7,32(%sp) ; save r7 | ||
314 | COPY %r0,%ret1 ; return 0 by default | ||
315 | DEPDI,Z 1,31,1,top_overflow ; top_overflow = 1 << 32 | ||
316 | |||
317 | CMPIB,>= 0,num,bn_mul_words_exit | ||
318 | LDO 128(%sp),%sp ; bump stack | ||
319 | |||
320 | ; | ||
321 | ; See if only 1 word to do, thus just do cleanup | ||
322 | ; | ||
323 | CMPIB,= 1,num,bn_mul_words_single_top | ||
324 | FLDD -184(%sp),fw ; (-56-128) load up w into fw (fw_h/fw_l) | ||
325 | |||
326 | ; | ||
327 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
328 | ; | ||
329 | ; PA-RISC 2.0 chips have two fully pipelined multipliers, thus | ||
330 | ; two 32-bit mutiplies can be issued per cycle. | ||
331 | ; | ||
332 | bn_mul_words_unroll2 | ||
333 | |||
334 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
335 | FLDD 8(a_ptr),t_float_1 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
336 | XMPYU fht_0,fw_l,fm1 ; m1[0] = fht_0*fw_l | ||
337 | XMPYU fht_1,fw_l,fm1_1 ; m1[1] = ht*fw_l | ||
338 | |||
339 | FSTD fm1,-16(%sp) ; -16(sp) = m1 | ||
340 | FSTD fm1_1,-48(%sp) ; -48(sp) = m1 | ||
341 | XMPYU flt_0,fw_h,fm ; m = lt*fw_h | ||
342 | XMPYU flt_1,fw_h,fm_1 ; m = lt*fw_h | ||
343 | |||
344 | FSTD fm,-8(%sp) ; -8(sp) = m | ||
345 | FSTD fm_1,-40(%sp) ; -40(sp) = m | ||
346 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = fht_0*fw_h | ||
347 | XMPYU fht_1,fw_h,ht_temp_1 ; ht_temp = ht*fw_h | ||
348 | |||
349 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht | ||
350 | FSTD ht_temp_1,-56(%sp) ; -56(sp) = ht | ||
351 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
352 | XMPYU flt_1,fw_l,lt_temp_1 ; lt_temp = lt*fw_l | ||
353 | |||
354 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt | ||
355 | FSTD lt_temp_1,-64(%sp) ; -64(sp) = lt | ||
356 | LDD -8(%sp),m_0 | ||
357 | LDD -40(%sp),m_1 | ||
358 | |||
359 | LDD -16(%sp),m1_0 | ||
360 | LDD -48(%sp),m1_1 | ||
361 | LDD -24(%sp),ht_0 | ||
362 | LDD -56(%sp),ht_1 | ||
363 | |||
364 | ADD,L m1_0,m_0,tmp_0 ; tmp_0 = m + m1; | ||
365 | ADD,L m1_1,m_1,tmp_1 ; tmp_1 = m + m1; | ||
366 | LDD -32(%sp),lt_0 | ||
367 | LDD -64(%sp),lt_1 | ||
368 | |||
369 | CMPCLR,*>>= tmp_0,m1_0, %r0 ; if (m < m1) | ||
370 | ADD,L ht_0,top_overflow,ht_0 ; ht += (1<<32) | ||
371 | CMPCLR,*>>= tmp_1,m1_1,%r0 ; if (m < m1) | ||
372 | ADD,L ht_1,top_overflow,ht_1 ; ht += (1<<32) | ||
373 | |||
374 | EXTRD,U tmp_0,31,32,m_0 ; m>>32 | ||
375 | DEPD,Z tmp_0,31,32,m1_0 ; m1 = m<<32 | ||
376 | EXTRD,U tmp_1,31,32,m_1 ; m>>32 | ||
377 | DEPD,Z tmp_1,31,32,m1_1 ; m1 = m<<32 | ||
378 | |||
379 | ADD,L ht_0,m_0,ht_0 ; ht+= (m>>32) | ||
380 | ADD,L ht_1,m_1,ht_1 ; ht+= (m>>32) | ||
381 | ADD lt_0,m1_0,lt_0 ; lt = lt+m1; | ||
382 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
383 | |||
384 | ADD lt_1,m1_1,lt_1 ; lt = lt+m1; | ||
385 | ADD,DC ht_1,%r0,ht_1 ; ht++ | ||
386 | ADD %ret1,lt_0,lt_0 ; lt = lt + c (ret1); | ||
387 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
388 | |||
389 | ADD ht_0,lt_1,lt_1 ; lt = lt + c (ht_0) | ||
390 | ADD,DC ht_1,%r0,ht_1 ; ht++ | ||
391 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
392 | STD lt_1,8(r_ptr) ; rp[1] = lt | ||
393 | |||
394 | COPY ht_1,%ret1 ; carry = ht | ||
395 | LDO -2(num),num ; num = num - 2; | ||
396 | LDO 16(a_ptr),a_ptr ; ap += 2 | ||
397 | CMPIB,<= 2,num,bn_mul_words_unroll2 | ||
398 | LDO 16(r_ptr),r_ptr ; rp++ | ||
399 | |||
400 | CMPIB,=,N 0,num,bn_mul_words_exit ; are we done? | ||
401 | |||
402 | ; | ||
403 | ; Top of loop aligned on 64-byte boundary | ||
404 | ; | ||
405 | bn_mul_words_single_top | ||
406 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
407 | |||
408 | XMPYU fht_0,fw_l,fm1 ; m1 = ht*fw_l | ||
409 | FSTD fm1,-16(%sp) ; -16(sp) = m1 | ||
410 | XMPYU flt_0,fw_h,fm ; m = lt*fw_h | ||
411 | FSTD fm,-8(%sp) ; -8(sp) = m | ||
412 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = ht*fw_h | ||
413 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht | ||
414 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
415 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt | ||
416 | |||
417 | LDD -8(%sp),m_0 | ||
418 | LDD -16(%sp),m1_0 | ||
419 | ADD,L m_0,m1_0,tmp_0 ; tmp_0 = m + m1; | ||
420 | LDD -24(%sp),ht_0 | ||
421 | LDD -32(%sp),lt_0 | ||
422 | |||
423 | CMPCLR,*>>= tmp_0,m1_0,%r0 ; if (m < m1) | ||
424 | ADD,L ht_0,top_overflow,ht_0 ; ht += (1<<32) | ||
425 | |||
426 | EXTRD,U tmp_0,31,32,m_0 ; m>>32 | ||
427 | DEPD,Z tmp_0,31,32,m1_0 ; m1 = m<<32 | ||
428 | |||
429 | ADD,L ht_0,m_0,ht_0 ; ht+= (m>>32) | ||
430 | ADD lt_0,m1_0,lt_0 ; lt= lt+m1; | ||
431 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
432 | |||
433 | ADD %ret1,lt_0,lt_0 ; lt = lt + c; | ||
434 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
435 | |||
436 | COPY ht_0,%ret1 ; copy carry | ||
437 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
438 | |||
439 | bn_mul_words_exit | ||
440 | .EXIT | ||
441 | EXTRD,U %ret1,31,32,%ret0 ; for 32-bit, return in ret0/ret1 | ||
442 | LDD -96(%sp),%r7 ; restore r7 | ||
443 | LDD -104(%sp),%r6 ; restore r6 | ||
444 | LDD -112(%sp),%r5 ; restore r5 | ||
445 | LDD -120(%sp),%r4 ; restore r4 | ||
446 | BVE (%rp) | ||
447 | LDD,MB -128(%sp),%r3 ; restore r3 | ||
448 | .PROCEND | ||
449 | |||
450 | ;---------------------------------------------------------------------------- | ||
451 | ; | ||
452 | ;void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num) | ||
453 | ; | ||
454 | ; arg0 = rp | ||
455 | ; arg1 = ap | ||
456 | ; arg2 = num | ||
457 | ; | ||
458 | |||
459 | bn_sqr_words | ||
460 | .proc | ||
461 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
462 | .EXPORT bn_sqr_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
463 | .entry | ||
464 | .align 64 | ||
465 | |||
466 | STD %r3,0(%sp) ; save r3 | ||
467 | STD %r4,8(%sp) ; save r4 | ||
468 | NOP | ||
469 | STD %r5,16(%sp) ; save r5 | ||
470 | |||
471 | CMPIB,>= 0,num,bn_sqr_words_exit | ||
472 | LDO 128(%sp),%sp ; bump stack | ||
473 | |||
474 | ; | ||
475 | ; If only 1, the goto straight to cleanup | ||
476 | ; | ||
477 | CMPIB,= 1,num,bn_sqr_words_single_top | ||
478 | DEPDI,Z -1,32,33,high_mask ; Create Mask 0xffffffff80000000L | ||
479 | |||
480 | ; | ||
481 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
482 | ; | ||
483 | |||
484 | bn_sqr_words_unroll2 | ||
485 | FLDD 0(a_ptr),t_float_0 ; a[0] | ||
486 | FLDD 8(a_ptr),t_float_1 ; a[1] | ||
487 | XMPYU fht_0,flt_0,fm ; m[0] | ||
488 | XMPYU fht_1,flt_1,fm_1 ; m[1] | ||
489 | |||
490 | FSTD fm,-24(%sp) ; store m[0] | ||
491 | FSTD fm_1,-56(%sp) ; store m[1] | ||
492 | XMPYU flt_0,flt_0,lt_temp ; lt[0] | ||
493 | XMPYU flt_1,flt_1,lt_temp_1 ; lt[1] | ||
494 | |||
495 | FSTD lt_temp,-16(%sp) ; store lt[0] | ||
496 | FSTD lt_temp_1,-48(%sp) ; store lt[1] | ||
497 | XMPYU fht_0,fht_0,ht_temp ; ht[0] | ||
498 | XMPYU fht_1,fht_1,ht_temp_1 ; ht[1] | ||
499 | |||
500 | FSTD ht_temp,-8(%sp) ; store ht[0] | ||
501 | FSTD ht_temp_1,-40(%sp) ; store ht[1] | ||
502 | LDD -24(%sp),m_0 | ||
503 | LDD -56(%sp),m_1 | ||
504 | |||
505 | AND m_0,high_mask,tmp_0 ; m[0] & Mask | ||
506 | AND m_1,high_mask,tmp_1 ; m[1] & Mask | ||
507 | DEPD,Z m_0,30,31,m_0 ; m[0] << 32+1 | ||
508 | DEPD,Z m_1,30,31,m_1 ; m[1] << 32+1 | ||
509 | |||
510 | LDD -16(%sp),lt_0 | ||
511 | LDD -48(%sp),lt_1 | ||
512 | EXTRD,U tmp_0,32,33,tmp_0 ; tmp_0 = m[0]&Mask >> 32-1 | ||
513 | EXTRD,U tmp_1,32,33,tmp_1 ; tmp_1 = m[1]&Mask >> 32-1 | ||
514 | |||
515 | LDD -8(%sp),ht_0 | ||
516 | LDD -40(%sp),ht_1 | ||
517 | ADD,L ht_0,tmp_0,ht_0 ; ht[0] += tmp_0 | ||
518 | ADD,L ht_1,tmp_1,ht_1 ; ht[1] += tmp_1 | ||
519 | |||
520 | ADD lt_0,m_0,lt_0 ; lt = lt+m | ||
521 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
522 | STD lt_0,0(r_ptr) ; rp[0] = lt[0] | ||
523 | STD ht_0,8(r_ptr) ; rp[1] = ht[1] | ||
524 | |||
525 | ADD lt_1,m_1,lt_1 ; lt = lt+m | ||
526 | ADD,DC ht_1,%r0,ht_1 ; ht[1]++ | ||
527 | STD lt_1,16(r_ptr) ; rp[2] = lt[1] | ||
528 | STD ht_1,24(r_ptr) ; rp[3] = ht[1] | ||
529 | |||
530 | LDO -2(num),num ; num = num - 2; | ||
531 | LDO 16(a_ptr),a_ptr ; ap += 2 | ||
532 | CMPIB,<= 2,num,bn_sqr_words_unroll2 | ||
533 | LDO 32(r_ptr),r_ptr ; rp += 4 | ||
534 | |||
535 | CMPIB,=,N 0,num,bn_sqr_words_exit ; are we done? | ||
536 | |||
537 | ; | ||
538 | ; Top of loop aligned on 64-byte boundary | ||
539 | ; | ||
540 | bn_sqr_words_single_top | ||
541 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
542 | |||
543 | XMPYU fht_0,flt_0,fm ; m | ||
544 | FSTD fm,-24(%sp) ; store m | ||
545 | |||
546 | XMPYU flt_0,flt_0,lt_temp ; lt | ||
547 | FSTD lt_temp,-16(%sp) ; store lt | ||
548 | |||
549 | XMPYU fht_0,fht_0,ht_temp ; ht | ||
550 | FSTD ht_temp,-8(%sp) ; store ht | ||
551 | |||
552 | LDD -24(%sp),m_0 ; load m | ||
553 | AND m_0,high_mask,tmp_0 ; m & Mask | ||
554 | DEPD,Z m_0,30,31,m_0 ; m << 32+1 | ||
555 | LDD -16(%sp),lt_0 ; lt | ||
556 | |||
557 | LDD -8(%sp),ht_0 ; ht | ||
558 | EXTRD,U tmp_0,32,33,tmp_0 ; tmp_0 = m&Mask >> 32-1 | ||
559 | ADD m_0,lt_0,lt_0 ; lt = lt+m | ||
560 | ADD,L ht_0,tmp_0,ht_0 ; ht += tmp_0 | ||
561 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
562 | |||
563 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
564 | STD ht_0,8(r_ptr) ; rp[1] = ht | ||
565 | |||
566 | bn_sqr_words_exit | ||
567 | .EXIT | ||
568 | LDD -112(%sp),%r5 ; restore r5 | ||
569 | LDD -120(%sp),%r4 ; restore r4 | ||
570 | BVE (%rp) | ||
571 | LDD,MB -128(%sp),%r3 | ||
572 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
573 | |||
574 | |||
575 | ;---------------------------------------------------------------------------- | ||
576 | ; | ||
577 | ;BN_ULONG bn_add_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
578 | ; | ||
579 | ; arg0 = rp | ||
580 | ; arg1 = ap | ||
581 | ; arg2 = bp | ||
582 | ; arg3 = n | ||
583 | |||
584 | t .reg %r22 | ||
585 | b .reg %r21 | ||
586 | l .reg %r20 | ||
587 | |||
588 | bn_add_words | ||
589 | .proc | ||
590 | .entry | ||
591 | .callinfo | ||
592 | .EXPORT bn_add_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
593 | .align 64 | ||
594 | |||
595 | CMPIB,>= 0,n,bn_add_words_exit | ||
596 | COPY %r0,%ret1 ; return 0 by default | ||
597 | |||
598 | ; | ||
599 | ; If 2 or more numbers do the loop | ||
600 | ; | ||
601 | CMPIB,= 1,n,bn_add_words_single_top | ||
602 | NOP | ||
603 | |||
604 | ; | ||
605 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
606 | ; | ||
607 | bn_add_words_unroll2 | ||
608 | LDD 0(a_ptr),t | ||
609 | LDD 0(b_ptr),b | ||
610 | ADD t,%ret1,t ; t = t+c; | ||
611 | ADD,DC %r0,%r0,%ret1 ; set c to carry | ||
612 | ADD t,b,l ; l = t + b[0] | ||
613 | ADD,DC %ret1,%r0,%ret1 ; c+= carry | ||
614 | STD l,0(r_ptr) | ||
615 | |||
616 | LDD 8(a_ptr),t | ||
617 | LDD 8(b_ptr),b | ||
618 | ADD t,%ret1,t ; t = t+c; | ||
619 | ADD,DC %r0,%r0,%ret1 ; set c to carry | ||
620 | ADD t,b,l ; l = t + b[0] | ||
621 | ADD,DC %ret1,%r0,%ret1 ; c+= carry | ||
622 | STD l,8(r_ptr) | ||
623 | |||
624 | LDO -2(n),n | ||
625 | LDO 16(a_ptr),a_ptr | ||
626 | LDO 16(b_ptr),b_ptr | ||
627 | |||
628 | CMPIB,<= 2,n,bn_add_words_unroll2 | ||
629 | LDO 16(r_ptr),r_ptr | ||
630 | |||
631 | CMPIB,=,N 0,n,bn_add_words_exit ; are we done? | ||
632 | |||
633 | bn_add_words_single_top | ||
634 | LDD 0(a_ptr),t | ||
635 | LDD 0(b_ptr),b | ||
636 | |||
637 | ADD t,%ret1,t ; t = t+c; | ||
638 | ADD,DC %r0,%r0,%ret1 ; set c to carry (could use CMPCLR??) | ||
639 | ADD t,b,l ; l = t + b[0] | ||
640 | ADD,DC %ret1,%r0,%ret1 ; c+= carry | ||
641 | STD l,0(r_ptr) | ||
642 | |||
643 | bn_add_words_exit | ||
644 | .EXIT | ||
645 | BVE (%rp) | ||
646 | EXTRD,U %ret1,31,32,%ret0 ; for 32-bit, return in ret0/ret1 | ||
647 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
648 | |||
649 | ;---------------------------------------------------------------------------- | ||
650 | ; | ||
651 | ;BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
652 | ; | ||
653 | ; arg0 = rp | ||
654 | ; arg1 = ap | ||
655 | ; arg2 = bp | ||
656 | ; arg3 = n | ||
657 | |||
658 | t1 .reg %r22 | ||
659 | t2 .reg %r21 | ||
660 | sub_tmp1 .reg %r20 | ||
661 | sub_tmp2 .reg %r19 | ||
662 | |||
663 | |||
664 | bn_sub_words | ||
665 | .proc | ||
666 | .callinfo | ||
667 | .EXPORT bn_sub_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
668 | .entry | ||
669 | .align 64 | ||
670 | |||
671 | CMPIB,>= 0,n,bn_sub_words_exit | ||
672 | COPY %r0,%ret1 ; return 0 by default | ||
673 | |||
674 | ; | ||
675 | ; If 2 or more numbers do the loop | ||
676 | ; | ||
677 | CMPIB,= 1,n,bn_sub_words_single_top | ||
678 | NOP | ||
679 | |||
680 | ; | ||
681 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
682 | ; | ||
683 | bn_sub_words_unroll2 | ||
684 | LDD 0(a_ptr),t1 | ||
685 | LDD 0(b_ptr),t2 | ||
686 | SUB t1,t2,sub_tmp1 ; t3 = t1-t2; | ||
687 | SUB sub_tmp1,%ret1,sub_tmp1 ; t3 = t3- c; | ||
688 | |||
689 | CMPCLR,*>> t1,t2,sub_tmp2 ; clear if t1 > t2 | ||
690 | LDO 1(%r0),sub_tmp2 | ||
691 | |||
692 | CMPCLR,*= t1,t2,%r0 | ||
693 | COPY sub_tmp2,%ret1 | ||
694 | STD sub_tmp1,0(r_ptr) | ||
695 | |||
696 | LDD 8(a_ptr),t1 | ||
697 | LDD 8(b_ptr),t2 | ||
698 | SUB t1,t2,sub_tmp1 ; t3 = t1-t2; | ||
699 | SUB sub_tmp1,%ret1,sub_tmp1 ; t3 = t3- c; | ||
700 | CMPCLR,*>> t1,t2,sub_tmp2 ; clear if t1 > t2 | ||
701 | LDO 1(%r0),sub_tmp2 | ||
702 | |||
703 | CMPCLR,*= t1,t2,%r0 | ||
704 | COPY sub_tmp2,%ret1 | ||
705 | STD sub_tmp1,8(r_ptr) | ||
706 | |||
707 | LDO -2(n),n | ||
708 | LDO 16(a_ptr),a_ptr | ||
709 | LDO 16(b_ptr),b_ptr | ||
710 | |||
711 | CMPIB,<= 2,n,bn_sub_words_unroll2 | ||
712 | LDO 16(r_ptr),r_ptr | ||
713 | |||
714 | CMPIB,=,N 0,n,bn_sub_words_exit ; are we done? | ||
715 | |||
716 | bn_sub_words_single_top | ||
717 | LDD 0(a_ptr),t1 | ||
718 | LDD 0(b_ptr),t2 | ||
719 | SUB t1,t2,sub_tmp1 ; t3 = t1-t2; | ||
720 | SUB sub_tmp1,%ret1,sub_tmp1 ; t3 = t3- c; | ||
721 | CMPCLR,*>> t1,t2,sub_tmp2 ; clear if t1 > t2 | ||
722 | LDO 1(%r0),sub_tmp2 | ||
723 | |||
724 | CMPCLR,*= t1,t2,%r0 | ||
725 | COPY sub_tmp2,%ret1 | ||
726 | |||
727 | STD sub_tmp1,0(r_ptr) | ||
728 | |||
729 | bn_sub_words_exit | ||
730 | .EXIT | ||
731 | BVE (%rp) | ||
732 | EXTRD,U %ret1,31,32,%ret0 ; for 32-bit, return in ret0/ret1 | ||
733 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
734 | |||
735 | ;------------------------------------------------------------------------------ | ||
736 | ; | ||
737 | ; unsigned long bn_div_words(unsigned long h, unsigned long l, unsigned long d) | ||
738 | ; | ||
739 | ; arg0 = h | ||
740 | ; arg1 = l | ||
741 | ; arg2 = d | ||
742 | ; | ||
743 | ; This is mainly just output from the HP C compiler. | ||
744 | ; | ||
745 | ;------------------------------------------------------------------------------ | ||
746 | bn_div_words | ||
747 | .PROC | ||
748 | .EXPORT bn_div_words,ENTRY,PRIV_LEV=3,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR,RTNVAL=GR,LONG_RETURN | ||
749 | .IMPORT BN_num_bits_word,CODE | ||
750 | ;--- not PIC .IMPORT __iob,DATA | ||
751 | ;--- not PIC .IMPORT fprintf,CODE | ||
752 | .IMPORT abort,CODE | ||
753 | .IMPORT $$div2U,MILLICODE | ||
754 | .CALLINFO CALLER,FRAME=144,ENTRY_GR=%r9,SAVE_RP,ARGS_SAVED,ORDERING_AWARE | ||
755 | .ENTRY | ||
756 | STW %r2,-20(%r30) ;offset 0x8ec | ||
757 | STW,MA %r3,192(%r30) ;offset 0x8f0 | ||
758 | STW %r4,-188(%r30) ;offset 0x8f4 | ||
759 | DEPD %r5,31,32,%r6 ;offset 0x8f8 | ||
760 | STD %r6,-184(%r30) ;offset 0x8fc | ||
761 | DEPD %r7,31,32,%r8 ;offset 0x900 | ||
762 | STD %r8,-176(%r30) ;offset 0x904 | ||
763 | STW %r9,-168(%r30) ;offset 0x908 | ||
764 | LDD -248(%r30),%r3 ;offset 0x90c | ||
765 | COPY %r26,%r4 ;offset 0x910 | ||
766 | COPY %r24,%r5 ;offset 0x914 | ||
767 | DEPD %r25,31,32,%r4 ;offset 0x918 | ||
768 | CMPB,*<> %r3,%r0,$0006000C ;offset 0x91c | ||
769 | DEPD %r23,31,32,%r5 ;offset 0x920 | ||
770 | MOVIB,TR -1,%r29,$00060002 ;offset 0x924 | ||
771 | EXTRD,U %r29,31,32,%r28 ;offset 0x928 | ||
772 | $0006002A | ||
773 | LDO -1(%r29),%r29 ;offset 0x92c | ||
774 | SUB %r23,%r7,%r23 ;offset 0x930 | ||
775 | $00060024 | ||
776 | SUB %r4,%r31,%r25 ;offset 0x934 | ||
777 | AND %r25,%r19,%r26 ;offset 0x938 | ||
778 | CMPB,*<>,N %r0,%r26,$00060046 ;offset 0x93c | ||
779 | DEPD,Z %r25,31,32,%r20 ;offset 0x940 | ||
780 | OR %r20,%r24,%r21 ;offset 0x944 | ||
781 | CMPB,*<<,N %r21,%r23,$0006002A ;offset 0x948 | ||
782 | SUB %r31,%r2,%r31 ;offset 0x94c | ||
783 | $00060046 | ||
784 | $0006002E | ||
785 | DEPD,Z %r23,31,32,%r25 ;offset 0x950 | ||
786 | EXTRD,U %r23,31,32,%r26 ;offset 0x954 | ||
787 | AND %r25,%r19,%r24 ;offset 0x958 | ||
788 | ADD,L %r31,%r26,%r31 ;offset 0x95c | ||
789 | CMPCLR,*>>= %r5,%r24,%r0 ;offset 0x960 | ||
790 | LDO 1(%r31),%r31 ;offset 0x964 | ||
791 | $00060032 | ||
792 | CMPB,*<<=,N %r31,%r4,$00060036 ;offset 0x968 | ||
793 | LDO -1(%r29),%r29 ;offset 0x96c | ||
794 | ADD,L %r4,%r3,%r4 ;offset 0x970 | ||
795 | $00060036 | ||
796 | ADDIB,=,N -1,%r8,$D0 ;offset 0x974 | ||
797 | SUB %r5,%r24,%r28 ;offset 0x978 | ||
798 | $0006003A | ||
799 | SUB %r4,%r31,%r24 ;offset 0x97c | ||
800 | SHRPD %r24,%r28,32,%r4 ;offset 0x980 | ||
801 | DEPD,Z %r29,31,32,%r9 ;offset 0x984 | ||
802 | DEPD,Z %r28,31,32,%r5 ;offset 0x988 | ||
803 | $0006001C | ||
804 | EXTRD,U %r4,31,32,%r31 ;offset 0x98c | ||
805 | CMPB,*<>,N %r31,%r2,$00060020 ;offset 0x990 | ||
806 | MOVB,TR %r6,%r29,$D1 ;offset 0x994 | ||
807 | STD %r29,-152(%r30) ;offset 0x998 | ||
808 | $0006000C | ||
809 | EXTRD,U %r3,31,32,%r25 ;offset 0x99c | ||
810 | COPY %r3,%r26 ;offset 0x9a0 | ||
811 | EXTRD,U %r3,31,32,%r9 ;offset 0x9a4 | ||
812 | EXTRD,U %r4,31,32,%r8 ;offset 0x9a8 | ||
813 | .CALL ARGW0=GR,ARGW1=GR,RTNVAL=GR ;in=25,26;out=28; | ||
814 | B,L BN_num_bits_word,%r2 ;offset 0x9ac | ||
815 | EXTRD,U %r5,31,32,%r7 ;offset 0x9b0 | ||
816 | LDI 64,%r20 ;offset 0x9b4 | ||
817 | DEPD %r7,31,32,%r5 ;offset 0x9b8 | ||
818 | DEPD %r8,31,32,%r4 ;offset 0x9bc | ||
819 | DEPD %r9,31,32,%r3 ;offset 0x9c0 | ||
820 | CMPB,= %r28,%r20,$00060012 ;offset 0x9c4 | ||
821 | COPY %r28,%r24 ;offset 0x9c8 | ||
822 | MTSARCM %r24 ;offset 0x9cc | ||
823 | DEPDI,Z -1,%sar,1,%r19 ;offset 0x9d0 | ||
824 | CMPB,*>>,N %r4,%r19,$D2 ;offset 0x9d4 | ||
825 | $00060012 | ||
826 | SUBI 64,%r24,%r31 ;offset 0x9d8 | ||
827 | CMPCLR,*<< %r4,%r3,%r0 ;offset 0x9dc | ||
828 | SUB %r4,%r3,%r4 ;offset 0x9e0 | ||
829 | $00060016 | ||
830 | CMPB,= %r31,%r0,$0006001A ;offset 0x9e4 | ||
831 | COPY %r0,%r9 ;offset 0x9e8 | ||
832 | MTSARCM %r31 ;offset 0x9ec | ||
833 | DEPD,Z %r3,%sar,64,%r3 ;offset 0x9f0 | ||
834 | SUBI 64,%r31,%r26 ;offset 0x9f4 | ||
835 | MTSAR %r26 ;offset 0x9f8 | ||
836 | SHRPD %r4,%r5,%sar,%r4 ;offset 0x9fc | ||
837 | MTSARCM %r31 ;offset 0xa00 | ||
838 | DEPD,Z %r5,%sar,64,%r5 ;offset 0xa04 | ||
839 | $0006001A | ||
840 | DEPDI,Z -1,31,32,%r19 ;offset 0xa08 | ||
841 | AND %r3,%r19,%r29 ;offset 0xa0c | ||
842 | EXTRD,U %r29,31,32,%r2 ;offset 0xa10 | ||
843 | DEPDI,Z -1,63,32,%r6 ;offset 0xa14 | ||
844 | MOVIB,TR 2,%r8,$0006001C ;offset 0xa18 | ||
845 | EXTRD,U %r3,63,32,%r7 ;offset 0xa1c | ||
846 | $D2 | ||
847 | ;--- not PIC ADDIL LR'__iob-$global$,%r27,%r1 ;offset 0xa20 | ||
848 | ;--- not PIC LDIL LR'C$7,%r21 ;offset 0xa24 | ||
849 | ;--- not PIC LDO RR'__iob-$global$+32(%r1),%r26 ;offset 0xa28 | ||
850 | ;--- not PIC .CALL ARGW0=GR,ARGW1=GR,ARGW2=GR,RTNVAL=GR ;in=24,25,26;out=28; | ||
851 | ;--- not PIC B,L fprintf,%r2 ;offset 0xa2c | ||
852 | ;--- not PIC LDO RR'C$7(%r21),%r25 ;offset 0xa30 | ||
853 | .CALL ; | ||
854 | B,L abort,%r2 ;offset 0xa34 | ||
855 | NOP ;offset 0xa38 | ||
856 | B $D3 ;offset 0xa3c | ||
857 | LDW -212(%r30),%r2 ;offset 0xa40 | ||
858 | $00060020 | ||
859 | COPY %r4,%r26 ;offset 0xa44 | ||
860 | EXTRD,U %r4,31,32,%r25 ;offset 0xa48 | ||
861 | COPY %r2,%r24 ;offset 0xa4c | ||
862 | .CALL ;in=23,24,25,26;out=20,21,22,28,29; (MILLICALL) | ||
863 | B,L $$div2U,%r31 ;offset 0xa50 | ||
864 | EXTRD,U %r2,31,32,%r23 ;offset 0xa54 | ||
865 | DEPD %r28,31,32,%r29 ;offset 0xa58 | ||
866 | $00060022 | ||
867 | STD %r29,-152(%r30) ;offset 0xa5c | ||
868 | $D1 | ||
869 | AND %r5,%r19,%r24 ;offset 0xa60 | ||
870 | EXTRD,U %r24,31,32,%r24 ;offset 0xa64 | ||
871 | STW %r2,-160(%r30) ;offset 0xa68 | ||
872 | STW %r7,-128(%r30) ;offset 0xa6c | ||
873 | FLDD -152(%r30),%fr4 ;offset 0xa70 | ||
874 | FLDD -152(%r30),%fr7 ;offset 0xa74 | ||
875 | FLDW -160(%r30),%fr8L ;offset 0xa78 | ||
876 | FLDW -128(%r30),%fr5L ;offset 0xa7c | ||
877 | XMPYU %fr8L,%fr7L,%fr10 ;offset 0xa80 | ||
878 | FSTD %fr10,-136(%r30) ;offset 0xa84 | ||
879 | XMPYU %fr8L,%fr7R,%fr22 ;offset 0xa88 | ||
880 | FSTD %fr22,-144(%r30) ;offset 0xa8c | ||
881 | XMPYU %fr5L,%fr4L,%fr11 ;offset 0xa90 | ||
882 | XMPYU %fr5L,%fr4R,%fr23 ;offset 0xa94 | ||
883 | FSTD %fr11,-112(%r30) ;offset 0xa98 | ||
884 | FSTD %fr23,-120(%r30) ;offset 0xa9c | ||
885 | LDD -136(%r30),%r28 ;offset 0xaa0 | ||
886 | DEPD,Z %r28,31,32,%r31 ;offset 0xaa4 | ||
887 | LDD -144(%r30),%r20 ;offset 0xaa8 | ||
888 | ADD,L %r20,%r31,%r31 ;offset 0xaac | ||
889 | LDD -112(%r30),%r22 ;offset 0xab0 | ||
890 | DEPD,Z %r22,31,32,%r22 ;offset 0xab4 | ||
891 | LDD -120(%r30),%r21 ;offset 0xab8 | ||
892 | B $00060024 ;offset 0xabc | ||
893 | ADD,L %r21,%r22,%r23 ;offset 0xac0 | ||
894 | $D0 | ||
895 | OR %r9,%r29,%r29 ;offset 0xac4 | ||
896 | $00060040 | ||
897 | EXTRD,U %r29,31,32,%r28 ;offset 0xac8 | ||
898 | $00060002 | ||
899 | $L2 | ||
900 | LDW -212(%r30),%r2 ;offset 0xacc | ||
901 | $D3 | ||
902 | LDW -168(%r30),%r9 ;offset 0xad0 | ||
903 | LDD -176(%r30),%r8 ;offset 0xad4 | ||
904 | EXTRD,U %r8,31,32,%r7 ;offset 0xad8 | ||
905 | LDD -184(%r30),%r6 ;offset 0xadc | ||
906 | EXTRD,U %r6,31,32,%r5 ;offset 0xae0 | ||
907 | LDW -188(%r30),%r4 ;offset 0xae4 | ||
908 | BVE (%r2) ;offset 0xae8 | ||
909 | .EXIT | ||
910 | LDW,MB -192(%r30),%r3 ;offset 0xaec | ||
911 | .PROCEND ;in=23,25;out=28,29;fpin=105,107; | ||
912 | |||
913 | |||
914 | |||
915 | |||
916 | ;---------------------------------------------------------------------------- | ||
917 | ; | ||
918 | ; Registers to hold 64-bit values to manipulate. The "L" part | ||
919 | ; of the register corresponds to the upper 32-bits, while the "R" | ||
920 | ; part corresponds to the lower 32-bits | ||
921 | ; | ||
922 | ; Note, that when using b6 and b7, the code must save these before | ||
923 | ; using them because they are callee save registers | ||
924 | ; | ||
925 | ; | ||
926 | ; Floating point registers to use to save values that | ||
927 | ; are manipulated. These don't collide with ftemp1-6 and | ||
928 | ; are all caller save registers | ||
929 | ; | ||
930 | a0 .reg %fr22 | ||
931 | a0L .reg %fr22L | ||
932 | a0R .reg %fr22R | ||
933 | |||
934 | a1 .reg %fr23 | ||
935 | a1L .reg %fr23L | ||
936 | a1R .reg %fr23R | ||
937 | |||
938 | a2 .reg %fr24 | ||
939 | a2L .reg %fr24L | ||
940 | a2R .reg %fr24R | ||
941 | |||
942 | a3 .reg %fr25 | ||
943 | a3L .reg %fr25L | ||
944 | a3R .reg %fr25R | ||
945 | |||
946 | a4 .reg %fr26 | ||
947 | a4L .reg %fr26L | ||
948 | a4R .reg %fr26R | ||
949 | |||
950 | a5 .reg %fr27 | ||
951 | a5L .reg %fr27L | ||
952 | a5R .reg %fr27R | ||
953 | |||
954 | a6 .reg %fr28 | ||
955 | a6L .reg %fr28L | ||
956 | a6R .reg %fr28R | ||
957 | |||
958 | a7 .reg %fr29 | ||
959 | a7L .reg %fr29L | ||
960 | a7R .reg %fr29R | ||
961 | |||
962 | b0 .reg %fr30 | ||
963 | b0L .reg %fr30L | ||
964 | b0R .reg %fr30R | ||
965 | |||
966 | b1 .reg %fr31 | ||
967 | b1L .reg %fr31L | ||
968 | b1R .reg %fr31R | ||
969 | |||
970 | ; | ||
971 | ; Temporary floating point variables, these are all caller save | ||
972 | ; registers | ||
973 | ; | ||
974 | ftemp1 .reg %fr4 | ||
975 | ftemp2 .reg %fr5 | ||
976 | ftemp3 .reg %fr6 | ||
977 | ftemp4 .reg %fr7 | ||
978 | |||
979 | ; | ||
980 | ; The B set of registers when used. | ||
981 | ; | ||
982 | |||
983 | b2 .reg %fr8 | ||
984 | b2L .reg %fr8L | ||
985 | b2R .reg %fr8R | ||
986 | |||
987 | b3 .reg %fr9 | ||
988 | b3L .reg %fr9L | ||
989 | b3R .reg %fr9R | ||
990 | |||
991 | b4 .reg %fr10 | ||
992 | b4L .reg %fr10L | ||
993 | b4R .reg %fr10R | ||
994 | |||
995 | b5 .reg %fr11 | ||
996 | b5L .reg %fr11L | ||
997 | b5R .reg %fr11R | ||
998 | |||
999 | b6 .reg %fr12 | ||
1000 | b6L .reg %fr12L | ||
1001 | b6R .reg %fr12R | ||
1002 | |||
1003 | b7 .reg %fr13 | ||
1004 | b7L .reg %fr13L | ||
1005 | b7R .reg %fr13R | ||
1006 | |||
1007 | c1 .reg %r21 ; only reg | ||
1008 | temp1 .reg %r20 ; only reg | ||
1009 | temp2 .reg %r19 ; only reg | ||
1010 | temp3 .reg %r31 ; only reg | ||
1011 | |||
1012 | m1 .reg %r28 | ||
1013 | c2 .reg %r23 | ||
1014 | high_one .reg %r1 | ||
1015 | ht .reg %r6 | ||
1016 | lt .reg %r5 | ||
1017 | m .reg %r4 | ||
1018 | c3 .reg %r3 | ||
1019 | |||
1020 | SQR_ADD_C .macro A0L,A0R,C1,C2,C3 | ||
1021 | XMPYU A0L,A0R,ftemp1 ; m | ||
1022 | FSTD ftemp1,-24(%sp) ; store m | ||
1023 | |||
1024 | XMPYU A0R,A0R,ftemp2 ; lt | ||
1025 | FSTD ftemp2,-16(%sp) ; store lt | ||
1026 | |||
1027 | XMPYU A0L,A0L,ftemp3 ; ht | ||
1028 | FSTD ftemp3,-8(%sp) ; store ht | ||
1029 | |||
1030 | LDD -24(%sp),m ; load m | ||
1031 | AND m,high_mask,temp2 ; m & Mask | ||
1032 | DEPD,Z m,30,31,temp3 ; m << 32+1 | ||
1033 | LDD -16(%sp),lt ; lt | ||
1034 | |||
1035 | LDD -8(%sp),ht ; ht | ||
1036 | EXTRD,U temp2,32,33,temp1 ; temp1 = m&Mask >> 32-1 | ||
1037 | ADD temp3,lt,lt ; lt = lt+m | ||
1038 | ADD,L ht,temp1,ht ; ht += temp1 | ||
1039 | ADD,DC ht,%r0,ht ; ht++ | ||
1040 | |||
1041 | ADD C1,lt,C1 ; c1=c1+lt | ||
1042 | ADD,DC ht,%r0,ht ; ht++ | ||
1043 | |||
1044 | ADD C2,ht,C2 ; c2=c2+ht | ||
1045 | ADD,DC C3,%r0,C3 ; c3++ | ||
1046 | .endm | ||
1047 | |||
1048 | SQR_ADD_C2 .macro A0L,A0R,A1L,A1R,C1,C2,C3 | ||
1049 | XMPYU A0L,A1R,ftemp1 ; m1 = bl*ht | ||
1050 | FSTD ftemp1,-16(%sp) ; | ||
1051 | XMPYU A0R,A1L,ftemp2 ; m = bh*lt | ||
1052 | FSTD ftemp2,-8(%sp) ; | ||
1053 | XMPYU A0R,A1R,ftemp3 ; lt = bl*lt | ||
1054 | FSTD ftemp3,-32(%sp) | ||
1055 | XMPYU A0L,A1L,ftemp4 ; ht = bh*ht | ||
1056 | FSTD ftemp4,-24(%sp) ; | ||
1057 | |||
1058 | LDD -8(%sp),m ; r21 = m | ||
1059 | LDD -16(%sp),m1 ; r19 = m1 | ||
1060 | ADD,L m,m1,m ; m+m1 | ||
1061 | |||
1062 | DEPD,Z m,31,32,temp3 ; (m+m1<<32) | ||
1063 | LDD -24(%sp),ht ; r24 = ht | ||
1064 | |||
1065 | CMPCLR,*>>= m,m1,%r0 ; if (m < m1) | ||
1066 | ADD,L ht,high_one,ht ; ht+=high_one | ||
1067 | |||
1068 | EXTRD,U m,31,32,temp1 ; m >> 32 | ||
1069 | LDD -32(%sp),lt ; lt | ||
1070 | ADD,L ht,temp1,ht ; ht+= m>>32 | ||
1071 | ADD lt,temp3,lt ; lt = lt+m1 | ||
1072 | ADD,DC ht,%r0,ht ; ht++ | ||
1073 | |||
1074 | ADD ht,ht,ht ; ht=ht+ht; | ||
1075 | ADD,DC C3,%r0,C3 ; add in carry (c3++) | ||
1076 | |||
1077 | ADD lt,lt,lt ; lt=lt+lt; | ||
1078 | ADD,DC ht,%r0,ht ; add in carry (ht++) | ||
1079 | |||
1080 | ADD C1,lt,C1 ; c1=c1+lt | ||
1081 | ADD,DC,*NUV ht,%r0,ht ; add in carry (ht++) | ||
1082 | LDO 1(C3),C3 ; bump c3 if overflow,nullify otherwise | ||
1083 | |||
1084 | ADD C2,ht,C2 ; c2 = c2 + ht | ||
1085 | ADD,DC C3,%r0,C3 ; add in carry (c3++) | ||
1086 | .endm | ||
1087 | |||
1088 | ; | ||
1089 | ;void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a) | ||
1090 | ; arg0 = r_ptr | ||
1091 | ; arg1 = a_ptr | ||
1092 | ; | ||
1093 | |||
1094 | bn_sqr_comba8 | ||
1095 | .PROC | ||
1096 | .CALLINFO FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1097 | .EXPORT bn_sqr_comba8,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1098 | .ENTRY | ||
1099 | .align 64 | ||
1100 | |||
1101 | STD %r3,0(%sp) ; save r3 | ||
1102 | STD %r4,8(%sp) ; save r4 | ||
1103 | STD %r5,16(%sp) ; save r5 | ||
1104 | STD %r6,24(%sp) ; save r6 | ||
1105 | |||
1106 | ; | ||
1107 | ; Zero out carries | ||
1108 | ; | ||
1109 | COPY %r0,c1 | ||
1110 | COPY %r0,c2 | ||
1111 | COPY %r0,c3 | ||
1112 | |||
1113 | LDO 128(%sp),%sp ; bump stack | ||
1114 | DEPDI,Z -1,32,33,high_mask ; Create Mask 0xffffffff80000000L | ||
1115 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1116 | |||
1117 | ; | ||
1118 | ; Load up all of the values we are going to use | ||
1119 | ; | ||
1120 | FLDD 0(a_ptr),a0 | ||
1121 | FLDD 8(a_ptr),a1 | ||
1122 | FLDD 16(a_ptr),a2 | ||
1123 | FLDD 24(a_ptr),a3 | ||
1124 | FLDD 32(a_ptr),a4 | ||
1125 | FLDD 40(a_ptr),a5 | ||
1126 | FLDD 48(a_ptr),a6 | ||
1127 | FLDD 56(a_ptr),a7 | ||
1128 | |||
1129 | SQR_ADD_C a0L,a0R,c1,c2,c3 | ||
1130 | STD c1,0(r_ptr) ; r[0] = c1; | ||
1131 | COPY %r0,c1 | ||
1132 | |||
1133 | SQR_ADD_C2 a1L,a1R,a0L,a0R,c2,c3,c1 | ||
1134 | STD c2,8(r_ptr) ; r[1] = c2; | ||
1135 | COPY %r0,c2 | ||
1136 | |||
1137 | SQR_ADD_C a1L,a1R,c3,c1,c2 | ||
1138 | SQR_ADD_C2 a2L,a2R,a0L,a0R,c3,c1,c2 | ||
1139 | STD c3,16(r_ptr) ; r[2] = c3; | ||
1140 | COPY %r0,c3 | ||
1141 | |||
1142 | SQR_ADD_C2 a3L,a3R,a0L,a0R,c1,c2,c3 | ||
1143 | SQR_ADD_C2 a2L,a2R,a1L,a1R,c1,c2,c3 | ||
1144 | STD c1,24(r_ptr) ; r[3] = c1; | ||
1145 | COPY %r0,c1 | ||
1146 | |||
1147 | SQR_ADD_C a2L,a2R,c2,c3,c1 | ||
1148 | SQR_ADD_C2 a3L,a3R,a1L,a1R,c2,c3,c1 | ||
1149 | SQR_ADD_C2 a4L,a4R,a0L,a0R,c2,c3,c1 | ||
1150 | STD c2,32(r_ptr) ; r[4] = c2; | ||
1151 | COPY %r0,c2 | ||
1152 | |||
1153 | SQR_ADD_C2 a5L,a5R,a0L,a0R,c3,c1,c2 | ||
1154 | SQR_ADD_C2 a4L,a4R,a1L,a1R,c3,c1,c2 | ||
1155 | SQR_ADD_C2 a3L,a3R,a2L,a2R,c3,c1,c2 | ||
1156 | STD c3,40(r_ptr) ; r[5] = c3; | ||
1157 | COPY %r0,c3 | ||
1158 | |||
1159 | SQR_ADD_C a3L,a3R,c1,c2,c3 | ||
1160 | SQR_ADD_C2 a4L,a4R,a2L,a2R,c1,c2,c3 | ||
1161 | SQR_ADD_C2 a5L,a5R,a1L,a1R,c1,c2,c3 | ||
1162 | SQR_ADD_C2 a6L,a6R,a0L,a0R,c1,c2,c3 | ||
1163 | STD c1,48(r_ptr) ; r[6] = c1; | ||
1164 | COPY %r0,c1 | ||
1165 | |||
1166 | SQR_ADD_C2 a7L,a7R,a0L,a0R,c2,c3,c1 | ||
1167 | SQR_ADD_C2 a6L,a6R,a1L,a1R,c2,c3,c1 | ||
1168 | SQR_ADD_C2 a5L,a5R,a2L,a2R,c2,c3,c1 | ||
1169 | SQR_ADD_C2 a4L,a4R,a3L,a3R,c2,c3,c1 | ||
1170 | STD c2,56(r_ptr) ; r[7] = c2; | ||
1171 | COPY %r0,c2 | ||
1172 | |||
1173 | SQR_ADD_C a4L,a4R,c3,c1,c2 | ||
1174 | SQR_ADD_C2 a5L,a5R,a3L,a3R,c3,c1,c2 | ||
1175 | SQR_ADD_C2 a6L,a6R,a2L,a2R,c3,c1,c2 | ||
1176 | SQR_ADD_C2 a7L,a7R,a1L,a1R,c3,c1,c2 | ||
1177 | STD c3,64(r_ptr) ; r[8] = c3; | ||
1178 | COPY %r0,c3 | ||
1179 | |||
1180 | SQR_ADD_C2 a7L,a7R,a2L,a2R,c1,c2,c3 | ||
1181 | SQR_ADD_C2 a6L,a6R,a3L,a3R,c1,c2,c3 | ||
1182 | SQR_ADD_C2 a5L,a5R,a4L,a4R,c1,c2,c3 | ||
1183 | STD c1,72(r_ptr) ; r[9] = c1; | ||
1184 | COPY %r0,c1 | ||
1185 | |||
1186 | SQR_ADD_C a5L,a5R,c2,c3,c1 | ||
1187 | SQR_ADD_C2 a6L,a6R,a4L,a4R,c2,c3,c1 | ||
1188 | SQR_ADD_C2 a7L,a7R,a3L,a3R,c2,c3,c1 | ||
1189 | STD c2,80(r_ptr) ; r[10] = c2; | ||
1190 | COPY %r0,c2 | ||
1191 | |||
1192 | SQR_ADD_C2 a7L,a7R,a4L,a4R,c3,c1,c2 | ||
1193 | SQR_ADD_C2 a6L,a6R,a5L,a5R,c3,c1,c2 | ||
1194 | STD c3,88(r_ptr) ; r[11] = c3; | ||
1195 | COPY %r0,c3 | ||
1196 | |||
1197 | SQR_ADD_C a6L,a6R,c1,c2,c3 | ||
1198 | SQR_ADD_C2 a7L,a7R,a5L,a5R,c1,c2,c3 | ||
1199 | STD c1,96(r_ptr) ; r[12] = c1; | ||
1200 | COPY %r0,c1 | ||
1201 | |||
1202 | SQR_ADD_C2 a7L,a7R,a6L,a6R,c2,c3,c1 | ||
1203 | STD c2,104(r_ptr) ; r[13] = c2; | ||
1204 | COPY %r0,c2 | ||
1205 | |||
1206 | SQR_ADD_C a7L,a7R,c3,c1,c2 | ||
1207 | STD c3, 112(r_ptr) ; r[14] = c3 | ||
1208 | STD c1, 120(r_ptr) ; r[15] = c1 | ||
1209 | |||
1210 | .EXIT | ||
1211 | LDD -104(%sp),%r6 ; restore r6 | ||
1212 | LDD -112(%sp),%r5 ; restore r5 | ||
1213 | LDD -120(%sp),%r4 ; restore r4 | ||
1214 | BVE (%rp) | ||
1215 | LDD,MB -128(%sp),%r3 | ||
1216 | |||
1217 | .PROCEND | ||
1218 | |||
1219 | ;----------------------------------------------------------------------------- | ||
1220 | ; | ||
1221 | ;void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a) | ||
1222 | ; arg0 = r_ptr | ||
1223 | ; arg1 = a_ptr | ||
1224 | ; | ||
1225 | |||
1226 | bn_sqr_comba4 | ||
1227 | .proc | ||
1228 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1229 | .EXPORT bn_sqr_comba4,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1230 | .entry | ||
1231 | .align 64 | ||
1232 | STD %r3,0(%sp) ; save r3 | ||
1233 | STD %r4,8(%sp) ; save r4 | ||
1234 | STD %r5,16(%sp) ; save r5 | ||
1235 | STD %r6,24(%sp) ; save r6 | ||
1236 | |||
1237 | ; | ||
1238 | ; Zero out carries | ||
1239 | ; | ||
1240 | COPY %r0,c1 | ||
1241 | COPY %r0,c2 | ||
1242 | COPY %r0,c3 | ||
1243 | |||
1244 | LDO 128(%sp),%sp ; bump stack | ||
1245 | DEPDI,Z -1,32,33,high_mask ; Create Mask 0xffffffff80000000L | ||
1246 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1247 | |||
1248 | ; | ||
1249 | ; Load up all of the values we are going to use | ||
1250 | ; | ||
1251 | FLDD 0(a_ptr),a0 | ||
1252 | FLDD 8(a_ptr),a1 | ||
1253 | FLDD 16(a_ptr),a2 | ||
1254 | FLDD 24(a_ptr),a3 | ||
1255 | FLDD 32(a_ptr),a4 | ||
1256 | FLDD 40(a_ptr),a5 | ||
1257 | FLDD 48(a_ptr),a6 | ||
1258 | FLDD 56(a_ptr),a7 | ||
1259 | |||
1260 | SQR_ADD_C a0L,a0R,c1,c2,c3 | ||
1261 | |||
1262 | STD c1,0(r_ptr) ; r[0] = c1; | ||
1263 | COPY %r0,c1 | ||
1264 | |||
1265 | SQR_ADD_C2 a1L,a1R,a0L,a0R,c2,c3,c1 | ||
1266 | |||
1267 | STD c2,8(r_ptr) ; r[1] = c2; | ||
1268 | COPY %r0,c2 | ||
1269 | |||
1270 | SQR_ADD_C a1L,a1R,c3,c1,c2 | ||
1271 | SQR_ADD_C2 a2L,a2R,a0L,a0R,c3,c1,c2 | ||
1272 | |||
1273 | STD c3,16(r_ptr) ; r[2] = c3; | ||
1274 | COPY %r0,c3 | ||
1275 | |||
1276 | SQR_ADD_C2 a3L,a3R,a0L,a0R,c1,c2,c3 | ||
1277 | SQR_ADD_C2 a2L,a2R,a1L,a1R,c1,c2,c3 | ||
1278 | |||
1279 | STD c1,24(r_ptr) ; r[3] = c1; | ||
1280 | COPY %r0,c1 | ||
1281 | |||
1282 | SQR_ADD_C a2L,a2R,c2,c3,c1 | ||
1283 | SQR_ADD_C2 a3L,a3R,a1L,a1R,c2,c3,c1 | ||
1284 | |||
1285 | STD c2,32(r_ptr) ; r[4] = c2; | ||
1286 | COPY %r0,c2 | ||
1287 | |||
1288 | SQR_ADD_C2 a3L,a3R,a2L,a2R,c3,c1,c2 | ||
1289 | STD c3,40(r_ptr) ; r[5] = c3; | ||
1290 | COPY %r0,c3 | ||
1291 | |||
1292 | SQR_ADD_C a3L,a3R,c1,c2,c3 | ||
1293 | STD c1,48(r_ptr) ; r[6] = c1; | ||
1294 | STD c2,56(r_ptr) ; r[7] = c2; | ||
1295 | |||
1296 | .EXIT | ||
1297 | LDD -104(%sp),%r6 ; restore r6 | ||
1298 | LDD -112(%sp),%r5 ; restore r5 | ||
1299 | LDD -120(%sp),%r4 ; restore r4 | ||
1300 | BVE (%rp) | ||
1301 | LDD,MB -128(%sp),%r3 | ||
1302 | |||
1303 | .PROCEND | ||
1304 | |||
1305 | |||
1306 | ;--------------------------------------------------------------------------- | ||
1307 | |||
1308 | MUL_ADD_C .macro A0L,A0R,B0L,B0R,C1,C2,C3 | ||
1309 | XMPYU A0L,B0R,ftemp1 ; m1 = bl*ht | ||
1310 | FSTD ftemp1,-16(%sp) ; | ||
1311 | XMPYU A0R,B0L,ftemp2 ; m = bh*lt | ||
1312 | FSTD ftemp2,-8(%sp) ; | ||
1313 | XMPYU A0R,B0R,ftemp3 ; lt = bl*lt | ||
1314 | FSTD ftemp3,-32(%sp) | ||
1315 | XMPYU A0L,B0L,ftemp4 ; ht = bh*ht | ||
1316 | FSTD ftemp4,-24(%sp) ; | ||
1317 | |||
1318 | LDD -8(%sp),m ; r21 = m | ||
1319 | LDD -16(%sp),m1 ; r19 = m1 | ||
1320 | ADD,L m,m1,m ; m+m1 | ||
1321 | |||
1322 | DEPD,Z m,31,32,temp3 ; (m+m1<<32) | ||
1323 | LDD -24(%sp),ht ; r24 = ht | ||
1324 | |||
1325 | CMPCLR,*>>= m,m1,%r0 ; if (m < m1) | ||
1326 | ADD,L ht,high_one,ht ; ht+=high_one | ||
1327 | |||
1328 | EXTRD,U m,31,32,temp1 ; m >> 32 | ||
1329 | LDD -32(%sp),lt ; lt | ||
1330 | ADD,L ht,temp1,ht ; ht+= m>>32 | ||
1331 | ADD lt,temp3,lt ; lt = lt+m1 | ||
1332 | ADD,DC ht,%r0,ht ; ht++ | ||
1333 | |||
1334 | ADD C1,lt,C1 ; c1=c1+lt | ||
1335 | ADD,DC ht,%r0,ht ; bump c3 if overflow,nullify otherwise | ||
1336 | |||
1337 | ADD C2,ht,C2 ; c2 = c2 + ht | ||
1338 | ADD,DC C3,%r0,C3 ; add in carry (c3++) | ||
1339 | .endm | ||
1340 | |||
1341 | |||
1342 | ; | ||
1343 | ;void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
1344 | ; arg0 = r_ptr | ||
1345 | ; arg1 = a_ptr | ||
1346 | ; arg2 = b_ptr | ||
1347 | ; | ||
1348 | |||
1349 | bn_mul_comba8 | ||
1350 | .proc | ||
1351 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1352 | .EXPORT bn_mul_comba8,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1353 | .entry | ||
1354 | .align 64 | ||
1355 | |||
1356 | STD %r3,0(%sp) ; save r3 | ||
1357 | STD %r4,8(%sp) ; save r4 | ||
1358 | STD %r5,16(%sp) ; save r5 | ||
1359 | STD %r6,24(%sp) ; save r6 | ||
1360 | FSTD %fr12,32(%sp) ; save r6 | ||
1361 | FSTD %fr13,40(%sp) ; save r7 | ||
1362 | |||
1363 | ; | ||
1364 | ; Zero out carries | ||
1365 | ; | ||
1366 | COPY %r0,c1 | ||
1367 | COPY %r0,c2 | ||
1368 | COPY %r0,c3 | ||
1369 | |||
1370 | LDO 128(%sp),%sp ; bump stack | ||
1371 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1372 | |||
1373 | ; | ||
1374 | ; Load up all of the values we are going to use | ||
1375 | ; | ||
1376 | FLDD 0(a_ptr),a0 | ||
1377 | FLDD 8(a_ptr),a1 | ||
1378 | FLDD 16(a_ptr),a2 | ||
1379 | FLDD 24(a_ptr),a3 | ||
1380 | FLDD 32(a_ptr),a4 | ||
1381 | FLDD 40(a_ptr),a5 | ||
1382 | FLDD 48(a_ptr),a6 | ||
1383 | FLDD 56(a_ptr),a7 | ||
1384 | |||
1385 | FLDD 0(b_ptr),b0 | ||
1386 | FLDD 8(b_ptr),b1 | ||
1387 | FLDD 16(b_ptr),b2 | ||
1388 | FLDD 24(b_ptr),b3 | ||
1389 | FLDD 32(b_ptr),b4 | ||
1390 | FLDD 40(b_ptr),b5 | ||
1391 | FLDD 48(b_ptr),b6 | ||
1392 | FLDD 56(b_ptr),b7 | ||
1393 | |||
1394 | MUL_ADD_C a0L,a0R,b0L,b0R,c1,c2,c3 | ||
1395 | STD c1,0(r_ptr) | ||
1396 | COPY %r0,c1 | ||
1397 | |||
1398 | MUL_ADD_C a0L,a0R,b1L,b1R,c2,c3,c1 | ||
1399 | MUL_ADD_C a1L,a1R,b0L,b0R,c2,c3,c1 | ||
1400 | STD c2,8(r_ptr) | ||
1401 | COPY %r0,c2 | ||
1402 | |||
1403 | MUL_ADD_C a2L,a2R,b0L,b0R,c3,c1,c2 | ||
1404 | MUL_ADD_C a1L,a1R,b1L,b1R,c3,c1,c2 | ||
1405 | MUL_ADD_C a0L,a0R,b2L,b2R,c3,c1,c2 | ||
1406 | STD c3,16(r_ptr) | ||
1407 | COPY %r0,c3 | ||
1408 | |||
1409 | MUL_ADD_C a0L,a0R,b3L,b3R,c1,c2,c3 | ||
1410 | MUL_ADD_C a1L,a1R,b2L,b2R,c1,c2,c3 | ||
1411 | MUL_ADD_C a2L,a2R,b1L,b1R,c1,c2,c3 | ||
1412 | MUL_ADD_C a3L,a3R,b0L,b0R,c1,c2,c3 | ||
1413 | STD c1,24(r_ptr) | ||
1414 | COPY %r0,c1 | ||
1415 | |||
1416 | MUL_ADD_C a4L,a4R,b0L,b0R,c2,c3,c1 | ||
1417 | MUL_ADD_C a3L,a3R,b1L,b1R,c2,c3,c1 | ||
1418 | MUL_ADD_C a2L,a2R,b2L,b2R,c2,c3,c1 | ||
1419 | MUL_ADD_C a1L,a1R,b3L,b3R,c2,c3,c1 | ||
1420 | MUL_ADD_C a0L,a0R,b4L,b4R,c2,c3,c1 | ||
1421 | STD c2,32(r_ptr) | ||
1422 | COPY %r0,c2 | ||
1423 | |||
1424 | MUL_ADD_C a0L,a0R,b5L,b5R,c3,c1,c2 | ||
1425 | MUL_ADD_C a1L,a1R,b4L,b4R,c3,c1,c2 | ||
1426 | MUL_ADD_C a2L,a2R,b3L,b3R,c3,c1,c2 | ||
1427 | MUL_ADD_C a3L,a3R,b2L,b2R,c3,c1,c2 | ||
1428 | MUL_ADD_C a4L,a4R,b1L,b1R,c3,c1,c2 | ||
1429 | MUL_ADD_C a5L,a5R,b0L,b0R,c3,c1,c2 | ||
1430 | STD c3,40(r_ptr) | ||
1431 | COPY %r0,c3 | ||
1432 | |||
1433 | MUL_ADD_C a6L,a6R,b0L,b0R,c1,c2,c3 | ||
1434 | MUL_ADD_C a5L,a5R,b1L,b1R,c1,c2,c3 | ||
1435 | MUL_ADD_C a4L,a4R,b2L,b2R,c1,c2,c3 | ||
1436 | MUL_ADD_C a3L,a3R,b3L,b3R,c1,c2,c3 | ||
1437 | MUL_ADD_C a2L,a2R,b4L,b4R,c1,c2,c3 | ||
1438 | MUL_ADD_C a1L,a1R,b5L,b5R,c1,c2,c3 | ||
1439 | MUL_ADD_C a0L,a0R,b6L,b6R,c1,c2,c3 | ||
1440 | STD c1,48(r_ptr) | ||
1441 | COPY %r0,c1 | ||
1442 | |||
1443 | MUL_ADD_C a0L,a0R,b7L,b7R,c2,c3,c1 | ||
1444 | MUL_ADD_C a1L,a1R,b6L,b6R,c2,c3,c1 | ||
1445 | MUL_ADD_C a2L,a2R,b5L,b5R,c2,c3,c1 | ||
1446 | MUL_ADD_C a3L,a3R,b4L,b4R,c2,c3,c1 | ||
1447 | MUL_ADD_C a4L,a4R,b3L,b3R,c2,c3,c1 | ||
1448 | MUL_ADD_C a5L,a5R,b2L,b2R,c2,c3,c1 | ||
1449 | MUL_ADD_C a6L,a6R,b1L,b1R,c2,c3,c1 | ||
1450 | MUL_ADD_C a7L,a7R,b0L,b0R,c2,c3,c1 | ||
1451 | STD c2,56(r_ptr) | ||
1452 | COPY %r0,c2 | ||
1453 | |||
1454 | MUL_ADD_C a7L,a7R,b1L,b1R,c3,c1,c2 | ||
1455 | MUL_ADD_C a6L,a6R,b2L,b2R,c3,c1,c2 | ||
1456 | MUL_ADD_C a5L,a5R,b3L,b3R,c3,c1,c2 | ||
1457 | MUL_ADD_C a4L,a4R,b4L,b4R,c3,c1,c2 | ||
1458 | MUL_ADD_C a3L,a3R,b5L,b5R,c3,c1,c2 | ||
1459 | MUL_ADD_C a2L,a2R,b6L,b6R,c3,c1,c2 | ||
1460 | MUL_ADD_C a1L,a1R,b7L,b7R,c3,c1,c2 | ||
1461 | STD c3,64(r_ptr) | ||
1462 | COPY %r0,c3 | ||
1463 | |||
1464 | MUL_ADD_C a2L,a2R,b7L,b7R,c1,c2,c3 | ||
1465 | MUL_ADD_C a3L,a3R,b6L,b6R,c1,c2,c3 | ||
1466 | MUL_ADD_C a4L,a4R,b5L,b5R,c1,c2,c3 | ||
1467 | MUL_ADD_C a5L,a5R,b4L,b4R,c1,c2,c3 | ||
1468 | MUL_ADD_C a6L,a6R,b3L,b3R,c1,c2,c3 | ||
1469 | MUL_ADD_C a7L,a7R,b2L,b2R,c1,c2,c3 | ||
1470 | STD c1,72(r_ptr) | ||
1471 | COPY %r0,c1 | ||
1472 | |||
1473 | MUL_ADD_C a7L,a7R,b3L,b3R,c2,c3,c1 | ||
1474 | MUL_ADD_C a6L,a6R,b4L,b4R,c2,c3,c1 | ||
1475 | MUL_ADD_C a5L,a5R,b5L,b5R,c2,c3,c1 | ||
1476 | MUL_ADD_C a4L,a4R,b6L,b6R,c2,c3,c1 | ||
1477 | MUL_ADD_C a3L,a3R,b7L,b7R,c2,c3,c1 | ||
1478 | STD c2,80(r_ptr) | ||
1479 | COPY %r0,c2 | ||
1480 | |||
1481 | MUL_ADD_C a4L,a4R,b7L,b7R,c3,c1,c2 | ||
1482 | MUL_ADD_C a5L,a5R,b6L,b6R,c3,c1,c2 | ||
1483 | MUL_ADD_C a6L,a6R,b5L,b5R,c3,c1,c2 | ||
1484 | MUL_ADD_C a7L,a7R,b4L,b4R,c3,c1,c2 | ||
1485 | STD c3,88(r_ptr) | ||
1486 | COPY %r0,c3 | ||
1487 | |||
1488 | MUL_ADD_C a7L,a7R,b5L,b5R,c1,c2,c3 | ||
1489 | MUL_ADD_C a6L,a6R,b6L,b6R,c1,c2,c3 | ||
1490 | MUL_ADD_C a5L,a5R,b7L,b7R,c1,c2,c3 | ||
1491 | STD c1,96(r_ptr) | ||
1492 | COPY %r0,c1 | ||
1493 | |||
1494 | MUL_ADD_C a6L,a6R,b7L,b7R,c2,c3,c1 | ||
1495 | MUL_ADD_C a7L,a7R,b6L,b6R,c2,c3,c1 | ||
1496 | STD c2,104(r_ptr) | ||
1497 | COPY %r0,c2 | ||
1498 | |||
1499 | MUL_ADD_C a7L,a7R,b7L,b7R,c3,c1,c2 | ||
1500 | STD c3,112(r_ptr) | ||
1501 | STD c1,120(r_ptr) | ||
1502 | |||
1503 | .EXIT | ||
1504 | FLDD -88(%sp),%fr13 | ||
1505 | FLDD -96(%sp),%fr12 | ||
1506 | LDD -104(%sp),%r6 ; restore r6 | ||
1507 | LDD -112(%sp),%r5 ; restore r5 | ||
1508 | LDD -120(%sp),%r4 ; restore r4 | ||
1509 | BVE (%rp) | ||
1510 | LDD,MB -128(%sp),%r3 | ||
1511 | |||
1512 | .PROCEND | ||
1513 | |||
1514 | ;----------------------------------------------------------------------------- | ||
1515 | ; | ||
1516 | ;void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
1517 | ; arg0 = r_ptr | ||
1518 | ; arg1 = a_ptr | ||
1519 | ; arg2 = b_ptr | ||
1520 | ; | ||
1521 | |||
1522 | bn_mul_comba4 | ||
1523 | .proc | ||
1524 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1525 | .EXPORT bn_mul_comba4,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1526 | .entry | ||
1527 | .align 64 | ||
1528 | |||
1529 | STD %r3,0(%sp) ; save r3 | ||
1530 | STD %r4,8(%sp) ; save r4 | ||
1531 | STD %r5,16(%sp) ; save r5 | ||
1532 | STD %r6,24(%sp) ; save r6 | ||
1533 | FSTD %fr12,32(%sp) ; save r6 | ||
1534 | FSTD %fr13,40(%sp) ; save r7 | ||
1535 | |||
1536 | ; | ||
1537 | ; Zero out carries | ||
1538 | ; | ||
1539 | COPY %r0,c1 | ||
1540 | COPY %r0,c2 | ||
1541 | COPY %r0,c3 | ||
1542 | |||
1543 | LDO 128(%sp),%sp ; bump stack | ||
1544 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1545 | |||
1546 | ; | ||
1547 | ; Load up all of the values we are going to use | ||
1548 | ; | ||
1549 | FLDD 0(a_ptr),a0 | ||
1550 | FLDD 8(a_ptr),a1 | ||
1551 | FLDD 16(a_ptr),a2 | ||
1552 | FLDD 24(a_ptr),a3 | ||
1553 | |||
1554 | FLDD 0(b_ptr),b0 | ||
1555 | FLDD 8(b_ptr),b1 | ||
1556 | FLDD 16(b_ptr),b2 | ||
1557 | FLDD 24(b_ptr),b3 | ||
1558 | |||
1559 | MUL_ADD_C a0L,a0R,b0L,b0R,c1,c2,c3 | ||
1560 | STD c1,0(r_ptr) | ||
1561 | COPY %r0,c1 | ||
1562 | |||
1563 | MUL_ADD_C a0L,a0R,b1L,b1R,c2,c3,c1 | ||
1564 | MUL_ADD_C a1L,a1R,b0L,b0R,c2,c3,c1 | ||
1565 | STD c2,8(r_ptr) | ||
1566 | COPY %r0,c2 | ||
1567 | |||
1568 | MUL_ADD_C a2L,a2R,b0L,b0R,c3,c1,c2 | ||
1569 | MUL_ADD_C a1L,a1R,b1L,b1R,c3,c1,c2 | ||
1570 | MUL_ADD_C a0L,a0R,b2L,b2R,c3,c1,c2 | ||
1571 | STD c3,16(r_ptr) | ||
1572 | COPY %r0,c3 | ||
1573 | |||
1574 | MUL_ADD_C a0L,a0R,b3L,b3R,c1,c2,c3 | ||
1575 | MUL_ADD_C a1L,a1R,b2L,b2R,c1,c2,c3 | ||
1576 | MUL_ADD_C a2L,a2R,b1L,b1R,c1,c2,c3 | ||
1577 | MUL_ADD_C a3L,a3R,b0L,b0R,c1,c2,c3 | ||
1578 | STD c1,24(r_ptr) | ||
1579 | COPY %r0,c1 | ||
1580 | |||
1581 | MUL_ADD_C a3L,a3R,b1L,b1R,c2,c3,c1 | ||
1582 | MUL_ADD_C a2L,a2R,b2L,b2R,c2,c3,c1 | ||
1583 | MUL_ADD_C a1L,a1R,b3L,b3R,c2,c3,c1 | ||
1584 | STD c2,32(r_ptr) | ||
1585 | COPY %r0,c2 | ||
1586 | |||
1587 | MUL_ADD_C a2L,a2R,b3L,b3R,c3,c1,c2 | ||
1588 | MUL_ADD_C a3L,a3R,b2L,b2R,c3,c1,c2 | ||
1589 | STD c3,40(r_ptr) | ||
1590 | COPY %r0,c3 | ||
1591 | |||
1592 | MUL_ADD_C a3L,a3R,b3L,b3R,c1,c2,c3 | ||
1593 | STD c1,48(r_ptr) | ||
1594 | STD c2,56(r_ptr) | ||
1595 | |||
1596 | .EXIT | ||
1597 | FLDD -88(%sp),%fr13 | ||
1598 | FLDD -96(%sp),%fr12 | ||
1599 | LDD -104(%sp),%r6 ; restore r6 | ||
1600 | LDD -112(%sp),%r5 ; restore r5 | ||
1601 | LDD -120(%sp),%r4 ; restore r4 | ||
1602 | BVE (%rp) | ||
1603 | LDD,MB -128(%sp),%r3 | ||
1604 | |||
1605 | .PROCEND | ||
1606 | |||
1607 | |||
1608 | ;--- not PIC .SPACE $TEXT$ | ||
1609 | ;--- not PIC .SUBSPA $CODE$ | ||
1610 | ;--- not PIC .SPACE $PRIVATE$,SORT=16 | ||
1611 | ;--- not PIC .IMPORT $global$,DATA | ||
1612 | ;--- not PIC .SPACE $TEXT$ | ||
1613 | ;--- not PIC .SUBSPA $CODE$ | ||
1614 | ;--- not PIC .SUBSPA $LIT$,ACCESS=0x2c | ||
1615 | ;--- not PIC C$7 | ||
1616 | ;--- not PIC .ALIGN 8 | ||
1617 | ;--- not PIC .STRINGZ "Division would overflow (%d)\n" | ||
1618 | .END | ||
diff --git a/src/lib/libcrypto/bn/asm/pa-risc2W.s b/src/lib/libcrypto/bn/asm/pa-risc2W.s deleted file mode 100644 index a99545754d..0000000000 --- a/src/lib/libcrypto/bn/asm/pa-risc2W.s +++ /dev/null | |||
@@ -1,1605 +0,0 @@ | |||
1 | ; | ||
2 | ; PA-RISC 64-bit implementation of bn_asm code | ||
3 | ; | ||
4 | ; This code is approximately 2x faster than the C version | ||
5 | ; for RSA/DSA. | ||
6 | ; | ||
7 | ; See http://devresource.hp.com/ for more details on the PA-RISC | ||
8 | ; architecture. Also see the book "PA-RISC 2.0 Architecture" | ||
9 | ; by Gerry Kane for information on the instruction set architecture. | ||
10 | ; | ||
11 | ; Code written by Chris Ruemmler (with some help from the HP C | ||
12 | ; compiler). | ||
13 | ; | ||
14 | ; The code compiles with HP's assembler | ||
15 | ; | ||
16 | |||
17 | .level 2.0W | ||
18 | .space $TEXT$ | ||
19 | .subspa $CODE$,QUAD=0,ALIGN=8,ACCESS=0x2c,CODE_ONLY | ||
20 | |||
21 | ; | ||
22 | ; Global Register definitions used for the routines. | ||
23 | ; | ||
24 | ; Some information about HP's runtime architecture for 64-bits. | ||
25 | ; | ||
26 | ; "Caller save" means the calling function must save the register | ||
27 | ; if it wants the register to be preserved. | ||
28 | ; "Callee save" means if a function uses the register, it must save | ||
29 | ; the value before using it. | ||
30 | ; | ||
31 | ; For the floating point registers | ||
32 | ; | ||
33 | ; "caller save" registers: fr4-fr11, fr22-fr31 | ||
34 | ; "callee save" registers: fr12-fr21 | ||
35 | ; "special" registers: fr0-fr3 (status and exception registers) | ||
36 | ; | ||
37 | ; For the integer registers | ||
38 | ; value zero : r0 | ||
39 | ; "caller save" registers: r1,r19-r26 | ||
40 | ; "callee save" registers: r3-r18 | ||
41 | ; return register : r2 (rp) | ||
42 | ; return values ; r28 (ret0,ret1) | ||
43 | ; Stack pointer ; r30 (sp) | ||
44 | ; global data pointer ; r27 (dp) | ||
45 | ; argument pointer ; r29 (ap) | ||
46 | ; millicode return ptr ; r31 (also a caller save register) | ||
47 | |||
48 | |||
49 | ; | ||
50 | ; Arguments to the routines | ||
51 | ; | ||
52 | r_ptr .reg %r26 | ||
53 | a_ptr .reg %r25 | ||
54 | b_ptr .reg %r24 | ||
55 | num .reg %r24 | ||
56 | w .reg %r23 | ||
57 | n .reg %r23 | ||
58 | |||
59 | |||
60 | ; | ||
61 | ; Globals used in some routines | ||
62 | ; | ||
63 | |||
64 | top_overflow .reg %r29 | ||
65 | high_mask .reg %r22 ; value 0xffffffff80000000L | ||
66 | |||
67 | |||
68 | ;------------------------------------------------------------------------------ | ||
69 | ; | ||
70 | ; bn_mul_add_words | ||
71 | ; | ||
72 | ;BN_ULONG bn_mul_add_words(BN_ULONG *r_ptr, BN_ULONG *a_ptr, | ||
73 | ; int num, BN_ULONG w) | ||
74 | ; | ||
75 | ; arg0 = r_ptr | ||
76 | ; arg1 = a_ptr | ||
77 | ; arg2 = num | ||
78 | ; arg3 = w | ||
79 | ; | ||
80 | ; Local register definitions | ||
81 | ; | ||
82 | |||
83 | fm1 .reg %fr22 | ||
84 | fm .reg %fr23 | ||
85 | ht_temp .reg %fr24 | ||
86 | ht_temp_1 .reg %fr25 | ||
87 | lt_temp .reg %fr26 | ||
88 | lt_temp_1 .reg %fr27 | ||
89 | fm1_1 .reg %fr28 | ||
90 | fm_1 .reg %fr29 | ||
91 | |||
92 | fw_h .reg %fr7L | ||
93 | fw_l .reg %fr7R | ||
94 | fw .reg %fr7 | ||
95 | |||
96 | fht_0 .reg %fr8L | ||
97 | flt_0 .reg %fr8R | ||
98 | t_float_0 .reg %fr8 | ||
99 | |||
100 | fht_1 .reg %fr9L | ||
101 | flt_1 .reg %fr9R | ||
102 | t_float_1 .reg %fr9 | ||
103 | |||
104 | tmp_0 .reg %r31 | ||
105 | tmp_1 .reg %r21 | ||
106 | m_0 .reg %r20 | ||
107 | m_1 .reg %r19 | ||
108 | ht_0 .reg %r1 | ||
109 | ht_1 .reg %r3 | ||
110 | lt_0 .reg %r4 | ||
111 | lt_1 .reg %r5 | ||
112 | m1_0 .reg %r6 | ||
113 | m1_1 .reg %r7 | ||
114 | rp_val .reg %r8 | ||
115 | rp_val_1 .reg %r9 | ||
116 | |||
117 | bn_mul_add_words | ||
118 | .export bn_mul_add_words,entry,NO_RELOCATION,LONG_RETURN | ||
119 | .proc | ||
120 | .callinfo frame=128 | ||
121 | .entry | ||
122 | .align 64 | ||
123 | |||
124 | STD %r3,0(%sp) ; save r3 | ||
125 | STD %r4,8(%sp) ; save r4 | ||
126 | NOP ; Needed to make the loop 16-byte aligned | ||
127 | NOP ; Needed to make the loop 16-byte aligned | ||
128 | |||
129 | STD %r5,16(%sp) ; save r5 | ||
130 | STD %r6,24(%sp) ; save r6 | ||
131 | STD %r7,32(%sp) ; save r7 | ||
132 | STD %r8,40(%sp) ; save r8 | ||
133 | |||
134 | STD %r9,48(%sp) ; save r9 | ||
135 | COPY %r0,%ret0 ; return 0 by default | ||
136 | DEPDI,Z 1,31,1,top_overflow ; top_overflow = 1 << 32 | ||
137 | STD w,56(%sp) ; store w on stack | ||
138 | |||
139 | CMPIB,>= 0,num,bn_mul_add_words_exit ; if (num <= 0) then exit | ||
140 | LDO 128(%sp),%sp ; bump stack | ||
141 | |||
142 | ; | ||
143 | ; The loop is unrolled twice, so if there is only 1 number | ||
144 | ; then go straight to the cleanup code. | ||
145 | ; | ||
146 | CMPIB,= 1,num,bn_mul_add_words_single_top | ||
147 | FLDD -72(%sp),fw ; load up w into fp register fw (fw_h/fw_l) | ||
148 | |||
149 | ; | ||
150 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
151 | ; | ||
152 | ; PA-RISC 2.0 chips have two fully pipelined multipliers, thus | ||
153 | ; two 32-bit mutiplies can be issued per cycle. | ||
154 | ; | ||
155 | bn_mul_add_words_unroll2 | ||
156 | |||
157 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
158 | FLDD 8(a_ptr),t_float_1 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
159 | LDD 0(r_ptr),rp_val ; rp[0] | ||
160 | LDD 8(r_ptr),rp_val_1 ; rp[1] | ||
161 | |||
162 | XMPYU fht_0,fw_l,fm1 ; m1[0] = fht_0*fw_l | ||
163 | XMPYU fht_1,fw_l,fm1_1 ; m1[1] = fht_1*fw_l | ||
164 | FSTD fm1,-16(%sp) ; -16(sp) = m1[0] | ||
165 | FSTD fm1_1,-48(%sp) ; -48(sp) = m1[1] | ||
166 | |||
167 | XMPYU flt_0,fw_h,fm ; m[0] = flt_0*fw_h | ||
168 | XMPYU flt_1,fw_h,fm_1 ; m[1] = flt_1*fw_h | ||
169 | FSTD fm,-8(%sp) ; -8(sp) = m[0] | ||
170 | FSTD fm_1,-40(%sp) ; -40(sp) = m[1] | ||
171 | |||
172 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = fht_0*fw_h | ||
173 | XMPYU fht_1,fw_h,ht_temp_1 ; ht_temp_1 = fht_1*fw_h | ||
174 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht_temp | ||
175 | FSTD ht_temp_1,-56(%sp) ; -56(sp) = ht_temp_1 | ||
176 | |||
177 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
178 | XMPYU flt_1,fw_l,lt_temp_1 ; lt_temp = lt*fw_l | ||
179 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt_temp | ||
180 | FSTD lt_temp_1,-64(%sp) ; -64(sp) = lt_temp_1 | ||
181 | |||
182 | LDD -8(%sp),m_0 ; m[0] | ||
183 | LDD -40(%sp),m_1 ; m[1] | ||
184 | LDD -16(%sp),m1_0 ; m1[0] | ||
185 | LDD -48(%sp),m1_1 ; m1[1] | ||
186 | |||
187 | LDD -24(%sp),ht_0 ; ht[0] | ||
188 | LDD -56(%sp),ht_1 ; ht[1] | ||
189 | ADD,L m1_0,m_0,tmp_0 ; tmp_0 = m[0] + m1[0]; | ||
190 | ADD,L m1_1,m_1,tmp_1 ; tmp_1 = m[1] + m1[1]; | ||
191 | |||
192 | LDD -32(%sp),lt_0 | ||
193 | LDD -64(%sp),lt_1 | ||
194 | CMPCLR,*>>= tmp_0,m1_0, %r0 ; if (m[0] < m1[0]) | ||
195 | ADD,L ht_0,top_overflow,ht_0 ; ht[0] += (1<<32) | ||
196 | |||
197 | CMPCLR,*>>= tmp_1,m1_1,%r0 ; if (m[1] < m1[1]) | ||
198 | ADD,L ht_1,top_overflow,ht_1 ; ht[1] += (1<<32) | ||
199 | EXTRD,U tmp_0,31,32,m_0 ; m[0]>>32 | ||
200 | DEPD,Z tmp_0,31,32,m1_0 ; m1[0] = m[0]<<32 | ||
201 | |||
202 | EXTRD,U tmp_1,31,32,m_1 ; m[1]>>32 | ||
203 | DEPD,Z tmp_1,31,32,m1_1 ; m1[1] = m[1]<<32 | ||
204 | ADD,L ht_0,m_0,ht_0 ; ht[0]+= (m[0]>>32) | ||
205 | ADD,L ht_1,m_1,ht_1 ; ht[1]+= (m[1]>>32) | ||
206 | |||
207 | ADD lt_0,m1_0,lt_0 ; lt[0] = lt[0]+m1[0]; | ||
208 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
209 | ADD lt_1,m1_1,lt_1 ; lt[1] = lt[1]+m1[1]; | ||
210 | ADD,DC ht_1,%r0,ht_1 ; ht[1]++ | ||
211 | |||
212 | ADD %ret0,lt_0,lt_0 ; lt[0] = lt[0] + c; | ||
213 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
214 | ADD lt_0,rp_val,lt_0 ; lt[0] = lt[0]+rp[0] | ||
215 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
216 | |||
217 | LDO -2(num),num ; num = num - 2; | ||
218 | ADD ht_0,lt_1,lt_1 ; lt[1] = lt[1] + ht_0 (c); | ||
219 | ADD,DC ht_1,%r0,ht_1 ; ht[1]++ | ||
220 | STD lt_0,0(r_ptr) ; rp[0] = lt[0] | ||
221 | |||
222 | ADD lt_1,rp_val_1,lt_1 ; lt[1] = lt[1]+rp[1] | ||
223 | ADD,DC ht_1,%r0,%ret0 ; ht[1]++ | ||
224 | LDO 16(a_ptr),a_ptr ; a_ptr += 2 | ||
225 | |||
226 | STD lt_1,8(r_ptr) ; rp[1] = lt[1] | ||
227 | CMPIB,<= 2,num,bn_mul_add_words_unroll2 ; go again if more to do | ||
228 | LDO 16(r_ptr),r_ptr ; r_ptr += 2 | ||
229 | |||
230 | CMPIB,=,N 0,num,bn_mul_add_words_exit ; are we done, or cleanup last one | ||
231 | |||
232 | ; | ||
233 | ; Top of loop aligned on 64-byte boundary | ||
234 | ; | ||
235 | bn_mul_add_words_single_top | ||
236 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
237 | LDD 0(r_ptr),rp_val ; rp[0] | ||
238 | LDO 8(a_ptr),a_ptr ; a_ptr++ | ||
239 | XMPYU fht_0,fw_l,fm1 ; m1 = ht*fw_l | ||
240 | FSTD fm1,-16(%sp) ; -16(sp) = m1 | ||
241 | XMPYU flt_0,fw_h,fm ; m = lt*fw_h | ||
242 | FSTD fm,-8(%sp) ; -8(sp) = m | ||
243 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = ht*fw_h | ||
244 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht | ||
245 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
246 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt | ||
247 | |||
248 | LDD -8(%sp),m_0 | ||
249 | LDD -16(%sp),m1_0 ; m1 = temp1 | ||
250 | ADD,L m_0,m1_0,tmp_0 ; tmp_0 = m + m1; | ||
251 | LDD -24(%sp),ht_0 | ||
252 | LDD -32(%sp),lt_0 | ||
253 | |||
254 | CMPCLR,*>>= tmp_0,m1_0,%r0 ; if (m < m1) | ||
255 | ADD,L ht_0,top_overflow,ht_0 ; ht += (1<<32) | ||
256 | |||
257 | EXTRD,U tmp_0,31,32,m_0 ; m>>32 | ||
258 | DEPD,Z tmp_0,31,32,m1_0 ; m1 = m<<32 | ||
259 | |||
260 | ADD,L ht_0,m_0,ht_0 ; ht+= (m>>32) | ||
261 | ADD lt_0,m1_0,tmp_0 ; tmp_0 = lt+m1; | ||
262 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
263 | ADD %ret0,tmp_0,lt_0 ; lt = lt + c; | ||
264 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
265 | ADD lt_0,rp_val,lt_0 ; lt = lt+rp[0] | ||
266 | ADD,DC ht_0,%r0,%ret0 ; ht++ | ||
267 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
268 | |||
269 | bn_mul_add_words_exit | ||
270 | .EXIT | ||
271 | LDD -80(%sp),%r9 ; restore r9 | ||
272 | LDD -88(%sp),%r8 ; restore r8 | ||
273 | LDD -96(%sp),%r7 ; restore r7 | ||
274 | LDD -104(%sp),%r6 ; restore r6 | ||
275 | LDD -112(%sp),%r5 ; restore r5 | ||
276 | LDD -120(%sp),%r4 ; restore r4 | ||
277 | BVE (%rp) | ||
278 | LDD,MB -128(%sp),%r3 ; restore r3 | ||
279 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
280 | |||
281 | ;---------------------------------------------------------------------------- | ||
282 | ; | ||
283 | ;BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) | ||
284 | ; | ||
285 | ; arg0 = rp | ||
286 | ; arg1 = ap | ||
287 | ; arg2 = num | ||
288 | ; arg3 = w | ||
289 | |||
290 | bn_mul_words | ||
291 | .proc | ||
292 | .callinfo frame=128 | ||
293 | .entry | ||
294 | .EXPORT bn_mul_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
295 | .align 64 | ||
296 | |||
297 | STD %r3,0(%sp) ; save r3 | ||
298 | STD %r4,8(%sp) ; save r4 | ||
299 | STD %r5,16(%sp) ; save r5 | ||
300 | STD %r6,24(%sp) ; save r6 | ||
301 | |||
302 | STD %r7,32(%sp) ; save r7 | ||
303 | COPY %r0,%ret0 ; return 0 by default | ||
304 | DEPDI,Z 1,31,1,top_overflow ; top_overflow = 1 << 32 | ||
305 | STD w,56(%sp) ; w on stack | ||
306 | |||
307 | CMPIB,>= 0,num,bn_mul_words_exit | ||
308 | LDO 128(%sp),%sp ; bump stack | ||
309 | |||
310 | ; | ||
311 | ; See if only 1 word to do, thus just do cleanup | ||
312 | ; | ||
313 | CMPIB,= 1,num,bn_mul_words_single_top | ||
314 | FLDD -72(%sp),fw ; load up w into fp register fw (fw_h/fw_l) | ||
315 | |||
316 | ; | ||
317 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
318 | ; | ||
319 | ; PA-RISC 2.0 chips have two fully pipelined multipliers, thus | ||
320 | ; two 32-bit mutiplies can be issued per cycle. | ||
321 | ; | ||
322 | bn_mul_words_unroll2 | ||
323 | |||
324 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
325 | FLDD 8(a_ptr),t_float_1 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
326 | XMPYU fht_0,fw_l,fm1 ; m1[0] = fht_0*fw_l | ||
327 | XMPYU fht_1,fw_l,fm1_1 ; m1[1] = ht*fw_l | ||
328 | |||
329 | FSTD fm1,-16(%sp) ; -16(sp) = m1 | ||
330 | FSTD fm1_1,-48(%sp) ; -48(sp) = m1 | ||
331 | XMPYU flt_0,fw_h,fm ; m = lt*fw_h | ||
332 | XMPYU flt_1,fw_h,fm_1 ; m = lt*fw_h | ||
333 | |||
334 | FSTD fm,-8(%sp) ; -8(sp) = m | ||
335 | FSTD fm_1,-40(%sp) ; -40(sp) = m | ||
336 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = fht_0*fw_h | ||
337 | XMPYU fht_1,fw_h,ht_temp_1 ; ht_temp = ht*fw_h | ||
338 | |||
339 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht | ||
340 | FSTD ht_temp_1,-56(%sp) ; -56(sp) = ht | ||
341 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
342 | XMPYU flt_1,fw_l,lt_temp_1 ; lt_temp = lt*fw_l | ||
343 | |||
344 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt | ||
345 | FSTD lt_temp_1,-64(%sp) ; -64(sp) = lt | ||
346 | LDD -8(%sp),m_0 | ||
347 | LDD -40(%sp),m_1 | ||
348 | |||
349 | LDD -16(%sp),m1_0 | ||
350 | LDD -48(%sp),m1_1 | ||
351 | LDD -24(%sp),ht_0 | ||
352 | LDD -56(%sp),ht_1 | ||
353 | |||
354 | ADD,L m1_0,m_0,tmp_0 ; tmp_0 = m + m1; | ||
355 | ADD,L m1_1,m_1,tmp_1 ; tmp_1 = m + m1; | ||
356 | LDD -32(%sp),lt_0 | ||
357 | LDD -64(%sp),lt_1 | ||
358 | |||
359 | CMPCLR,*>>= tmp_0,m1_0, %r0 ; if (m < m1) | ||
360 | ADD,L ht_0,top_overflow,ht_0 ; ht += (1<<32) | ||
361 | CMPCLR,*>>= tmp_1,m1_1,%r0 ; if (m < m1) | ||
362 | ADD,L ht_1,top_overflow,ht_1 ; ht += (1<<32) | ||
363 | |||
364 | EXTRD,U tmp_0,31,32,m_0 ; m>>32 | ||
365 | DEPD,Z tmp_0,31,32,m1_0 ; m1 = m<<32 | ||
366 | EXTRD,U tmp_1,31,32,m_1 ; m>>32 | ||
367 | DEPD,Z tmp_1,31,32,m1_1 ; m1 = m<<32 | ||
368 | |||
369 | ADD,L ht_0,m_0,ht_0 ; ht+= (m>>32) | ||
370 | ADD,L ht_1,m_1,ht_1 ; ht+= (m>>32) | ||
371 | ADD lt_0,m1_0,lt_0 ; lt = lt+m1; | ||
372 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
373 | |||
374 | ADD lt_1,m1_1,lt_1 ; lt = lt+m1; | ||
375 | ADD,DC ht_1,%r0,ht_1 ; ht++ | ||
376 | ADD %ret0,lt_0,lt_0 ; lt = lt + c (ret0); | ||
377 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
378 | |||
379 | ADD ht_0,lt_1,lt_1 ; lt = lt + c (ht_0) | ||
380 | ADD,DC ht_1,%r0,ht_1 ; ht++ | ||
381 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
382 | STD lt_1,8(r_ptr) ; rp[1] = lt | ||
383 | |||
384 | COPY ht_1,%ret0 ; carry = ht | ||
385 | LDO -2(num),num ; num = num - 2; | ||
386 | LDO 16(a_ptr),a_ptr ; ap += 2 | ||
387 | CMPIB,<= 2,num,bn_mul_words_unroll2 | ||
388 | LDO 16(r_ptr),r_ptr ; rp++ | ||
389 | |||
390 | CMPIB,=,N 0,num,bn_mul_words_exit ; are we done? | ||
391 | |||
392 | ; | ||
393 | ; Top of loop aligned on 64-byte boundary | ||
394 | ; | ||
395 | bn_mul_words_single_top | ||
396 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
397 | |||
398 | XMPYU fht_0,fw_l,fm1 ; m1 = ht*fw_l | ||
399 | FSTD fm1,-16(%sp) ; -16(sp) = m1 | ||
400 | XMPYU flt_0,fw_h,fm ; m = lt*fw_h | ||
401 | FSTD fm,-8(%sp) ; -8(sp) = m | ||
402 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = ht*fw_h | ||
403 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht | ||
404 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
405 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt | ||
406 | |||
407 | LDD -8(%sp),m_0 | ||
408 | LDD -16(%sp),m1_0 | ||
409 | ADD,L m_0,m1_0,tmp_0 ; tmp_0 = m + m1; | ||
410 | LDD -24(%sp),ht_0 | ||
411 | LDD -32(%sp),lt_0 | ||
412 | |||
413 | CMPCLR,*>>= tmp_0,m1_0,%r0 ; if (m < m1) | ||
414 | ADD,L ht_0,top_overflow,ht_0 ; ht += (1<<32) | ||
415 | |||
416 | EXTRD,U tmp_0,31,32,m_0 ; m>>32 | ||
417 | DEPD,Z tmp_0,31,32,m1_0 ; m1 = m<<32 | ||
418 | |||
419 | ADD,L ht_0,m_0,ht_0 ; ht+= (m>>32) | ||
420 | ADD lt_0,m1_0,lt_0 ; lt= lt+m1; | ||
421 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
422 | |||
423 | ADD %ret0,lt_0,lt_0 ; lt = lt + c; | ||
424 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
425 | |||
426 | COPY ht_0,%ret0 ; copy carry | ||
427 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
428 | |||
429 | bn_mul_words_exit | ||
430 | .EXIT | ||
431 | LDD -96(%sp),%r7 ; restore r7 | ||
432 | LDD -104(%sp),%r6 ; restore r6 | ||
433 | LDD -112(%sp),%r5 ; restore r5 | ||
434 | LDD -120(%sp),%r4 ; restore r4 | ||
435 | BVE (%rp) | ||
436 | LDD,MB -128(%sp),%r3 ; restore r3 | ||
437 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
438 | |||
439 | ;---------------------------------------------------------------------------- | ||
440 | ; | ||
441 | ;void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num) | ||
442 | ; | ||
443 | ; arg0 = rp | ||
444 | ; arg1 = ap | ||
445 | ; arg2 = num | ||
446 | ; | ||
447 | |||
448 | bn_sqr_words | ||
449 | .proc | ||
450 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
451 | .EXPORT bn_sqr_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
452 | .entry | ||
453 | .align 64 | ||
454 | |||
455 | STD %r3,0(%sp) ; save r3 | ||
456 | STD %r4,8(%sp) ; save r4 | ||
457 | NOP | ||
458 | STD %r5,16(%sp) ; save r5 | ||
459 | |||
460 | CMPIB,>= 0,num,bn_sqr_words_exit | ||
461 | LDO 128(%sp),%sp ; bump stack | ||
462 | |||
463 | ; | ||
464 | ; If only 1, the goto straight to cleanup | ||
465 | ; | ||
466 | CMPIB,= 1,num,bn_sqr_words_single_top | ||
467 | DEPDI,Z -1,32,33,high_mask ; Create Mask 0xffffffff80000000L | ||
468 | |||
469 | ; | ||
470 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
471 | ; | ||
472 | |||
473 | bn_sqr_words_unroll2 | ||
474 | FLDD 0(a_ptr),t_float_0 ; a[0] | ||
475 | FLDD 8(a_ptr),t_float_1 ; a[1] | ||
476 | XMPYU fht_0,flt_0,fm ; m[0] | ||
477 | XMPYU fht_1,flt_1,fm_1 ; m[1] | ||
478 | |||
479 | FSTD fm,-24(%sp) ; store m[0] | ||
480 | FSTD fm_1,-56(%sp) ; store m[1] | ||
481 | XMPYU flt_0,flt_0,lt_temp ; lt[0] | ||
482 | XMPYU flt_1,flt_1,lt_temp_1 ; lt[1] | ||
483 | |||
484 | FSTD lt_temp,-16(%sp) ; store lt[0] | ||
485 | FSTD lt_temp_1,-48(%sp) ; store lt[1] | ||
486 | XMPYU fht_0,fht_0,ht_temp ; ht[0] | ||
487 | XMPYU fht_1,fht_1,ht_temp_1 ; ht[1] | ||
488 | |||
489 | FSTD ht_temp,-8(%sp) ; store ht[0] | ||
490 | FSTD ht_temp_1,-40(%sp) ; store ht[1] | ||
491 | LDD -24(%sp),m_0 | ||
492 | LDD -56(%sp),m_1 | ||
493 | |||
494 | AND m_0,high_mask,tmp_0 ; m[0] & Mask | ||
495 | AND m_1,high_mask,tmp_1 ; m[1] & Mask | ||
496 | DEPD,Z m_0,30,31,m_0 ; m[0] << 32+1 | ||
497 | DEPD,Z m_1,30,31,m_1 ; m[1] << 32+1 | ||
498 | |||
499 | LDD -16(%sp),lt_0 | ||
500 | LDD -48(%sp),lt_1 | ||
501 | EXTRD,U tmp_0,32,33,tmp_0 ; tmp_0 = m[0]&Mask >> 32-1 | ||
502 | EXTRD,U tmp_1,32,33,tmp_1 ; tmp_1 = m[1]&Mask >> 32-1 | ||
503 | |||
504 | LDD -8(%sp),ht_0 | ||
505 | LDD -40(%sp),ht_1 | ||
506 | ADD,L ht_0,tmp_0,ht_0 ; ht[0] += tmp_0 | ||
507 | ADD,L ht_1,tmp_1,ht_1 ; ht[1] += tmp_1 | ||
508 | |||
509 | ADD lt_0,m_0,lt_0 ; lt = lt+m | ||
510 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
511 | STD lt_0,0(r_ptr) ; rp[0] = lt[0] | ||
512 | STD ht_0,8(r_ptr) ; rp[1] = ht[1] | ||
513 | |||
514 | ADD lt_1,m_1,lt_1 ; lt = lt+m | ||
515 | ADD,DC ht_1,%r0,ht_1 ; ht[1]++ | ||
516 | STD lt_1,16(r_ptr) ; rp[2] = lt[1] | ||
517 | STD ht_1,24(r_ptr) ; rp[3] = ht[1] | ||
518 | |||
519 | LDO -2(num),num ; num = num - 2; | ||
520 | LDO 16(a_ptr),a_ptr ; ap += 2 | ||
521 | CMPIB,<= 2,num,bn_sqr_words_unroll2 | ||
522 | LDO 32(r_ptr),r_ptr ; rp += 4 | ||
523 | |||
524 | CMPIB,=,N 0,num,bn_sqr_words_exit ; are we done? | ||
525 | |||
526 | ; | ||
527 | ; Top of loop aligned on 64-byte boundary | ||
528 | ; | ||
529 | bn_sqr_words_single_top | ||
530 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
531 | |||
532 | XMPYU fht_0,flt_0,fm ; m | ||
533 | FSTD fm,-24(%sp) ; store m | ||
534 | |||
535 | XMPYU flt_0,flt_0,lt_temp ; lt | ||
536 | FSTD lt_temp,-16(%sp) ; store lt | ||
537 | |||
538 | XMPYU fht_0,fht_0,ht_temp ; ht | ||
539 | FSTD ht_temp,-8(%sp) ; store ht | ||
540 | |||
541 | LDD -24(%sp),m_0 ; load m | ||
542 | AND m_0,high_mask,tmp_0 ; m & Mask | ||
543 | DEPD,Z m_0,30,31,m_0 ; m << 32+1 | ||
544 | LDD -16(%sp),lt_0 ; lt | ||
545 | |||
546 | LDD -8(%sp),ht_0 ; ht | ||
547 | EXTRD,U tmp_0,32,33,tmp_0 ; tmp_0 = m&Mask >> 32-1 | ||
548 | ADD m_0,lt_0,lt_0 ; lt = lt+m | ||
549 | ADD,L ht_0,tmp_0,ht_0 ; ht += tmp_0 | ||
550 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
551 | |||
552 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
553 | STD ht_0,8(r_ptr) ; rp[1] = ht | ||
554 | |||
555 | bn_sqr_words_exit | ||
556 | .EXIT | ||
557 | LDD -112(%sp),%r5 ; restore r5 | ||
558 | LDD -120(%sp),%r4 ; restore r4 | ||
559 | BVE (%rp) | ||
560 | LDD,MB -128(%sp),%r3 | ||
561 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
562 | |||
563 | |||
564 | ;---------------------------------------------------------------------------- | ||
565 | ; | ||
566 | ;BN_ULONG bn_add_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
567 | ; | ||
568 | ; arg0 = rp | ||
569 | ; arg1 = ap | ||
570 | ; arg2 = bp | ||
571 | ; arg3 = n | ||
572 | |||
573 | t .reg %r22 | ||
574 | b .reg %r21 | ||
575 | l .reg %r20 | ||
576 | |||
577 | bn_add_words | ||
578 | .proc | ||
579 | .entry | ||
580 | .callinfo | ||
581 | .EXPORT bn_add_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
582 | .align 64 | ||
583 | |||
584 | CMPIB,>= 0,n,bn_add_words_exit | ||
585 | COPY %r0,%ret0 ; return 0 by default | ||
586 | |||
587 | ; | ||
588 | ; If 2 or more numbers do the loop | ||
589 | ; | ||
590 | CMPIB,= 1,n,bn_add_words_single_top | ||
591 | NOP | ||
592 | |||
593 | ; | ||
594 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
595 | ; | ||
596 | bn_add_words_unroll2 | ||
597 | LDD 0(a_ptr),t | ||
598 | LDD 0(b_ptr),b | ||
599 | ADD t,%ret0,t ; t = t+c; | ||
600 | ADD,DC %r0,%r0,%ret0 ; set c to carry | ||
601 | ADD t,b,l ; l = t + b[0] | ||
602 | ADD,DC %ret0,%r0,%ret0 ; c+= carry | ||
603 | STD l,0(r_ptr) | ||
604 | |||
605 | LDD 8(a_ptr),t | ||
606 | LDD 8(b_ptr),b | ||
607 | ADD t,%ret0,t ; t = t+c; | ||
608 | ADD,DC %r0,%r0,%ret0 ; set c to carry | ||
609 | ADD t,b,l ; l = t + b[0] | ||
610 | ADD,DC %ret0,%r0,%ret0 ; c+= carry | ||
611 | STD l,8(r_ptr) | ||
612 | |||
613 | LDO -2(n),n | ||
614 | LDO 16(a_ptr),a_ptr | ||
615 | LDO 16(b_ptr),b_ptr | ||
616 | |||
617 | CMPIB,<= 2,n,bn_add_words_unroll2 | ||
618 | LDO 16(r_ptr),r_ptr | ||
619 | |||
620 | CMPIB,=,N 0,n,bn_add_words_exit ; are we done? | ||
621 | |||
622 | bn_add_words_single_top | ||
623 | LDD 0(a_ptr),t | ||
624 | LDD 0(b_ptr),b | ||
625 | |||
626 | ADD t,%ret0,t ; t = t+c; | ||
627 | ADD,DC %r0,%r0,%ret0 ; set c to carry (could use CMPCLR??) | ||
628 | ADD t,b,l ; l = t + b[0] | ||
629 | ADD,DC %ret0,%r0,%ret0 ; c+= carry | ||
630 | STD l,0(r_ptr) | ||
631 | |||
632 | bn_add_words_exit | ||
633 | .EXIT | ||
634 | BVE (%rp) | ||
635 | NOP | ||
636 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
637 | |||
638 | ;---------------------------------------------------------------------------- | ||
639 | ; | ||
640 | ;BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
641 | ; | ||
642 | ; arg0 = rp | ||
643 | ; arg1 = ap | ||
644 | ; arg2 = bp | ||
645 | ; arg3 = n | ||
646 | |||
647 | t1 .reg %r22 | ||
648 | t2 .reg %r21 | ||
649 | sub_tmp1 .reg %r20 | ||
650 | sub_tmp2 .reg %r19 | ||
651 | |||
652 | |||
653 | bn_sub_words | ||
654 | .proc | ||
655 | .callinfo | ||
656 | .EXPORT bn_sub_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
657 | .entry | ||
658 | .align 64 | ||
659 | |||
660 | CMPIB,>= 0,n,bn_sub_words_exit | ||
661 | COPY %r0,%ret0 ; return 0 by default | ||
662 | |||
663 | ; | ||
664 | ; If 2 or more numbers do the loop | ||
665 | ; | ||
666 | CMPIB,= 1,n,bn_sub_words_single_top | ||
667 | NOP | ||
668 | |||
669 | ; | ||
670 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
671 | ; | ||
672 | bn_sub_words_unroll2 | ||
673 | LDD 0(a_ptr),t1 | ||
674 | LDD 0(b_ptr),t2 | ||
675 | SUB t1,t2,sub_tmp1 ; t3 = t1-t2; | ||
676 | SUB sub_tmp1,%ret0,sub_tmp1 ; t3 = t3- c; | ||
677 | |||
678 | CMPCLR,*>> t1,t2,sub_tmp2 ; clear if t1 > t2 | ||
679 | LDO 1(%r0),sub_tmp2 | ||
680 | |||
681 | CMPCLR,*= t1,t2,%r0 | ||
682 | COPY sub_tmp2,%ret0 | ||
683 | STD sub_tmp1,0(r_ptr) | ||
684 | |||
685 | LDD 8(a_ptr),t1 | ||
686 | LDD 8(b_ptr),t2 | ||
687 | SUB t1,t2,sub_tmp1 ; t3 = t1-t2; | ||
688 | SUB sub_tmp1,%ret0,sub_tmp1 ; t3 = t3- c; | ||
689 | CMPCLR,*>> t1,t2,sub_tmp2 ; clear if t1 > t2 | ||
690 | LDO 1(%r0),sub_tmp2 | ||
691 | |||
692 | CMPCLR,*= t1,t2,%r0 | ||
693 | COPY sub_tmp2,%ret0 | ||
694 | STD sub_tmp1,8(r_ptr) | ||
695 | |||
696 | LDO -2(n),n | ||
697 | LDO 16(a_ptr),a_ptr | ||
698 | LDO 16(b_ptr),b_ptr | ||
699 | |||
700 | CMPIB,<= 2,n,bn_sub_words_unroll2 | ||
701 | LDO 16(r_ptr),r_ptr | ||
702 | |||
703 | CMPIB,=,N 0,n,bn_sub_words_exit ; are we done? | ||
704 | |||
705 | bn_sub_words_single_top | ||
706 | LDD 0(a_ptr),t1 | ||
707 | LDD 0(b_ptr),t2 | ||
708 | SUB t1,t2,sub_tmp1 ; t3 = t1-t2; | ||
709 | SUB sub_tmp1,%ret0,sub_tmp1 ; t3 = t3- c; | ||
710 | CMPCLR,*>> t1,t2,sub_tmp2 ; clear if t1 > t2 | ||
711 | LDO 1(%r0),sub_tmp2 | ||
712 | |||
713 | CMPCLR,*= t1,t2,%r0 | ||
714 | COPY sub_tmp2,%ret0 | ||
715 | |||
716 | STD sub_tmp1,0(r_ptr) | ||
717 | |||
718 | bn_sub_words_exit | ||
719 | .EXIT | ||
720 | BVE (%rp) | ||
721 | NOP | ||
722 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
723 | |||
724 | ;------------------------------------------------------------------------------ | ||
725 | ; | ||
726 | ; unsigned long bn_div_words(unsigned long h, unsigned long l, unsigned long d) | ||
727 | ; | ||
728 | ; arg0 = h | ||
729 | ; arg1 = l | ||
730 | ; arg2 = d | ||
731 | ; | ||
732 | ; This is mainly just modified assembly from the compiler, thus the | ||
733 | ; lack of variable names. | ||
734 | ; | ||
735 | ;------------------------------------------------------------------------------ | ||
736 | bn_div_words | ||
737 | .proc | ||
738 | .callinfo CALLER,FRAME=272,ENTRY_GR=%r10,SAVE_RP,ARGS_SAVED,ORDERING_AWARE | ||
739 | .EXPORT bn_div_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
740 | .IMPORT BN_num_bits_word,CODE,NO_RELOCATION | ||
741 | .IMPORT __iob,DATA | ||
742 | .IMPORT fprintf,CODE,NO_RELOCATION | ||
743 | .IMPORT abort,CODE,NO_RELOCATION | ||
744 | .IMPORT $$div2U,MILLICODE | ||
745 | .entry | ||
746 | STD %r2,-16(%r30) | ||
747 | STD,MA %r3,352(%r30) | ||
748 | STD %r4,-344(%r30) | ||
749 | STD %r5,-336(%r30) | ||
750 | STD %r6,-328(%r30) | ||
751 | STD %r7,-320(%r30) | ||
752 | STD %r8,-312(%r30) | ||
753 | STD %r9,-304(%r30) | ||
754 | STD %r10,-296(%r30) | ||
755 | |||
756 | STD %r27,-288(%r30) ; save gp | ||
757 | |||
758 | COPY %r24,%r3 ; save d | ||
759 | COPY %r26,%r4 ; save h (high 64-bits) | ||
760 | LDO -1(%r0),%ret0 ; return -1 by default | ||
761 | |||
762 | CMPB,*= %r0,%arg2,$D3 ; if (d == 0) | ||
763 | COPY %r25,%r5 ; save l (low 64-bits) | ||
764 | |||
765 | LDO -48(%r30),%r29 ; create ap | ||
766 | .CALL ;in=26,29;out=28; | ||
767 | B,L BN_num_bits_word,%r2 | ||
768 | COPY %r3,%r26 | ||
769 | LDD -288(%r30),%r27 ; restore gp | ||
770 | LDI 64,%r21 | ||
771 | |||
772 | CMPB,= %r21,%ret0,$00000012 ;if (i == 64) (forward) | ||
773 | COPY %ret0,%r24 ; i | ||
774 | MTSARCM %r24 | ||
775 | DEPDI,Z -1,%sar,1,%r29 | ||
776 | CMPB,*<<,N %r29,%r4,bn_div_err_case ; if (h > 1<<i) (forward) | ||
777 | |||
778 | $00000012 | ||
779 | SUBI 64,%r24,%r31 ; i = 64 - i; | ||
780 | CMPCLR,*<< %r4,%r3,%r0 ; if (h >= d) | ||
781 | SUB %r4,%r3,%r4 ; h -= d | ||
782 | CMPB,= %r31,%r0,$0000001A ; if (i) | ||
783 | COPY %r0,%r10 ; ret = 0 | ||
784 | MTSARCM %r31 ; i to shift | ||
785 | DEPD,Z %r3,%sar,64,%r3 ; d <<= i; | ||
786 | SUBI 64,%r31,%r19 ; 64 - i; redundent | ||
787 | MTSAR %r19 ; (64 -i) to shift | ||
788 | SHRPD %r4,%r5,%sar,%r4 ; l>> (64-i) | ||
789 | MTSARCM %r31 ; i to shift | ||
790 | DEPD,Z %r5,%sar,64,%r5 ; l <<= i; | ||
791 | |||
792 | $0000001A | ||
793 | DEPDI,Z -1,31,32,%r19 | ||
794 | EXTRD,U %r3,31,32,%r6 ; dh=(d&0xfff)>>32 | ||
795 | EXTRD,U %r3,63,32,%r8 ; dl = d&0xffffff | ||
796 | LDO 2(%r0),%r9 | ||
797 | STD %r3,-280(%r30) ; "d" to stack | ||
798 | |||
799 | $0000001C | ||
800 | DEPDI,Z -1,63,32,%r29 ; | ||
801 | EXTRD,U %r4,31,32,%r31 ; h >> 32 | ||
802 | CMPB,*=,N %r31,%r6,$D2 ; if ((h>>32) != dh)(forward) div | ||
803 | COPY %r4,%r26 | ||
804 | EXTRD,U %r4,31,32,%r25 | ||
805 | COPY %r6,%r24 | ||
806 | .CALL ;in=23,24,25,26;out=20,21,22,28,29; (MILLICALL) | ||
807 | B,L $$div2U,%r2 | ||
808 | EXTRD,U %r6,31,32,%r23 | ||
809 | DEPD %r28,31,32,%r29 | ||
810 | $D2 | ||
811 | STD %r29,-272(%r30) ; q | ||
812 | AND %r5,%r19,%r24 ; t & 0xffffffff00000000; | ||
813 | EXTRD,U %r24,31,32,%r24 ; ??? | ||
814 | FLDD -272(%r30),%fr7 ; q | ||
815 | FLDD -280(%r30),%fr8 ; d | ||
816 | XMPYU %fr8L,%fr7L,%fr10 | ||
817 | FSTD %fr10,-256(%r30) | ||
818 | XMPYU %fr8L,%fr7R,%fr22 | ||
819 | FSTD %fr22,-264(%r30) | ||
820 | XMPYU %fr8R,%fr7L,%fr11 | ||
821 | XMPYU %fr8R,%fr7R,%fr23 | ||
822 | FSTD %fr11,-232(%r30) | ||
823 | FSTD %fr23,-240(%r30) | ||
824 | LDD -256(%r30),%r28 | ||
825 | DEPD,Z %r28,31,32,%r2 | ||
826 | LDD -264(%r30),%r20 | ||
827 | ADD,L %r20,%r2,%r31 | ||
828 | LDD -232(%r30),%r22 | ||
829 | DEPD,Z %r22,31,32,%r22 | ||
830 | LDD -240(%r30),%r21 | ||
831 | B $00000024 ; enter loop | ||
832 | ADD,L %r21,%r22,%r23 | ||
833 | |||
834 | $0000002A | ||
835 | LDO -1(%r29),%r29 | ||
836 | SUB %r23,%r8,%r23 | ||
837 | $00000024 | ||
838 | SUB %r4,%r31,%r25 | ||
839 | AND %r25,%r19,%r26 | ||
840 | CMPB,*<>,N %r0,%r26,$00000046 ; (forward) | ||
841 | DEPD,Z %r25,31,32,%r20 | ||
842 | OR %r20,%r24,%r21 | ||
843 | CMPB,*<<,N %r21,%r23,$0000002A ;(backward) | ||
844 | SUB %r31,%r6,%r31 | ||
845 | ;-------------Break path--------------------- | ||
846 | |||
847 | $00000046 | ||
848 | DEPD,Z %r23,31,32,%r25 ;tl | ||
849 | EXTRD,U %r23,31,32,%r26 ;t | ||
850 | AND %r25,%r19,%r24 ;tl = (tl<<32)&0xfffffff0000000L | ||
851 | ADD,L %r31,%r26,%r31 ;th += t; | ||
852 | CMPCLR,*>>= %r5,%r24,%r0 ;if (l<tl) | ||
853 | LDO 1(%r31),%r31 ; th++; | ||
854 | CMPB,*<<=,N %r31,%r4,$00000036 ;if (n < th) (forward) | ||
855 | LDO -1(%r29),%r29 ;q--; | ||
856 | ADD,L %r4,%r3,%r4 ;h += d; | ||
857 | $00000036 | ||
858 | ADDIB,=,N -1,%r9,$D1 ;if (--count == 0) break (forward) | ||
859 | SUB %r5,%r24,%r28 ; l -= tl; | ||
860 | SUB %r4,%r31,%r24 ; h -= th; | ||
861 | SHRPD %r24,%r28,32,%r4 ; h = ((h<<32)|(l>>32)); | ||
862 | DEPD,Z %r29,31,32,%r10 ; ret = q<<32 | ||
863 | b $0000001C | ||
864 | DEPD,Z %r28,31,32,%r5 ; l = l << 32 | ||
865 | |||
866 | $D1 | ||
867 | OR %r10,%r29,%r28 ; ret |= q | ||
868 | $D3 | ||
869 | LDD -368(%r30),%r2 | ||
870 | $D0 | ||
871 | LDD -296(%r30),%r10 | ||
872 | LDD -304(%r30),%r9 | ||
873 | LDD -312(%r30),%r8 | ||
874 | LDD -320(%r30),%r7 | ||
875 | LDD -328(%r30),%r6 | ||
876 | LDD -336(%r30),%r5 | ||
877 | LDD -344(%r30),%r4 | ||
878 | BVE (%r2) | ||
879 | .EXIT | ||
880 | LDD,MB -352(%r30),%r3 | ||
881 | |||
882 | bn_div_err_case | ||
883 | MFIA %r6 | ||
884 | ADDIL L'bn_div_words-bn_div_err_case,%r6,%r1 | ||
885 | LDO R'bn_div_words-bn_div_err_case(%r1),%r6 | ||
886 | ADDIL LT'__iob,%r27,%r1 | ||
887 | LDD RT'__iob(%r1),%r26 | ||
888 | ADDIL L'C$4-bn_div_words,%r6,%r1 | ||
889 | LDO R'C$4-bn_div_words(%r1),%r25 | ||
890 | LDO 64(%r26),%r26 | ||
891 | .CALL ;in=24,25,26,29;out=28; | ||
892 | B,L fprintf,%r2 | ||
893 | LDO -48(%r30),%r29 | ||
894 | LDD -288(%r30),%r27 | ||
895 | .CALL ;in=29; | ||
896 | B,L abort,%r2 | ||
897 | LDO -48(%r30),%r29 | ||
898 | LDD -288(%r30),%r27 | ||
899 | B $D0 | ||
900 | LDD -368(%r30),%r2 | ||
901 | .PROCEND ;in=24,25,26,29;out=28; | ||
902 | |||
903 | ;---------------------------------------------------------------------------- | ||
904 | ; | ||
905 | ; Registers to hold 64-bit values to manipulate. The "L" part | ||
906 | ; of the register corresponds to the upper 32-bits, while the "R" | ||
907 | ; part corresponds to the lower 32-bits | ||
908 | ; | ||
909 | ; Note, that when using b6 and b7, the code must save these before | ||
910 | ; using them because they are callee save registers | ||
911 | ; | ||
912 | ; | ||
913 | ; Floating point registers to use to save values that | ||
914 | ; are manipulated. These don't collide with ftemp1-6 and | ||
915 | ; are all caller save registers | ||
916 | ; | ||
917 | a0 .reg %fr22 | ||
918 | a0L .reg %fr22L | ||
919 | a0R .reg %fr22R | ||
920 | |||
921 | a1 .reg %fr23 | ||
922 | a1L .reg %fr23L | ||
923 | a1R .reg %fr23R | ||
924 | |||
925 | a2 .reg %fr24 | ||
926 | a2L .reg %fr24L | ||
927 | a2R .reg %fr24R | ||
928 | |||
929 | a3 .reg %fr25 | ||
930 | a3L .reg %fr25L | ||
931 | a3R .reg %fr25R | ||
932 | |||
933 | a4 .reg %fr26 | ||
934 | a4L .reg %fr26L | ||
935 | a4R .reg %fr26R | ||
936 | |||
937 | a5 .reg %fr27 | ||
938 | a5L .reg %fr27L | ||
939 | a5R .reg %fr27R | ||
940 | |||
941 | a6 .reg %fr28 | ||
942 | a6L .reg %fr28L | ||
943 | a6R .reg %fr28R | ||
944 | |||
945 | a7 .reg %fr29 | ||
946 | a7L .reg %fr29L | ||
947 | a7R .reg %fr29R | ||
948 | |||
949 | b0 .reg %fr30 | ||
950 | b0L .reg %fr30L | ||
951 | b0R .reg %fr30R | ||
952 | |||
953 | b1 .reg %fr31 | ||
954 | b1L .reg %fr31L | ||
955 | b1R .reg %fr31R | ||
956 | |||
957 | ; | ||
958 | ; Temporary floating point variables, these are all caller save | ||
959 | ; registers | ||
960 | ; | ||
961 | ftemp1 .reg %fr4 | ||
962 | ftemp2 .reg %fr5 | ||
963 | ftemp3 .reg %fr6 | ||
964 | ftemp4 .reg %fr7 | ||
965 | |||
966 | ; | ||
967 | ; The B set of registers when used. | ||
968 | ; | ||
969 | |||
970 | b2 .reg %fr8 | ||
971 | b2L .reg %fr8L | ||
972 | b2R .reg %fr8R | ||
973 | |||
974 | b3 .reg %fr9 | ||
975 | b3L .reg %fr9L | ||
976 | b3R .reg %fr9R | ||
977 | |||
978 | b4 .reg %fr10 | ||
979 | b4L .reg %fr10L | ||
980 | b4R .reg %fr10R | ||
981 | |||
982 | b5 .reg %fr11 | ||
983 | b5L .reg %fr11L | ||
984 | b5R .reg %fr11R | ||
985 | |||
986 | b6 .reg %fr12 | ||
987 | b6L .reg %fr12L | ||
988 | b6R .reg %fr12R | ||
989 | |||
990 | b7 .reg %fr13 | ||
991 | b7L .reg %fr13L | ||
992 | b7R .reg %fr13R | ||
993 | |||
994 | c1 .reg %r21 ; only reg | ||
995 | temp1 .reg %r20 ; only reg | ||
996 | temp2 .reg %r19 ; only reg | ||
997 | temp3 .reg %r31 ; only reg | ||
998 | |||
999 | m1 .reg %r28 | ||
1000 | c2 .reg %r23 | ||
1001 | high_one .reg %r1 | ||
1002 | ht .reg %r6 | ||
1003 | lt .reg %r5 | ||
1004 | m .reg %r4 | ||
1005 | c3 .reg %r3 | ||
1006 | |||
1007 | SQR_ADD_C .macro A0L,A0R,C1,C2,C3 | ||
1008 | XMPYU A0L,A0R,ftemp1 ; m | ||
1009 | FSTD ftemp1,-24(%sp) ; store m | ||
1010 | |||
1011 | XMPYU A0R,A0R,ftemp2 ; lt | ||
1012 | FSTD ftemp2,-16(%sp) ; store lt | ||
1013 | |||
1014 | XMPYU A0L,A0L,ftemp3 ; ht | ||
1015 | FSTD ftemp3,-8(%sp) ; store ht | ||
1016 | |||
1017 | LDD -24(%sp),m ; load m | ||
1018 | AND m,high_mask,temp2 ; m & Mask | ||
1019 | DEPD,Z m,30,31,temp3 ; m << 32+1 | ||
1020 | LDD -16(%sp),lt ; lt | ||
1021 | |||
1022 | LDD -8(%sp),ht ; ht | ||
1023 | EXTRD,U temp2,32,33,temp1 ; temp1 = m&Mask >> 32-1 | ||
1024 | ADD temp3,lt,lt ; lt = lt+m | ||
1025 | ADD,L ht,temp1,ht ; ht += temp1 | ||
1026 | ADD,DC ht,%r0,ht ; ht++ | ||
1027 | |||
1028 | ADD C1,lt,C1 ; c1=c1+lt | ||
1029 | ADD,DC ht,%r0,ht ; ht++ | ||
1030 | |||
1031 | ADD C2,ht,C2 ; c2=c2+ht | ||
1032 | ADD,DC C3,%r0,C3 ; c3++ | ||
1033 | .endm | ||
1034 | |||
1035 | SQR_ADD_C2 .macro A0L,A0R,A1L,A1R,C1,C2,C3 | ||
1036 | XMPYU A0L,A1R,ftemp1 ; m1 = bl*ht | ||
1037 | FSTD ftemp1,-16(%sp) ; | ||
1038 | XMPYU A0R,A1L,ftemp2 ; m = bh*lt | ||
1039 | FSTD ftemp2,-8(%sp) ; | ||
1040 | XMPYU A0R,A1R,ftemp3 ; lt = bl*lt | ||
1041 | FSTD ftemp3,-32(%sp) | ||
1042 | XMPYU A0L,A1L,ftemp4 ; ht = bh*ht | ||
1043 | FSTD ftemp4,-24(%sp) ; | ||
1044 | |||
1045 | LDD -8(%sp),m ; r21 = m | ||
1046 | LDD -16(%sp),m1 ; r19 = m1 | ||
1047 | ADD,L m,m1,m ; m+m1 | ||
1048 | |||
1049 | DEPD,Z m,31,32,temp3 ; (m+m1<<32) | ||
1050 | LDD -24(%sp),ht ; r24 = ht | ||
1051 | |||
1052 | CMPCLR,*>>= m,m1,%r0 ; if (m < m1) | ||
1053 | ADD,L ht,high_one,ht ; ht+=high_one | ||
1054 | |||
1055 | EXTRD,U m,31,32,temp1 ; m >> 32 | ||
1056 | LDD -32(%sp),lt ; lt | ||
1057 | ADD,L ht,temp1,ht ; ht+= m>>32 | ||
1058 | ADD lt,temp3,lt ; lt = lt+m1 | ||
1059 | ADD,DC ht,%r0,ht ; ht++ | ||
1060 | |||
1061 | ADD ht,ht,ht ; ht=ht+ht; | ||
1062 | ADD,DC C3,%r0,C3 ; add in carry (c3++) | ||
1063 | |||
1064 | ADD lt,lt,lt ; lt=lt+lt; | ||
1065 | ADD,DC ht,%r0,ht ; add in carry (ht++) | ||
1066 | |||
1067 | ADD C1,lt,C1 ; c1=c1+lt | ||
1068 | ADD,DC,*NUV ht,%r0,ht ; add in carry (ht++) | ||
1069 | LDO 1(C3),C3 ; bump c3 if overflow,nullify otherwise | ||
1070 | |||
1071 | ADD C2,ht,C2 ; c2 = c2 + ht | ||
1072 | ADD,DC C3,%r0,C3 ; add in carry (c3++) | ||
1073 | .endm | ||
1074 | |||
1075 | ; | ||
1076 | ;void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a) | ||
1077 | ; arg0 = r_ptr | ||
1078 | ; arg1 = a_ptr | ||
1079 | ; | ||
1080 | |||
1081 | bn_sqr_comba8 | ||
1082 | .PROC | ||
1083 | .CALLINFO FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1084 | .EXPORT bn_sqr_comba8,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1085 | .ENTRY | ||
1086 | .align 64 | ||
1087 | |||
1088 | STD %r3,0(%sp) ; save r3 | ||
1089 | STD %r4,8(%sp) ; save r4 | ||
1090 | STD %r5,16(%sp) ; save r5 | ||
1091 | STD %r6,24(%sp) ; save r6 | ||
1092 | |||
1093 | ; | ||
1094 | ; Zero out carries | ||
1095 | ; | ||
1096 | COPY %r0,c1 | ||
1097 | COPY %r0,c2 | ||
1098 | COPY %r0,c3 | ||
1099 | |||
1100 | LDO 128(%sp),%sp ; bump stack | ||
1101 | DEPDI,Z -1,32,33,high_mask ; Create Mask 0xffffffff80000000L | ||
1102 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1103 | |||
1104 | ; | ||
1105 | ; Load up all of the values we are going to use | ||
1106 | ; | ||
1107 | FLDD 0(a_ptr),a0 | ||
1108 | FLDD 8(a_ptr),a1 | ||
1109 | FLDD 16(a_ptr),a2 | ||
1110 | FLDD 24(a_ptr),a3 | ||
1111 | FLDD 32(a_ptr),a4 | ||
1112 | FLDD 40(a_ptr),a5 | ||
1113 | FLDD 48(a_ptr),a6 | ||
1114 | FLDD 56(a_ptr),a7 | ||
1115 | |||
1116 | SQR_ADD_C a0L,a0R,c1,c2,c3 | ||
1117 | STD c1,0(r_ptr) ; r[0] = c1; | ||
1118 | COPY %r0,c1 | ||
1119 | |||
1120 | SQR_ADD_C2 a1L,a1R,a0L,a0R,c2,c3,c1 | ||
1121 | STD c2,8(r_ptr) ; r[1] = c2; | ||
1122 | COPY %r0,c2 | ||
1123 | |||
1124 | SQR_ADD_C a1L,a1R,c3,c1,c2 | ||
1125 | SQR_ADD_C2 a2L,a2R,a0L,a0R,c3,c1,c2 | ||
1126 | STD c3,16(r_ptr) ; r[2] = c3; | ||
1127 | COPY %r0,c3 | ||
1128 | |||
1129 | SQR_ADD_C2 a3L,a3R,a0L,a0R,c1,c2,c3 | ||
1130 | SQR_ADD_C2 a2L,a2R,a1L,a1R,c1,c2,c3 | ||
1131 | STD c1,24(r_ptr) ; r[3] = c1; | ||
1132 | COPY %r0,c1 | ||
1133 | |||
1134 | SQR_ADD_C a2L,a2R,c2,c3,c1 | ||
1135 | SQR_ADD_C2 a3L,a3R,a1L,a1R,c2,c3,c1 | ||
1136 | SQR_ADD_C2 a4L,a4R,a0L,a0R,c2,c3,c1 | ||
1137 | STD c2,32(r_ptr) ; r[4] = c2; | ||
1138 | COPY %r0,c2 | ||
1139 | |||
1140 | SQR_ADD_C2 a5L,a5R,a0L,a0R,c3,c1,c2 | ||
1141 | SQR_ADD_C2 a4L,a4R,a1L,a1R,c3,c1,c2 | ||
1142 | SQR_ADD_C2 a3L,a3R,a2L,a2R,c3,c1,c2 | ||
1143 | STD c3,40(r_ptr) ; r[5] = c3; | ||
1144 | COPY %r0,c3 | ||
1145 | |||
1146 | SQR_ADD_C a3L,a3R,c1,c2,c3 | ||
1147 | SQR_ADD_C2 a4L,a4R,a2L,a2R,c1,c2,c3 | ||
1148 | SQR_ADD_C2 a5L,a5R,a1L,a1R,c1,c2,c3 | ||
1149 | SQR_ADD_C2 a6L,a6R,a0L,a0R,c1,c2,c3 | ||
1150 | STD c1,48(r_ptr) ; r[6] = c1; | ||
1151 | COPY %r0,c1 | ||
1152 | |||
1153 | SQR_ADD_C2 a7L,a7R,a0L,a0R,c2,c3,c1 | ||
1154 | SQR_ADD_C2 a6L,a6R,a1L,a1R,c2,c3,c1 | ||
1155 | SQR_ADD_C2 a5L,a5R,a2L,a2R,c2,c3,c1 | ||
1156 | SQR_ADD_C2 a4L,a4R,a3L,a3R,c2,c3,c1 | ||
1157 | STD c2,56(r_ptr) ; r[7] = c2; | ||
1158 | COPY %r0,c2 | ||
1159 | |||
1160 | SQR_ADD_C a4L,a4R,c3,c1,c2 | ||
1161 | SQR_ADD_C2 a5L,a5R,a3L,a3R,c3,c1,c2 | ||
1162 | SQR_ADD_C2 a6L,a6R,a2L,a2R,c3,c1,c2 | ||
1163 | SQR_ADD_C2 a7L,a7R,a1L,a1R,c3,c1,c2 | ||
1164 | STD c3,64(r_ptr) ; r[8] = c3; | ||
1165 | COPY %r0,c3 | ||
1166 | |||
1167 | SQR_ADD_C2 a7L,a7R,a2L,a2R,c1,c2,c3 | ||
1168 | SQR_ADD_C2 a6L,a6R,a3L,a3R,c1,c2,c3 | ||
1169 | SQR_ADD_C2 a5L,a5R,a4L,a4R,c1,c2,c3 | ||
1170 | STD c1,72(r_ptr) ; r[9] = c1; | ||
1171 | COPY %r0,c1 | ||
1172 | |||
1173 | SQR_ADD_C a5L,a5R,c2,c3,c1 | ||
1174 | SQR_ADD_C2 a6L,a6R,a4L,a4R,c2,c3,c1 | ||
1175 | SQR_ADD_C2 a7L,a7R,a3L,a3R,c2,c3,c1 | ||
1176 | STD c2,80(r_ptr) ; r[10] = c2; | ||
1177 | COPY %r0,c2 | ||
1178 | |||
1179 | SQR_ADD_C2 a7L,a7R,a4L,a4R,c3,c1,c2 | ||
1180 | SQR_ADD_C2 a6L,a6R,a5L,a5R,c3,c1,c2 | ||
1181 | STD c3,88(r_ptr) ; r[11] = c3; | ||
1182 | COPY %r0,c3 | ||
1183 | |||
1184 | SQR_ADD_C a6L,a6R,c1,c2,c3 | ||
1185 | SQR_ADD_C2 a7L,a7R,a5L,a5R,c1,c2,c3 | ||
1186 | STD c1,96(r_ptr) ; r[12] = c1; | ||
1187 | COPY %r0,c1 | ||
1188 | |||
1189 | SQR_ADD_C2 a7L,a7R,a6L,a6R,c2,c3,c1 | ||
1190 | STD c2,104(r_ptr) ; r[13] = c2; | ||
1191 | COPY %r0,c2 | ||
1192 | |||
1193 | SQR_ADD_C a7L,a7R,c3,c1,c2 | ||
1194 | STD c3, 112(r_ptr) ; r[14] = c3 | ||
1195 | STD c1, 120(r_ptr) ; r[15] = c1 | ||
1196 | |||
1197 | .EXIT | ||
1198 | LDD -104(%sp),%r6 ; restore r6 | ||
1199 | LDD -112(%sp),%r5 ; restore r5 | ||
1200 | LDD -120(%sp),%r4 ; restore r4 | ||
1201 | BVE (%rp) | ||
1202 | LDD,MB -128(%sp),%r3 | ||
1203 | |||
1204 | .PROCEND | ||
1205 | |||
1206 | ;----------------------------------------------------------------------------- | ||
1207 | ; | ||
1208 | ;void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a) | ||
1209 | ; arg0 = r_ptr | ||
1210 | ; arg1 = a_ptr | ||
1211 | ; | ||
1212 | |||
1213 | bn_sqr_comba4 | ||
1214 | .proc | ||
1215 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1216 | .EXPORT bn_sqr_comba4,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1217 | .entry | ||
1218 | .align 64 | ||
1219 | STD %r3,0(%sp) ; save r3 | ||
1220 | STD %r4,8(%sp) ; save r4 | ||
1221 | STD %r5,16(%sp) ; save r5 | ||
1222 | STD %r6,24(%sp) ; save r6 | ||
1223 | |||
1224 | ; | ||
1225 | ; Zero out carries | ||
1226 | ; | ||
1227 | COPY %r0,c1 | ||
1228 | COPY %r0,c2 | ||
1229 | COPY %r0,c3 | ||
1230 | |||
1231 | LDO 128(%sp),%sp ; bump stack | ||
1232 | DEPDI,Z -1,32,33,high_mask ; Create Mask 0xffffffff80000000L | ||
1233 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1234 | |||
1235 | ; | ||
1236 | ; Load up all of the values we are going to use | ||
1237 | ; | ||
1238 | FLDD 0(a_ptr),a0 | ||
1239 | FLDD 8(a_ptr),a1 | ||
1240 | FLDD 16(a_ptr),a2 | ||
1241 | FLDD 24(a_ptr),a3 | ||
1242 | FLDD 32(a_ptr),a4 | ||
1243 | FLDD 40(a_ptr),a5 | ||
1244 | FLDD 48(a_ptr),a6 | ||
1245 | FLDD 56(a_ptr),a7 | ||
1246 | |||
1247 | SQR_ADD_C a0L,a0R,c1,c2,c3 | ||
1248 | |||
1249 | STD c1,0(r_ptr) ; r[0] = c1; | ||
1250 | COPY %r0,c1 | ||
1251 | |||
1252 | SQR_ADD_C2 a1L,a1R,a0L,a0R,c2,c3,c1 | ||
1253 | |||
1254 | STD c2,8(r_ptr) ; r[1] = c2; | ||
1255 | COPY %r0,c2 | ||
1256 | |||
1257 | SQR_ADD_C a1L,a1R,c3,c1,c2 | ||
1258 | SQR_ADD_C2 a2L,a2R,a0L,a0R,c3,c1,c2 | ||
1259 | |||
1260 | STD c3,16(r_ptr) ; r[2] = c3; | ||
1261 | COPY %r0,c3 | ||
1262 | |||
1263 | SQR_ADD_C2 a3L,a3R,a0L,a0R,c1,c2,c3 | ||
1264 | SQR_ADD_C2 a2L,a2R,a1L,a1R,c1,c2,c3 | ||
1265 | |||
1266 | STD c1,24(r_ptr) ; r[3] = c1; | ||
1267 | COPY %r0,c1 | ||
1268 | |||
1269 | SQR_ADD_C a2L,a2R,c2,c3,c1 | ||
1270 | SQR_ADD_C2 a3L,a3R,a1L,a1R,c2,c3,c1 | ||
1271 | |||
1272 | STD c2,32(r_ptr) ; r[4] = c2; | ||
1273 | COPY %r0,c2 | ||
1274 | |||
1275 | SQR_ADD_C2 a3L,a3R,a2L,a2R,c3,c1,c2 | ||
1276 | STD c3,40(r_ptr) ; r[5] = c3; | ||
1277 | COPY %r0,c3 | ||
1278 | |||
1279 | SQR_ADD_C a3L,a3R,c1,c2,c3 | ||
1280 | STD c1,48(r_ptr) ; r[6] = c1; | ||
1281 | STD c2,56(r_ptr) ; r[7] = c2; | ||
1282 | |||
1283 | .EXIT | ||
1284 | LDD -104(%sp),%r6 ; restore r6 | ||
1285 | LDD -112(%sp),%r5 ; restore r5 | ||
1286 | LDD -120(%sp),%r4 ; restore r4 | ||
1287 | BVE (%rp) | ||
1288 | LDD,MB -128(%sp),%r3 | ||
1289 | |||
1290 | .PROCEND | ||
1291 | |||
1292 | |||
1293 | ;--------------------------------------------------------------------------- | ||
1294 | |||
1295 | MUL_ADD_C .macro A0L,A0R,B0L,B0R,C1,C2,C3 | ||
1296 | XMPYU A0L,B0R,ftemp1 ; m1 = bl*ht | ||
1297 | FSTD ftemp1,-16(%sp) ; | ||
1298 | XMPYU A0R,B0L,ftemp2 ; m = bh*lt | ||
1299 | FSTD ftemp2,-8(%sp) ; | ||
1300 | XMPYU A0R,B0R,ftemp3 ; lt = bl*lt | ||
1301 | FSTD ftemp3,-32(%sp) | ||
1302 | XMPYU A0L,B0L,ftemp4 ; ht = bh*ht | ||
1303 | FSTD ftemp4,-24(%sp) ; | ||
1304 | |||
1305 | LDD -8(%sp),m ; r21 = m | ||
1306 | LDD -16(%sp),m1 ; r19 = m1 | ||
1307 | ADD,L m,m1,m ; m+m1 | ||
1308 | |||
1309 | DEPD,Z m,31,32,temp3 ; (m+m1<<32) | ||
1310 | LDD -24(%sp),ht ; r24 = ht | ||
1311 | |||
1312 | CMPCLR,*>>= m,m1,%r0 ; if (m < m1) | ||
1313 | ADD,L ht,high_one,ht ; ht+=high_one | ||
1314 | |||
1315 | EXTRD,U m,31,32,temp1 ; m >> 32 | ||
1316 | LDD -32(%sp),lt ; lt | ||
1317 | ADD,L ht,temp1,ht ; ht+= m>>32 | ||
1318 | ADD lt,temp3,lt ; lt = lt+m1 | ||
1319 | ADD,DC ht,%r0,ht ; ht++ | ||
1320 | |||
1321 | ADD C1,lt,C1 ; c1=c1+lt | ||
1322 | ADD,DC ht,%r0,ht ; bump c3 if overflow,nullify otherwise | ||
1323 | |||
1324 | ADD C2,ht,C2 ; c2 = c2 + ht | ||
1325 | ADD,DC C3,%r0,C3 ; add in carry (c3++) | ||
1326 | .endm | ||
1327 | |||
1328 | |||
1329 | ; | ||
1330 | ;void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
1331 | ; arg0 = r_ptr | ||
1332 | ; arg1 = a_ptr | ||
1333 | ; arg2 = b_ptr | ||
1334 | ; | ||
1335 | |||
1336 | bn_mul_comba8 | ||
1337 | .proc | ||
1338 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1339 | .EXPORT bn_mul_comba8,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1340 | .entry | ||
1341 | .align 64 | ||
1342 | |||
1343 | STD %r3,0(%sp) ; save r3 | ||
1344 | STD %r4,8(%sp) ; save r4 | ||
1345 | STD %r5,16(%sp) ; save r5 | ||
1346 | STD %r6,24(%sp) ; save r6 | ||
1347 | FSTD %fr12,32(%sp) ; save r6 | ||
1348 | FSTD %fr13,40(%sp) ; save r7 | ||
1349 | |||
1350 | ; | ||
1351 | ; Zero out carries | ||
1352 | ; | ||
1353 | COPY %r0,c1 | ||
1354 | COPY %r0,c2 | ||
1355 | COPY %r0,c3 | ||
1356 | |||
1357 | LDO 128(%sp),%sp ; bump stack | ||
1358 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1359 | |||
1360 | ; | ||
1361 | ; Load up all of the values we are going to use | ||
1362 | ; | ||
1363 | FLDD 0(a_ptr),a0 | ||
1364 | FLDD 8(a_ptr),a1 | ||
1365 | FLDD 16(a_ptr),a2 | ||
1366 | FLDD 24(a_ptr),a3 | ||
1367 | FLDD 32(a_ptr),a4 | ||
1368 | FLDD 40(a_ptr),a5 | ||
1369 | FLDD 48(a_ptr),a6 | ||
1370 | FLDD 56(a_ptr),a7 | ||
1371 | |||
1372 | FLDD 0(b_ptr),b0 | ||
1373 | FLDD 8(b_ptr),b1 | ||
1374 | FLDD 16(b_ptr),b2 | ||
1375 | FLDD 24(b_ptr),b3 | ||
1376 | FLDD 32(b_ptr),b4 | ||
1377 | FLDD 40(b_ptr),b5 | ||
1378 | FLDD 48(b_ptr),b6 | ||
1379 | FLDD 56(b_ptr),b7 | ||
1380 | |||
1381 | MUL_ADD_C a0L,a0R,b0L,b0R,c1,c2,c3 | ||
1382 | STD c1,0(r_ptr) | ||
1383 | COPY %r0,c1 | ||
1384 | |||
1385 | MUL_ADD_C a0L,a0R,b1L,b1R,c2,c3,c1 | ||
1386 | MUL_ADD_C a1L,a1R,b0L,b0R,c2,c3,c1 | ||
1387 | STD c2,8(r_ptr) | ||
1388 | COPY %r0,c2 | ||
1389 | |||
1390 | MUL_ADD_C a2L,a2R,b0L,b0R,c3,c1,c2 | ||
1391 | MUL_ADD_C a1L,a1R,b1L,b1R,c3,c1,c2 | ||
1392 | MUL_ADD_C a0L,a0R,b2L,b2R,c3,c1,c2 | ||
1393 | STD c3,16(r_ptr) | ||
1394 | COPY %r0,c3 | ||
1395 | |||
1396 | MUL_ADD_C a0L,a0R,b3L,b3R,c1,c2,c3 | ||
1397 | MUL_ADD_C a1L,a1R,b2L,b2R,c1,c2,c3 | ||
1398 | MUL_ADD_C a2L,a2R,b1L,b1R,c1,c2,c3 | ||
1399 | MUL_ADD_C a3L,a3R,b0L,b0R,c1,c2,c3 | ||
1400 | STD c1,24(r_ptr) | ||
1401 | COPY %r0,c1 | ||
1402 | |||
1403 | MUL_ADD_C a4L,a4R,b0L,b0R,c2,c3,c1 | ||
1404 | MUL_ADD_C a3L,a3R,b1L,b1R,c2,c3,c1 | ||
1405 | MUL_ADD_C a2L,a2R,b2L,b2R,c2,c3,c1 | ||
1406 | MUL_ADD_C a1L,a1R,b3L,b3R,c2,c3,c1 | ||
1407 | MUL_ADD_C a0L,a0R,b4L,b4R,c2,c3,c1 | ||
1408 | STD c2,32(r_ptr) | ||
1409 | COPY %r0,c2 | ||
1410 | |||
1411 | MUL_ADD_C a0L,a0R,b5L,b5R,c3,c1,c2 | ||
1412 | MUL_ADD_C a1L,a1R,b4L,b4R,c3,c1,c2 | ||
1413 | MUL_ADD_C a2L,a2R,b3L,b3R,c3,c1,c2 | ||
1414 | MUL_ADD_C a3L,a3R,b2L,b2R,c3,c1,c2 | ||
1415 | MUL_ADD_C a4L,a4R,b1L,b1R,c3,c1,c2 | ||
1416 | MUL_ADD_C a5L,a5R,b0L,b0R,c3,c1,c2 | ||
1417 | STD c3,40(r_ptr) | ||
1418 | COPY %r0,c3 | ||
1419 | |||
1420 | MUL_ADD_C a6L,a6R,b0L,b0R,c1,c2,c3 | ||
1421 | MUL_ADD_C a5L,a5R,b1L,b1R,c1,c2,c3 | ||
1422 | MUL_ADD_C a4L,a4R,b2L,b2R,c1,c2,c3 | ||
1423 | MUL_ADD_C a3L,a3R,b3L,b3R,c1,c2,c3 | ||
1424 | MUL_ADD_C a2L,a2R,b4L,b4R,c1,c2,c3 | ||
1425 | MUL_ADD_C a1L,a1R,b5L,b5R,c1,c2,c3 | ||
1426 | MUL_ADD_C a0L,a0R,b6L,b6R,c1,c2,c3 | ||
1427 | STD c1,48(r_ptr) | ||
1428 | COPY %r0,c1 | ||
1429 | |||
1430 | MUL_ADD_C a0L,a0R,b7L,b7R,c2,c3,c1 | ||
1431 | MUL_ADD_C a1L,a1R,b6L,b6R,c2,c3,c1 | ||
1432 | MUL_ADD_C a2L,a2R,b5L,b5R,c2,c3,c1 | ||
1433 | MUL_ADD_C a3L,a3R,b4L,b4R,c2,c3,c1 | ||
1434 | MUL_ADD_C a4L,a4R,b3L,b3R,c2,c3,c1 | ||
1435 | MUL_ADD_C a5L,a5R,b2L,b2R,c2,c3,c1 | ||
1436 | MUL_ADD_C a6L,a6R,b1L,b1R,c2,c3,c1 | ||
1437 | MUL_ADD_C a7L,a7R,b0L,b0R,c2,c3,c1 | ||
1438 | STD c2,56(r_ptr) | ||
1439 | COPY %r0,c2 | ||
1440 | |||
1441 | MUL_ADD_C a7L,a7R,b1L,b1R,c3,c1,c2 | ||
1442 | MUL_ADD_C a6L,a6R,b2L,b2R,c3,c1,c2 | ||
1443 | MUL_ADD_C a5L,a5R,b3L,b3R,c3,c1,c2 | ||
1444 | MUL_ADD_C a4L,a4R,b4L,b4R,c3,c1,c2 | ||
1445 | MUL_ADD_C a3L,a3R,b5L,b5R,c3,c1,c2 | ||
1446 | MUL_ADD_C a2L,a2R,b6L,b6R,c3,c1,c2 | ||
1447 | MUL_ADD_C a1L,a1R,b7L,b7R,c3,c1,c2 | ||
1448 | STD c3,64(r_ptr) | ||
1449 | COPY %r0,c3 | ||
1450 | |||
1451 | MUL_ADD_C a2L,a2R,b7L,b7R,c1,c2,c3 | ||
1452 | MUL_ADD_C a3L,a3R,b6L,b6R,c1,c2,c3 | ||
1453 | MUL_ADD_C a4L,a4R,b5L,b5R,c1,c2,c3 | ||
1454 | MUL_ADD_C a5L,a5R,b4L,b4R,c1,c2,c3 | ||
1455 | MUL_ADD_C a6L,a6R,b3L,b3R,c1,c2,c3 | ||
1456 | MUL_ADD_C a7L,a7R,b2L,b2R,c1,c2,c3 | ||
1457 | STD c1,72(r_ptr) | ||
1458 | COPY %r0,c1 | ||
1459 | |||
1460 | MUL_ADD_C a7L,a7R,b3L,b3R,c2,c3,c1 | ||
1461 | MUL_ADD_C a6L,a6R,b4L,b4R,c2,c3,c1 | ||
1462 | MUL_ADD_C a5L,a5R,b5L,b5R,c2,c3,c1 | ||
1463 | MUL_ADD_C a4L,a4R,b6L,b6R,c2,c3,c1 | ||
1464 | MUL_ADD_C a3L,a3R,b7L,b7R,c2,c3,c1 | ||
1465 | STD c2,80(r_ptr) | ||
1466 | COPY %r0,c2 | ||
1467 | |||
1468 | MUL_ADD_C a4L,a4R,b7L,b7R,c3,c1,c2 | ||
1469 | MUL_ADD_C a5L,a5R,b6L,b6R,c3,c1,c2 | ||
1470 | MUL_ADD_C a6L,a6R,b5L,b5R,c3,c1,c2 | ||
1471 | MUL_ADD_C a7L,a7R,b4L,b4R,c3,c1,c2 | ||
1472 | STD c3,88(r_ptr) | ||
1473 | COPY %r0,c3 | ||
1474 | |||
1475 | MUL_ADD_C a7L,a7R,b5L,b5R,c1,c2,c3 | ||
1476 | MUL_ADD_C a6L,a6R,b6L,b6R,c1,c2,c3 | ||
1477 | MUL_ADD_C a5L,a5R,b7L,b7R,c1,c2,c3 | ||
1478 | STD c1,96(r_ptr) | ||
1479 | COPY %r0,c1 | ||
1480 | |||
1481 | MUL_ADD_C a6L,a6R,b7L,b7R,c2,c3,c1 | ||
1482 | MUL_ADD_C a7L,a7R,b6L,b6R,c2,c3,c1 | ||
1483 | STD c2,104(r_ptr) | ||
1484 | COPY %r0,c2 | ||
1485 | |||
1486 | MUL_ADD_C a7L,a7R,b7L,b7R,c3,c1,c2 | ||
1487 | STD c3,112(r_ptr) | ||
1488 | STD c1,120(r_ptr) | ||
1489 | |||
1490 | .EXIT | ||
1491 | FLDD -88(%sp),%fr13 | ||
1492 | FLDD -96(%sp),%fr12 | ||
1493 | LDD -104(%sp),%r6 ; restore r6 | ||
1494 | LDD -112(%sp),%r5 ; restore r5 | ||
1495 | LDD -120(%sp),%r4 ; restore r4 | ||
1496 | BVE (%rp) | ||
1497 | LDD,MB -128(%sp),%r3 | ||
1498 | |||
1499 | .PROCEND | ||
1500 | |||
1501 | ;----------------------------------------------------------------------------- | ||
1502 | ; | ||
1503 | ;void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
1504 | ; arg0 = r_ptr | ||
1505 | ; arg1 = a_ptr | ||
1506 | ; arg2 = b_ptr | ||
1507 | ; | ||
1508 | |||
1509 | bn_mul_comba4 | ||
1510 | .proc | ||
1511 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1512 | .EXPORT bn_mul_comba4,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1513 | .entry | ||
1514 | .align 64 | ||
1515 | |||
1516 | STD %r3,0(%sp) ; save r3 | ||
1517 | STD %r4,8(%sp) ; save r4 | ||
1518 | STD %r5,16(%sp) ; save r5 | ||
1519 | STD %r6,24(%sp) ; save r6 | ||
1520 | FSTD %fr12,32(%sp) ; save r6 | ||
1521 | FSTD %fr13,40(%sp) ; save r7 | ||
1522 | |||
1523 | ; | ||
1524 | ; Zero out carries | ||
1525 | ; | ||
1526 | COPY %r0,c1 | ||
1527 | COPY %r0,c2 | ||
1528 | COPY %r0,c3 | ||
1529 | |||
1530 | LDO 128(%sp),%sp ; bump stack | ||
1531 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1532 | |||
1533 | ; | ||
1534 | ; Load up all of the values we are going to use | ||
1535 | ; | ||
1536 | FLDD 0(a_ptr),a0 | ||
1537 | FLDD 8(a_ptr),a1 | ||
1538 | FLDD 16(a_ptr),a2 | ||
1539 | FLDD 24(a_ptr),a3 | ||
1540 | |||
1541 | FLDD 0(b_ptr),b0 | ||
1542 | FLDD 8(b_ptr),b1 | ||
1543 | FLDD 16(b_ptr),b2 | ||
1544 | FLDD 24(b_ptr),b3 | ||
1545 | |||
1546 | MUL_ADD_C a0L,a0R,b0L,b0R,c1,c2,c3 | ||
1547 | STD c1,0(r_ptr) | ||
1548 | COPY %r0,c1 | ||
1549 | |||
1550 | MUL_ADD_C a0L,a0R,b1L,b1R,c2,c3,c1 | ||
1551 | MUL_ADD_C a1L,a1R,b0L,b0R,c2,c3,c1 | ||
1552 | STD c2,8(r_ptr) | ||
1553 | COPY %r0,c2 | ||
1554 | |||
1555 | MUL_ADD_C a2L,a2R,b0L,b0R,c3,c1,c2 | ||
1556 | MUL_ADD_C a1L,a1R,b1L,b1R,c3,c1,c2 | ||
1557 | MUL_ADD_C a0L,a0R,b2L,b2R,c3,c1,c2 | ||
1558 | STD c3,16(r_ptr) | ||
1559 | COPY %r0,c3 | ||
1560 | |||
1561 | MUL_ADD_C a0L,a0R,b3L,b3R,c1,c2,c3 | ||
1562 | MUL_ADD_C a1L,a1R,b2L,b2R,c1,c2,c3 | ||
1563 | MUL_ADD_C a2L,a2R,b1L,b1R,c1,c2,c3 | ||
1564 | MUL_ADD_C a3L,a3R,b0L,b0R,c1,c2,c3 | ||
1565 | STD c1,24(r_ptr) | ||
1566 | COPY %r0,c1 | ||
1567 | |||
1568 | MUL_ADD_C a3L,a3R,b1L,b1R,c2,c3,c1 | ||
1569 | MUL_ADD_C a2L,a2R,b2L,b2R,c2,c3,c1 | ||
1570 | MUL_ADD_C a1L,a1R,b3L,b3R,c2,c3,c1 | ||
1571 | STD c2,32(r_ptr) | ||
1572 | COPY %r0,c2 | ||
1573 | |||
1574 | MUL_ADD_C a2L,a2R,b3L,b3R,c3,c1,c2 | ||
1575 | MUL_ADD_C a3L,a3R,b2L,b2R,c3,c1,c2 | ||
1576 | STD c3,40(r_ptr) | ||
1577 | COPY %r0,c3 | ||
1578 | |||
1579 | MUL_ADD_C a3L,a3R,b3L,b3R,c1,c2,c3 | ||
1580 | STD c1,48(r_ptr) | ||
1581 | STD c2,56(r_ptr) | ||
1582 | |||
1583 | .EXIT | ||
1584 | FLDD -88(%sp),%fr13 | ||
1585 | FLDD -96(%sp),%fr12 | ||
1586 | LDD -104(%sp),%r6 ; restore r6 | ||
1587 | LDD -112(%sp),%r5 ; restore r5 | ||
1588 | LDD -120(%sp),%r4 ; restore r4 | ||
1589 | BVE (%rp) | ||
1590 | LDD,MB -128(%sp),%r3 | ||
1591 | |||
1592 | .PROCEND | ||
1593 | |||
1594 | |||
1595 | .SPACE $TEXT$ | ||
1596 | .SUBSPA $CODE$ | ||
1597 | .SPACE $PRIVATE$,SORT=16 | ||
1598 | .IMPORT $global$,DATA | ||
1599 | .SPACE $TEXT$ | ||
1600 | .SUBSPA $CODE$ | ||
1601 | .SUBSPA $LIT$,ACCESS=0x2c | ||
1602 | C$4 | ||
1603 | .ALIGN 8 | ||
1604 | .STRINGZ "Division would overflow (%d)\n" | ||
1605 | .END | ||
diff --git a/src/lib/libcrypto/bn/asm/ppc-mont.pl b/src/lib/libcrypto/bn/asm/ppc-mont.pl deleted file mode 100644 index 7849eae959..0000000000 --- a/src/lib/libcrypto/bn/asm/ppc-mont.pl +++ /dev/null | |||
@@ -1,323 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # April 2006 | ||
11 | |||
12 | # "Teaser" Montgomery multiplication module for PowerPC. It's possible | ||
13 | # to gain a bit more by modulo-scheduling outer loop, then dedicated | ||
14 | # squaring procedure should give further 20% and code can be adapted | ||
15 | # for 32-bit application running on 64-bit CPU. As for the latter. | ||
16 | # It won't be able to achieve "native" 64-bit performance, because in | ||
17 | # 32-bit application context every addc instruction will have to be | ||
18 | # expanded as addc, twice right shift by 32 and finally adde, etc. | ||
19 | # So far RSA *sign* performance improvement over pre-bn_mul_mont asm | ||
20 | # for 64-bit application running on PPC970/G5 is: | ||
21 | # | ||
22 | # 512-bit +65% | ||
23 | # 1024-bit +35% | ||
24 | # 2048-bit +18% | ||
25 | # 4096-bit +4% | ||
26 | |||
27 | $flavour = shift; | ||
28 | |||
29 | if ($flavour =~ /32/) { | ||
30 | $BITS= 32; | ||
31 | $BNSZ= $BITS/8; | ||
32 | $SIZE_T=4; | ||
33 | $RZONE= 224; | ||
34 | $FRAME= $SIZE_T*16; | ||
35 | |||
36 | $LD= "lwz"; # load | ||
37 | $LDU= "lwzu"; # load and update | ||
38 | $LDX= "lwzx"; # load indexed | ||
39 | $ST= "stw"; # store | ||
40 | $STU= "stwu"; # store and update | ||
41 | $STX= "stwx"; # store indexed | ||
42 | $STUX= "stwux"; # store indexed and update | ||
43 | $UMULL= "mullw"; # unsigned multiply low | ||
44 | $UMULH= "mulhwu"; # unsigned multiply high | ||
45 | $UCMP= "cmplw"; # unsigned compare | ||
46 | $SHRI= "srwi"; # unsigned shift right by immediate | ||
47 | $PUSH= $ST; | ||
48 | $POP= $LD; | ||
49 | } elsif ($flavour =~ /64/) { | ||
50 | $BITS= 64; | ||
51 | $BNSZ= $BITS/8; | ||
52 | $SIZE_T=8; | ||
53 | $RZONE= 288; | ||
54 | $FRAME= $SIZE_T*16; | ||
55 | |||
56 | # same as above, but 64-bit mnemonics... | ||
57 | $LD= "ld"; # load | ||
58 | $LDU= "ldu"; # load and update | ||
59 | $LDX= "ldx"; # load indexed | ||
60 | $ST= "std"; # store | ||
61 | $STU= "stdu"; # store and update | ||
62 | $STX= "stdx"; # store indexed | ||
63 | $STUX= "stdux"; # store indexed and update | ||
64 | $UMULL= "mulld"; # unsigned multiply low | ||
65 | $UMULH= "mulhdu"; # unsigned multiply high | ||
66 | $UCMP= "cmpld"; # unsigned compare | ||
67 | $SHRI= "srdi"; # unsigned shift right by immediate | ||
68 | $PUSH= $ST; | ||
69 | $POP= $LD; | ||
70 | } else { die "nonsense $flavour"; } | ||
71 | |||
72 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
73 | ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or | ||
74 | ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or | ||
75 | die "can't locate ppc-xlate.pl"; | ||
76 | |||
77 | open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; | ||
78 | |||
79 | $sp="r1"; | ||
80 | $toc="r2"; | ||
81 | $rp="r3"; $ovf="r3"; | ||
82 | $ap="r4"; | ||
83 | $bp="r5"; | ||
84 | $np="r6"; | ||
85 | $n0="r7"; | ||
86 | $num="r8"; | ||
87 | $rp="r9"; # $rp is reassigned | ||
88 | $aj="r10"; | ||
89 | $nj="r11"; | ||
90 | $tj="r12"; | ||
91 | # non-volatile registers | ||
92 | $i="r14"; | ||
93 | $j="r15"; | ||
94 | $tp="r16"; | ||
95 | $m0="r17"; | ||
96 | $m1="r18"; | ||
97 | $lo0="r19"; | ||
98 | $hi0="r20"; | ||
99 | $lo1="r21"; | ||
100 | $hi1="r22"; | ||
101 | $alo="r23"; | ||
102 | $ahi="r24"; | ||
103 | $nlo="r25"; | ||
104 | # | ||
105 | $nhi="r0"; | ||
106 | |||
107 | $code=<<___; | ||
108 | .machine "any" | ||
109 | .text | ||
110 | |||
111 | .globl .bn_mul_mont | ||
112 | .align 4 | ||
113 | .bn_mul_mont: | ||
114 | cmpwi $num,4 | ||
115 | mr $rp,r3 ; $rp is reassigned | ||
116 | li r3,0 | ||
117 | bltlr | ||
118 | |||
119 | slwi $num,$num,`log($BNSZ)/log(2)` | ||
120 | li $tj,-4096 | ||
121 | addi $ovf,$num,`$FRAME+$RZONE` | ||
122 | subf $ovf,$ovf,$sp ; $sp-$ovf | ||
123 | and $ovf,$ovf,$tj ; minimize TLB usage | ||
124 | subf $ovf,$sp,$ovf ; $ovf-$sp | ||
125 | srwi $num,$num,`log($BNSZ)/log(2)` | ||
126 | $STUX $sp,$sp,$ovf | ||
127 | |||
128 | $PUSH r14,`4*$SIZE_T`($sp) | ||
129 | $PUSH r15,`5*$SIZE_T`($sp) | ||
130 | $PUSH r16,`6*$SIZE_T`($sp) | ||
131 | $PUSH r17,`7*$SIZE_T`($sp) | ||
132 | $PUSH r18,`8*$SIZE_T`($sp) | ||
133 | $PUSH r19,`9*$SIZE_T`($sp) | ||
134 | $PUSH r20,`10*$SIZE_T`($sp) | ||
135 | $PUSH r21,`11*$SIZE_T`($sp) | ||
136 | $PUSH r22,`12*$SIZE_T`($sp) | ||
137 | $PUSH r23,`13*$SIZE_T`($sp) | ||
138 | $PUSH r24,`14*$SIZE_T`($sp) | ||
139 | $PUSH r25,`15*$SIZE_T`($sp) | ||
140 | |||
141 | $LD $n0,0($n0) ; pull n0[0] value | ||
142 | addi $num,$num,-2 ; adjust $num for counter register | ||
143 | |||
144 | $LD $m0,0($bp) ; m0=bp[0] | ||
145 | $LD $aj,0($ap) ; ap[0] | ||
146 | addi $tp,$sp,$FRAME | ||
147 | $UMULL $lo0,$aj,$m0 ; ap[0]*bp[0] | ||
148 | $UMULH $hi0,$aj,$m0 | ||
149 | |||
150 | $LD $aj,$BNSZ($ap) ; ap[1] | ||
151 | $LD $nj,0($np) ; np[0] | ||
152 | |||
153 | $UMULL $m1,$lo0,$n0 ; "tp[0]"*n0 | ||
154 | |||
155 | $UMULL $alo,$aj,$m0 ; ap[1]*bp[0] | ||
156 | $UMULH $ahi,$aj,$m0 | ||
157 | |||
158 | $UMULL $lo1,$nj,$m1 ; np[0]*m1 | ||
159 | $UMULH $hi1,$nj,$m1 | ||
160 | $LD $nj,$BNSZ($np) ; np[1] | ||
161 | addc $lo1,$lo1,$lo0 | ||
162 | addze $hi1,$hi1 | ||
163 | |||
164 | $UMULL $nlo,$nj,$m1 ; np[1]*m1 | ||
165 | $UMULH $nhi,$nj,$m1 | ||
166 | |||
167 | mtctr $num | ||
168 | li $j,`2*$BNSZ` | ||
169 | .align 4 | ||
170 | L1st: | ||
171 | $LDX $aj,$ap,$j ; ap[j] | ||
172 | addc $lo0,$alo,$hi0 | ||
173 | $LDX $nj,$np,$j ; np[j] | ||
174 | addze $hi0,$ahi | ||
175 | $UMULL $alo,$aj,$m0 ; ap[j]*bp[0] | ||
176 | addc $lo1,$nlo,$hi1 | ||
177 | $UMULH $ahi,$aj,$m0 | ||
178 | addze $hi1,$nhi | ||
179 | $UMULL $nlo,$nj,$m1 ; np[j]*m1 | ||
180 | addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[0] | ||
181 | $UMULH $nhi,$nj,$m1 | ||
182 | addze $hi1,$hi1 | ||
183 | $ST $lo1,0($tp) ; tp[j-1] | ||
184 | |||
185 | addi $j,$j,$BNSZ ; j++ | ||
186 | addi $tp,$tp,$BNSZ ; tp++ | ||
187 | bdnz- L1st | ||
188 | ;L1st | ||
189 | addc $lo0,$alo,$hi0 | ||
190 | addze $hi0,$ahi | ||
191 | |||
192 | addc $lo1,$nlo,$hi1 | ||
193 | addze $hi1,$nhi | ||
194 | addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[0] | ||
195 | addze $hi1,$hi1 | ||
196 | $ST $lo1,0($tp) ; tp[j-1] | ||
197 | |||
198 | li $ovf,0 | ||
199 | addc $hi1,$hi1,$hi0 | ||
200 | addze $ovf,$ovf ; upmost overflow bit | ||
201 | $ST $hi1,$BNSZ($tp) | ||
202 | |||
203 | li $i,$BNSZ | ||
204 | .align 4 | ||
205 | Louter: | ||
206 | $LDX $m0,$bp,$i ; m0=bp[i] | ||
207 | $LD $aj,0($ap) ; ap[0] | ||
208 | addi $tp,$sp,$FRAME | ||
209 | $LD $tj,$FRAME($sp) ; tp[0] | ||
210 | $UMULL $lo0,$aj,$m0 ; ap[0]*bp[i] | ||
211 | $UMULH $hi0,$aj,$m0 | ||
212 | $LD $aj,$BNSZ($ap) ; ap[1] | ||
213 | $LD $nj,0($np) ; np[0] | ||
214 | addc $lo0,$lo0,$tj ; ap[0]*bp[i]+tp[0] | ||
215 | $UMULL $alo,$aj,$m0 ; ap[j]*bp[i] | ||
216 | addze $hi0,$hi0 | ||
217 | $UMULL $m1,$lo0,$n0 ; tp[0]*n0 | ||
218 | $UMULH $ahi,$aj,$m0 | ||
219 | $UMULL $lo1,$nj,$m1 ; np[0]*m1 | ||
220 | $UMULH $hi1,$nj,$m1 | ||
221 | $LD $nj,$BNSZ($np) ; np[1] | ||
222 | addc $lo1,$lo1,$lo0 | ||
223 | $UMULL $nlo,$nj,$m1 ; np[1]*m1 | ||
224 | addze $hi1,$hi1 | ||
225 | $UMULH $nhi,$nj,$m1 | ||
226 | |||
227 | mtctr $num | ||
228 | li $j,`2*$BNSZ` | ||
229 | .align 4 | ||
230 | Linner: | ||
231 | $LDX $aj,$ap,$j ; ap[j] | ||
232 | addc $lo0,$alo,$hi0 | ||
233 | $LD $tj,$BNSZ($tp) ; tp[j] | ||
234 | addze $hi0,$ahi | ||
235 | $LDX $nj,$np,$j ; np[j] | ||
236 | addc $lo1,$nlo,$hi1 | ||
237 | $UMULL $alo,$aj,$m0 ; ap[j]*bp[i] | ||
238 | addze $hi1,$nhi | ||
239 | $UMULH $ahi,$aj,$m0 | ||
240 | addc $lo0,$lo0,$tj ; ap[j]*bp[i]+tp[j] | ||
241 | $UMULL $nlo,$nj,$m1 ; np[j]*m1 | ||
242 | addze $hi0,$hi0 | ||
243 | $UMULH $nhi,$nj,$m1 | ||
244 | addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[i]+tp[j] | ||
245 | addi $j,$j,$BNSZ ; j++ | ||
246 | addze $hi1,$hi1 | ||
247 | $ST $lo1,0($tp) ; tp[j-1] | ||
248 | addi $tp,$tp,$BNSZ ; tp++ | ||
249 | bdnz- Linner | ||
250 | ;Linner | ||
251 | $LD $tj,$BNSZ($tp) ; tp[j] | ||
252 | addc $lo0,$alo,$hi0 | ||
253 | addze $hi0,$ahi | ||
254 | addc $lo0,$lo0,$tj ; ap[j]*bp[i]+tp[j] | ||
255 | addze $hi0,$hi0 | ||
256 | |||
257 | addc $lo1,$nlo,$hi1 | ||
258 | addze $hi1,$nhi | ||
259 | addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[i]+tp[j] | ||
260 | addze $hi1,$hi1 | ||
261 | $ST $lo1,0($tp) ; tp[j-1] | ||
262 | |||
263 | addic $ovf,$ovf,-1 ; move upmost overflow to XER[CA] | ||
264 | li $ovf,0 | ||
265 | adde $hi1,$hi1,$hi0 | ||
266 | addze $ovf,$ovf | ||
267 | $ST $hi1,$BNSZ($tp) | ||
268 | ; | ||
269 | slwi $tj,$num,`log($BNSZ)/log(2)` | ||
270 | $UCMP $i,$tj | ||
271 | addi $i,$i,$BNSZ | ||
272 | ble- Louter | ||
273 | |||
274 | addi $num,$num,2 ; restore $num | ||
275 | subfc $j,$j,$j ; j=0 and "clear" XER[CA] | ||
276 | addi $tp,$sp,$FRAME | ||
277 | mtctr $num | ||
278 | |||
279 | .align 4 | ||
280 | Lsub: $LDX $tj,$tp,$j | ||
281 | $LDX $nj,$np,$j | ||
282 | subfe $aj,$nj,$tj ; tp[j]-np[j] | ||
283 | $STX $aj,$rp,$j | ||
284 | addi $j,$j,$BNSZ | ||
285 | bdnz- Lsub | ||
286 | |||
287 | li $j,0 | ||
288 | mtctr $num | ||
289 | subfe $ovf,$j,$ovf ; handle upmost overflow bit | ||
290 | and $ap,$tp,$ovf | ||
291 | andc $np,$rp,$ovf | ||
292 | or $ap,$ap,$np ; ap=borrow?tp:rp | ||
293 | |||
294 | .align 4 | ||
295 | Lcopy: ; copy or in-place refresh | ||
296 | $LDX $tj,$ap,$j | ||
297 | $STX $tj,$rp,$j | ||
298 | $STX $j,$tp,$j ; zap at once | ||
299 | addi $j,$j,$BNSZ | ||
300 | bdnz- Lcopy | ||
301 | |||
302 | $POP r14,`4*$SIZE_T`($sp) | ||
303 | $POP r15,`5*$SIZE_T`($sp) | ||
304 | $POP r16,`6*$SIZE_T`($sp) | ||
305 | $POP r17,`7*$SIZE_T`($sp) | ||
306 | $POP r18,`8*$SIZE_T`($sp) | ||
307 | $POP r19,`9*$SIZE_T`($sp) | ||
308 | $POP r20,`10*$SIZE_T`($sp) | ||
309 | $POP r21,`11*$SIZE_T`($sp) | ||
310 | $POP r22,`12*$SIZE_T`($sp) | ||
311 | $POP r23,`13*$SIZE_T`($sp) | ||
312 | $POP r24,`14*$SIZE_T`($sp) | ||
313 | $POP r25,`15*$SIZE_T`($sp) | ||
314 | $POP $sp,0($sp) | ||
315 | li r3,1 | ||
316 | blr | ||
317 | .long 0 | ||
318 | .asciz "Montgomery Multiplication for PPC, CRYPTOGAMS by <appro\@fy.chalmers.se>" | ||
319 | ___ | ||
320 | |||
321 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
322 | print $code; | ||
323 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/ppc.pl b/src/lib/libcrypto/bn/asm/ppc.pl deleted file mode 100644 index f4093177e6..0000000000 --- a/src/lib/libcrypto/bn/asm/ppc.pl +++ /dev/null | |||
@@ -1,1981 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # Implemented as a Perl wrapper as we want to support several different | ||
4 | # architectures with single file. We pick up the target based on the | ||
5 | # file name we are asked to generate. | ||
6 | # | ||
7 | # It should be noted though that this perl code is nothing like | ||
8 | # <openssl>/crypto/perlasm/x86*. In this case perl is used pretty much | ||
9 | # as pre-processor to cover for platform differences in name decoration, | ||
10 | # linker tables, 32-/64-bit instruction sets... | ||
11 | # | ||
12 | # As you might know there're several PowerPC ABI in use. Most notably | ||
13 | # Linux and AIX use different 32-bit ABIs. Good news are that these ABIs | ||
14 | # are similar enough to implement leaf(!) functions, which would be ABI | ||
15 | # neutral. And that's what you find here: ABI neutral leaf functions. | ||
16 | # In case you wonder what that is... | ||
17 | # | ||
18 | # AIX performance | ||
19 | # | ||
20 | # MEASUREMENTS WITH cc ON a 200 MhZ PowerPC 604e. | ||
21 | # | ||
22 | # The following is the performance of 32-bit compiler | ||
23 | # generated code: | ||
24 | # | ||
25 | # OpenSSL 0.9.6c 21 dec 2001 | ||
26 | # built on: Tue Jun 11 11:06:51 EDT 2002 | ||
27 | # options:bn(64,32) ... | ||
28 | #compiler: cc -DTHREADS -DAIX -DB_ENDIAN -DBN_LLONG -O3 | ||
29 | # sign verify sign/s verify/s | ||
30 | #rsa 512 bits 0.0098s 0.0009s 102.0 1170.6 | ||
31 | #rsa 1024 bits 0.0507s 0.0026s 19.7 387.5 | ||
32 | #rsa 2048 bits 0.3036s 0.0085s 3.3 117.1 | ||
33 | #rsa 4096 bits 2.0040s 0.0299s 0.5 33.4 | ||
34 | #dsa 512 bits 0.0087s 0.0106s 114.3 94.5 | ||
35 | #dsa 1024 bits 0.0256s 0.0313s 39.0 32.0 | ||
36 | # | ||
37 | # Same bechmark with this assembler code: | ||
38 | # | ||
39 | #rsa 512 bits 0.0056s 0.0005s 178.6 2049.2 | ||
40 | #rsa 1024 bits 0.0283s 0.0015s 35.3 674.1 | ||
41 | #rsa 2048 bits 0.1744s 0.0050s 5.7 201.2 | ||
42 | #rsa 4096 bits 1.1644s 0.0179s 0.9 55.7 | ||
43 | #dsa 512 bits 0.0052s 0.0062s 191.6 162.0 | ||
44 | #dsa 1024 bits 0.0149s 0.0180s 67.0 55.5 | ||
45 | # | ||
46 | # Number of operations increases by at almost 75% | ||
47 | # | ||
48 | # Here are performance numbers for 64-bit compiler | ||
49 | # generated code: | ||
50 | # | ||
51 | # OpenSSL 0.9.6g [engine] 9 Aug 2002 | ||
52 | # built on: Fri Apr 18 16:59:20 EDT 2003 | ||
53 | # options:bn(64,64) ... | ||
54 | # compiler: cc -DTHREADS -D_REENTRANT -q64 -DB_ENDIAN -O3 | ||
55 | # sign verify sign/s verify/s | ||
56 | #rsa 512 bits 0.0028s 0.0003s 357.1 3844.4 | ||
57 | #rsa 1024 bits 0.0148s 0.0008s 67.5 1239.7 | ||
58 | #rsa 2048 bits 0.0963s 0.0028s 10.4 353.0 | ||
59 | #rsa 4096 bits 0.6538s 0.0102s 1.5 98.1 | ||
60 | #dsa 512 bits 0.0026s 0.0032s 382.5 313.7 | ||
61 | #dsa 1024 bits 0.0081s 0.0099s 122.8 100.6 | ||
62 | # | ||
63 | # Same benchmark with this assembler code: | ||
64 | # | ||
65 | #rsa 512 bits 0.0020s 0.0002s 510.4 6273.7 | ||
66 | #rsa 1024 bits 0.0088s 0.0005s 114.1 2128.3 | ||
67 | #rsa 2048 bits 0.0540s 0.0016s 18.5 622.5 | ||
68 | #rsa 4096 bits 0.3700s 0.0058s 2.7 171.0 | ||
69 | #dsa 512 bits 0.0016s 0.0020s 610.7 507.1 | ||
70 | #dsa 1024 bits 0.0047s 0.0058s 212.5 173.2 | ||
71 | # | ||
72 | # Again, performance increases by at about 75% | ||
73 | # | ||
74 | # Mac OS X, Apple G5 1.8GHz (Note this is 32 bit code) | ||
75 | # OpenSSL 0.9.7c 30 Sep 2003 | ||
76 | # | ||
77 | # Original code. | ||
78 | # | ||
79 | #rsa 512 bits 0.0011s 0.0001s 906.1 11012.5 | ||
80 | #rsa 1024 bits 0.0060s 0.0003s 166.6 3363.1 | ||
81 | #rsa 2048 bits 0.0370s 0.0010s 27.1 982.4 | ||
82 | #rsa 4096 bits 0.2426s 0.0036s 4.1 280.4 | ||
83 | #dsa 512 bits 0.0010s 0.0012s 1038.1 841.5 | ||
84 | #dsa 1024 bits 0.0030s 0.0037s 329.6 269.7 | ||
85 | #dsa 2048 bits 0.0101s 0.0127s 98.9 78.6 | ||
86 | # | ||
87 | # Same benchmark with this assembler code: | ||
88 | # | ||
89 | #rsa 512 bits 0.0007s 0.0001s 1416.2 16645.9 | ||
90 | #rsa 1024 bits 0.0036s 0.0002s 274.4 5380.6 | ||
91 | #rsa 2048 bits 0.0222s 0.0006s 45.1 1589.5 | ||
92 | #rsa 4096 bits 0.1469s 0.0022s 6.8 449.6 | ||
93 | #dsa 512 bits 0.0006s 0.0007s 1664.2 1376.2 | ||
94 | #dsa 1024 bits 0.0018s 0.0023s 545.0 442.2 | ||
95 | #dsa 2048 bits 0.0061s 0.0075s 163.5 132.8 | ||
96 | # | ||
97 | # Performance increase of ~60% | ||
98 | # | ||
99 | # If you have comments or suggestions to improve code send | ||
100 | # me a note at schari@us.ibm.com | ||
101 | # | ||
102 | |||
103 | $flavour = shift; | ||
104 | |||
105 | if ($flavour =~ /32/) { | ||
106 | $BITS= 32; | ||
107 | $BNSZ= $BITS/8; | ||
108 | $ISA= "\"ppc\""; | ||
109 | |||
110 | $LD= "lwz"; # load | ||
111 | $LDU= "lwzu"; # load and update | ||
112 | $ST= "stw"; # store | ||
113 | $STU= "stwu"; # store and update | ||
114 | $UMULL= "mullw"; # unsigned multiply low | ||
115 | $UMULH= "mulhwu"; # unsigned multiply high | ||
116 | $UDIV= "divwu"; # unsigned divide | ||
117 | $UCMPI= "cmplwi"; # unsigned compare with immediate | ||
118 | $UCMP= "cmplw"; # unsigned compare | ||
119 | $CNTLZ= "cntlzw"; # count leading zeros | ||
120 | $SHL= "slw"; # shift left | ||
121 | $SHR= "srw"; # unsigned shift right | ||
122 | $SHRI= "srwi"; # unsigned shift right by immediate | ||
123 | $SHLI= "slwi"; # shift left by immediate | ||
124 | $CLRU= "clrlwi"; # clear upper bits | ||
125 | $INSR= "insrwi"; # insert right | ||
126 | $ROTL= "rotlwi"; # rotate left by immediate | ||
127 | $TR= "tw"; # conditional trap | ||
128 | } elsif ($flavour =~ /64/) { | ||
129 | $BITS= 64; | ||
130 | $BNSZ= $BITS/8; | ||
131 | $ISA= "\"ppc64\""; | ||
132 | |||
133 | # same as above, but 64-bit mnemonics... | ||
134 | $LD= "ld"; # load | ||
135 | $LDU= "ldu"; # load and update | ||
136 | $ST= "std"; # store | ||
137 | $STU= "stdu"; # store and update | ||
138 | $UMULL= "mulld"; # unsigned multiply low | ||
139 | $UMULH= "mulhdu"; # unsigned multiply high | ||
140 | $UDIV= "divdu"; # unsigned divide | ||
141 | $UCMPI= "cmpldi"; # unsigned compare with immediate | ||
142 | $UCMP= "cmpld"; # unsigned compare | ||
143 | $CNTLZ= "cntlzd"; # count leading zeros | ||
144 | $SHL= "sld"; # shift left | ||
145 | $SHR= "srd"; # unsigned shift right | ||
146 | $SHRI= "srdi"; # unsigned shift right by immediate | ||
147 | $SHLI= "sldi"; # shift left by immediate | ||
148 | $CLRU= "clrldi"; # clear upper bits | ||
149 | $INSR= "insrdi"; # insert right | ||
150 | $ROTL= "rotldi"; # rotate left by immediate | ||
151 | $TR= "td"; # conditional trap | ||
152 | } else { die "nonsense $flavour"; } | ||
153 | |||
154 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
155 | ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or | ||
156 | ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or | ||
157 | die "can't locate ppc-xlate.pl"; | ||
158 | |||
159 | open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; | ||
160 | |||
161 | $data=<<EOF; | ||
162 | #-------------------------------------------------------------------- | ||
163 | # | ||
164 | # | ||
165 | # | ||
166 | # | ||
167 | # File: ppc32.s | ||
168 | # | ||
169 | # Created by: Suresh Chari | ||
170 | # IBM Thomas J. Watson Research Library | ||
171 | # Hawthorne, NY | ||
172 | # | ||
173 | # | ||
174 | # Description: Optimized assembly routines for OpenSSL crypto | ||
175 | # on the 32 bitPowerPC platform. | ||
176 | # | ||
177 | # | ||
178 | # Version History | ||
179 | # | ||
180 | # 2. Fixed bn_add,bn_sub and bn_div_words, added comments, | ||
181 | # cleaned up code. Also made a single version which can | ||
182 | # be used for both the AIX and Linux compilers. See NOTE | ||
183 | # below. | ||
184 | # 12/05/03 Suresh Chari | ||
185 | # (with lots of help from) Andy Polyakov | ||
186 | ## | ||
187 | # 1. Initial version 10/20/02 Suresh Chari | ||
188 | # | ||
189 | # | ||
190 | # The following file works for the xlc,cc | ||
191 | # and gcc compilers. | ||
192 | # | ||
193 | # NOTE: To get the file to link correctly with the gcc compiler | ||
194 | # you have to change the names of the routines and remove | ||
195 | # the first .(dot) character. This should automatically | ||
196 | # be done in the build process. | ||
197 | # | ||
198 | # Hand optimized assembly code for the following routines | ||
199 | # | ||
200 | # bn_sqr_comba4 | ||
201 | # bn_sqr_comba8 | ||
202 | # bn_mul_comba4 | ||
203 | # bn_mul_comba8 | ||
204 | # bn_sub_words | ||
205 | # bn_add_words | ||
206 | # bn_div_words | ||
207 | # bn_sqr_words | ||
208 | # bn_mul_words | ||
209 | # bn_mul_add_words | ||
210 | # | ||
211 | # NOTE: It is possible to optimize this code more for | ||
212 | # specific PowerPC or Power architectures. On the Northstar | ||
213 | # architecture the optimizations in this file do | ||
214 | # NOT provide much improvement. | ||
215 | # | ||
216 | # If you have comments or suggestions to improve code send | ||
217 | # me a note at schari\@us.ibm.com | ||
218 | # | ||
219 | #-------------------------------------------------------------------------- | ||
220 | # | ||
221 | # Defines to be used in the assembly code. | ||
222 | # | ||
223 | #.set r0,0 # we use it as storage for value of 0 | ||
224 | #.set SP,1 # preserved | ||
225 | #.set RTOC,2 # preserved | ||
226 | #.set r3,3 # 1st argument/return value | ||
227 | #.set r4,4 # 2nd argument/volatile register | ||
228 | #.set r5,5 # 3rd argument/volatile register | ||
229 | #.set r6,6 # ... | ||
230 | #.set r7,7 | ||
231 | #.set r8,8 | ||
232 | #.set r9,9 | ||
233 | #.set r10,10 | ||
234 | #.set r11,11 | ||
235 | #.set r12,12 | ||
236 | #.set r13,13 # not used, nor any other "below" it... | ||
237 | |||
238 | # Declare function names to be global | ||
239 | # NOTE: For gcc these names MUST be changed to remove | ||
240 | # the first . i.e. for example change ".bn_sqr_comba4" | ||
241 | # to "bn_sqr_comba4". This should be automatically done | ||
242 | # in the build. | ||
243 | |||
244 | .globl .bn_sqr_comba4 | ||
245 | .globl .bn_sqr_comba8 | ||
246 | .globl .bn_mul_comba4 | ||
247 | .globl .bn_mul_comba8 | ||
248 | .globl .bn_sub_words | ||
249 | .globl .bn_add_words | ||
250 | .globl .bn_div_words | ||
251 | .globl .bn_sqr_words | ||
252 | .globl .bn_mul_words | ||
253 | .globl .bn_mul_add_words | ||
254 | |||
255 | # .text section | ||
256 | |||
257 | .machine "any" | ||
258 | |||
259 | # | ||
260 | # NOTE: The following label name should be changed to | ||
261 | # "bn_sqr_comba4" i.e. remove the first dot | ||
262 | # for the gcc compiler. This should be automatically | ||
263 | # done in the build | ||
264 | # | ||
265 | |||
266 | .align 4 | ||
267 | .bn_sqr_comba4: | ||
268 | # | ||
269 | # Optimized version of bn_sqr_comba4. | ||
270 | # | ||
271 | # void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a) | ||
272 | # r3 contains r | ||
273 | # r4 contains a | ||
274 | # | ||
275 | # Freely use registers r5,r6,r7,r8,r9,r10,r11 as follows: | ||
276 | # | ||
277 | # r5,r6 are the two BN_ULONGs being multiplied. | ||
278 | # r7,r8 are the results of the 32x32 giving 64 bit multiply. | ||
279 | # r9,r10, r11 are the equivalents of c1,c2, c3. | ||
280 | # Here's the assembly | ||
281 | # | ||
282 | # | ||
283 | xor r0,r0,r0 # set r0 = 0. Used in the addze | ||
284 | # instructions below | ||
285 | |||
286 | #sqr_add_c(a,0,c1,c2,c3) | ||
287 | $LD r5,`0*$BNSZ`(r4) | ||
288 | $UMULL r9,r5,r5 | ||
289 | $UMULH r10,r5,r5 #in first iteration. No need | ||
290 | #to add since c1=c2=c3=0. | ||
291 | # Note c3(r11) is NOT set to 0 | ||
292 | # but will be. | ||
293 | |||
294 | $ST r9,`0*$BNSZ`(r3) # r[0]=c1; | ||
295 | # sqr_add_c2(a,1,0,c2,c3,c1); | ||
296 | $LD r6,`1*$BNSZ`(r4) | ||
297 | $UMULL r7,r5,r6 | ||
298 | $UMULH r8,r5,r6 | ||
299 | |||
300 | addc r7,r7,r7 # compute (r7,r8)=2*(r7,r8) | ||
301 | adde r8,r8,r8 | ||
302 | addze r9,r0 # catch carry if any. | ||
303 | # r9= r0(=0) and carry | ||
304 | |||
305 | addc r10,r7,r10 # now add to temp result. | ||
306 | addze r11,r8 # r8 added to r11 which is 0 | ||
307 | addze r9,r9 | ||
308 | |||
309 | $ST r10,`1*$BNSZ`(r3) #r[1]=c2; | ||
310 | #sqr_add_c(a,1,c3,c1,c2) | ||
311 | $UMULL r7,r6,r6 | ||
312 | $UMULH r8,r6,r6 | ||
313 | addc r11,r7,r11 | ||
314 | adde r9,r8,r9 | ||
315 | addze r10,r0 | ||
316 | #sqr_add_c2(a,2,0,c3,c1,c2) | ||
317 | $LD r6,`2*$BNSZ`(r4) | ||
318 | $UMULL r7,r5,r6 | ||
319 | $UMULH r8,r5,r6 | ||
320 | |||
321 | addc r7,r7,r7 | ||
322 | adde r8,r8,r8 | ||
323 | addze r10,r10 | ||
324 | |||
325 | addc r11,r7,r11 | ||
326 | adde r9,r8,r9 | ||
327 | addze r10,r10 | ||
328 | $ST r11,`2*$BNSZ`(r3) #r[2]=c3 | ||
329 | #sqr_add_c2(a,3,0,c1,c2,c3); | ||
330 | $LD r6,`3*$BNSZ`(r4) | ||
331 | $UMULL r7,r5,r6 | ||
332 | $UMULH r8,r5,r6 | ||
333 | addc r7,r7,r7 | ||
334 | adde r8,r8,r8 | ||
335 | addze r11,r0 | ||
336 | |||
337 | addc r9,r7,r9 | ||
338 | adde r10,r8,r10 | ||
339 | addze r11,r11 | ||
340 | #sqr_add_c2(a,2,1,c1,c2,c3); | ||
341 | $LD r5,`1*$BNSZ`(r4) | ||
342 | $LD r6,`2*$BNSZ`(r4) | ||
343 | $UMULL r7,r5,r6 | ||
344 | $UMULH r8,r5,r6 | ||
345 | |||
346 | addc r7,r7,r7 | ||
347 | adde r8,r8,r8 | ||
348 | addze r11,r11 | ||
349 | addc r9,r7,r9 | ||
350 | adde r10,r8,r10 | ||
351 | addze r11,r11 | ||
352 | $ST r9,`3*$BNSZ`(r3) #r[3]=c1 | ||
353 | #sqr_add_c(a,2,c2,c3,c1); | ||
354 | $UMULL r7,r6,r6 | ||
355 | $UMULH r8,r6,r6 | ||
356 | addc r10,r7,r10 | ||
357 | adde r11,r8,r11 | ||
358 | addze r9,r0 | ||
359 | #sqr_add_c2(a,3,1,c2,c3,c1); | ||
360 | $LD r6,`3*$BNSZ`(r4) | ||
361 | $UMULL r7,r5,r6 | ||
362 | $UMULH r8,r5,r6 | ||
363 | addc r7,r7,r7 | ||
364 | adde r8,r8,r8 | ||
365 | addze r9,r9 | ||
366 | |||
367 | addc r10,r7,r10 | ||
368 | adde r11,r8,r11 | ||
369 | addze r9,r9 | ||
370 | $ST r10,`4*$BNSZ`(r3) #r[4]=c2 | ||
371 | #sqr_add_c2(a,3,2,c3,c1,c2); | ||
372 | $LD r5,`2*$BNSZ`(r4) | ||
373 | $UMULL r7,r5,r6 | ||
374 | $UMULH r8,r5,r6 | ||
375 | addc r7,r7,r7 | ||
376 | adde r8,r8,r8 | ||
377 | addze r10,r0 | ||
378 | |||
379 | addc r11,r7,r11 | ||
380 | adde r9,r8,r9 | ||
381 | addze r10,r10 | ||
382 | $ST r11,`5*$BNSZ`(r3) #r[5] = c3 | ||
383 | #sqr_add_c(a,3,c1,c2,c3); | ||
384 | $UMULL r7,r6,r6 | ||
385 | $UMULH r8,r6,r6 | ||
386 | addc r9,r7,r9 | ||
387 | adde r10,r8,r10 | ||
388 | |||
389 | $ST r9,`6*$BNSZ`(r3) #r[6]=c1 | ||
390 | $ST r10,`7*$BNSZ`(r3) #r[7]=c2 | ||
391 | blr | ||
392 | .long 0x00000000 | ||
393 | |||
394 | # | ||
395 | # NOTE: The following label name should be changed to | ||
396 | # "bn_sqr_comba8" i.e. remove the first dot | ||
397 | # for the gcc compiler. This should be automatically | ||
398 | # done in the build | ||
399 | # | ||
400 | |||
401 | .align 4 | ||
402 | .bn_sqr_comba8: | ||
403 | # | ||
404 | # This is an optimized version of the bn_sqr_comba8 routine. | ||
405 | # Tightly uses the adde instruction | ||
406 | # | ||
407 | # | ||
408 | # void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a) | ||
409 | # r3 contains r | ||
410 | # r4 contains a | ||
411 | # | ||
412 | # Freely use registers r5,r6,r7,r8,r9,r10,r11 as follows: | ||
413 | # | ||
414 | # r5,r6 are the two BN_ULONGs being multiplied. | ||
415 | # r7,r8 are the results of the 32x32 giving 64 bit multiply. | ||
416 | # r9,r10, r11 are the equivalents of c1,c2, c3. | ||
417 | # | ||
418 | # Possible optimization of loading all 8 longs of a into registers | ||
419 | # doesnt provide any speedup | ||
420 | # | ||
421 | |||
422 | xor r0,r0,r0 #set r0 = 0.Used in addze | ||
423 | #instructions below. | ||
424 | |||
425 | #sqr_add_c(a,0,c1,c2,c3); | ||
426 | $LD r5,`0*$BNSZ`(r4) | ||
427 | $UMULL r9,r5,r5 #1st iteration: no carries. | ||
428 | $UMULH r10,r5,r5 | ||
429 | $ST r9,`0*$BNSZ`(r3) # r[0]=c1; | ||
430 | #sqr_add_c2(a,1,0,c2,c3,c1); | ||
431 | $LD r6,`1*$BNSZ`(r4) | ||
432 | $UMULL r7,r5,r6 | ||
433 | $UMULH r8,r5,r6 | ||
434 | |||
435 | addc r10,r7,r10 #add the two register number | ||
436 | adde r11,r8,r0 # (r8,r7) to the three register | ||
437 | addze r9,r0 # number (r9,r11,r10).NOTE:r0=0 | ||
438 | |||
439 | addc r10,r7,r10 #add the two register number | ||
440 | adde r11,r8,r11 # (r8,r7) to the three register | ||
441 | addze r9,r9 # number (r9,r11,r10). | ||
442 | |||
443 | $ST r10,`1*$BNSZ`(r3) # r[1]=c2 | ||
444 | |||
445 | #sqr_add_c(a,1,c3,c1,c2); | ||
446 | $UMULL r7,r6,r6 | ||
447 | $UMULH r8,r6,r6 | ||
448 | addc r11,r7,r11 | ||
449 | adde r9,r8,r9 | ||
450 | addze r10,r0 | ||
451 | #sqr_add_c2(a,2,0,c3,c1,c2); | ||
452 | $LD r6,`2*$BNSZ`(r4) | ||
453 | $UMULL r7,r5,r6 | ||
454 | $UMULH r8,r5,r6 | ||
455 | |||
456 | addc r11,r7,r11 | ||
457 | adde r9,r8,r9 | ||
458 | addze r10,r10 | ||
459 | |||
460 | addc r11,r7,r11 | ||
461 | adde r9,r8,r9 | ||
462 | addze r10,r10 | ||
463 | |||
464 | $ST r11,`2*$BNSZ`(r3) #r[2]=c3 | ||
465 | #sqr_add_c2(a,3,0,c1,c2,c3); | ||
466 | $LD r6,`3*$BNSZ`(r4) #r6 = a[3]. r5 is already a[0]. | ||
467 | $UMULL r7,r5,r6 | ||
468 | $UMULH r8,r5,r6 | ||
469 | |||
470 | addc r9,r7,r9 | ||
471 | adde r10,r8,r10 | ||
472 | addze r11,r0 | ||
473 | |||
474 | addc r9,r7,r9 | ||
475 | adde r10,r8,r10 | ||
476 | addze r11,r11 | ||
477 | #sqr_add_c2(a,2,1,c1,c2,c3); | ||
478 | $LD r5,`1*$BNSZ`(r4) | ||
479 | $LD r6,`2*$BNSZ`(r4) | ||
480 | $UMULL r7,r5,r6 | ||
481 | $UMULH r8,r5,r6 | ||
482 | |||
483 | addc r9,r7,r9 | ||
484 | adde r10,r8,r10 | ||
485 | addze r11,r11 | ||
486 | |||
487 | addc r9,r7,r9 | ||
488 | adde r10,r8,r10 | ||
489 | addze r11,r11 | ||
490 | |||
491 | $ST r9,`3*$BNSZ`(r3) #r[3]=c1; | ||
492 | #sqr_add_c(a,2,c2,c3,c1); | ||
493 | $UMULL r7,r6,r6 | ||
494 | $UMULH r8,r6,r6 | ||
495 | |||
496 | addc r10,r7,r10 | ||
497 | adde r11,r8,r11 | ||
498 | addze r9,r0 | ||
499 | #sqr_add_c2(a,3,1,c2,c3,c1); | ||
500 | $LD r6,`3*$BNSZ`(r4) | ||
501 | $UMULL r7,r5,r6 | ||
502 | $UMULH r8,r5,r6 | ||
503 | |||
504 | addc r10,r7,r10 | ||
505 | adde r11,r8,r11 | ||
506 | addze r9,r9 | ||
507 | |||
508 | addc r10,r7,r10 | ||
509 | adde r11,r8,r11 | ||
510 | addze r9,r9 | ||
511 | #sqr_add_c2(a,4,0,c2,c3,c1); | ||
512 | $LD r5,`0*$BNSZ`(r4) | ||
513 | $LD r6,`4*$BNSZ`(r4) | ||
514 | $UMULL r7,r5,r6 | ||
515 | $UMULH r8,r5,r6 | ||
516 | |||
517 | addc r10,r7,r10 | ||
518 | adde r11,r8,r11 | ||
519 | addze r9,r9 | ||
520 | |||
521 | addc r10,r7,r10 | ||
522 | adde r11,r8,r11 | ||
523 | addze r9,r9 | ||
524 | $ST r10,`4*$BNSZ`(r3) #r[4]=c2; | ||
525 | #sqr_add_c2(a,5,0,c3,c1,c2); | ||
526 | $LD r6,`5*$BNSZ`(r4) | ||
527 | $UMULL r7,r5,r6 | ||
528 | $UMULH r8,r5,r6 | ||
529 | |||
530 | addc r11,r7,r11 | ||
531 | adde r9,r8,r9 | ||
532 | addze r10,r0 | ||
533 | |||
534 | addc r11,r7,r11 | ||
535 | adde r9,r8,r9 | ||
536 | addze r10,r10 | ||
537 | #sqr_add_c2(a,4,1,c3,c1,c2); | ||
538 | $LD r5,`1*$BNSZ`(r4) | ||
539 | $LD r6,`4*$BNSZ`(r4) | ||
540 | $UMULL r7,r5,r6 | ||
541 | $UMULH r8,r5,r6 | ||
542 | |||
543 | addc r11,r7,r11 | ||
544 | adde r9,r8,r9 | ||
545 | addze r10,r10 | ||
546 | |||
547 | addc r11,r7,r11 | ||
548 | adde r9,r8,r9 | ||
549 | addze r10,r10 | ||
550 | #sqr_add_c2(a,3,2,c3,c1,c2); | ||
551 | $LD r5,`2*$BNSZ`(r4) | ||
552 | $LD r6,`3*$BNSZ`(r4) | ||
553 | $UMULL r7,r5,r6 | ||
554 | $UMULH r8,r5,r6 | ||
555 | |||
556 | addc r11,r7,r11 | ||
557 | adde r9,r8,r9 | ||
558 | addze r10,r10 | ||
559 | |||
560 | addc r11,r7,r11 | ||
561 | adde r9,r8,r9 | ||
562 | addze r10,r10 | ||
563 | $ST r11,`5*$BNSZ`(r3) #r[5]=c3; | ||
564 | #sqr_add_c(a,3,c1,c2,c3); | ||
565 | $UMULL r7,r6,r6 | ||
566 | $UMULH r8,r6,r6 | ||
567 | addc r9,r7,r9 | ||
568 | adde r10,r8,r10 | ||
569 | addze r11,r0 | ||
570 | #sqr_add_c2(a,4,2,c1,c2,c3); | ||
571 | $LD r6,`4*$BNSZ`(r4) | ||
572 | $UMULL r7,r5,r6 | ||
573 | $UMULH r8,r5,r6 | ||
574 | |||
575 | addc r9,r7,r9 | ||
576 | adde r10,r8,r10 | ||
577 | addze r11,r11 | ||
578 | |||
579 | addc r9,r7,r9 | ||
580 | adde r10,r8,r10 | ||
581 | addze r11,r11 | ||
582 | #sqr_add_c2(a,5,1,c1,c2,c3); | ||
583 | $LD r5,`1*$BNSZ`(r4) | ||
584 | $LD r6,`5*$BNSZ`(r4) | ||
585 | $UMULL r7,r5,r6 | ||
586 | $UMULH r8,r5,r6 | ||
587 | |||
588 | addc r9,r7,r9 | ||
589 | adde r10,r8,r10 | ||
590 | addze r11,r11 | ||
591 | |||
592 | addc r9,r7,r9 | ||
593 | adde r10,r8,r10 | ||
594 | addze r11,r11 | ||
595 | #sqr_add_c2(a,6,0,c1,c2,c3); | ||
596 | $LD r5,`0*$BNSZ`(r4) | ||
597 | $LD r6,`6*$BNSZ`(r4) | ||
598 | $UMULL r7,r5,r6 | ||
599 | $UMULH r8,r5,r6 | ||
600 | addc r9,r7,r9 | ||
601 | adde r10,r8,r10 | ||
602 | addze r11,r11 | ||
603 | addc r9,r7,r9 | ||
604 | adde r10,r8,r10 | ||
605 | addze r11,r11 | ||
606 | $ST r9,`6*$BNSZ`(r3) #r[6]=c1; | ||
607 | #sqr_add_c2(a,7,0,c2,c3,c1); | ||
608 | $LD r6,`7*$BNSZ`(r4) | ||
609 | $UMULL r7,r5,r6 | ||
610 | $UMULH r8,r5,r6 | ||
611 | |||
612 | addc r10,r7,r10 | ||
613 | adde r11,r8,r11 | ||
614 | addze r9,r0 | ||
615 | addc r10,r7,r10 | ||
616 | adde r11,r8,r11 | ||
617 | addze r9,r9 | ||
618 | #sqr_add_c2(a,6,1,c2,c3,c1); | ||
619 | $LD r5,`1*$BNSZ`(r4) | ||
620 | $LD r6,`6*$BNSZ`(r4) | ||
621 | $UMULL r7,r5,r6 | ||
622 | $UMULH r8,r5,r6 | ||
623 | |||
624 | addc r10,r7,r10 | ||
625 | adde r11,r8,r11 | ||
626 | addze r9,r9 | ||
627 | addc r10,r7,r10 | ||
628 | adde r11,r8,r11 | ||
629 | addze r9,r9 | ||
630 | #sqr_add_c2(a,5,2,c2,c3,c1); | ||
631 | $LD r5,`2*$BNSZ`(r4) | ||
632 | $LD r6,`5*$BNSZ`(r4) | ||
633 | $UMULL r7,r5,r6 | ||
634 | $UMULH r8,r5,r6 | ||
635 | addc r10,r7,r10 | ||
636 | adde r11,r8,r11 | ||
637 | addze r9,r9 | ||
638 | addc r10,r7,r10 | ||
639 | adde r11,r8,r11 | ||
640 | addze r9,r9 | ||
641 | #sqr_add_c2(a,4,3,c2,c3,c1); | ||
642 | $LD r5,`3*$BNSZ`(r4) | ||
643 | $LD r6,`4*$BNSZ`(r4) | ||
644 | $UMULL r7,r5,r6 | ||
645 | $UMULH r8,r5,r6 | ||
646 | |||
647 | addc r10,r7,r10 | ||
648 | adde r11,r8,r11 | ||
649 | addze r9,r9 | ||
650 | addc r10,r7,r10 | ||
651 | adde r11,r8,r11 | ||
652 | addze r9,r9 | ||
653 | $ST r10,`7*$BNSZ`(r3) #r[7]=c2; | ||
654 | #sqr_add_c(a,4,c3,c1,c2); | ||
655 | $UMULL r7,r6,r6 | ||
656 | $UMULH r8,r6,r6 | ||
657 | addc r11,r7,r11 | ||
658 | adde r9,r8,r9 | ||
659 | addze r10,r0 | ||
660 | #sqr_add_c2(a,5,3,c3,c1,c2); | ||
661 | $LD r6,`5*$BNSZ`(r4) | ||
662 | $UMULL r7,r5,r6 | ||
663 | $UMULH r8,r5,r6 | ||
664 | addc r11,r7,r11 | ||
665 | adde r9,r8,r9 | ||
666 | addze r10,r10 | ||
667 | addc r11,r7,r11 | ||
668 | adde r9,r8,r9 | ||
669 | addze r10,r10 | ||
670 | #sqr_add_c2(a,6,2,c3,c1,c2); | ||
671 | $LD r5,`2*$BNSZ`(r4) | ||
672 | $LD r6,`6*$BNSZ`(r4) | ||
673 | $UMULL r7,r5,r6 | ||
674 | $UMULH r8,r5,r6 | ||
675 | addc r11,r7,r11 | ||
676 | adde r9,r8,r9 | ||
677 | addze r10,r10 | ||
678 | |||
679 | addc r11,r7,r11 | ||
680 | adde r9,r8,r9 | ||
681 | addze r10,r10 | ||
682 | #sqr_add_c2(a,7,1,c3,c1,c2); | ||
683 | $LD r5,`1*$BNSZ`(r4) | ||
684 | $LD r6,`7*$BNSZ`(r4) | ||
685 | $UMULL r7,r5,r6 | ||
686 | $UMULH r8,r5,r6 | ||
687 | addc r11,r7,r11 | ||
688 | adde r9,r8,r9 | ||
689 | addze r10,r10 | ||
690 | addc r11,r7,r11 | ||
691 | adde r9,r8,r9 | ||
692 | addze r10,r10 | ||
693 | $ST r11,`8*$BNSZ`(r3) #r[8]=c3; | ||
694 | #sqr_add_c2(a,7,2,c1,c2,c3); | ||
695 | $LD r5,`2*$BNSZ`(r4) | ||
696 | $UMULL r7,r5,r6 | ||
697 | $UMULH r8,r5,r6 | ||
698 | |||
699 | addc r9,r7,r9 | ||
700 | adde r10,r8,r10 | ||
701 | addze r11,r0 | ||
702 | addc r9,r7,r9 | ||
703 | adde r10,r8,r10 | ||
704 | addze r11,r11 | ||
705 | #sqr_add_c2(a,6,3,c1,c2,c3); | ||
706 | $LD r5,`3*$BNSZ`(r4) | ||
707 | $LD r6,`6*$BNSZ`(r4) | ||
708 | $UMULL r7,r5,r6 | ||
709 | $UMULH r8,r5,r6 | ||
710 | addc r9,r7,r9 | ||
711 | adde r10,r8,r10 | ||
712 | addze r11,r11 | ||
713 | addc r9,r7,r9 | ||
714 | adde r10,r8,r10 | ||
715 | addze r11,r11 | ||
716 | #sqr_add_c2(a,5,4,c1,c2,c3); | ||
717 | $LD r5,`4*$BNSZ`(r4) | ||
718 | $LD r6,`5*$BNSZ`(r4) | ||
719 | $UMULL r7,r5,r6 | ||
720 | $UMULH r8,r5,r6 | ||
721 | addc r9,r7,r9 | ||
722 | adde r10,r8,r10 | ||
723 | addze r11,r11 | ||
724 | addc r9,r7,r9 | ||
725 | adde r10,r8,r10 | ||
726 | addze r11,r11 | ||
727 | $ST r9,`9*$BNSZ`(r3) #r[9]=c1; | ||
728 | #sqr_add_c(a,5,c2,c3,c1); | ||
729 | $UMULL r7,r6,r6 | ||
730 | $UMULH r8,r6,r6 | ||
731 | addc r10,r7,r10 | ||
732 | adde r11,r8,r11 | ||
733 | addze r9,r0 | ||
734 | #sqr_add_c2(a,6,4,c2,c3,c1); | ||
735 | $LD r6,`6*$BNSZ`(r4) | ||
736 | $UMULL r7,r5,r6 | ||
737 | $UMULH r8,r5,r6 | ||
738 | addc r10,r7,r10 | ||
739 | adde r11,r8,r11 | ||
740 | addze r9,r9 | ||
741 | addc r10,r7,r10 | ||
742 | adde r11,r8,r11 | ||
743 | addze r9,r9 | ||
744 | #sqr_add_c2(a,7,3,c2,c3,c1); | ||
745 | $LD r5,`3*$BNSZ`(r4) | ||
746 | $LD r6,`7*$BNSZ`(r4) | ||
747 | $UMULL r7,r5,r6 | ||
748 | $UMULH r8,r5,r6 | ||
749 | addc r10,r7,r10 | ||
750 | adde r11,r8,r11 | ||
751 | addze r9,r9 | ||
752 | addc r10,r7,r10 | ||
753 | adde r11,r8,r11 | ||
754 | addze r9,r9 | ||
755 | $ST r10,`10*$BNSZ`(r3) #r[10]=c2; | ||
756 | #sqr_add_c2(a,7,4,c3,c1,c2); | ||
757 | $LD r5,`4*$BNSZ`(r4) | ||
758 | $UMULL r7,r5,r6 | ||
759 | $UMULH r8,r5,r6 | ||
760 | addc r11,r7,r11 | ||
761 | adde r9,r8,r9 | ||
762 | addze r10,r0 | ||
763 | addc r11,r7,r11 | ||
764 | adde r9,r8,r9 | ||
765 | addze r10,r10 | ||
766 | #sqr_add_c2(a,6,5,c3,c1,c2); | ||
767 | $LD r5,`5*$BNSZ`(r4) | ||
768 | $LD r6,`6*$BNSZ`(r4) | ||
769 | $UMULL r7,r5,r6 | ||
770 | $UMULH r8,r5,r6 | ||
771 | addc r11,r7,r11 | ||
772 | adde r9,r8,r9 | ||
773 | addze r10,r10 | ||
774 | addc r11,r7,r11 | ||
775 | adde r9,r8,r9 | ||
776 | addze r10,r10 | ||
777 | $ST r11,`11*$BNSZ`(r3) #r[11]=c3; | ||
778 | #sqr_add_c(a,6,c1,c2,c3); | ||
779 | $UMULL r7,r6,r6 | ||
780 | $UMULH r8,r6,r6 | ||
781 | addc r9,r7,r9 | ||
782 | adde r10,r8,r10 | ||
783 | addze r11,r0 | ||
784 | #sqr_add_c2(a,7,5,c1,c2,c3) | ||
785 | $LD r6,`7*$BNSZ`(r4) | ||
786 | $UMULL r7,r5,r6 | ||
787 | $UMULH r8,r5,r6 | ||
788 | addc r9,r7,r9 | ||
789 | adde r10,r8,r10 | ||
790 | addze r11,r11 | ||
791 | addc r9,r7,r9 | ||
792 | adde r10,r8,r10 | ||
793 | addze r11,r11 | ||
794 | $ST r9,`12*$BNSZ`(r3) #r[12]=c1; | ||
795 | |||
796 | #sqr_add_c2(a,7,6,c2,c3,c1) | ||
797 | $LD r5,`6*$BNSZ`(r4) | ||
798 | $UMULL r7,r5,r6 | ||
799 | $UMULH r8,r5,r6 | ||
800 | addc r10,r7,r10 | ||
801 | adde r11,r8,r11 | ||
802 | addze r9,r0 | ||
803 | addc r10,r7,r10 | ||
804 | adde r11,r8,r11 | ||
805 | addze r9,r9 | ||
806 | $ST r10,`13*$BNSZ`(r3) #r[13]=c2; | ||
807 | #sqr_add_c(a,7,c3,c1,c2); | ||
808 | $UMULL r7,r6,r6 | ||
809 | $UMULH r8,r6,r6 | ||
810 | addc r11,r7,r11 | ||
811 | adde r9,r8,r9 | ||
812 | $ST r11,`14*$BNSZ`(r3) #r[14]=c3; | ||
813 | $ST r9, `15*$BNSZ`(r3) #r[15]=c1; | ||
814 | |||
815 | |||
816 | blr | ||
817 | |||
818 | .long 0x00000000 | ||
819 | |||
820 | # | ||
821 | # NOTE: The following label name should be changed to | ||
822 | # "bn_mul_comba4" i.e. remove the first dot | ||
823 | # for the gcc compiler. This should be automatically | ||
824 | # done in the build | ||
825 | # | ||
826 | |||
827 | .align 4 | ||
828 | .bn_mul_comba4: | ||
829 | # | ||
830 | # This is an optimized version of the bn_mul_comba4 routine. | ||
831 | # | ||
832 | # void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
833 | # r3 contains r | ||
834 | # r4 contains a | ||
835 | # r5 contains b | ||
836 | # r6, r7 are the 2 BN_ULONGs being multiplied. | ||
837 | # r8, r9 are the results of the 32x32 giving 64 multiply. | ||
838 | # r10, r11, r12 are the equivalents of c1, c2, and c3. | ||
839 | # | ||
840 | xor r0,r0,r0 #r0=0. Used in addze below. | ||
841 | #mul_add_c(a[0],b[0],c1,c2,c3); | ||
842 | $LD r6,`0*$BNSZ`(r4) | ||
843 | $LD r7,`0*$BNSZ`(r5) | ||
844 | $UMULL r10,r6,r7 | ||
845 | $UMULH r11,r6,r7 | ||
846 | $ST r10,`0*$BNSZ`(r3) #r[0]=c1 | ||
847 | #mul_add_c(a[0],b[1],c2,c3,c1); | ||
848 | $LD r7,`1*$BNSZ`(r5) | ||
849 | $UMULL r8,r6,r7 | ||
850 | $UMULH r9,r6,r7 | ||
851 | addc r11,r8,r11 | ||
852 | adde r12,r9,r0 | ||
853 | addze r10,r0 | ||
854 | #mul_add_c(a[1],b[0],c2,c3,c1); | ||
855 | $LD r6, `1*$BNSZ`(r4) | ||
856 | $LD r7, `0*$BNSZ`(r5) | ||
857 | $UMULL r8,r6,r7 | ||
858 | $UMULH r9,r6,r7 | ||
859 | addc r11,r8,r11 | ||
860 | adde r12,r9,r12 | ||
861 | addze r10,r10 | ||
862 | $ST r11,`1*$BNSZ`(r3) #r[1]=c2 | ||
863 | #mul_add_c(a[2],b[0],c3,c1,c2); | ||
864 | $LD r6,`2*$BNSZ`(r4) | ||
865 | $UMULL r8,r6,r7 | ||
866 | $UMULH r9,r6,r7 | ||
867 | addc r12,r8,r12 | ||
868 | adde r10,r9,r10 | ||
869 | addze r11,r0 | ||
870 | #mul_add_c(a[1],b[1],c3,c1,c2); | ||
871 | $LD r6,`1*$BNSZ`(r4) | ||
872 | $LD r7,`1*$BNSZ`(r5) | ||
873 | $UMULL r8,r6,r7 | ||
874 | $UMULH r9,r6,r7 | ||
875 | addc r12,r8,r12 | ||
876 | adde r10,r9,r10 | ||
877 | addze r11,r11 | ||
878 | #mul_add_c(a[0],b[2],c3,c1,c2); | ||
879 | $LD r6,`0*$BNSZ`(r4) | ||
880 | $LD r7,`2*$BNSZ`(r5) | ||
881 | $UMULL r8,r6,r7 | ||
882 | $UMULH r9,r6,r7 | ||
883 | addc r12,r8,r12 | ||
884 | adde r10,r9,r10 | ||
885 | addze r11,r11 | ||
886 | $ST r12,`2*$BNSZ`(r3) #r[2]=c3 | ||
887 | #mul_add_c(a[0],b[3],c1,c2,c3); | ||
888 | $LD r7,`3*$BNSZ`(r5) | ||
889 | $UMULL r8,r6,r7 | ||
890 | $UMULH r9,r6,r7 | ||
891 | addc r10,r8,r10 | ||
892 | adde r11,r9,r11 | ||
893 | addze r12,r0 | ||
894 | #mul_add_c(a[1],b[2],c1,c2,c3); | ||
895 | $LD r6,`1*$BNSZ`(r4) | ||
896 | $LD r7,`2*$BNSZ`(r5) | ||
897 | $UMULL r8,r6,r7 | ||
898 | $UMULH r9,r6,r7 | ||
899 | addc r10,r8,r10 | ||
900 | adde r11,r9,r11 | ||
901 | addze r12,r12 | ||
902 | #mul_add_c(a[2],b[1],c1,c2,c3); | ||
903 | $LD r6,`2*$BNSZ`(r4) | ||
904 | $LD r7,`1*$BNSZ`(r5) | ||
905 | $UMULL r8,r6,r7 | ||
906 | $UMULH r9,r6,r7 | ||
907 | addc r10,r8,r10 | ||
908 | adde r11,r9,r11 | ||
909 | addze r12,r12 | ||
910 | #mul_add_c(a[3],b[0],c1,c2,c3); | ||
911 | $LD r6,`3*$BNSZ`(r4) | ||
912 | $LD r7,`0*$BNSZ`(r5) | ||
913 | $UMULL r8,r6,r7 | ||
914 | $UMULH r9,r6,r7 | ||
915 | addc r10,r8,r10 | ||
916 | adde r11,r9,r11 | ||
917 | addze r12,r12 | ||
918 | $ST r10,`3*$BNSZ`(r3) #r[3]=c1 | ||
919 | #mul_add_c(a[3],b[1],c2,c3,c1); | ||
920 | $LD r7,`1*$BNSZ`(r5) | ||
921 | $UMULL r8,r6,r7 | ||
922 | $UMULH r9,r6,r7 | ||
923 | addc r11,r8,r11 | ||
924 | adde r12,r9,r12 | ||
925 | addze r10,r0 | ||
926 | #mul_add_c(a[2],b[2],c2,c3,c1); | ||
927 | $LD r6,`2*$BNSZ`(r4) | ||
928 | $LD r7,`2*$BNSZ`(r5) | ||
929 | $UMULL r8,r6,r7 | ||
930 | $UMULH r9,r6,r7 | ||
931 | addc r11,r8,r11 | ||
932 | adde r12,r9,r12 | ||
933 | addze r10,r10 | ||
934 | #mul_add_c(a[1],b[3],c2,c3,c1); | ||
935 | $LD r6,`1*$BNSZ`(r4) | ||
936 | $LD r7,`3*$BNSZ`(r5) | ||
937 | $UMULL r8,r6,r7 | ||
938 | $UMULH r9,r6,r7 | ||
939 | addc r11,r8,r11 | ||
940 | adde r12,r9,r12 | ||
941 | addze r10,r10 | ||
942 | $ST r11,`4*$BNSZ`(r3) #r[4]=c2 | ||
943 | #mul_add_c(a[2],b[3],c3,c1,c2); | ||
944 | $LD r6,`2*$BNSZ`(r4) | ||
945 | $UMULL r8,r6,r7 | ||
946 | $UMULH r9,r6,r7 | ||
947 | addc r12,r8,r12 | ||
948 | adde r10,r9,r10 | ||
949 | addze r11,r0 | ||
950 | #mul_add_c(a[3],b[2],c3,c1,c2); | ||
951 | $LD r6,`3*$BNSZ`(r4) | ||
952 | $LD r7,`2*$BNSZ`(r5) | ||
953 | $UMULL r8,r6,r7 | ||
954 | $UMULH r9,r6,r7 | ||
955 | addc r12,r8,r12 | ||
956 | adde r10,r9,r10 | ||
957 | addze r11,r11 | ||
958 | $ST r12,`5*$BNSZ`(r3) #r[5]=c3 | ||
959 | #mul_add_c(a[3],b[3],c1,c2,c3); | ||
960 | $LD r7,`3*$BNSZ`(r5) | ||
961 | $UMULL r8,r6,r7 | ||
962 | $UMULH r9,r6,r7 | ||
963 | addc r10,r8,r10 | ||
964 | adde r11,r9,r11 | ||
965 | |||
966 | $ST r10,`6*$BNSZ`(r3) #r[6]=c1 | ||
967 | $ST r11,`7*$BNSZ`(r3) #r[7]=c2 | ||
968 | blr | ||
969 | .long 0x00000000 | ||
970 | |||
971 | # | ||
972 | # NOTE: The following label name should be changed to | ||
973 | # "bn_mul_comba8" i.e. remove the first dot | ||
974 | # for the gcc compiler. This should be automatically | ||
975 | # done in the build | ||
976 | # | ||
977 | |||
978 | .align 4 | ||
979 | .bn_mul_comba8: | ||
980 | # | ||
981 | # Optimized version of the bn_mul_comba8 routine. | ||
982 | # | ||
983 | # void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
984 | # r3 contains r | ||
985 | # r4 contains a | ||
986 | # r5 contains b | ||
987 | # r6, r7 are the 2 BN_ULONGs being multiplied. | ||
988 | # r8, r9 are the results of the 32x32 giving 64 multiply. | ||
989 | # r10, r11, r12 are the equivalents of c1, c2, and c3. | ||
990 | # | ||
991 | xor r0,r0,r0 #r0=0. Used in addze below. | ||
992 | |||
993 | #mul_add_c(a[0],b[0],c1,c2,c3); | ||
994 | $LD r6,`0*$BNSZ`(r4) #a[0] | ||
995 | $LD r7,`0*$BNSZ`(r5) #b[0] | ||
996 | $UMULL r10,r6,r7 | ||
997 | $UMULH r11,r6,r7 | ||
998 | $ST r10,`0*$BNSZ`(r3) #r[0]=c1; | ||
999 | #mul_add_c(a[0],b[1],c2,c3,c1); | ||
1000 | $LD r7,`1*$BNSZ`(r5) | ||
1001 | $UMULL r8,r6,r7 | ||
1002 | $UMULH r9,r6,r7 | ||
1003 | addc r11,r11,r8 | ||
1004 | addze r12,r9 # since we didnt set r12 to zero before. | ||
1005 | addze r10,r0 | ||
1006 | #mul_add_c(a[1],b[0],c2,c3,c1); | ||
1007 | $LD r6,`1*$BNSZ`(r4) | ||
1008 | $LD r7,`0*$BNSZ`(r5) | ||
1009 | $UMULL r8,r6,r7 | ||
1010 | $UMULH r9,r6,r7 | ||
1011 | addc r11,r11,r8 | ||
1012 | adde r12,r12,r9 | ||
1013 | addze r10,r10 | ||
1014 | $ST r11,`1*$BNSZ`(r3) #r[1]=c2; | ||
1015 | #mul_add_c(a[2],b[0],c3,c1,c2); | ||
1016 | $LD r6,`2*$BNSZ`(r4) | ||
1017 | $UMULL r8,r6,r7 | ||
1018 | $UMULH r9,r6,r7 | ||
1019 | addc r12,r12,r8 | ||
1020 | adde r10,r10,r9 | ||
1021 | addze r11,r0 | ||
1022 | #mul_add_c(a[1],b[1],c3,c1,c2); | ||
1023 | $LD r6,`1*$BNSZ`(r4) | ||
1024 | $LD r7,`1*$BNSZ`(r5) | ||
1025 | $UMULL r8,r6,r7 | ||
1026 | $UMULH r9,r6,r7 | ||
1027 | addc r12,r12,r8 | ||
1028 | adde r10,r10,r9 | ||
1029 | addze r11,r11 | ||
1030 | #mul_add_c(a[0],b[2],c3,c1,c2); | ||
1031 | $LD r6,`0*$BNSZ`(r4) | ||
1032 | $LD r7,`2*$BNSZ`(r5) | ||
1033 | $UMULL r8,r6,r7 | ||
1034 | $UMULH r9,r6,r7 | ||
1035 | addc r12,r12,r8 | ||
1036 | adde r10,r10,r9 | ||
1037 | addze r11,r11 | ||
1038 | $ST r12,`2*$BNSZ`(r3) #r[2]=c3; | ||
1039 | #mul_add_c(a[0],b[3],c1,c2,c3); | ||
1040 | $LD r7,`3*$BNSZ`(r5) | ||
1041 | $UMULL r8,r6,r7 | ||
1042 | $UMULH r9,r6,r7 | ||
1043 | addc r10,r10,r8 | ||
1044 | adde r11,r11,r9 | ||
1045 | addze r12,r0 | ||
1046 | #mul_add_c(a[1],b[2],c1,c2,c3); | ||
1047 | $LD r6,`1*$BNSZ`(r4) | ||
1048 | $LD r7,`2*$BNSZ`(r5) | ||
1049 | $UMULL r8,r6,r7 | ||
1050 | $UMULH r9,r6,r7 | ||
1051 | addc r10,r10,r8 | ||
1052 | adde r11,r11,r9 | ||
1053 | addze r12,r12 | ||
1054 | |||
1055 | #mul_add_c(a[2],b[1],c1,c2,c3); | ||
1056 | $LD r6,`2*$BNSZ`(r4) | ||
1057 | $LD r7,`1*$BNSZ`(r5) | ||
1058 | $UMULL r8,r6,r7 | ||
1059 | $UMULH r9,r6,r7 | ||
1060 | addc r10,r10,r8 | ||
1061 | adde r11,r11,r9 | ||
1062 | addze r12,r12 | ||
1063 | #mul_add_c(a[3],b[0],c1,c2,c3); | ||
1064 | $LD r6,`3*$BNSZ`(r4) | ||
1065 | $LD r7,`0*$BNSZ`(r5) | ||
1066 | $UMULL r8,r6,r7 | ||
1067 | $UMULH r9,r6,r7 | ||
1068 | addc r10,r10,r8 | ||
1069 | adde r11,r11,r9 | ||
1070 | addze r12,r12 | ||
1071 | $ST r10,`3*$BNSZ`(r3) #r[3]=c1; | ||
1072 | #mul_add_c(a[4],b[0],c2,c3,c1); | ||
1073 | $LD r6,`4*$BNSZ`(r4) | ||
1074 | $UMULL r8,r6,r7 | ||
1075 | $UMULH r9,r6,r7 | ||
1076 | addc r11,r11,r8 | ||
1077 | adde r12,r12,r9 | ||
1078 | addze r10,r0 | ||
1079 | #mul_add_c(a[3],b[1],c2,c3,c1); | ||
1080 | $LD r6,`3*$BNSZ`(r4) | ||
1081 | $LD r7,`1*$BNSZ`(r5) | ||
1082 | $UMULL r8,r6,r7 | ||
1083 | $UMULH r9,r6,r7 | ||
1084 | addc r11,r11,r8 | ||
1085 | adde r12,r12,r9 | ||
1086 | addze r10,r10 | ||
1087 | #mul_add_c(a[2],b[2],c2,c3,c1); | ||
1088 | $LD r6,`2*$BNSZ`(r4) | ||
1089 | $LD r7,`2*$BNSZ`(r5) | ||
1090 | $UMULL r8,r6,r7 | ||
1091 | $UMULH r9,r6,r7 | ||
1092 | addc r11,r11,r8 | ||
1093 | adde r12,r12,r9 | ||
1094 | addze r10,r10 | ||
1095 | #mul_add_c(a[1],b[3],c2,c3,c1); | ||
1096 | $LD r6,`1*$BNSZ`(r4) | ||
1097 | $LD r7,`3*$BNSZ`(r5) | ||
1098 | $UMULL r8,r6,r7 | ||
1099 | $UMULH r9,r6,r7 | ||
1100 | addc r11,r11,r8 | ||
1101 | adde r12,r12,r9 | ||
1102 | addze r10,r10 | ||
1103 | #mul_add_c(a[0],b[4],c2,c3,c1); | ||
1104 | $LD r6,`0*$BNSZ`(r4) | ||
1105 | $LD r7,`4*$BNSZ`(r5) | ||
1106 | $UMULL r8,r6,r7 | ||
1107 | $UMULH r9,r6,r7 | ||
1108 | addc r11,r11,r8 | ||
1109 | adde r12,r12,r9 | ||
1110 | addze r10,r10 | ||
1111 | $ST r11,`4*$BNSZ`(r3) #r[4]=c2; | ||
1112 | #mul_add_c(a[0],b[5],c3,c1,c2); | ||
1113 | $LD r7,`5*$BNSZ`(r5) | ||
1114 | $UMULL r8,r6,r7 | ||
1115 | $UMULH r9,r6,r7 | ||
1116 | addc r12,r12,r8 | ||
1117 | adde r10,r10,r9 | ||
1118 | addze r11,r0 | ||
1119 | #mul_add_c(a[1],b[4],c3,c1,c2); | ||
1120 | $LD r6,`1*$BNSZ`(r4) | ||
1121 | $LD r7,`4*$BNSZ`(r5) | ||
1122 | $UMULL r8,r6,r7 | ||
1123 | $UMULH r9,r6,r7 | ||
1124 | addc r12,r12,r8 | ||
1125 | adde r10,r10,r9 | ||
1126 | addze r11,r11 | ||
1127 | #mul_add_c(a[2],b[3],c3,c1,c2); | ||
1128 | $LD r6,`2*$BNSZ`(r4) | ||
1129 | $LD r7,`3*$BNSZ`(r5) | ||
1130 | $UMULL r8,r6,r7 | ||
1131 | $UMULH r9,r6,r7 | ||
1132 | addc r12,r12,r8 | ||
1133 | adde r10,r10,r9 | ||
1134 | addze r11,r11 | ||
1135 | #mul_add_c(a[3],b[2],c3,c1,c2); | ||
1136 | $LD r6,`3*$BNSZ`(r4) | ||
1137 | $LD r7,`2*$BNSZ`(r5) | ||
1138 | $UMULL r8,r6,r7 | ||
1139 | $UMULH r9,r6,r7 | ||
1140 | addc r12,r12,r8 | ||
1141 | adde r10,r10,r9 | ||
1142 | addze r11,r11 | ||
1143 | #mul_add_c(a[4],b[1],c3,c1,c2); | ||
1144 | $LD r6,`4*$BNSZ`(r4) | ||
1145 | $LD r7,`1*$BNSZ`(r5) | ||
1146 | $UMULL r8,r6,r7 | ||
1147 | $UMULH r9,r6,r7 | ||
1148 | addc r12,r12,r8 | ||
1149 | adde r10,r10,r9 | ||
1150 | addze r11,r11 | ||
1151 | #mul_add_c(a[5],b[0],c3,c1,c2); | ||
1152 | $LD r6,`5*$BNSZ`(r4) | ||
1153 | $LD r7,`0*$BNSZ`(r5) | ||
1154 | $UMULL r8,r6,r7 | ||
1155 | $UMULH r9,r6,r7 | ||
1156 | addc r12,r12,r8 | ||
1157 | adde r10,r10,r9 | ||
1158 | addze r11,r11 | ||
1159 | $ST r12,`5*$BNSZ`(r3) #r[5]=c3; | ||
1160 | #mul_add_c(a[6],b[0],c1,c2,c3); | ||
1161 | $LD r6,`6*$BNSZ`(r4) | ||
1162 | $UMULL r8,r6,r7 | ||
1163 | $UMULH r9,r6,r7 | ||
1164 | addc r10,r10,r8 | ||
1165 | adde r11,r11,r9 | ||
1166 | addze r12,r0 | ||
1167 | #mul_add_c(a[5],b[1],c1,c2,c3); | ||
1168 | $LD r6,`5*$BNSZ`(r4) | ||
1169 | $LD r7,`1*$BNSZ`(r5) | ||
1170 | $UMULL r8,r6,r7 | ||
1171 | $UMULH r9,r6,r7 | ||
1172 | addc r10,r10,r8 | ||
1173 | adde r11,r11,r9 | ||
1174 | addze r12,r12 | ||
1175 | #mul_add_c(a[4],b[2],c1,c2,c3); | ||
1176 | $LD r6,`4*$BNSZ`(r4) | ||
1177 | $LD r7,`2*$BNSZ`(r5) | ||
1178 | $UMULL r8,r6,r7 | ||
1179 | $UMULH r9,r6,r7 | ||
1180 | addc r10,r10,r8 | ||
1181 | adde r11,r11,r9 | ||
1182 | addze r12,r12 | ||
1183 | #mul_add_c(a[3],b[3],c1,c2,c3); | ||
1184 | $LD r6,`3*$BNSZ`(r4) | ||
1185 | $LD r7,`3*$BNSZ`(r5) | ||
1186 | $UMULL r8,r6,r7 | ||
1187 | $UMULH r9,r6,r7 | ||
1188 | addc r10,r10,r8 | ||
1189 | adde r11,r11,r9 | ||
1190 | addze r12,r12 | ||
1191 | #mul_add_c(a[2],b[4],c1,c2,c3); | ||
1192 | $LD r6,`2*$BNSZ`(r4) | ||
1193 | $LD r7,`4*$BNSZ`(r5) | ||
1194 | $UMULL r8,r6,r7 | ||
1195 | $UMULH r9,r6,r7 | ||
1196 | addc r10,r10,r8 | ||
1197 | adde r11,r11,r9 | ||
1198 | addze r12,r12 | ||
1199 | #mul_add_c(a[1],b[5],c1,c2,c3); | ||
1200 | $LD r6,`1*$BNSZ`(r4) | ||
1201 | $LD r7,`5*$BNSZ`(r5) | ||
1202 | $UMULL r8,r6,r7 | ||
1203 | $UMULH r9,r6,r7 | ||
1204 | addc r10,r10,r8 | ||
1205 | adde r11,r11,r9 | ||
1206 | addze r12,r12 | ||
1207 | #mul_add_c(a[0],b[6],c1,c2,c3); | ||
1208 | $LD r6,`0*$BNSZ`(r4) | ||
1209 | $LD r7,`6*$BNSZ`(r5) | ||
1210 | $UMULL r8,r6,r7 | ||
1211 | $UMULH r9,r6,r7 | ||
1212 | addc r10,r10,r8 | ||
1213 | adde r11,r11,r9 | ||
1214 | addze r12,r12 | ||
1215 | $ST r10,`6*$BNSZ`(r3) #r[6]=c1; | ||
1216 | #mul_add_c(a[0],b[7],c2,c3,c1); | ||
1217 | $LD r7,`7*$BNSZ`(r5) | ||
1218 | $UMULL r8,r6,r7 | ||
1219 | $UMULH r9,r6,r7 | ||
1220 | addc r11,r11,r8 | ||
1221 | adde r12,r12,r9 | ||
1222 | addze r10,r0 | ||
1223 | #mul_add_c(a[1],b[6],c2,c3,c1); | ||
1224 | $LD r6,`1*$BNSZ`(r4) | ||
1225 | $LD r7,`6*$BNSZ`(r5) | ||
1226 | $UMULL r8,r6,r7 | ||
1227 | $UMULH r9,r6,r7 | ||
1228 | addc r11,r11,r8 | ||
1229 | adde r12,r12,r9 | ||
1230 | addze r10,r10 | ||
1231 | #mul_add_c(a[2],b[5],c2,c3,c1); | ||
1232 | $LD r6,`2*$BNSZ`(r4) | ||
1233 | $LD r7,`5*$BNSZ`(r5) | ||
1234 | $UMULL r8,r6,r7 | ||
1235 | $UMULH r9,r6,r7 | ||
1236 | addc r11,r11,r8 | ||
1237 | adde r12,r12,r9 | ||
1238 | addze r10,r10 | ||
1239 | #mul_add_c(a[3],b[4],c2,c3,c1); | ||
1240 | $LD r6,`3*$BNSZ`(r4) | ||
1241 | $LD r7,`4*$BNSZ`(r5) | ||
1242 | $UMULL r8,r6,r7 | ||
1243 | $UMULH r9,r6,r7 | ||
1244 | addc r11,r11,r8 | ||
1245 | adde r12,r12,r9 | ||
1246 | addze r10,r10 | ||
1247 | #mul_add_c(a[4],b[3],c2,c3,c1); | ||
1248 | $LD r6,`4*$BNSZ`(r4) | ||
1249 | $LD r7,`3*$BNSZ`(r5) | ||
1250 | $UMULL r8,r6,r7 | ||
1251 | $UMULH r9,r6,r7 | ||
1252 | addc r11,r11,r8 | ||
1253 | adde r12,r12,r9 | ||
1254 | addze r10,r10 | ||
1255 | #mul_add_c(a[5],b[2],c2,c3,c1); | ||
1256 | $LD r6,`5*$BNSZ`(r4) | ||
1257 | $LD r7,`2*$BNSZ`(r5) | ||
1258 | $UMULL r8,r6,r7 | ||
1259 | $UMULH r9,r6,r7 | ||
1260 | addc r11,r11,r8 | ||
1261 | adde r12,r12,r9 | ||
1262 | addze r10,r10 | ||
1263 | #mul_add_c(a[6],b[1],c2,c3,c1); | ||
1264 | $LD r6,`6*$BNSZ`(r4) | ||
1265 | $LD r7,`1*$BNSZ`(r5) | ||
1266 | $UMULL r8,r6,r7 | ||
1267 | $UMULH r9,r6,r7 | ||
1268 | addc r11,r11,r8 | ||
1269 | adde r12,r12,r9 | ||
1270 | addze r10,r10 | ||
1271 | #mul_add_c(a[7],b[0],c2,c3,c1); | ||
1272 | $LD r6,`7*$BNSZ`(r4) | ||
1273 | $LD r7,`0*$BNSZ`(r5) | ||
1274 | $UMULL r8,r6,r7 | ||
1275 | $UMULH r9,r6,r7 | ||
1276 | addc r11,r11,r8 | ||
1277 | adde r12,r12,r9 | ||
1278 | addze r10,r10 | ||
1279 | $ST r11,`7*$BNSZ`(r3) #r[7]=c2; | ||
1280 | #mul_add_c(a[7],b[1],c3,c1,c2); | ||
1281 | $LD r7,`1*$BNSZ`(r5) | ||
1282 | $UMULL r8,r6,r7 | ||
1283 | $UMULH r9,r6,r7 | ||
1284 | addc r12,r12,r8 | ||
1285 | adde r10,r10,r9 | ||
1286 | addze r11,r0 | ||
1287 | #mul_add_c(a[6],b[2],c3,c1,c2); | ||
1288 | $LD r6,`6*$BNSZ`(r4) | ||
1289 | $LD r7,`2*$BNSZ`(r5) | ||
1290 | $UMULL r8,r6,r7 | ||
1291 | $UMULH r9,r6,r7 | ||
1292 | addc r12,r12,r8 | ||
1293 | adde r10,r10,r9 | ||
1294 | addze r11,r11 | ||
1295 | #mul_add_c(a[5],b[3],c3,c1,c2); | ||
1296 | $LD r6,`5*$BNSZ`(r4) | ||
1297 | $LD r7,`3*$BNSZ`(r5) | ||
1298 | $UMULL r8,r6,r7 | ||
1299 | $UMULH r9,r6,r7 | ||
1300 | addc r12,r12,r8 | ||
1301 | adde r10,r10,r9 | ||
1302 | addze r11,r11 | ||
1303 | #mul_add_c(a[4],b[4],c3,c1,c2); | ||
1304 | $LD r6,`4*$BNSZ`(r4) | ||
1305 | $LD r7,`4*$BNSZ`(r5) | ||
1306 | $UMULL r8,r6,r7 | ||
1307 | $UMULH r9,r6,r7 | ||
1308 | addc r12,r12,r8 | ||
1309 | adde r10,r10,r9 | ||
1310 | addze r11,r11 | ||
1311 | #mul_add_c(a[3],b[5],c3,c1,c2); | ||
1312 | $LD r6,`3*$BNSZ`(r4) | ||
1313 | $LD r7,`5*$BNSZ`(r5) | ||
1314 | $UMULL r8,r6,r7 | ||
1315 | $UMULH r9,r6,r7 | ||
1316 | addc r12,r12,r8 | ||
1317 | adde r10,r10,r9 | ||
1318 | addze r11,r11 | ||
1319 | #mul_add_c(a[2],b[6],c3,c1,c2); | ||
1320 | $LD r6,`2*$BNSZ`(r4) | ||
1321 | $LD r7,`6*$BNSZ`(r5) | ||
1322 | $UMULL r8,r6,r7 | ||
1323 | $UMULH r9,r6,r7 | ||
1324 | addc r12,r12,r8 | ||
1325 | adde r10,r10,r9 | ||
1326 | addze r11,r11 | ||
1327 | #mul_add_c(a[1],b[7],c3,c1,c2); | ||
1328 | $LD r6,`1*$BNSZ`(r4) | ||
1329 | $LD r7,`7*$BNSZ`(r5) | ||
1330 | $UMULL r8,r6,r7 | ||
1331 | $UMULH r9,r6,r7 | ||
1332 | addc r12,r12,r8 | ||
1333 | adde r10,r10,r9 | ||
1334 | addze r11,r11 | ||
1335 | $ST r12,`8*$BNSZ`(r3) #r[8]=c3; | ||
1336 | #mul_add_c(a[2],b[7],c1,c2,c3); | ||
1337 | $LD r6,`2*$BNSZ`(r4) | ||
1338 | $UMULL r8,r6,r7 | ||
1339 | $UMULH r9,r6,r7 | ||
1340 | addc r10,r10,r8 | ||
1341 | adde r11,r11,r9 | ||
1342 | addze r12,r0 | ||
1343 | #mul_add_c(a[3],b[6],c1,c2,c3); | ||
1344 | $LD r6,`3*$BNSZ`(r4) | ||
1345 | $LD r7,`6*$BNSZ`(r5) | ||
1346 | $UMULL r8,r6,r7 | ||
1347 | $UMULH r9,r6,r7 | ||
1348 | addc r10,r10,r8 | ||
1349 | adde r11,r11,r9 | ||
1350 | addze r12,r12 | ||
1351 | #mul_add_c(a[4],b[5],c1,c2,c3); | ||
1352 | $LD r6,`4*$BNSZ`(r4) | ||
1353 | $LD r7,`5*$BNSZ`(r5) | ||
1354 | $UMULL r8,r6,r7 | ||
1355 | $UMULH r9,r6,r7 | ||
1356 | addc r10,r10,r8 | ||
1357 | adde r11,r11,r9 | ||
1358 | addze r12,r12 | ||
1359 | #mul_add_c(a[5],b[4],c1,c2,c3); | ||
1360 | $LD r6,`5*$BNSZ`(r4) | ||
1361 | $LD r7,`4*$BNSZ`(r5) | ||
1362 | $UMULL r8,r6,r7 | ||
1363 | $UMULH r9,r6,r7 | ||
1364 | addc r10,r10,r8 | ||
1365 | adde r11,r11,r9 | ||
1366 | addze r12,r12 | ||
1367 | #mul_add_c(a[6],b[3],c1,c2,c3); | ||
1368 | $LD r6,`6*$BNSZ`(r4) | ||
1369 | $LD r7,`3*$BNSZ`(r5) | ||
1370 | $UMULL r8,r6,r7 | ||
1371 | $UMULH r9,r6,r7 | ||
1372 | addc r10,r10,r8 | ||
1373 | adde r11,r11,r9 | ||
1374 | addze r12,r12 | ||
1375 | #mul_add_c(a[7],b[2],c1,c2,c3); | ||
1376 | $LD r6,`7*$BNSZ`(r4) | ||
1377 | $LD r7,`2*$BNSZ`(r5) | ||
1378 | $UMULL r8,r6,r7 | ||
1379 | $UMULH r9,r6,r7 | ||
1380 | addc r10,r10,r8 | ||
1381 | adde r11,r11,r9 | ||
1382 | addze r12,r12 | ||
1383 | $ST r10,`9*$BNSZ`(r3) #r[9]=c1; | ||
1384 | #mul_add_c(a[7],b[3],c2,c3,c1); | ||
1385 | $LD r7,`3*$BNSZ`(r5) | ||
1386 | $UMULL r8,r6,r7 | ||
1387 | $UMULH r9,r6,r7 | ||
1388 | addc r11,r11,r8 | ||
1389 | adde r12,r12,r9 | ||
1390 | addze r10,r0 | ||
1391 | #mul_add_c(a[6],b[4],c2,c3,c1); | ||
1392 | $LD r6,`6*$BNSZ`(r4) | ||
1393 | $LD r7,`4*$BNSZ`(r5) | ||
1394 | $UMULL r8,r6,r7 | ||
1395 | $UMULH r9,r6,r7 | ||
1396 | addc r11,r11,r8 | ||
1397 | adde r12,r12,r9 | ||
1398 | addze r10,r10 | ||
1399 | #mul_add_c(a[5],b[5],c2,c3,c1); | ||
1400 | $LD r6,`5*$BNSZ`(r4) | ||
1401 | $LD r7,`5*$BNSZ`(r5) | ||
1402 | $UMULL r8,r6,r7 | ||
1403 | $UMULH r9,r6,r7 | ||
1404 | addc r11,r11,r8 | ||
1405 | adde r12,r12,r9 | ||
1406 | addze r10,r10 | ||
1407 | #mul_add_c(a[4],b[6],c2,c3,c1); | ||
1408 | $LD r6,`4*$BNSZ`(r4) | ||
1409 | $LD r7,`6*$BNSZ`(r5) | ||
1410 | $UMULL r8,r6,r7 | ||
1411 | $UMULH r9,r6,r7 | ||
1412 | addc r11,r11,r8 | ||
1413 | adde r12,r12,r9 | ||
1414 | addze r10,r10 | ||
1415 | #mul_add_c(a[3],b[7],c2,c3,c1); | ||
1416 | $LD r6,`3*$BNSZ`(r4) | ||
1417 | $LD r7,`7*$BNSZ`(r5) | ||
1418 | $UMULL r8,r6,r7 | ||
1419 | $UMULH r9,r6,r7 | ||
1420 | addc r11,r11,r8 | ||
1421 | adde r12,r12,r9 | ||
1422 | addze r10,r10 | ||
1423 | $ST r11,`10*$BNSZ`(r3) #r[10]=c2; | ||
1424 | #mul_add_c(a[4],b[7],c3,c1,c2); | ||
1425 | $LD r6,`4*$BNSZ`(r4) | ||
1426 | $UMULL r8,r6,r7 | ||
1427 | $UMULH r9,r6,r7 | ||
1428 | addc r12,r12,r8 | ||
1429 | adde r10,r10,r9 | ||
1430 | addze r11,r0 | ||
1431 | #mul_add_c(a[5],b[6],c3,c1,c2); | ||
1432 | $LD r6,`5*$BNSZ`(r4) | ||
1433 | $LD r7,`6*$BNSZ`(r5) | ||
1434 | $UMULL r8,r6,r7 | ||
1435 | $UMULH r9,r6,r7 | ||
1436 | addc r12,r12,r8 | ||
1437 | adde r10,r10,r9 | ||
1438 | addze r11,r11 | ||
1439 | #mul_add_c(a[6],b[5],c3,c1,c2); | ||
1440 | $LD r6,`6*$BNSZ`(r4) | ||
1441 | $LD r7,`5*$BNSZ`(r5) | ||
1442 | $UMULL r8,r6,r7 | ||
1443 | $UMULH r9,r6,r7 | ||
1444 | addc r12,r12,r8 | ||
1445 | adde r10,r10,r9 | ||
1446 | addze r11,r11 | ||
1447 | #mul_add_c(a[7],b[4],c3,c1,c2); | ||
1448 | $LD r6,`7*$BNSZ`(r4) | ||
1449 | $LD r7,`4*$BNSZ`(r5) | ||
1450 | $UMULL r8,r6,r7 | ||
1451 | $UMULH r9,r6,r7 | ||
1452 | addc r12,r12,r8 | ||
1453 | adde r10,r10,r9 | ||
1454 | addze r11,r11 | ||
1455 | $ST r12,`11*$BNSZ`(r3) #r[11]=c3; | ||
1456 | #mul_add_c(a[7],b[5],c1,c2,c3); | ||
1457 | $LD r7,`5*$BNSZ`(r5) | ||
1458 | $UMULL r8,r6,r7 | ||
1459 | $UMULH r9,r6,r7 | ||
1460 | addc r10,r10,r8 | ||
1461 | adde r11,r11,r9 | ||
1462 | addze r12,r0 | ||
1463 | #mul_add_c(a[6],b[6],c1,c2,c3); | ||
1464 | $LD r6,`6*$BNSZ`(r4) | ||
1465 | $LD r7,`6*$BNSZ`(r5) | ||
1466 | $UMULL r8,r6,r7 | ||
1467 | $UMULH r9,r6,r7 | ||
1468 | addc r10,r10,r8 | ||
1469 | adde r11,r11,r9 | ||
1470 | addze r12,r12 | ||
1471 | #mul_add_c(a[5],b[7],c1,c2,c3); | ||
1472 | $LD r6,`5*$BNSZ`(r4) | ||
1473 | $LD r7,`7*$BNSZ`(r5) | ||
1474 | $UMULL r8,r6,r7 | ||
1475 | $UMULH r9,r6,r7 | ||
1476 | addc r10,r10,r8 | ||
1477 | adde r11,r11,r9 | ||
1478 | addze r12,r12 | ||
1479 | $ST r10,`12*$BNSZ`(r3) #r[12]=c1; | ||
1480 | #mul_add_c(a[6],b[7],c2,c3,c1); | ||
1481 | $LD r6,`6*$BNSZ`(r4) | ||
1482 | $UMULL r8,r6,r7 | ||
1483 | $UMULH r9,r6,r7 | ||
1484 | addc r11,r11,r8 | ||
1485 | adde r12,r12,r9 | ||
1486 | addze r10,r0 | ||
1487 | #mul_add_c(a[7],b[6],c2,c3,c1); | ||
1488 | $LD r6,`7*$BNSZ`(r4) | ||
1489 | $LD r7,`6*$BNSZ`(r5) | ||
1490 | $UMULL r8,r6,r7 | ||
1491 | $UMULH r9,r6,r7 | ||
1492 | addc r11,r11,r8 | ||
1493 | adde r12,r12,r9 | ||
1494 | addze r10,r10 | ||
1495 | $ST r11,`13*$BNSZ`(r3) #r[13]=c2; | ||
1496 | #mul_add_c(a[7],b[7],c3,c1,c2); | ||
1497 | $LD r7,`7*$BNSZ`(r5) | ||
1498 | $UMULL r8,r6,r7 | ||
1499 | $UMULH r9,r6,r7 | ||
1500 | addc r12,r12,r8 | ||
1501 | adde r10,r10,r9 | ||
1502 | $ST r12,`14*$BNSZ`(r3) #r[14]=c3; | ||
1503 | $ST r10,`15*$BNSZ`(r3) #r[15]=c1; | ||
1504 | blr | ||
1505 | .long 0x00000000 | ||
1506 | |||
1507 | # | ||
1508 | # NOTE: The following label name should be changed to | ||
1509 | # "bn_sub_words" i.e. remove the first dot | ||
1510 | # for the gcc compiler. This should be automatically | ||
1511 | # done in the build | ||
1512 | # | ||
1513 | # | ||
1514 | .align 4 | ||
1515 | .bn_sub_words: | ||
1516 | # | ||
1517 | # Handcoded version of bn_sub_words | ||
1518 | # | ||
1519 | #BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
1520 | # | ||
1521 | # r3 = r | ||
1522 | # r4 = a | ||
1523 | # r5 = b | ||
1524 | # r6 = n | ||
1525 | # | ||
1526 | # Note: No loop unrolling done since this is not a performance | ||
1527 | # critical loop. | ||
1528 | |||
1529 | xor r0,r0,r0 #set r0 = 0 | ||
1530 | # | ||
1531 | # check for r6 = 0 AND set carry bit. | ||
1532 | # | ||
1533 | subfc. r7,r0,r6 # If r6 is 0 then result is 0. | ||
1534 | # if r6 > 0 then result !=0 | ||
1535 | # In either case carry bit is set. | ||
1536 | beq Lppcasm_sub_adios | ||
1537 | addi r4,r4,-$BNSZ | ||
1538 | addi r3,r3,-$BNSZ | ||
1539 | addi r5,r5,-$BNSZ | ||
1540 | mtctr r6 | ||
1541 | Lppcasm_sub_mainloop: | ||
1542 | $LDU r7,$BNSZ(r4) | ||
1543 | $LDU r8,$BNSZ(r5) | ||
1544 | subfe r6,r8,r7 # r6 = r7+carry bit + onescomplement(r8) | ||
1545 | # if carry = 1 this is r7-r8. Else it | ||
1546 | # is r7-r8 -1 as we need. | ||
1547 | $STU r6,$BNSZ(r3) | ||
1548 | bdnz- Lppcasm_sub_mainloop | ||
1549 | Lppcasm_sub_adios: | ||
1550 | subfze r3,r0 # if carry bit is set then r3 = 0 else -1 | ||
1551 | andi. r3,r3,1 # keep only last bit. | ||
1552 | blr | ||
1553 | .long 0x00000000 | ||
1554 | |||
1555 | |||
1556 | # | ||
1557 | # NOTE: The following label name should be changed to | ||
1558 | # "bn_add_words" i.e. remove the first dot | ||
1559 | # for the gcc compiler. This should be automatically | ||
1560 | # done in the build | ||
1561 | # | ||
1562 | |||
1563 | .align 4 | ||
1564 | .bn_add_words: | ||
1565 | # | ||
1566 | # Handcoded version of bn_add_words | ||
1567 | # | ||
1568 | #BN_ULONG bn_add_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
1569 | # | ||
1570 | # r3 = r | ||
1571 | # r4 = a | ||
1572 | # r5 = b | ||
1573 | # r6 = n | ||
1574 | # | ||
1575 | # Note: No loop unrolling done since this is not a performance | ||
1576 | # critical loop. | ||
1577 | |||
1578 | xor r0,r0,r0 | ||
1579 | # | ||
1580 | # check for r6 = 0. Is this needed? | ||
1581 | # | ||
1582 | addic. r6,r6,0 #test r6 and clear carry bit. | ||
1583 | beq Lppcasm_add_adios | ||
1584 | addi r4,r4,-$BNSZ | ||
1585 | addi r3,r3,-$BNSZ | ||
1586 | addi r5,r5,-$BNSZ | ||
1587 | mtctr r6 | ||
1588 | Lppcasm_add_mainloop: | ||
1589 | $LDU r7,$BNSZ(r4) | ||
1590 | $LDU r8,$BNSZ(r5) | ||
1591 | adde r8,r7,r8 | ||
1592 | $STU r8,$BNSZ(r3) | ||
1593 | bdnz- Lppcasm_add_mainloop | ||
1594 | Lppcasm_add_adios: | ||
1595 | addze r3,r0 #return carry bit. | ||
1596 | blr | ||
1597 | .long 0x00000000 | ||
1598 | |||
1599 | # | ||
1600 | # NOTE: The following label name should be changed to | ||
1601 | # "bn_div_words" i.e. remove the first dot | ||
1602 | # for the gcc compiler. This should be automatically | ||
1603 | # done in the build | ||
1604 | # | ||
1605 | |||
1606 | .align 4 | ||
1607 | .bn_div_words: | ||
1608 | # | ||
1609 | # This is a cleaned up version of code generated by | ||
1610 | # the AIX compiler. The only optimization is to use | ||
1611 | # the PPC instruction to count leading zeros instead | ||
1612 | # of call to num_bits_word. Since this was compiled | ||
1613 | # only at level -O2 we can possibly squeeze it more? | ||
1614 | # | ||
1615 | # r3 = h | ||
1616 | # r4 = l | ||
1617 | # r5 = d | ||
1618 | |||
1619 | $UCMPI 0,r5,0 # compare r5 and 0 | ||
1620 | bne Lppcasm_div1 # proceed if d!=0 | ||
1621 | li r3,-1 # d=0 return -1 | ||
1622 | blr | ||
1623 | Lppcasm_div1: | ||
1624 | xor r0,r0,r0 #r0=0 | ||
1625 | li r8,$BITS | ||
1626 | $CNTLZ. r7,r5 #r7 = num leading 0s in d. | ||
1627 | beq Lppcasm_div2 #proceed if no leading zeros | ||
1628 | subf r8,r7,r8 #r8 = BN_num_bits_word(d) | ||
1629 | $SHR. r9,r3,r8 #are there any bits above r8'th? | ||
1630 | $TR 16,r9,r0 #if there're, signal to dump core... | ||
1631 | Lppcasm_div2: | ||
1632 | $UCMP 0,r3,r5 #h>=d? | ||
1633 | blt Lppcasm_div3 #goto Lppcasm_div3 if not | ||
1634 | subf r3,r5,r3 #h-=d ; | ||
1635 | Lppcasm_div3: #r7 = BN_BITS2-i. so r7=i | ||
1636 | cmpi 0,0,r7,0 # is (i == 0)? | ||
1637 | beq Lppcasm_div4 | ||
1638 | $SHL r3,r3,r7 # h = (h<< i) | ||
1639 | $SHR r8,r4,r8 # r8 = (l >> BN_BITS2 -i) | ||
1640 | $SHL r5,r5,r7 # d<<=i | ||
1641 | or r3,r3,r8 # h = (h<<i)|(l>>(BN_BITS2-i)) | ||
1642 | $SHL r4,r4,r7 # l <<=i | ||
1643 | Lppcasm_div4: | ||
1644 | $SHRI r9,r5,`$BITS/2` # r9 = dh | ||
1645 | # dl will be computed when needed | ||
1646 | # as it saves registers. | ||
1647 | li r6,2 #r6=2 | ||
1648 | mtctr r6 #counter will be in count. | ||
1649 | Lppcasm_divouterloop: | ||
1650 | $SHRI r8,r3,`$BITS/2` #r8 = (h>>BN_BITS4) | ||
1651 | $SHRI r11,r4,`$BITS/2` #r11= (l&BN_MASK2h)>>BN_BITS4 | ||
1652 | # compute here for innerloop. | ||
1653 | $UCMP 0,r8,r9 # is (h>>BN_BITS4)==dh | ||
1654 | bne Lppcasm_div5 # goto Lppcasm_div5 if not | ||
1655 | |||
1656 | li r8,-1 | ||
1657 | $CLRU r8,r8,`$BITS/2` #q = BN_MASK2l | ||
1658 | b Lppcasm_div6 | ||
1659 | Lppcasm_div5: | ||
1660 | $UDIV r8,r3,r9 #q = h/dh | ||
1661 | Lppcasm_div6: | ||
1662 | $UMULL r12,r9,r8 #th = q*dh | ||
1663 | $CLRU r10,r5,`$BITS/2` #r10=dl | ||
1664 | $UMULL r6,r8,r10 #tl = q*dl | ||
1665 | |||
1666 | Lppcasm_divinnerloop: | ||
1667 | subf r10,r12,r3 #t = h -th | ||
1668 | $SHRI r7,r10,`$BITS/2` #r7= (t &BN_MASK2H), sort of... | ||
1669 | addic. r7,r7,0 #test if r7 == 0. used below. | ||
1670 | # now want to compute | ||
1671 | # r7 = (t<<BN_BITS4)|((l&BN_MASK2h)>>BN_BITS4) | ||
1672 | # the following 2 instructions do that | ||
1673 | $SHLI r7,r10,`$BITS/2` # r7 = (t<<BN_BITS4) | ||
1674 | or r7,r7,r11 # r7|=((l&BN_MASK2h)>>BN_BITS4) | ||
1675 | $UCMP cr1,r6,r7 # compare (tl <= r7) | ||
1676 | bne Lppcasm_divinnerexit | ||
1677 | ble cr1,Lppcasm_divinnerexit | ||
1678 | addi r8,r8,-1 #q-- | ||
1679 | subf r12,r9,r12 #th -=dh | ||
1680 | $CLRU r10,r5,`$BITS/2` #r10=dl. t is no longer needed in loop. | ||
1681 | subf r6,r10,r6 #tl -=dl | ||
1682 | b Lppcasm_divinnerloop | ||
1683 | Lppcasm_divinnerexit: | ||
1684 | $SHRI r10,r6,`$BITS/2` #t=(tl>>BN_BITS4) | ||
1685 | $SHLI r11,r6,`$BITS/2` #tl=(tl<<BN_BITS4)&BN_MASK2h; | ||
1686 | $UCMP cr1,r4,r11 # compare l and tl | ||
1687 | add r12,r12,r10 # th+=t | ||
1688 | bge cr1,Lppcasm_div7 # if (l>=tl) goto Lppcasm_div7 | ||
1689 | addi r12,r12,1 # th++ | ||
1690 | Lppcasm_div7: | ||
1691 | subf r11,r11,r4 #r11=l-tl | ||
1692 | $UCMP cr1,r3,r12 #compare h and th | ||
1693 | bge cr1,Lppcasm_div8 #if (h>=th) goto Lppcasm_div8 | ||
1694 | addi r8,r8,-1 # q-- | ||
1695 | add r3,r5,r3 # h+=d | ||
1696 | Lppcasm_div8: | ||
1697 | subf r12,r12,r3 #r12 = h-th | ||
1698 | $SHLI r4,r11,`$BITS/2` #l=(l&BN_MASK2l)<<BN_BITS4 | ||
1699 | # want to compute | ||
1700 | # h = ((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2 | ||
1701 | # the following 2 instructions will do this. | ||
1702 | $INSR r11,r12,`$BITS/2`,`$BITS/2` # r11 is the value we want rotated $BITS/2. | ||
1703 | $ROTL r3,r11,`$BITS/2` # rotate by $BITS/2 and store in r3 | ||
1704 | bdz Lppcasm_div9 #if (count==0) break ; | ||
1705 | $SHLI r0,r8,`$BITS/2` #ret =q<<BN_BITS4 | ||
1706 | b Lppcasm_divouterloop | ||
1707 | Lppcasm_div9: | ||
1708 | or r3,r8,r0 | ||
1709 | blr | ||
1710 | .long 0x00000000 | ||
1711 | |||
1712 | # | ||
1713 | # NOTE: The following label name should be changed to | ||
1714 | # "bn_sqr_words" i.e. remove the first dot | ||
1715 | # for the gcc compiler. This should be automatically | ||
1716 | # done in the build | ||
1717 | # | ||
1718 | .align 4 | ||
1719 | .bn_sqr_words: | ||
1720 | # | ||
1721 | # Optimized version of bn_sqr_words | ||
1722 | # | ||
1723 | # void bn_sqr_words(BN_ULONG *r, BN_ULONG *a, int n) | ||
1724 | # | ||
1725 | # r3 = r | ||
1726 | # r4 = a | ||
1727 | # r5 = n | ||
1728 | # | ||
1729 | # r6 = a[i]. | ||
1730 | # r7,r8 = product. | ||
1731 | # | ||
1732 | # No unrolling done here. Not performance critical. | ||
1733 | |||
1734 | addic. r5,r5,0 #test r5. | ||
1735 | beq Lppcasm_sqr_adios | ||
1736 | addi r4,r4,-$BNSZ | ||
1737 | addi r3,r3,-$BNSZ | ||
1738 | mtctr r5 | ||
1739 | Lppcasm_sqr_mainloop: | ||
1740 | #sqr(r[0],r[1],a[0]); | ||
1741 | $LDU r6,$BNSZ(r4) | ||
1742 | $UMULL r7,r6,r6 | ||
1743 | $UMULH r8,r6,r6 | ||
1744 | $STU r7,$BNSZ(r3) | ||
1745 | $STU r8,$BNSZ(r3) | ||
1746 | bdnz- Lppcasm_sqr_mainloop | ||
1747 | Lppcasm_sqr_adios: | ||
1748 | blr | ||
1749 | .long 0x00000000 | ||
1750 | |||
1751 | |||
1752 | # | ||
1753 | # NOTE: The following label name should be changed to | ||
1754 | # "bn_mul_words" i.e. remove the first dot | ||
1755 | # for the gcc compiler. This should be automatically | ||
1756 | # done in the build | ||
1757 | # | ||
1758 | |||
1759 | .align 4 | ||
1760 | .bn_mul_words: | ||
1761 | # | ||
1762 | # BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) | ||
1763 | # | ||
1764 | # r3 = rp | ||
1765 | # r4 = ap | ||
1766 | # r5 = num | ||
1767 | # r6 = w | ||
1768 | xor r0,r0,r0 | ||
1769 | xor r12,r12,r12 # used for carry | ||
1770 | rlwinm. r7,r5,30,2,31 # num >> 2 | ||
1771 | beq Lppcasm_mw_REM | ||
1772 | mtctr r7 | ||
1773 | Lppcasm_mw_LOOP: | ||
1774 | #mul(rp[0],ap[0],w,c1); | ||
1775 | $LD r8,`0*$BNSZ`(r4) | ||
1776 | $UMULL r9,r6,r8 | ||
1777 | $UMULH r10,r6,r8 | ||
1778 | addc r9,r9,r12 | ||
1779 | #addze r10,r10 #carry is NOT ignored. | ||
1780 | #will be taken care of | ||
1781 | #in second spin below | ||
1782 | #using adde. | ||
1783 | $ST r9,`0*$BNSZ`(r3) | ||
1784 | #mul(rp[1],ap[1],w,c1); | ||
1785 | $LD r8,`1*$BNSZ`(r4) | ||
1786 | $UMULL r11,r6,r8 | ||
1787 | $UMULH r12,r6,r8 | ||
1788 | adde r11,r11,r10 | ||
1789 | #addze r12,r12 | ||
1790 | $ST r11,`1*$BNSZ`(r3) | ||
1791 | #mul(rp[2],ap[2],w,c1); | ||
1792 | $LD r8,`2*$BNSZ`(r4) | ||
1793 | $UMULL r9,r6,r8 | ||
1794 | $UMULH r10,r6,r8 | ||
1795 | adde r9,r9,r12 | ||
1796 | #addze r10,r10 | ||
1797 | $ST r9,`2*$BNSZ`(r3) | ||
1798 | #mul_add(rp[3],ap[3],w,c1); | ||
1799 | $LD r8,`3*$BNSZ`(r4) | ||
1800 | $UMULL r11,r6,r8 | ||
1801 | $UMULH r12,r6,r8 | ||
1802 | adde r11,r11,r10 | ||
1803 | addze r12,r12 #this spin we collect carry into | ||
1804 | #r12 | ||
1805 | $ST r11,`3*$BNSZ`(r3) | ||
1806 | |||
1807 | addi r3,r3,`4*$BNSZ` | ||
1808 | addi r4,r4,`4*$BNSZ` | ||
1809 | bdnz- Lppcasm_mw_LOOP | ||
1810 | |||
1811 | Lppcasm_mw_REM: | ||
1812 | andi. r5,r5,0x3 | ||
1813 | beq Lppcasm_mw_OVER | ||
1814 | #mul(rp[0],ap[0],w,c1); | ||
1815 | $LD r8,`0*$BNSZ`(r4) | ||
1816 | $UMULL r9,r6,r8 | ||
1817 | $UMULH r10,r6,r8 | ||
1818 | addc r9,r9,r12 | ||
1819 | addze r10,r10 | ||
1820 | $ST r9,`0*$BNSZ`(r3) | ||
1821 | addi r12,r10,0 | ||
1822 | |||
1823 | addi r5,r5,-1 | ||
1824 | cmpli 0,0,r5,0 | ||
1825 | beq Lppcasm_mw_OVER | ||
1826 | |||
1827 | |||
1828 | #mul(rp[1],ap[1],w,c1); | ||
1829 | $LD r8,`1*$BNSZ`(r4) | ||
1830 | $UMULL r9,r6,r8 | ||
1831 | $UMULH r10,r6,r8 | ||
1832 | addc r9,r9,r12 | ||
1833 | addze r10,r10 | ||
1834 | $ST r9,`1*$BNSZ`(r3) | ||
1835 | addi r12,r10,0 | ||
1836 | |||
1837 | addi r5,r5,-1 | ||
1838 | cmpli 0,0,r5,0 | ||
1839 | beq Lppcasm_mw_OVER | ||
1840 | |||
1841 | #mul_add(rp[2],ap[2],w,c1); | ||
1842 | $LD r8,`2*$BNSZ`(r4) | ||
1843 | $UMULL r9,r6,r8 | ||
1844 | $UMULH r10,r6,r8 | ||
1845 | addc r9,r9,r12 | ||
1846 | addze r10,r10 | ||
1847 | $ST r9,`2*$BNSZ`(r3) | ||
1848 | addi r12,r10,0 | ||
1849 | |||
1850 | Lppcasm_mw_OVER: | ||
1851 | addi r3,r12,0 | ||
1852 | blr | ||
1853 | .long 0x00000000 | ||
1854 | |||
1855 | # | ||
1856 | # NOTE: The following label name should be changed to | ||
1857 | # "bn_mul_add_words" i.e. remove the first dot | ||
1858 | # for the gcc compiler. This should be automatically | ||
1859 | # done in the build | ||
1860 | # | ||
1861 | |||
1862 | .align 4 | ||
1863 | .bn_mul_add_words: | ||
1864 | # | ||
1865 | # BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) | ||
1866 | # | ||
1867 | # r3 = rp | ||
1868 | # r4 = ap | ||
1869 | # r5 = num | ||
1870 | # r6 = w | ||
1871 | # | ||
1872 | # empirical evidence suggests that unrolled version performs best!! | ||
1873 | # | ||
1874 | xor r0,r0,r0 #r0 = 0 | ||
1875 | xor r12,r12,r12 #r12 = 0 . used for carry | ||
1876 | rlwinm. r7,r5,30,2,31 # num >> 2 | ||
1877 | beq Lppcasm_maw_leftover # if (num < 4) go LPPCASM_maw_leftover | ||
1878 | mtctr r7 | ||
1879 | Lppcasm_maw_mainloop: | ||
1880 | #mul_add(rp[0],ap[0],w,c1); | ||
1881 | $LD r8,`0*$BNSZ`(r4) | ||
1882 | $LD r11,`0*$BNSZ`(r3) | ||
1883 | $UMULL r9,r6,r8 | ||
1884 | $UMULH r10,r6,r8 | ||
1885 | addc r9,r9,r12 #r12 is carry. | ||
1886 | addze r10,r10 | ||
1887 | addc r9,r9,r11 | ||
1888 | #addze r10,r10 | ||
1889 | #the above instruction addze | ||
1890 | #is NOT needed. Carry will NOT | ||
1891 | #be ignored. It's not affected | ||
1892 | #by multiply and will be collected | ||
1893 | #in the next spin | ||
1894 | $ST r9,`0*$BNSZ`(r3) | ||
1895 | |||
1896 | #mul_add(rp[1],ap[1],w,c1); | ||
1897 | $LD r8,`1*$BNSZ`(r4) | ||
1898 | $LD r9,`1*$BNSZ`(r3) | ||
1899 | $UMULL r11,r6,r8 | ||
1900 | $UMULH r12,r6,r8 | ||
1901 | adde r11,r11,r10 #r10 is carry. | ||
1902 | addze r12,r12 | ||
1903 | addc r11,r11,r9 | ||
1904 | #addze r12,r12 | ||
1905 | $ST r11,`1*$BNSZ`(r3) | ||
1906 | |||
1907 | #mul_add(rp[2],ap[2],w,c1); | ||
1908 | $LD r8,`2*$BNSZ`(r4) | ||
1909 | $UMULL r9,r6,r8 | ||
1910 | $LD r11,`2*$BNSZ`(r3) | ||
1911 | $UMULH r10,r6,r8 | ||
1912 | adde r9,r9,r12 | ||
1913 | addze r10,r10 | ||
1914 | addc r9,r9,r11 | ||
1915 | #addze r10,r10 | ||
1916 | $ST r9,`2*$BNSZ`(r3) | ||
1917 | |||
1918 | #mul_add(rp[3],ap[3],w,c1); | ||
1919 | $LD r8,`3*$BNSZ`(r4) | ||
1920 | $UMULL r11,r6,r8 | ||
1921 | $LD r9,`3*$BNSZ`(r3) | ||
1922 | $UMULH r12,r6,r8 | ||
1923 | adde r11,r11,r10 | ||
1924 | addze r12,r12 | ||
1925 | addc r11,r11,r9 | ||
1926 | addze r12,r12 | ||
1927 | $ST r11,`3*$BNSZ`(r3) | ||
1928 | addi r3,r3,`4*$BNSZ` | ||
1929 | addi r4,r4,`4*$BNSZ` | ||
1930 | bdnz- Lppcasm_maw_mainloop | ||
1931 | |||
1932 | Lppcasm_maw_leftover: | ||
1933 | andi. r5,r5,0x3 | ||
1934 | beq Lppcasm_maw_adios | ||
1935 | addi r3,r3,-$BNSZ | ||
1936 | addi r4,r4,-$BNSZ | ||
1937 | #mul_add(rp[0],ap[0],w,c1); | ||
1938 | mtctr r5 | ||
1939 | $LDU r8,$BNSZ(r4) | ||
1940 | $UMULL r9,r6,r8 | ||
1941 | $UMULH r10,r6,r8 | ||
1942 | $LDU r11,$BNSZ(r3) | ||
1943 | addc r9,r9,r11 | ||
1944 | addze r10,r10 | ||
1945 | addc r9,r9,r12 | ||
1946 | addze r12,r10 | ||
1947 | $ST r9,0(r3) | ||
1948 | |||
1949 | bdz Lppcasm_maw_adios | ||
1950 | #mul_add(rp[1],ap[1],w,c1); | ||
1951 | $LDU r8,$BNSZ(r4) | ||
1952 | $UMULL r9,r6,r8 | ||
1953 | $UMULH r10,r6,r8 | ||
1954 | $LDU r11,$BNSZ(r3) | ||
1955 | addc r9,r9,r11 | ||
1956 | addze r10,r10 | ||
1957 | addc r9,r9,r12 | ||
1958 | addze r12,r10 | ||
1959 | $ST r9,0(r3) | ||
1960 | |||
1961 | bdz Lppcasm_maw_adios | ||
1962 | #mul_add(rp[2],ap[2],w,c1); | ||
1963 | $LDU r8,$BNSZ(r4) | ||
1964 | $UMULL r9,r6,r8 | ||
1965 | $UMULH r10,r6,r8 | ||
1966 | $LDU r11,$BNSZ(r3) | ||
1967 | addc r9,r9,r11 | ||
1968 | addze r10,r10 | ||
1969 | addc r9,r9,r12 | ||
1970 | addze r12,r10 | ||
1971 | $ST r9,0(r3) | ||
1972 | |||
1973 | Lppcasm_maw_adios: | ||
1974 | addi r3,r12,0 | ||
1975 | blr | ||
1976 | .long 0x00000000 | ||
1977 | .align 4 | ||
1978 | EOF | ||
1979 | $data =~ s/\`([^\`]*)\`/eval $1/gem; | ||
1980 | print $data; | ||
1981 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/ppc64-mont.pl b/src/lib/libcrypto/bn/asm/ppc64-mont.pl deleted file mode 100644 index 3449b35855..0000000000 --- a/src/lib/libcrypto/bn/asm/ppc64-mont.pl +++ /dev/null | |||
@@ -1,918 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # December 2007 | ||
11 | |||
12 | # The reason for undertaken effort is basically following. Even though | ||
13 | # Power 6 CPU operates at incredible 4.7GHz clock frequency, its PKI | ||
14 | # performance was observed to be less than impressive, essentially as | ||
15 | # fast as 1.8GHz PPC970, or 2.6 times(!) slower than one would hope. | ||
16 | # Well, it's not surprising that IBM had to make some sacrifices to | ||
17 | # boost the clock frequency that much, but no overall improvement? | ||
18 | # Having observed how much difference did switching to FPU make on | ||
19 | # UltraSPARC, playing same stunt on Power 6 appeared appropriate... | ||
20 | # Unfortunately the resulting performance improvement is not as | ||
21 | # impressive, ~30%, and in absolute terms is still very far from what | ||
22 | # one would expect from 4.7GHz CPU. There is a chance that I'm doing | ||
23 | # something wrong, but in the lack of assembler level micro-profiling | ||
24 | # data or at least decent platform guide I can't tell... Or better | ||
25 | # results might be achieved with VMX... Anyway, this module provides | ||
26 | # *worse* performance on other PowerPC implementations, ~40-15% slower | ||
27 | # on PPC970 depending on key length and ~40% slower on Power 5 for all | ||
28 | # key lengths. As it's obviously inappropriate as "best all-round" | ||
29 | # alternative, it has to be complemented with run-time CPU family | ||
30 | # detection. Oh! It should also be noted that unlike other PowerPC | ||
31 | # implementation IALU ppc-mont.pl module performs *suboptimaly* on | ||
32 | # >=1024-bit key lengths on Power 6. It should also be noted that | ||
33 | # *everything* said so far applies to 64-bit builds! As far as 32-bit | ||
34 | # application executed on 64-bit CPU goes, this module is likely to | ||
35 | # become preferred choice, because it's easy to adapt it for such | ||
36 | # case and *is* faster than 32-bit ppc-mont.pl on *all* processors. | ||
37 | |||
38 | # February 2008 | ||
39 | |||
40 | # Micro-profiling assisted optimization results in ~15% improvement | ||
41 | # over original ppc64-mont.pl version, or overall ~50% improvement | ||
42 | # over ppc.pl module on Power 6. If compared to ppc-mont.pl on same | ||
43 | # Power 6 CPU, this module is 5-150% faster depending on key length, | ||
44 | # [hereafter] more for longer keys. But if compared to ppc-mont.pl | ||
45 | # on 1.8GHz PPC970, it's only 5-55% faster. Still far from impressive | ||
46 | # in absolute terms, but it's apparently the way Power 6 is... | ||
47 | |||
48 | $flavour = shift; | ||
49 | |||
50 | if ($flavour =~ /32/) { | ||
51 | $SIZE_T=4; | ||
52 | $RZONE= 224; | ||
53 | $FRAME= $SIZE_T*12+8*12; | ||
54 | $fname= "bn_mul_mont_ppc64"; | ||
55 | |||
56 | $STUX= "stwux"; # store indexed and update | ||
57 | $PUSH= "stw"; | ||
58 | $POP= "lwz"; | ||
59 | die "not implemented yet"; | ||
60 | } elsif ($flavour =~ /64/) { | ||
61 | $SIZE_T=8; | ||
62 | $RZONE= 288; | ||
63 | $FRAME= $SIZE_T*12+8*12; | ||
64 | $fname= "bn_mul_mont"; | ||
65 | |||
66 | # same as above, but 64-bit mnemonics... | ||
67 | $STUX= "stdux"; # store indexed and update | ||
68 | $PUSH= "std"; | ||
69 | $POP= "ld"; | ||
70 | } else { die "nonsense $flavour"; } | ||
71 | |||
72 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
73 | ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or | ||
74 | ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or | ||
75 | die "can't locate ppc-xlate.pl"; | ||
76 | |||
77 | open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; | ||
78 | |||
79 | $FRAME=($FRAME+63)&~63; | ||
80 | $TRANSFER=16*8; | ||
81 | |||
82 | $carry="r0"; | ||
83 | $sp="r1"; | ||
84 | $toc="r2"; | ||
85 | $rp="r3"; $ovf="r3"; | ||
86 | $ap="r4"; | ||
87 | $bp="r5"; | ||
88 | $np="r6"; | ||
89 | $n0="r7"; | ||
90 | $num="r8"; | ||
91 | $rp="r9"; # $rp is reassigned | ||
92 | $tp="r10"; | ||
93 | $j="r11"; | ||
94 | $i="r12"; | ||
95 | # non-volatile registers | ||
96 | $nap_d="r14"; # interleaved ap and np in double format | ||
97 | $a0="r15"; # ap[0] | ||
98 | $t0="r16"; # temporary registers | ||
99 | $t1="r17"; | ||
100 | $t2="r18"; | ||
101 | $t3="r19"; | ||
102 | $t4="r20"; | ||
103 | $t5="r21"; | ||
104 | $t6="r22"; | ||
105 | $t7="r23"; | ||
106 | |||
107 | # PPC offers enough register bank capacity to unroll inner loops twice | ||
108 | # | ||
109 | # ..A3A2A1A0 | ||
110 | # dcba | ||
111 | # ----------- | ||
112 | # A0a | ||
113 | # A0b | ||
114 | # A0c | ||
115 | # A0d | ||
116 | # A1a | ||
117 | # A1b | ||
118 | # A1c | ||
119 | # A1d | ||
120 | # A2a | ||
121 | # A2b | ||
122 | # A2c | ||
123 | # A2d | ||
124 | # A3a | ||
125 | # A3b | ||
126 | # A3c | ||
127 | # A3d | ||
128 | # ..a | ||
129 | # ..b | ||
130 | # | ||
131 | $ba="f0"; $bb="f1"; $bc="f2"; $bd="f3"; | ||
132 | $na="f4"; $nb="f5"; $nc="f6"; $nd="f7"; | ||
133 | $dota="f8"; $dotb="f9"; | ||
134 | $A0="f10"; $A1="f11"; $A2="f12"; $A3="f13"; | ||
135 | $N0="f14"; $N1="f15"; $N2="f16"; $N3="f17"; | ||
136 | $T0a="f18"; $T0b="f19"; | ||
137 | $T1a="f20"; $T1b="f21"; | ||
138 | $T2a="f22"; $T2b="f23"; | ||
139 | $T3a="f24"; $T3b="f25"; | ||
140 | |||
141 | # sp----------->+-------------------------------+ | ||
142 | # | saved sp | | ||
143 | # +-------------------------------+ | ||
144 | # | | | ||
145 | # +-------------------------------+ | ||
146 | # | 10 saved gpr, r14-r23 | | ||
147 | # . . | ||
148 | # . . | ||
149 | # +12*size_t +-------------------------------+ | ||
150 | # | 12 saved fpr, f14-f25 | | ||
151 | # . . | ||
152 | # . . | ||
153 | # +12*8 +-------------------------------+ | ||
154 | # | padding to 64 byte boundary | | ||
155 | # . . | ||
156 | # +X +-------------------------------+ | ||
157 | # | 16 gpr<->fpr transfer zone | | ||
158 | # . . | ||
159 | # . . | ||
160 | # +16*8 +-------------------------------+ | ||
161 | # | __int64 tmp[-1] | | ||
162 | # +-------------------------------+ | ||
163 | # | __int64 tmp[num] | | ||
164 | # . . | ||
165 | # . . | ||
166 | # . . | ||
167 | # +(num+1)*8 +-------------------------------+ | ||
168 | # | padding to 64 byte boundary | | ||
169 | # . . | ||
170 | # +X +-------------------------------+ | ||
171 | # | double nap_d[4*num] | | ||
172 | # . . | ||
173 | # . . | ||
174 | # . . | ||
175 | # +-------------------------------+ | ||
176 | |||
177 | $code=<<___; | ||
178 | .machine "any" | ||
179 | .text | ||
180 | |||
181 | .globl .$fname | ||
182 | .align 5 | ||
183 | .$fname: | ||
184 | cmpwi $num,4 | ||
185 | mr $rp,r3 ; $rp is reassigned | ||
186 | li r3,0 ; possible "not handled" return code | ||
187 | bltlr- | ||
188 | andi. r0,$num,1 ; $num has to be even | ||
189 | bnelr- | ||
190 | |||
191 | slwi $num,$num,3 ; num*=8 | ||
192 | li $i,-4096 | ||
193 | slwi $tp,$num,2 ; place for {an}p_{lh}[num], i.e. 4*num | ||
194 | add $tp,$tp,$num ; place for tp[num+1] | ||
195 | addi $tp,$tp,`$FRAME+$TRANSFER+8+64+$RZONE` | ||
196 | subf $tp,$tp,$sp ; $sp-$tp | ||
197 | and $tp,$tp,$i ; minimize TLB usage | ||
198 | subf $tp,$sp,$tp ; $tp-$sp | ||
199 | $STUX $sp,$sp,$tp ; alloca | ||
200 | |||
201 | $PUSH r14,`2*$SIZE_T`($sp) | ||
202 | $PUSH r15,`3*$SIZE_T`($sp) | ||
203 | $PUSH r16,`4*$SIZE_T`($sp) | ||
204 | $PUSH r17,`5*$SIZE_T`($sp) | ||
205 | $PUSH r18,`6*$SIZE_T`($sp) | ||
206 | $PUSH r19,`7*$SIZE_T`($sp) | ||
207 | $PUSH r20,`8*$SIZE_T`($sp) | ||
208 | $PUSH r21,`9*$SIZE_T`($sp) | ||
209 | $PUSH r22,`10*$SIZE_T`($sp) | ||
210 | $PUSH r23,`11*$SIZE_T`($sp) | ||
211 | stfd f14,`12*$SIZE_T+0`($sp) | ||
212 | stfd f15,`12*$SIZE_T+8`($sp) | ||
213 | stfd f16,`12*$SIZE_T+16`($sp) | ||
214 | stfd f17,`12*$SIZE_T+24`($sp) | ||
215 | stfd f18,`12*$SIZE_T+32`($sp) | ||
216 | stfd f19,`12*$SIZE_T+40`($sp) | ||
217 | stfd f20,`12*$SIZE_T+48`($sp) | ||
218 | stfd f21,`12*$SIZE_T+56`($sp) | ||
219 | stfd f22,`12*$SIZE_T+64`($sp) | ||
220 | stfd f23,`12*$SIZE_T+72`($sp) | ||
221 | stfd f24,`12*$SIZE_T+80`($sp) | ||
222 | stfd f25,`12*$SIZE_T+88`($sp) | ||
223 | |||
224 | ld $a0,0($ap) ; pull ap[0] value | ||
225 | ld $n0,0($n0) ; pull n0[0] value | ||
226 | ld $t3,0($bp) ; bp[0] | ||
227 | |||
228 | addi $tp,$sp,`$FRAME+$TRANSFER+8+64` | ||
229 | li $i,-64 | ||
230 | add $nap_d,$tp,$num | ||
231 | and $nap_d,$nap_d,$i ; align to 64 bytes | ||
232 | |||
233 | mulld $t7,$a0,$t3 ; ap[0]*bp[0] | ||
234 | ; nap_d is off by 1, because it's used with stfdu/lfdu | ||
235 | addi $nap_d,$nap_d,-8 | ||
236 | srwi $j,$num,`3+1` ; counter register, num/2 | ||
237 | mulld $t7,$t7,$n0 ; tp[0]*n0 | ||
238 | addi $j,$j,-1 | ||
239 | addi $tp,$sp,`$FRAME+$TRANSFER-8` | ||
240 | li $carry,0 | ||
241 | mtctr $j | ||
242 | |||
243 | ; transfer bp[0] to FPU as 4x16-bit values | ||
244 | extrdi $t0,$t3,16,48 | ||
245 | extrdi $t1,$t3,16,32 | ||
246 | extrdi $t2,$t3,16,16 | ||
247 | extrdi $t3,$t3,16,0 | ||
248 | std $t0,`$FRAME+0`($sp) | ||
249 | std $t1,`$FRAME+8`($sp) | ||
250 | std $t2,`$FRAME+16`($sp) | ||
251 | std $t3,`$FRAME+24`($sp) | ||
252 | ; transfer (ap[0]*bp[0])*n0 to FPU as 4x16-bit values | ||
253 | extrdi $t4,$t7,16,48 | ||
254 | extrdi $t5,$t7,16,32 | ||
255 | extrdi $t6,$t7,16,16 | ||
256 | extrdi $t7,$t7,16,0 | ||
257 | std $t4,`$FRAME+32`($sp) | ||
258 | std $t5,`$FRAME+40`($sp) | ||
259 | std $t6,`$FRAME+48`($sp) | ||
260 | std $t7,`$FRAME+56`($sp) | ||
261 | lwz $t0,4($ap) ; load a[j] as 32-bit word pair | ||
262 | lwz $t1,0($ap) | ||
263 | lwz $t2,12($ap) ; load a[j+1] as 32-bit word pair | ||
264 | lwz $t3,8($ap) | ||
265 | lwz $t4,4($np) ; load n[j] as 32-bit word pair | ||
266 | lwz $t5,0($np) | ||
267 | lwz $t6,12($np) ; load n[j+1] as 32-bit word pair | ||
268 | lwz $t7,8($np) | ||
269 | lfd $ba,`$FRAME+0`($sp) | ||
270 | lfd $bb,`$FRAME+8`($sp) | ||
271 | lfd $bc,`$FRAME+16`($sp) | ||
272 | lfd $bd,`$FRAME+24`($sp) | ||
273 | lfd $na,`$FRAME+32`($sp) | ||
274 | lfd $nb,`$FRAME+40`($sp) | ||
275 | lfd $nc,`$FRAME+48`($sp) | ||
276 | lfd $nd,`$FRAME+56`($sp) | ||
277 | std $t0,`$FRAME+64`($sp) | ||
278 | std $t1,`$FRAME+72`($sp) | ||
279 | std $t2,`$FRAME+80`($sp) | ||
280 | std $t3,`$FRAME+88`($sp) | ||
281 | std $t4,`$FRAME+96`($sp) | ||
282 | std $t5,`$FRAME+104`($sp) | ||
283 | std $t6,`$FRAME+112`($sp) | ||
284 | std $t7,`$FRAME+120`($sp) | ||
285 | fcfid $ba,$ba | ||
286 | fcfid $bb,$bb | ||
287 | fcfid $bc,$bc | ||
288 | fcfid $bd,$bd | ||
289 | fcfid $na,$na | ||
290 | fcfid $nb,$nb | ||
291 | fcfid $nc,$nc | ||
292 | fcfid $nd,$nd | ||
293 | |||
294 | lfd $A0,`$FRAME+64`($sp) | ||
295 | lfd $A1,`$FRAME+72`($sp) | ||
296 | lfd $A2,`$FRAME+80`($sp) | ||
297 | lfd $A3,`$FRAME+88`($sp) | ||
298 | lfd $N0,`$FRAME+96`($sp) | ||
299 | lfd $N1,`$FRAME+104`($sp) | ||
300 | lfd $N2,`$FRAME+112`($sp) | ||
301 | lfd $N3,`$FRAME+120`($sp) | ||
302 | fcfid $A0,$A0 | ||
303 | fcfid $A1,$A1 | ||
304 | fcfid $A2,$A2 | ||
305 | fcfid $A3,$A3 | ||
306 | fcfid $N0,$N0 | ||
307 | fcfid $N1,$N1 | ||
308 | fcfid $N2,$N2 | ||
309 | fcfid $N3,$N3 | ||
310 | addi $ap,$ap,16 | ||
311 | addi $np,$np,16 | ||
312 | |||
313 | fmul $T1a,$A1,$ba | ||
314 | fmul $T1b,$A1,$bb | ||
315 | stfd $A0,8($nap_d) ; save a[j] in double format | ||
316 | stfd $A1,16($nap_d) | ||
317 | fmul $T2a,$A2,$ba | ||
318 | fmul $T2b,$A2,$bb | ||
319 | stfd $A2,24($nap_d) ; save a[j+1] in double format | ||
320 | stfd $A3,32($nap_d) | ||
321 | fmul $T3a,$A3,$ba | ||
322 | fmul $T3b,$A3,$bb | ||
323 | stfd $N0,40($nap_d) ; save n[j] in double format | ||
324 | stfd $N1,48($nap_d) | ||
325 | fmul $T0a,$A0,$ba | ||
326 | fmul $T0b,$A0,$bb | ||
327 | stfd $N2,56($nap_d) ; save n[j+1] in double format | ||
328 | stfdu $N3,64($nap_d) | ||
329 | |||
330 | fmadd $T1a,$A0,$bc,$T1a | ||
331 | fmadd $T1b,$A0,$bd,$T1b | ||
332 | fmadd $T2a,$A1,$bc,$T2a | ||
333 | fmadd $T2b,$A1,$bd,$T2b | ||
334 | fmadd $T3a,$A2,$bc,$T3a | ||
335 | fmadd $T3b,$A2,$bd,$T3b | ||
336 | fmul $dota,$A3,$bc | ||
337 | fmul $dotb,$A3,$bd | ||
338 | |||
339 | fmadd $T1a,$N1,$na,$T1a | ||
340 | fmadd $T1b,$N1,$nb,$T1b | ||
341 | fmadd $T2a,$N2,$na,$T2a | ||
342 | fmadd $T2b,$N2,$nb,$T2b | ||
343 | fmadd $T3a,$N3,$na,$T3a | ||
344 | fmadd $T3b,$N3,$nb,$T3b | ||
345 | fmadd $T0a,$N0,$na,$T0a | ||
346 | fmadd $T0b,$N0,$nb,$T0b | ||
347 | |||
348 | fmadd $T1a,$N0,$nc,$T1a | ||
349 | fmadd $T1b,$N0,$nd,$T1b | ||
350 | fmadd $T2a,$N1,$nc,$T2a | ||
351 | fmadd $T2b,$N1,$nd,$T2b | ||
352 | fmadd $T3a,$N2,$nc,$T3a | ||
353 | fmadd $T3b,$N2,$nd,$T3b | ||
354 | fmadd $dota,$N3,$nc,$dota | ||
355 | fmadd $dotb,$N3,$nd,$dotb | ||
356 | |||
357 | fctid $T0a,$T0a | ||
358 | fctid $T0b,$T0b | ||
359 | fctid $T1a,$T1a | ||
360 | fctid $T1b,$T1b | ||
361 | fctid $T2a,$T2a | ||
362 | fctid $T2b,$T2b | ||
363 | fctid $T3a,$T3a | ||
364 | fctid $T3b,$T3b | ||
365 | |||
366 | stfd $T0a,`$FRAME+0`($sp) | ||
367 | stfd $T0b,`$FRAME+8`($sp) | ||
368 | stfd $T1a,`$FRAME+16`($sp) | ||
369 | stfd $T1b,`$FRAME+24`($sp) | ||
370 | stfd $T2a,`$FRAME+32`($sp) | ||
371 | stfd $T2b,`$FRAME+40`($sp) | ||
372 | stfd $T3a,`$FRAME+48`($sp) | ||
373 | stfd $T3b,`$FRAME+56`($sp) | ||
374 | |||
375 | .align 5 | ||
376 | L1st: | ||
377 | lwz $t0,4($ap) ; load a[j] as 32-bit word pair | ||
378 | lwz $t1,0($ap) | ||
379 | lwz $t2,12($ap) ; load a[j+1] as 32-bit word pair | ||
380 | lwz $t3,8($ap) | ||
381 | lwz $t4,4($np) ; load n[j] as 32-bit word pair | ||
382 | lwz $t5,0($np) | ||
383 | lwz $t6,12($np) ; load n[j+1] as 32-bit word pair | ||
384 | lwz $t7,8($np) | ||
385 | std $t0,`$FRAME+64`($sp) | ||
386 | std $t1,`$FRAME+72`($sp) | ||
387 | std $t2,`$FRAME+80`($sp) | ||
388 | std $t3,`$FRAME+88`($sp) | ||
389 | std $t4,`$FRAME+96`($sp) | ||
390 | std $t5,`$FRAME+104`($sp) | ||
391 | std $t6,`$FRAME+112`($sp) | ||
392 | std $t7,`$FRAME+120`($sp) | ||
393 | ld $t0,`$FRAME+0`($sp) | ||
394 | ld $t1,`$FRAME+8`($sp) | ||
395 | ld $t2,`$FRAME+16`($sp) | ||
396 | ld $t3,`$FRAME+24`($sp) | ||
397 | ld $t4,`$FRAME+32`($sp) | ||
398 | ld $t5,`$FRAME+40`($sp) | ||
399 | ld $t6,`$FRAME+48`($sp) | ||
400 | ld $t7,`$FRAME+56`($sp) | ||
401 | lfd $A0,`$FRAME+64`($sp) | ||
402 | lfd $A1,`$FRAME+72`($sp) | ||
403 | lfd $A2,`$FRAME+80`($sp) | ||
404 | lfd $A3,`$FRAME+88`($sp) | ||
405 | lfd $N0,`$FRAME+96`($sp) | ||
406 | lfd $N1,`$FRAME+104`($sp) | ||
407 | lfd $N2,`$FRAME+112`($sp) | ||
408 | lfd $N3,`$FRAME+120`($sp) | ||
409 | fcfid $A0,$A0 | ||
410 | fcfid $A1,$A1 | ||
411 | fcfid $A2,$A2 | ||
412 | fcfid $A3,$A3 | ||
413 | fcfid $N0,$N0 | ||
414 | fcfid $N1,$N1 | ||
415 | fcfid $N2,$N2 | ||
416 | fcfid $N3,$N3 | ||
417 | addi $ap,$ap,16 | ||
418 | addi $np,$np,16 | ||
419 | |||
420 | fmul $T1a,$A1,$ba | ||
421 | fmul $T1b,$A1,$bb | ||
422 | fmul $T2a,$A2,$ba | ||
423 | fmul $T2b,$A2,$bb | ||
424 | stfd $A0,8($nap_d) ; save a[j] in double format | ||
425 | stfd $A1,16($nap_d) | ||
426 | fmul $T3a,$A3,$ba | ||
427 | fmul $T3b,$A3,$bb | ||
428 | fmadd $T0a,$A0,$ba,$dota | ||
429 | fmadd $T0b,$A0,$bb,$dotb | ||
430 | stfd $A2,24($nap_d) ; save a[j+1] in double format | ||
431 | stfd $A3,32($nap_d) | ||
432 | |||
433 | fmadd $T1a,$A0,$bc,$T1a | ||
434 | fmadd $T1b,$A0,$bd,$T1b | ||
435 | fmadd $T2a,$A1,$bc,$T2a | ||
436 | fmadd $T2b,$A1,$bd,$T2b | ||
437 | stfd $N0,40($nap_d) ; save n[j] in double format | ||
438 | stfd $N1,48($nap_d) | ||
439 | fmadd $T3a,$A2,$bc,$T3a | ||
440 | fmadd $T3b,$A2,$bd,$T3b | ||
441 | add $t0,$t0,$carry ; can not overflow | ||
442 | fmul $dota,$A3,$bc | ||
443 | fmul $dotb,$A3,$bd | ||
444 | stfd $N2,56($nap_d) ; save n[j+1] in double format | ||
445 | stfdu $N3,64($nap_d) | ||
446 | srdi $carry,$t0,16 | ||
447 | add $t1,$t1,$carry | ||
448 | srdi $carry,$t1,16 | ||
449 | |||
450 | fmadd $T1a,$N1,$na,$T1a | ||
451 | fmadd $T1b,$N1,$nb,$T1b | ||
452 | insrdi $t0,$t1,16,32 | ||
453 | fmadd $T2a,$N2,$na,$T2a | ||
454 | fmadd $T2b,$N2,$nb,$T2b | ||
455 | add $t2,$t2,$carry | ||
456 | fmadd $T3a,$N3,$na,$T3a | ||
457 | fmadd $T3b,$N3,$nb,$T3b | ||
458 | srdi $carry,$t2,16 | ||
459 | fmadd $T0a,$N0,$na,$T0a | ||
460 | fmadd $T0b,$N0,$nb,$T0b | ||
461 | insrdi $t0,$t2,16,16 | ||
462 | add $t3,$t3,$carry | ||
463 | srdi $carry,$t3,16 | ||
464 | |||
465 | fmadd $T1a,$N0,$nc,$T1a | ||
466 | fmadd $T1b,$N0,$nd,$T1b | ||
467 | insrdi $t0,$t3,16,0 ; 0..63 bits | ||
468 | fmadd $T2a,$N1,$nc,$T2a | ||
469 | fmadd $T2b,$N1,$nd,$T2b | ||
470 | add $t4,$t4,$carry | ||
471 | fmadd $T3a,$N2,$nc,$T3a | ||
472 | fmadd $T3b,$N2,$nd,$T3b | ||
473 | srdi $carry,$t4,16 | ||
474 | fmadd $dota,$N3,$nc,$dota | ||
475 | fmadd $dotb,$N3,$nd,$dotb | ||
476 | add $t5,$t5,$carry | ||
477 | srdi $carry,$t5,16 | ||
478 | insrdi $t4,$t5,16,32 | ||
479 | |||
480 | fctid $T0a,$T0a | ||
481 | fctid $T0b,$T0b | ||
482 | add $t6,$t6,$carry | ||
483 | fctid $T1a,$T1a | ||
484 | fctid $T1b,$T1b | ||
485 | srdi $carry,$t6,16 | ||
486 | fctid $T2a,$T2a | ||
487 | fctid $T2b,$T2b | ||
488 | insrdi $t4,$t6,16,16 | ||
489 | fctid $T3a,$T3a | ||
490 | fctid $T3b,$T3b | ||
491 | add $t7,$t7,$carry | ||
492 | insrdi $t4,$t7,16,0 ; 64..127 bits | ||
493 | srdi $carry,$t7,16 ; upper 33 bits | ||
494 | |||
495 | stfd $T0a,`$FRAME+0`($sp) | ||
496 | stfd $T0b,`$FRAME+8`($sp) | ||
497 | stfd $T1a,`$FRAME+16`($sp) | ||
498 | stfd $T1b,`$FRAME+24`($sp) | ||
499 | stfd $T2a,`$FRAME+32`($sp) | ||
500 | stfd $T2b,`$FRAME+40`($sp) | ||
501 | stfd $T3a,`$FRAME+48`($sp) | ||
502 | stfd $T3b,`$FRAME+56`($sp) | ||
503 | std $t0,8($tp) ; tp[j-1] | ||
504 | stdu $t4,16($tp) ; tp[j] | ||
505 | bdnz- L1st | ||
506 | |||
507 | fctid $dota,$dota | ||
508 | fctid $dotb,$dotb | ||
509 | |||
510 | ld $t0,`$FRAME+0`($sp) | ||
511 | ld $t1,`$FRAME+8`($sp) | ||
512 | ld $t2,`$FRAME+16`($sp) | ||
513 | ld $t3,`$FRAME+24`($sp) | ||
514 | ld $t4,`$FRAME+32`($sp) | ||
515 | ld $t5,`$FRAME+40`($sp) | ||
516 | ld $t6,`$FRAME+48`($sp) | ||
517 | ld $t7,`$FRAME+56`($sp) | ||
518 | stfd $dota,`$FRAME+64`($sp) | ||
519 | stfd $dotb,`$FRAME+72`($sp) | ||
520 | |||
521 | add $t0,$t0,$carry ; can not overflow | ||
522 | srdi $carry,$t0,16 | ||
523 | add $t1,$t1,$carry | ||
524 | srdi $carry,$t1,16 | ||
525 | insrdi $t0,$t1,16,32 | ||
526 | add $t2,$t2,$carry | ||
527 | srdi $carry,$t2,16 | ||
528 | insrdi $t0,$t2,16,16 | ||
529 | add $t3,$t3,$carry | ||
530 | srdi $carry,$t3,16 | ||
531 | insrdi $t0,$t3,16,0 ; 0..63 bits | ||
532 | add $t4,$t4,$carry | ||
533 | srdi $carry,$t4,16 | ||
534 | add $t5,$t5,$carry | ||
535 | srdi $carry,$t5,16 | ||
536 | insrdi $t4,$t5,16,32 | ||
537 | add $t6,$t6,$carry | ||
538 | srdi $carry,$t6,16 | ||
539 | insrdi $t4,$t6,16,16 | ||
540 | add $t7,$t7,$carry | ||
541 | insrdi $t4,$t7,16,0 ; 64..127 bits | ||
542 | srdi $carry,$t7,16 ; upper 33 bits | ||
543 | ld $t6,`$FRAME+64`($sp) | ||
544 | ld $t7,`$FRAME+72`($sp) | ||
545 | |||
546 | std $t0,8($tp) ; tp[j-1] | ||
547 | stdu $t4,16($tp) ; tp[j] | ||
548 | |||
549 | add $t6,$t6,$carry ; can not overflow | ||
550 | srdi $carry,$t6,16 | ||
551 | add $t7,$t7,$carry | ||
552 | insrdi $t6,$t7,48,0 | ||
553 | srdi $ovf,$t7,48 | ||
554 | std $t6,8($tp) ; tp[num-1] | ||
555 | |||
556 | slwi $t7,$num,2 | ||
557 | subf $nap_d,$t7,$nap_d ; rewind pointer | ||
558 | |||
559 | li $i,8 ; i=1 | ||
560 | .align 5 | ||
561 | Louter: | ||
562 | ldx $t3,$bp,$i ; bp[i] | ||
563 | ld $t6,`$FRAME+$TRANSFER+8`($sp) ; tp[0] | ||
564 | mulld $t7,$a0,$t3 ; ap[0]*bp[i] | ||
565 | |||
566 | addi $tp,$sp,`$FRAME+$TRANSFER` | ||
567 | add $t7,$t7,$t6 ; ap[0]*bp[i]+tp[0] | ||
568 | li $carry,0 | ||
569 | mulld $t7,$t7,$n0 ; tp[0]*n0 | ||
570 | mtctr $j | ||
571 | |||
572 | ; transfer bp[i] to FPU as 4x16-bit values | ||
573 | extrdi $t0,$t3,16,48 | ||
574 | extrdi $t1,$t3,16,32 | ||
575 | extrdi $t2,$t3,16,16 | ||
576 | extrdi $t3,$t3,16,0 | ||
577 | std $t0,`$FRAME+0`($sp) | ||
578 | std $t1,`$FRAME+8`($sp) | ||
579 | std $t2,`$FRAME+16`($sp) | ||
580 | std $t3,`$FRAME+24`($sp) | ||
581 | ; transfer (ap[0]*bp[i]+tp[0])*n0 to FPU as 4x16-bit values | ||
582 | extrdi $t4,$t7,16,48 | ||
583 | extrdi $t5,$t7,16,32 | ||
584 | extrdi $t6,$t7,16,16 | ||
585 | extrdi $t7,$t7,16,0 | ||
586 | std $t4,`$FRAME+32`($sp) | ||
587 | std $t5,`$FRAME+40`($sp) | ||
588 | std $t6,`$FRAME+48`($sp) | ||
589 | std $t7,`$FRAME+56`($sp) | ||
590 | |||
591 | lfd $A0,8($nap_d) ; load a[j] in double format | ||
592 | lfd $A1,16($nap_d) | ||
593 | lfd $A2,24($nap_d) ; load a[j+1] in double format | ||
594 | lfd $A3,32($nap_d) | ||
595 | lfd $N0,40($nap_d) ; load n[j] in double format | ||
596 | lfd $N1,48($nap_d) | ||
597 | lfd $N2,56($nap_d) ; load n[j+1] in double format | ||
598 | lfdu $N3,64($nap_d) | ||
599 | |||
600 | lfd $ba,`$FRAME+0`($sp) | ||
601 | lfd $bb,`$FRAME+8`($sp) | ||
602 | lfd $bc,`$FRAME+16`($sp) | ||
603 | lfd $bd,`$FRAME+24`($sp) | ||
604 | lfd $na,`$FRAME+32`($sp) | ||
605 | lfd $nb,`$FRAME+40`($sp) | ||
606 | lfd $nc,`$FRAME+48`($sp) | ||
607 | lfd $nd,`$FRAME+56`($sp) | ||
608 | |||
609 | fcfid $ba,$ba | ||
610 | fcfid $bb,$bb | ||
611 | fcfid $bc,$bc | ||
612 | fcfid $bd,$bd | ||
613 | fcfid $na,$na | ||
614 | fcfid $nb,$nb | ||
615 | fcfid $nc,$nc | ||
616 | fcfid $nd,$nd | ||
617 | |||
618 | fmul $T1a,$A1,$ba | ||
619 | fmul $T1b,$A1,$bb | ||
620 | fmul $T2a,$A2,$ba | ||
621 | fmul $T2b,$A2,$bb | ||
622 | fmul $T3a,$A3,$ba | ||
623 | fmul $T3b,$A3,$bb | ||
624 | fmul $T0a,$A0,$ba | ||
625 | fmul $T0b,$A0,$bb | ||
626 | |||
627 | fmadd $T1a,$A0,$bc,$T1a | ||
628 | fmadd $T1b,$A0,$bd,$T1b | ||
629 | fmadd $T2a,$A1,$bc,$T2a | ||
630 | fmadd $T2b,$A1,$bd,$T2b | ||
631 | fmadd $T3a,$A2,$bc,$T3a | ||
632 | fmadd $T3b,$A2,$bd,$T3b | ||
633 | fmul $dota,$A3,$bc | ||
634 | fmul $dotb,$A3,$bd | ||
635 | |||
636 | fmadd $T1a,$N1,$na,$T1a | ||
637 | fmadd $T1b,$N1,$nb,$T1b | ||
638 | lfd $A0,8($nap_d) ; load a[j] in double format | ||
639 | lfd $A1,16($nap_d) | ||
640 | fmadd $T2a,$N2,$na,$T2a | ||
641 | fmadd $T2b,$N2,$nb,$T2b | ||
642 | lfd $A2,24($nap_d) ; load a[j+1] in double format | ||
643 | lfd $A3,32($nap_d) | ||
644 | fmadd $T3a,$N3,$na,$T3a | ||
645 | fmadd $T3b,$N3,$nb,$T3b | ||
646 | fmadd $T0a,$N0,$na,$T0a | ||
647 | fmadd $T0b,$N0,$nb,$T0b | ||
648 | |||
649 | fmadd $T1a,$N0,$nc,$T1a | ||
650 | fmadd $T1b,$N0,$nd,$T1b | ||
651 | fmadd $T2a,$N1,$nc,$T2a | ||
652 | fmadd $T2b,$N1,$nd,$T2b | ||
653 | fmadd $T3a,$N2,$nc,$T3a | ||
654 | fmadd $T3b,$N2,$nd,$T3b | ||
655 | fmadd $dota,$N3,$nc,$dota | ||
656 | fmadd $dotb,$N3,$nd,$dotb | ||
657 | |||
658 | fctid $T0a,$T0a | ||
659 | fctid $T0b,$T0b | ||
660 | fctid $T1a,$T1a | ||
661 | fctid $T1b,$T1b | ||
662 | fctid $T2a,$T2a | ||
663 | fctid $T2b,$T2b | ||
664 | fctid $T3a,$T3a | ||
665 | fctid $T3b,$T3b | ||
666 | |||
667 | stfd $T0a,`$FRAME+0`($sp) | ||
668 | stfd $T0b,`$FRAME+8`($sp) | ||
669 | stfd $T1a,`$FRAME+16`($sp) | ||
670 | stfd $T1b,`$FRAME+24`($sp) | ||
671 | stfd $T2a,`$FRAME+32`($sp) | ||
672 | stfd $T2b,`$FRAME+40`($sp) | ||
673 | stfd $T3a,`$FRAME+48`($sp) | ||
674 | stfd $T3b,`$FRAME+56`($sp) | ||
675 | |||
676 | .align 5 | ||
677 | Linner: | ||
678 | fmul $T1a,$A1,$ba | ||
679 | fmul $T1b,$A1,$bb | ||
680 | fmul $T2a,$A2,$ba | ||
681 | fmul $T2b,$A2,$bb | ||
682 | lfd $N0,40($nap_d) ; load n[j] in double format | ||
683 | lfd $N1,48($nap_d) | ||
684 | fmul $T3a,$A3,$ba | ||
685 | fmul $T3b,$A3,$bb | ||
686 | fmadd $T0a,$A0,$ba,$dota | ||
687 | fmadd $T0b,$A0,$bb,$dotb | ||
688 | lfd $N2,56($nap_d) ; load n[j+1] in double format | ||
689 | lfdu $N3,64($nap_d) | ||
690 | |||
691 | fmadd $T1a,$A0,$bc,$T1a | ||
692 | fmadd $T1b,$A0,$bd,$T1b | ||
693 | fmadd $T2a,$A1,$bc,$T2a | ||
694 | fmadd $T2b,$A1,$bd,$T2b | ||
695 | lfd $A0,8($nap_d) ; load a[j] in double format | ||
696 | lfd $A1,16($nap_d) | ||
697 | fmadd $T3a,$A2,$bc,$T3a | ||
698 | fmadd $T3b,$A2,$bd,$T3b | ||
699 | fmul $dota,$A3,$bc | ||
700 | fmul $dotb,$A3,$bd | ||
701 | lfd $A2,24($nap_d) ; load a[j+1] in double format | ||
702 | lfd $A3,32($nap_d) | ||
703 | |||
704 | fmadd $T1a,$N1,$na,$T1a | ||
705 | fmadd $T1b,$N1,$nb,$T1b | ||
706 | ld $t0,`$FRAME+0`($sp) | ||
707 | ld $t1,`$FRAME+8`($sp) | ||
708 | fmadd $T2a,$N2,$na,$T2a | ||
709 | fmadd $T2b,$N2,$nb,$T2b | ||
710 | ld $t2,`$FRAME+16`($sp) | ||
711 | ld $t3,`$FRAME+24`($sp) | ||
712 | fmadd $T3a,$N3,$na,$T3a | ||
713 | fmadd $T3b,$N3,$nb,$T3b | ||
714 | add $t0,$t0,$carry ; can not overflow | ||
715 | ld $t4,`$FRAME+32`($sp) | ||
716 | ld $t5,`$FRAME+40`($sp) | ||
717 | fmadd $T0a,$N0,$na,$T0a | ||
718 | fmadd $T0b,$N0,$nb,$T0b | ||
719 | srdi $carry,$t0,16 | ||
720 | add $t1,$t1,$carry | ||
721 | srdi $carry,$t1,16 | ||
722 | ld $t6,`$FRAME+48`($sp) | ||
723 | ld $t7,`$FRAME+56`($sp) | ||
724 | |||
725 | fmadd $T1a,$N0,$nc,$T1a | ||
726 | fmadd $T1b,$N0,$nd,$T1b | ||
727 | insrdi $t0,$t1,16,32 | ||
728 | ld $t1,8($tp) ; tp[j] | ||
729 | fmadd $T2a,$N1,$nc,$T2a | ||
730 | fmadd $T2b,$N1,$nd,$T2b | ||
731 | add $t2,$t2,$carry | ||
732 | fmadd $T3a,$N2,$nc,$T3a | ||
733 | fmadd $T3b,$N2,$nd,$T3b | ||
734 | srdi $carry,$t2,16 | ||
735 | insrdi $t0,$t2,16,16 | ||
736 | fmadd $dota,$N3,$nc,$dota | ||
737 | fmadd $dotb,$N3,$nd,$dotb | ||
738 | add $t3,$t3,$carry | ||
739 | ldu $t2,16($tp) ; tp[j+1] | ||
740 | srdi $carry,$t3,16 | ||
741 | insrdi $t0,$t3,16,0 ; 0..63 bits | ||
742 | add $t4,$t4,$carry | ||
743 | |||
744 | fctid $T0a,$T0a | ||
745 | fctid $T0b,$T0b | ||
746 | srdi $carry,$t4,16 | ||
747 | fctid $T1a,$T1a | ||
748 | fctid $T1b,$T1b | ||
749 | add $t5,$t5,$carry | ||
750 | fctid $T2a,$T2a | ||
751 | fctid $T2b,$T2b | ||
752 | srdi $carry,$t5,16 | ||
753 | insrdi $t4,$t5,16,32 | ||
754 | fctid $T3a,$T3a | ||
755 | fctid $T3b,$T3b | ||
756 | add $t6,$t6,$carry | ||
757 | srdi $carry,$t6,16 | ||
758 | insrdi $t4,$t6,16,16 | ||
759 | |||
760 | stfd $T0a,`$FRAME+0`($sp) | ||
761 | stfd $T0b,`$FRAME+8`($sp) | ||
762 | add $t7,$t7,$carry | ||
763 | addc $t3,$t0,$t1 | ||
764 | stfd $T1a,`$FRAME+16`($sp) | ||
765 | stfd $T1b,`$FRAME+24`($sp) | ||
766 | insrdi $t4,$t7,16,0 ; 64..127 bits | ||
767 | srdi $carry,$t7,16 ; upper 33 bits | ||
768 | stfd $T2a,`$FRAME+32`($sp) | ||
769 | stfd $T2b,`$FRAME+40`($sp) | ||
770 | adde $t5,$t4,$t2 | ||
771 | stfd $T3a,`$FRAME+48`($sp) | ||
772 | stfd $T3b,`$FRAME+56`($sp) | ||
773 | addze $carry,$carry | ||
774 | std $t3,-16($tp) ; tp[j-1] | ||
775 | std $t5,-8($tp) ; tp[j] | ||
776 | bdnz- Linner | ||
777 | |||
778 | fctid $dota,$dota | ||
779 | fctid $dotb,$dotb | ||
780 | ld $t0,`$FRAME+0`($sp) | ||
781 | ld $t1,`$FRAME+8`($sp) | ||
782 | ld $t2,`$FRAME+16`($sp) | ||
783 | ld $t3,`$FRAME+24`($sp) | ||
784 | ld $t4,`$FRAME+32`($sp) | ||
785 | ld $t5,`$FRAME+40`($sp) | ||
786 | ld $t6,`$FRAME+48`($sp) | ||
787 | ld $t7,`$FRAME+56`($sp) | ||
788 | stfd $dota,`$FRAME+64`($sp) | ||
789 | stfd $dotb,`$FRAME+72`($sp) | ||
790 | |||
791 | add $t0,$t0,$carry ; can not overflow | ||
792 | srdi $carry,$t0,16 | ||
793 | add $t1,$t1,$carry | ||
794 | srdi $carry,$t1,16 | ||
795 | insrdi $t0,$t1,16,32 | ||
796 | add $t2,$t2,$carry | ||
797 | ld $t1,8($tp) ; tp[j] | ||
798 | srdi $carry,$t2,16 | ||
799 | insrdi $t0,$t2,16,16 | ||
800 | add $t3,$t3,$carry | ||
801 | ldu $t2,16($tp) ; tp[j+1] | ||
802 | srdi $carry,$t3,16 | ||
803 | insrdi $t0,$t3,16,0 ; 0..63 bits | ||
804 | add $t4,$t4,$carry | ||
805 | srdi $carry,$t4,16 | ||
806 | add $t5,$t5,$carry | ||
807 | srdi $carry,$t5,16 | ||
808 | insrdi $t4,$t5,16,32 | ||
809 | add $t6,$t6,$carry | ||
810 | srdi $carry,$t6,16 | ||
811 | insrdi $t4,$t6,16,16 | ||
812 | add $t7,$t7,$carry | ||
813 | insrdi $t4,$t7,16,0 ; 64..127 bits | ||
814 | srdi $carry,$t7,16 ; upper 33 bits | ||
815 | ld $t6,`$FRAME+64`($sp) | ||
816 | ld $t7,`$FRAME+72`($sp) | ||
817 | |||
818 | addc $t3,$t0,$t1 | ||
819 | adde $t5,$t4,$t2 | ||
820 | addze $carry,$carry | ||
821 | |||
822 | std $t3,-16($tp) ; tp[j-1] | ||
823 | std $t5,-8($tp) ; tp[j] | ||
824 | |||
825 | add $carry,$carry,$ovf ; comsume upmost overflow | ||
826 | add $t6,$t6,$carry ; can not overflow | ||
827 | srdi $carry,$t6,16 | ||
828 | add $t7,$t7,$carry | ||
829 | insrdi $t6,$t7,48,0 | ||
830 | srdi $ovf,$t7,48 | ||
831 | std $t6,0($tp) ; tp[num-1] | ||
832 | |||
833 | slwi $t7,$num,2 | ||
834 | addi $i,$i,8 | ||
835 | subf $nap_d,$t7,$nap_d ; rewind pointer | ||
836 | cmpw $i,$num | ||
837 | blt- Louter | ||
838 | |||
839 | subf $np,$num,$np ; rewind np | ||
840 | addi $j,$j,1 ; restore counter | ||
841 | subfc $i,$i,$i ; j=0 and "clear" XER[CA] | ||
842 | addi $tp,$sp,`$FRAME+$TRANSFER+8` | ||
843 | addi $t4,$sp,`$FRAME+$TRANSFER+16` | ||
844 | addi $t5,$np,8 | ||
845 | addi $t6,$rp,8 | ||
846 | mtctr $j | ||
847 | |||
848 | .align 4 | ||
849 | Lsub: ldx $t0,$tp,$i | ||
850 | ldx $t1,$np,$i | ||
851 | ldx $t2,$t4,$i | ||
852 | ldx $t3,$t5,$i | ||
853 | subfe $t0,$t1,$t0 ; tp[j]-np[j] | ||
854 | subfe $t2,$t3,$t2 ; tp[j+1]-np[j+1] | ||
855 | stdx $t0,$rp,$i | ||
856 | stdx $t2,$t6,$i | ||
857 | addi $i,$i,16 | ||
858 | bdnz- Lsub | ||
859 | |||
860 | li $i,0 | ||
861 | subfe $ovf,$i,$ovf ; handle upmost overflow bit | ||
862 | and $ap,$tp,$ovf | ||
863 | andc $np,$rp,$ovf | ||
864 | or $ap,$ap,$np ; ap=borrow?tp:rp | ||
865 | addi $t7,$ap,8 | ||
866 | mtctr $j | ||
867 | |||
868 | .align 4 | ||
869 | Lcopy: ; copy or in-place refresh | ||
870 | ldx $t0,$ap,$i | ||
871 | ldx $t1,$t7,$i | ||
872 | std $i,8($nap_d) ; zap nap_d | ||
873 | std $i,16($nap_d) | ||
874 | std $i,24($nap_d) | ||
875 | std $i,32($nap_d) | ||
876 | std $i,40($nap_d) | ||
877 | std $i,48($nap_d) | ||
878 | std $i,56($nap_d) | ||
879 | stdu $i,64($nap_d) | ||
880 | stdx $t0,$rp,$i | ||
881 | stdx $t1,$t6,$i | ||
882 | stdx $i,$tp,$i ; zap tp at once | ||
883 | stdx $i,$t4,$i | ||
884 | addi $i,$i,16 | ||
885 | bdnz- Lcopy | ||
886 | |||
887 | $POP r14,`2*$SIZE_T`($sp) | ||
888 | $POP r15,`3*$SIZE_T`($sp) | ||
889 | $POP r16,`4*$SIZE_T`($sp) | ||
890 | $POP r17,`5*$SIZE_T`($sp) | ||
891 | $POP r18,`6*$SIZE_T`($sp) | ||
892 | $POP r19,`7*$SIZE_T`($sp) | ||
893 | $POP r20,`8*$SIZE_T`($sp) | ||
894 | $POP r21,`9*$SIZE_T`($sp) | ||
895 | $POP r22,`10*$SIZE_T`($sp) | ||
896 | $POP r23,`11*$SIZE_T`($sp) | ||
897 | lfd f14,`12*$SIZE_T+0`($sp) | ||
898 | lfd f15,`12*$SIZE_T+8`($sp) | ||
899 | lfd f16,`12*$SIZE_T+16`($sp) | ||
900 | lfd f17,`12*$SIZE_T+24`($sp) | ||
901 | lfd f18,`12*$SIZE_T+32`($sp) | ||
902 | lfd f19,`12*$SIZE_T+40`($sp) | ||
903 | lfd f20,`12*$SIZE_T+48`($sp) | ||
904 | lfd f21,`12*$SIZE_T+56`($sp) | ||
905 | lfd f22,`12*$SIZE_T+64`($sp) | ||
906 | lfd f23,`12*$SIZE_T+72`($sp) | ||
907 | lfd f24,`12*$SIZE_T+80`($sp) | ||
908 | lfd f25,`12*$SIZE_T+88`($sp) | ||
909 | $POP $sp,0($sp) | ||
910 | li r3,1 ; signal "handled" | ||
911 | blr | ||
912 | .long 0 | ||
913 | .asciz "Montgomery Multiplication for PPC64, CRYPTOGAMS by <appro\@fy.chalmers.se>" | ||
914 | ___ | ||
915 | |||
916 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
917 | print $code; | ||
918 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/s390x-mont.pl b/src/lib/libcrypto/bn/asm/s390x-mont.pl deleted file mode 100644 index f61246f5b6..0000000000 --- a/src/lib/libcrypto/bn/asm/s390x-mont.pl +++ /dev/null | |||
@@ -1,225 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # April 2007. | ||
11 | # | ||
12 | # Performance improvement over vanilla C code varies from 85% to 45% | ||
13 | # depending on key length and benchmark. Unfortunately in this context | ||
14 | # these are not very impressive results [for code that utilizes "wide" | ||
15 | # 64x64=128-bit multiplication, which is not commonly available to C | ||
16 | # programmers], at least hand-coded bn_asm.c replacement is known to | ||
17 | # provide 30-40% better results for longest keys. Well, on a second | ||
18 | # thought it's not very surprising, because z-CPUs are single-issue | ||
19 | # and _strictly_ in-order execution, while bn_mul_mont is more or less | ||
20 | # dependent on CPU ability to pipe-line instructions and have several | ||
21 | # of them "in-flight" at the same time. I mean while other methods, | ||
22 | # for example Karatsuba, aim to minimize amount of multiplications at | ||
23 | # the cost of other operations increase, bn_mul_mont aim to neatly | ||
24 | # "overlap" multiplications and the other operations [and on most | ||
25 | # platforms even minimize the amount of the other operations, in | ||
26 | # particular references to memory]. But it's possible to improve this | ||
27 | # module performance by implementing dedicated squaring code-path and | ||
28 | # possibly by unrolling loops... | ||
29 | |||
30 | # January 2009. | ||
31 | # | ||
32 | # Reschedule to minimize/avoid Address Generation Interlock hazard, | ||
33 | # make inner loops counter-based. | ||
34 | |||
35 | $mn0="%r0"; | ||
36 | $num="%r1"; | ||
37 | |||
38 | # int bn_mul_mont( | ||
39 | $rp="%r2"; # BN_ULONG *rp, | ||
40 | $ap="%r3"; # const BN_ULONG *ap, | ||
41 | $bp="%r4"; # const BN_ULONG *bp, | ||
42 | $np="%r5"; # const BN_ULONG *np, | ||
43 | $n0="%r6"; # const BN_ULONG *n0, | ||
44 | #$num="160(%r15)" # int num); | ||
45 | |||
46 | $bi="%r2"; # zaps rp | ||
47 | $j="%r7"; | ||
48 | |||
49 | $ahi="%r8"; | ||
50 | $alo="%r9"; | ||
51 | $nhi="%r10"; | ||
52 | $nlo="%r11"; | ||
53 | $AHI="%r12"; | ||
54 | $NHI="%r13"; | ||
55 | $count="%r14"; | ||
56 | $sp="%r15"; | ||
57 | |||
58 | $code.=<<___; | ||
59 | .text | ||
60 | .globl bn_mul_mont | ||
61 | .type bn_mul_mont,\@function | ||
62 | bn_mul_mont: | ||
63 | lgf $num,164($sp) # pull $num | ||
64 | sla $num,3 # $num to enumerate bytes | ||
65 | la $bp,0($num,$bp) | ||
66 | |||
67 | stg %r2,16($sp) | ||
68 | |||
69 | cghi $num,16 # | ||
70 | lghi %r2,0 # | ||
71 | blr %r14 # if($num<16) return 0; | ||
72 | cghi $num,96 # | ||
73 | bhr %r14 # if($num>96) return 0; | ||
74 | |||
75 | stmg %r3,%r15,24($sp) | ||
76 | |||
77 | lghi $rp,-160-8 # leave room for carry bit | ||
78 | lcgr $j,$num # -$num | ||
79 | lgr %r0,$sp | ||
80 | la $rp,0($rp,$sp) | ||
81 | la $sp,0($j,$rp) # alloca | ||
82 | stg %r0,0($sp) # back chain | ||
83 | |||
84 | sra $num,3 # restore $num | ||
85 | la $bp,0($j,$bp) # restore $bp | ||
86 | ahi $num,-1 # adjust $num for inner loop | ||
87 | lg $n0,0($n0) # pull n0 | ||
88 | |||
89 | lg $bi,0($bp) | ||
90 | lg $alo,0($ap) | ||
91 | mlgr $ahi,$bi # ap[0]*bp[0] | ||
92 | lgr $AHI,$ahi | ||
93 | |||
94 | lgr $mn0,$alo # "tp[0]"*n0 | ||
95 | msgr $mn0,$n0 | ||
96 | |||
97 | lg $nlo,0($np) # | ||
98 | mlgr $nhi,$mn0 # np[0]*m1 | ||
99 | algr $nlo,$alo # +="tp[0]" | ||
100 | lghi $NHI,0 | ||
101 | alcgr $NHI,$nhi | ||
102 | |||
103 | la $j,8(%r0) # j=1 | ||
104 | lr $count,$num | ||
105 | |||
106 | .align 16 | ||
107 | .L1st: | ||
108 | lg $alo,0($j,$ap) | ||
109 | mlgr $ahi,$bi # ap[j]*bp[0] | ||
110 | algr $alo,$AHI | ||
111 | lghi $AHI,0 | ||
112 | alcgr $AHI,$ahi | ||
113 | |||
114 | lg $nlo,0($j,$np) | ||
115 | mlgr $nhi,$mn0 # np[j]*m1 | ||
116 | algr $nlo,$NHI | ||
117 | lghi $NHI,0 | ||
118 | alcgr $nhi,$NHI # +="tp[j]" | ||
119 | algr $nlo,$alo | ||
120 | alcgr $NHI,$nhi | ||
121 | |||
122 | stg $nlo,160-8($j,$sp) # tp[j-1]= | ||
123 | la $j,8($j) # j++ | ||
124 | brct $count,.L1st | ||
125 | |||
126 | algr $NHI,$AHI | ||
127 | lghi $AHI,0 | ||
128 | alcgr $AHI,$AHI # upmost overflow bit | ||
129 | stg $NHI,160-8($j,$sp) | ||
130 | stg $AHI,160($j,$sp) | ||
131 | la $bp,8($bp) # bp++ | ||
132 | |||
133 | .Louter: | ||
134 | lg $bi,0($bp) # bp[i] | ||
135 | lg $alo,0($ap) | ||
136 | mlgr $ahi,$bi # ap[0]*bp[i] | ||
137 | alg $alo,160($sp) # +=tp[0] | ||
138 | lghi $AHI,0 | ||
139 | alcgr $AHI,$ahi | ||
140 | |||
141 | lgr $mn0,$alo | ||
142 | msgr $mn0,$n0 # tp[0]*n0 | ||
143 | |||
144 | lg $nlo,0($np) # np[0] | ||
145 | mlgr $nhi,$mn0 # np[0]*m1 | ||
146 | algr $nlo,$alo # +="tp[0]" | ||
147 | lghi $NHI,0 | ||
148 | alcgr $NHI,$nhi | ||
149 | |||
150 | la $j,8(%r0) # j=1 | ||
151 | lr $count,$num | ||
152 | |||
153 | .align 16 | ||
154 | .Linner: | ||
155 | lg $alo,0($j,$ap) | ||
156 | mlgr $ahi,$bi # ap[j]*bp[i] | ||
157 | algr $alo,$AHI | ||
158 | lghi $AHI,0 | ||
159 | alcgr $ahi,$AHI | ||
160 | alg $alo,160($j,$sp)# +=tp[j] | ||
161 | alcgr $AHI,$ahi | ||
162 | |||
163 | lg $nlo,0($j,$np) | ||
164 | mlgr $nhi,$mn0 # np[j]*m1 | ||
165 | algr $nlo,$NHI | ||
166 | lghi $NHI,0 | ||
167 | alcgr $nhi,$NHI | ||
168 | algr $nlo,$alo # +="tp[j]" | ||
169 | alcgr $NHI,$nhi | ||
170 | |||
171 | stg $nlo,160-8($j,$sp) # tp[j-1]= | ||
172 | la $j,8($j) # j++ | ||
173 | brct $count,.Linner | ||
174 | |||
175 | algr $NHI,$AHI | ||
176 | lghi $AHI,0 | ||
177 | alcgr $AHI,$AHI | ||
178 | alg $NHI,160($j,$sp)# accumulate previous upmost overflow bit | ||
179 | lghi $ahi,0 | ||
180 | alcgr $AHI,$ahi # new upmost overflow bit | ||
181 | stg $NHI,160-8($j,$sp) | ||
182 | stg $AHI,160($j,$sp) | ||
183 | |||
184 | la $bp,8($bp) # bp++ | ||
185 | clg $bp,160+8+32($j,$sp) # compare to &bp[num] | ||
186 | jne .Louter | ||
187 | |||
188 | lg $rp,160+8+16($j,$sp) # reincarnate rp | ||
189 | la $ap,160($sp) | ||
190 | ahi $num,1 # restore $num, incidentally clears "borrow" | ||
191 | |||
192 | la $j,0(%r0) | ||
193 | lr $count,$num | ||
194 | .Lsub: lg $alo,0($j,$ap) | ||
195 | slbg $alo,0($j,$np) | ||
196 | stg $alo,0($j,$rp) | ||
197 | la $j,8($j) | ||
198 | brct $count,.Lsub | ||
199 | lghi $ahi,0 | ||
200 | slbgr $AHI,$ahi # handle upmost carry | ||
201 | |||
202 | ngr $ap,$AHI | ||
203 | lghi $np,-1 | ||
204 | xgr $np,$AHI | ||
205 | ngr $np,$rp | ||
206 | ogr $ap,$np # ap=borrow?tp:rp | ||
207 | |||
208 | la $j,0(%r0) | ||
209 | lgr $count,$num | ||
210 | .Lcopy: lg $alo,0($j,$ap) # copy or in-place refresh | ||
211 | stg $j,160($j,$sp) # zap tp | ||
212 | stg $alo,0($j,$rp) | ||
213 | la $j,8($j) | ||
214 | brct $count,.Lcopy | ||
215 | |||
216 | la %r1,160+8+48($j,$sp) | ||
217 | lmg %r6,%r15,0(%r1) | ||
218 | lghi %r2,1 # signal "processed" | ||
219 | br %r14 | ||
220 | .size bn_mul_mont,.-bn_mul_mont | ||
221 | .string "Montgomery Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>" | ||
222 | ___ | ||
223 | |||
224 | print $code; | ||
225 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/s390x.S b/src/lib/libcrypto/bn/asm/s390x.S deleted file mode 100755 index 43fcb79bc0..0000000000 --- a/src/lib/libcrypto/bn/asm/s390x.S +++ /dev/null | |||
@@ -1,678 +0,0 @@ | |||
1 | .ident "s390x.S, version 1.1" | ||
2 | // ==================================================================== | ||
3 | // Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
4 | // project. | ||
5 | // | ||
6 | // Rights for redistribution and usage in source and binary forms are | ||
7 | // granted according to the OpenSSL license. Warranty of any kind is | ||
8 | // disclaimed. | ||
9 | // ==================================================================== | ||
10 | |||
11 | .text | ||
12 | |||
13 | #define zero %r0 | ||
14 | |||
15 | // BN_ULONG bn_mul_add_words(BN_ULONG *r2,BN_ULONG *r3,int r4,BN_ULONG r5); | ||
16 | .globl bn_mul_add_words | ||
17 | .type bn_mul_add_words,@function | ||
18 | .align 4 | ||
19 | bn_mul_add_words: | ||
20 | lghi zero,0 // zero = 0 | ||
21 | la %r1,0(%r2) // put rp aside | ||
22 | lghi %r2,0 // i=0; | ||
23 | ltgfr %r4,%r4 | ||
24 | bler %r14 // if (len<=0) return 0; | ||
25 | |||
26 | stmg %r6,%r10,48(%r15) | ||
27 | lghi %r10,3 | ||
28 | lghi %r8,0 // carry = 0 | ||
29 | nr %r10,%r4 // len%4 | ||
30 | sra %r4,2 // cnt=len/4 | ||
31 | jz .Loop1_madd // carry is incidentally cleared if branch taken | ||
32 | algr zero,zero // clear carry | ||
33 | |||
34 | .Loop4_madd: | ||
35 | lg %r7,0(%r2,%r3) // ap[i] | ||
36 | mlgr %r6,%r5 // *=w | ||
37 | alcgr %r7,%r8 // +=carry | ||
38 | alcgr %r6,zero | ||
39 | alg %r7,0(%r2,%r1) // +=rp[i] | ||
40 | stg %r7,0(%r2,%r1) // rp[i]= | ||
41 | |||
42 | lg %r9,8(%r2,%r3) | ||
43 | mlgr %r8,%r5 | ||
44 | alcgr %r9,%r6 | ||
45 | alcgr %r8,zero | ||
46 | alg %r9,8(%r2,%r1) | ||
47 | stg %r9,8(%r2,%r1) | ||
48 | |||
49 | lg %r7,16(%r2,%r3) | ||
50 | mlgr %r6,%r5 | ||
51 | alcgr %r7,%r8 | ||
52 | alcgr %r6,zero | ||
53 | alg %r7,16(%r2,%r1) | ||
54 | stg %r7,16(%r2,%r1) | ||
55 | |||
56 | lg %r9,24(%r2,%r3) | ||
57 | mlgr %r8,%r5 | ||
58 | alcgr %r9,%r6 | ||
59 | alcgr %r8,zero | ||
60 | alg %r9,24(%r2,%r1) | ||
61 | stg %r9,24(%r2,%r1) | ||
62 | |||
63 | la %r2,32(%r2) // i+=4 | ||
64 | brct %r4,.Loop4_madd | ||
65 | |||
66 | la %r10,1(%r10) // see if len%4 is zero ... | ||
67 | brct %r10,.Loop1_madd // without touching condition code:-) | ||
68 | |||
69 | .Lend_madd: | ||
70 | alcgr %r8,zero // collect carry bit | ||
71 | lgr %r2,%r8 | ||
72 | lmg %r6,%r10,48(%r15) | ||
73 | br %r14 | ||
74 | |||
75 | .Loop1_madd: | ||
76 | lg %r7,0(%r2,%r3) // ap[i] | ||
77 | mlgr %r6,%r5 // *=w | ||
78 | alcgr %r7,%r8 // +=carry | ||
79 | alcgr %r6,zero | ||
80 | alg %r7,0(%r2,%r1) // +=rp[i] | ||
81 | stg %r7,0(%r2,%r1) // rp[i]= | ||
82 | |||
83 | lgr %r8,%r6 | ||
84 | la %r2,8(%r2) // i++ | ||
85 | brct %r10,.Loop1_madd | ||
86 | |||
87 | j .Lend_madd | ||
88 | .size bn_mul_add_words,.-bn_mul_add_words | ||
89 | |||
90 | // BN_ULONG bn_mul_words(BN_ULONG *r2,BN_ULONG *r3,int r4,BN_ULONG r5); | ||
91 | .globl bn_mul_words | ||
92 | .type bn_mul_words,@function | ||
93 | .align 4 | ||
94 | bn_mul_words: | ||
95 | lghi zero,0 // zero = 0 | ||
96 | la %r1,0(%r2) // put rp aside | ||
97 | lghi %r2,0 // i=0; | ||
98 | ltgfr %r4,%r4 | ||
99 | bler %r14 // if (len<=0) return 0; | ||
100 | |||
101 | stmg %r6,%r10,48(%r15) | ||
102 | lghi %r10,3 | ||
103 | lghi %r8,0 // carry = 0 | ||
104 | nr %r10,%r4 // len%4 | ||
105 | sra %r4,2 // cnt=len/4 | ||
106 | jz .Loop1_mul // carry is incidentally cleared if branch taken | ||
107 | algr zero,zero // clear carry | ||
108 | |||
109 | .Loop4_mul: | ||
110 | lg %r7,0(%r2,%r3) // ap[i] | ||
111 | mlgr %r6,%r5 // *=w | ||
112 | alcgr %r7,%r8 // +=carry | ||
113 | stg %r7,0(%r2,%r1) // rp[i]= | ||
114 | |||
115 | lg %r9,8(%r2,%r3) | ||
116 | mlgr %r8,%r5 | ||
117 | alcgr %r9,%r6 | ||
118 | stg %r9,8(%r2,%r1) | ||
119 | |||
120 | lg %r7,16(%r2,%r3) | ||
121 | mlgr %r6,%r5 | ||
122 | alcgr %r7,%r8 | ||
123 | stg %r7,16(%r2,%r1) | ||
124 | |||
125 | lg %r9,24(%r2,%r3) | ||
126 | mlgr %r8,%r5 | ||
127 | alcgr %r9,%r6 | ||
128 | stg %r9,24(%r2,%r1) | ||
129 | |||
130 | la %r2,32(%r2) // i+=4 | ||
131 | brct %r4,.Loop4_mul | ||
132 | |||
133 | la %r10,1(%r10) // see if len%4 is zero ... | ||
134 | brct %r10,.Loop1_mul // without touching condition code:-) | ||
135 | |||
136 | .Lend_mul: | ||
137 | alcgr %r8,zero // collect carry bit | ||
138 | lgr %r2,%r8 | ||
139 | lmg %r6,%r10,48(%r15) | ||
140 | br %r14 | ||
141 | |||
142 | .Loop1_mul: | ||
143 | lg %r7,0(%r2,%r3) // ap[i] | ||
144 | mlgr %r6,%r5 // *=w | ||
145 | alcgr %r7,%r8 // +=carry | ||
146 | stg %r7,0(%r2,%r1) // rp[i]= | ||
147 | |||
148 | lgr %r8,%r6 | ||
149 | la %r2,8(%r2) // i++ | ||
150 | brct %r10,.Loop1_mul | ||
151 | |||
152 | j .Lend_mul | ||
153 | .size bn_mul_words,.-bn_mul_words | ||
154 | |||
155 | // void bn_sqr_words(BN_ULONG *r2,BN_ULONG *r2,int r4) | ||
156 | .globl bn_sqr_words | ||
157 | .type bn_sqr_words,@function | ||
158 | .align 4 | ||
159 | bn_sqr_words: | ||
160 | ltgfr %r4,%r4 | ||
161 | bler %r14 | ||
162 | |||
163 | stmg %r6,%r7,48(%r15) | ||
164 | srag %r1,%r4,2 // cnt=len/4 | ||
165 | jz .Loop1_sqr | ||
166 | |||
167 | .Loop4_sqr: | ||
168 | lg %r7,0(%r3) | ||
169 | mlgr %r6,%r7 | ||
170 | stg %r7,0(%r2) | ||
171 | stg %r6,8(%r2) | ||
172 | |||
173 | lg %r7,8(%r3) | ||
174 | mlgr %r6,%r7 | ||
175 | stg %r7,16(%r2) | ||
176 | stg %r6,24(%r2) | ||
177 | |||
178 | lg %r7,16(%r3) | ||
179 | mlgr %r6,%r7 | ||
180 | stg %r7,32(%r2) | ||
181 | stg %r6,40(%r2) | ||
182 | |||
183 | lg %r7,24(%r3) | ||
184 | mlgr %r6,%r7 | ||
185 | stg %r7,48(%r2) | ||
186 | stg %r6,56(%r2) | ||
187 | |||
188 | la %r3,32(%r3) | ||
189 | la %r2,64(%r2) | ||
190 | brct %r1,.Loop4_sqr | ||
191 | |||
192 | lghi %r1,3 | ||
193 | nr %r4,%r1 // cnt=len%4 | ||
194 | jz .Lend_sqr | ||
195 | |||
196 | .Loop1_sqr: | ||
197 | lg %r7,0(%r3) | ||
198 | mlgr %r6,%r7 | ||
199 | stg %r7,0(%r2) | ||
200 | stg %r6,8(%r2) | ||
201 | |||
202 | la %r3,8(%r3) | ||
203 | la %r2,16(%r2) | ||
204 | brct %r4,.Loop1_sqr | ||
205 | |||
206 | .Lend_sqr: | ||
207 | lmg %r6,%r7,48(%r15) | ||
208 | br %r14 | ||
209 | .size bn_sqr_words,.-bn_sqr_words | ||
210 | |||
211 | // BN_ULONG bn_div_words(BN_ULONG h,BN_ULONG l,BN_ULONG d); | ||
212 | .globl bn_div_words | ||
213 | .type bn_div_words,@function | ||
214 | .align 4 | ||
215 | bn_div_words: | ||
216 | dlgr %r2,%r4 | ||
217 | lgr %r2,%r3 | ||
218 | br %r14 | ||
219 | .size bn_div_words,.-bn_div_words | ||
220 | |||
221 | // BN_ULONG bn_add_words(BN_ULONG *r2,BN_ULONG *r3,BN_ULONG *r4,int r5); | ||
222 | .globl bn_add_words | ||
223 | .type bn_add_words,@function | ||
224 | .align 4 | ||
225 | bn_add_words: | ||
226 | la %r1,0(%r2) // put rp aside | ||
227 | lghi %r2,0 // i=0 | ||
228 | ltgfr %r5,%r5 | ||
229 | bler %r14 // if (len<=0) return 0; | ||
230 | |||
231 | stg %r6,48(%r15) | ||
232 | lghi %r6,3 | ||
233 | nr %r6,%r5 // len%4 | ||
234 | sra %r5,2 // len/4, use sra because it sets condition code | ||
235 | jz .Loop1_add // carry is incidentally cleared if branch taken | ||
236 | algr %r2,%r2 // clear carry | ||
237 | |||
238 | .Loop4_add: | ||
239 | lg %r0,0(%r2,%r3) | ||
240 | alcg %r0,0(%r2,%r4) | ||
241 | stg %r0,0(%r2,%r1) | ||
242 | lg %r0,8(%r2,%r3) | ||
243 | alcg %r0,8(%r2,%r4) | ||
244 | stg %r0,8(%r2,%r1) | ||
245 | lg %r0,16(%r2,%r3) | ||
246 | alcg %r0,16(%r2,%r4) | ||
247 | stg %r0,16(%r2,%r1) | ||
248 | lg %r0,24(%r2,%r3) | ||
249 | alcg %r0,24(%r2,%r4) | ||
250 | stg %r0,24(%r2,%r1) | ||
251 | |||
252 | la %r2,32(%r2) // i+=4 | ||
253 | brct %r5,.Loop4_add | ||
254 | |||
255 | la %r6,1(%r6) // see if len%4 is zero ... | ||
256 | brct %r6,.Loop1_add // without touching condition code:-) | ||
257 | |||
258 | .Lexit_add: | ||
259 | lghi %r2,0 | ||
260 | alcgr %r2,%r2 | ||
261 | lg %r6,48(%r15) | ||
262 | br %r14 | ||
263 | |||
264 | .Loop1_add: | ||
265 | lg %r0,0(%r2,%r3) | ||
266 | alcg %r0,0(%r2,%r4) | ||
267 | stg %r0,0(%r2,%r1) | ||
268 | |||
269 | la %r2,8(%r2) // i++ | ||
270 | brct %r6,.Loop1_add | ||
271 | |||
272 | j .Lexit_add | ||
273 | .size bn_add_words,.-bn_add_words | ||
274 | |||
275 | // BN_ULONG bn_sub_words(BN_ULONG *r2,BN_ULONG *r3,BN_ULONG *r4,int r5); | ||
276 | .globl bn_sub_words | ||
277 | .type bn_sub_words,@function | ||
278 | .align 4 | ||
279 | bn_sub_words: | ||
280 | la %r1,0(%r2) // put rp aside | ||
281 | lghi %r2,0 // i=0 | ||
282 | ltgfr %r5,%r5 | ||
283 | bler %r14 // if (len<=0) return 0; | ||
284 | |||
285 | stg %r6,48(%r15) | ||
286 | lghi %r6,3 | ||
287 | nr %r6,%r5 // len%4 | ||
288 | sra %r5,2 // len/4, use sra because it sets condition code | ||
289 | jnz .Loop4_sub // borrow is incidentally cleared if branch taken | ||
290 | slgr %r2,%r2 // clear borrow | ||
291 | |||
292 | .Loop1_sub: | ||
293 | lg %r0,0(%r2,%r3) | ||
294 | slbg %r0,0(%r2,%r4) | ||
295 | stg %r0,0(%r2,%r1) | ||
296 | |||
297 | la %r2,8(%r2) // i++ | ||
298 | brct %r6,.Loop1_sub | ||
299 | j .Lexit_sub | ||
300 | |||
301 | .Loop4_sub: | ||
302 | lg %r0,0(%r2,%r3) | ||
303 | slbg %r0,0(%r2,%r4) | ||
304 | stg %r0,0(%r2,%r1) | ||
305 | lg %r0,8(%r2,%r3) | ||
306 | slbg %r0,8(%r2,%r4) | ||
307 | stg %r0,8(%r2,%r1) | ||
308 | lg %r0,16(%r2,%r3) | ||
309 | slbg %r0,16(%r2,%r4) | ||
310 | stg %r0,16(%r2,%r1) | ||
311 | lg %r0,24(%r2,%r3) | ||
312 | slbg %r0,24(%r2,%r4) | ||
313 | stg %r0,24(%r2,%r1) | ||
314 | |||
315 | la %r2,32(%r2) // i+=4 | ||
316 | brct %r5,.Loop4_sub | ||
317 | |||
318 | la %r6,1(%r6) // see if len%4 is zero ... | ||
319 | brct %r6,.Loop1_sub // without touching condition code:-) | ||
320 | |||
321 | .Lexit_sub: | ||
322 | lghi %r2,0 | ||
323 | slbgr %r2,%r2 | ||
324 | lcgr %r2,%r2 | ||
325 | lg %r6,48(%r15) | ||
326 | br %r14 | ||
327 | .size bn_sub_words,.-bn_sub_words | ||
328 | |||
329 | #define c1 %r1 | ||
330 | #define c2 %r5 | ||
331 | #define c3 %r8 | ||
332 | |||
333 | #define mul_add_c(ai,bi,c1,c2,c3) \ | ||
334 | lg %r7,ai*8(%r3); \ | ||
335 | mlg %r6,bi*8(%r4); \ | ||
336 | algr c1,%r7; \ | ||
337 | alcgr c2,%r6; \ | ||
338 | alcgr c3,zero | ||
339 | |||
340 | // void bn_mul_comba8(BN_ULONG *r2,BN_ULONG *r3,BN_ULONG *r4); | ||
341 | .globl bn_mul_comba8 | ||
342 | .type bn_mul_comba8,@function | ||
343 | .align 4 | ||
344 | bn_mul_comba8: | ||
345 | stmg %r6,%r8,48(%r15) | ||
346 | |||
347 | lghi c1,0 | ||
348 | lghi c2,0 | ||
349 | lghi c3,0 | ||
350 | lghi zero,0 | ||
351 | |||
352 | mul_add_c(0,0,c1,c2,c3); | ||
353 | stg c1,0*8(%r2) | ||
354 | lghi c1,0 | ||
355 | |||
356 | mul_add_c(0,1,c2,c3,c1); | ||
357 | mul_add_c(1,0,c2,c3,c1); | ||
358 | stg c2,1*8(%r2) | ||
359 | lghi c2,0 | ||
360 | |||
361 | mul_add_c(2,0,c3,c1,c2); | ||
362 | mul_add_c(1,1,c3,c1,c2); | ||
363 | mul_add_c(0,2,c3,c1,c2); | ||
364 | stg c3,2*8(%r2) | ||
365 | lghi c3,0 | ||
366 | |||
367 | mul_add_c(0,3,c1,c2,c3); | ||
368 | mul_add_c(1,2,c1,c2,c3); | ||
369 | mul_add_c(2,1,c1,c2,c3); | ||
370 | mul_add_c(3,0,c1,c2,c3); | ||
371 | stg c1,3*8(%r2) | ||
372 | lghi c1,0 | ||
373 | |||
374 | mul_add_c(4,0,c2,c3,c1); | ||
375 | mul_add_c(3,1,c2,c3,c1); | ||
376 | mul_add_c(2,2,c2,c3,c1); | ||
377 | mul_add_c(1,3,c2,c3,c1); | ||
378 | mul_add_c(0,4,c2,c3,c1); | ||
379 | stg c2,4*8(%r2) | ||
380 | lghi c2,0 | ||
381 | |||
382 | mul_add_c(0,5,c3,c1,c2); | ||
383 | mul_add_c(1,4,c3,c1,c2); | ||
384 | mul_add_c(2,3,c3,c1,c2); | ||
385 | mul_add_c(3,2,c3,c1,c2); | ||
386 | mul_add_c(4,1,c3,c1,c2); | ||
387 | mul_add_c(5,0,c3,c1,c2); | ||
388 | stg c3,5*8(%r2) | ||
389 | lghi c3,0 | ||
390 | |||
391 | mul_add_c(6,0,c1,c2,c3); | ||
392 | mul_add_c(5,1,c1,c2,c3); | ||
393 | mul_add_c(4,2,c1,c2,c3); | ||
394 | mul_add_c(3,3,c1,c2,c3); | ||
395 | mul_add_c(2,4,c1,c2,c3); | ||
396 | mul_add_c(1,5,c1,c2,c3); | ||
397 | mul_add_c(0,6,c1,c2,c3); | ||
398 | stg c1,6*8(%r2) | ||
399 | lghi c1,0 | ||
400 | |||
401 | mul_add_c(0,7,c2,c3,c1); | ||
402 | mul_add_c(1,6,c2,c3,c1); | ||
403 | mul_add_c(2,5,c2,c3,c1); | ||
404 | mul_add_c(3,4,c2,c3,c1); | ||
405 | mul_add_c(4,3,c2,c3,c1); | ||
406 | mul_add_c(5,2,c2,c3,c1); | ||
407 | mul_add_c(6,1,c2,c3,c1); | ||
408 | mul_add_c(7,0,c2,c3,c1); | ||
409 | stg c2,7*8(%r2) | ||
410 | lghi c2,0 | ||
411 | |||
412 | mul_add_c(7,1,c3,c1,c2); | ||
413 | mul_add_c(6,2,c3,c1,c2); | ||
414 | mul_add_c(5,3,c3,c1,c2); | ||
415 | mul_add_c(4,4,c3,c1,c2); | ||
416 | mul_add_c(3,5,c3,c1,c2); | ||
417 | mul_add_c(2,6,c3,c1,c2); | ||
418 | mul_add_c(1,7,c3,c1,c2); | ||
419 | stg c3,8*8(%r2) | ||
420 | lghi c3,0 | ||
421 | |||
422 | mul_add_c(2,7,c1,c2,c3); | ||
423 | mul_add_c(3,6,c1,c2,c3); | ||
424 | mul_add_c(4,5,c1,c2,c3); | ||
425 | mul_add_c(5,4,c1,c2,c3); | ||
426 | mul_add_c(6,3,c1,c2,c3); | ||
427 | mul_add_c(7,2,c1,c2,c3); | ||
428 | stg c1,9*8(%r2) | ||
429 | lghi c1,0 | ||
430 | |||
431 | mul_add_c(7,3,c2,c3,c1); | ||
432 | mul_add_c(6,4,c2,c3,c1); | ||
433 | mul_add_c(5,5,c2,c3,c1); | ||
434 | mul_add_c(4,6,c2,c3,c1); | ||
435 | mul_add_c(3,7,c2,c3,c1); | ||
436 | stg c2,10*8(%r2) | ||
437 | lghi c2,0 | ||
438 | |||
439 | mul_add_c(4,7,c3,c1,c2); | ||
440 | mul_add_c(5,6,c3,c1,c2); | ||
441 | mul_add_c(6,5,c3,c1,c2); | ||
442 | mul_add_c(7,4,c3,c1,c2); | ||
443 | stg c3,11*8(%r2) | ||
444 | lghi c3,0 | ||
445 | |||
446 | mul_add_c(7,5,c1,c2,c3); | ||
447 | mul_add_c(6,6,c1,c2,c3); | ||
448 | mul_add_c(5,7,c1,c2,c3); | ||
449 | stg c1,12*8(%r2) | ||
450 | lghi c1,0 | ||
451 | |||
452 | |||
453 | mul_add_c(6,7,c2,c3,c1); | ||
454 | mul_add_c(7,6,c2,c3,c1); | ||
455 | stg c2,13*8(%r2) | ||
456 | lghi c2,0 | ||
457 | |||
458 | mul_add_c(7,7,c3,c1,c2); | ||
459 | stg c3,14*8(%r2) | ||
460 | stg c1,15*8(%r2) | ||
461 | |||
462 | lmg %r6,%r8,48(%r15) | ||
463 | br %r14 | ||
464 | .size bn_mul_comba8,.-bn_mul_comba8 | ||
465 | |||
466 | // void bn_mul_comba4(BN_ULONG *r2,BN_ULONG *r3,BN_ULONG *r4); | ||
467 | .globl bn_mul_comba4 | ||
468 | .type bn_mul_comba4,@function | ||
469 | .align 4 | ||
470 | bn_mul_comba4: | ||
471 | stmg %r6,%r8,48(%r15) | ||
472 | |||
473 | lghi c1,0 | ||
474 | lghi c2,0 | ||
475 | lghi c3,0 | ||
476 | lghi zero,0 | ||
477 | |||
478 | mul_add_c(0,0,c1,c2,c3); | ||
479 | stg c1,0*8(%r3) | ||
480 | lghi c1,0 | ||
481 | |||
482 | mul_add_c(0,1,c2,c3,c1); | ||
483 | mul_add_c(1,0,c2,c3,c1); | ||
484 | stg c2,1*8(%r2) | ||
485 | lghi c2,0 | ||
486 | |||
487 | mul_add_c(2,0,c3,c1,c2); | ||
488 | mul_add_c(1,1,c3,c1,c2); | ||
489 | mul_add_c(0,2,c3,c1,c2); | ||
490 | stg c3,2*8(%r2) | ||
491 | lghi c3,0 | ||
492 | |||
493 | mul_add_c(0,3,c1,c2,c3); | ||
494 | mul_add_c(1,2,c1,c2,c3); | ||
495 | mul_add_c(2,1,c1,c2,c3); | ||
496 | mul_add_c(3,0,c1,c2,c3); | ||
497 | stg c1,3*8(%r2) | ||
498 | lghi c1,0 | ||
499 | |||
500 | mul_add_c(3,1,c2,c3,c1); | ||
501 | mul_add_c(2,2,c2,c3,c1); | ||
502 | mul_add_c(1,3,c2,c3,c1); | ||
503 | stg c2,4*8(%r2) | ||
504 | lghi c2,0 | ||
505 | |||
506 | mul_add_c(2,3,c3,c1,c2); | ||
507 | mul_add_c(3,2,c3,c1,c2); | ||
508 | stg c3,5*8(%r2) | ||
509 | lghi c3,0 | ||
510 | |||
511 | mul_add_c(3,3,c1,c2,c3); | ||
512 | stg c1,6*8(%r2) | ||
513 | stg c2,7*8(%r2) | ||
514 | |||
515 | stmg %r6,%r8,48(%r15) | ||
516 | br %r14 | ||
517 | .size bn_mul_comba4,.-bn_mul_comba4 | ||
518 | |||
519 | #define sqr_add_c(ai,c1,c2,c3) \ | ||
520 | lg %r7,ai*8(%r3); \ | ||
521 | mlgr %r6,%r7; \ | ||
522 | algr c1,%r7; \ | ||
523 | alcgr c2,%r6; \ | ||
524 | alcgr c3,zero | ||
525 | |||
526 | #define sqr_add_c2(ai,aj,c1,c2,c3) \ | ||
527 | lg %r7,ai*8(%r3); \ | ||
528 | mlg %r6,aj*8(%r3); \ | ||
529 | algr c1,%r7; \ | ||
530 | alcgr c2,%r6; \ | ||
531 | alcgr c3,zero; \ | ||
532 | algr c1,%r7; \ | ||
533 | alcgr c2,%r6; \ | ||
534 | alcgr c3,zero | ||
535 | |||
536 | // void bn_sqr_comba8(BN_ULONG *r2,BN_ULONG *r3); | ||
537 | .globl bn_sqr_comba8 | ||
538 | .type bn_sqr_comba8,@function | ||
539 | .align 4 | ||
540 | bn_sqr_comba8: | ||
541 | stmg %r6,%r8,48(%r15) | ||
542 | |||
543 | lghi c1,0 | ||
544 | lghi c2,0 | ||
545 | lghi c3,0 | ||
546 | lghi zero,0 | ||
547 | |||
548 | sqr_add_c(0,c1,c2,c3); | ||
549 | stg c1,0*8(%r2) | ||
550 | lghi c1,0 | ||
551 | |||
552 | sqr_add_c2(1,0,c2,c3,c1); | ||
553 | stg c2,1*8(%r2) | ||
554 | lghi c2,0 | ||
555 | |||
556 | sqr_add_c(1,c3,c1,c2); | ||
557 | sqr_add_c2(2,0,c3,c1,c2); | ||
558 | stg c3,2*8(%r2) | ||
559 | lghi c3,0 | ||
560 | |||
561 | sqr_add_c2(3,0,c1,c2,c3); | ||
562 | sqr_add_c2(2,1,c1,c2,c3); | ||
563 | stg c1,3*8(%r2) | ||
564 | lghi c1,0 | ||
565 | |||
566 | sqr_add_c(2,c2,c3,c1); | ||
567 | sqr_add_c2(3,1,c2,c3,c1); | ||
568 | sqr_add_c2(4,0,c2,c3,c1); | ||
569 | stg c2,4*8(%r2) | ||
570 | lghi c2,0 | ||
571 | |||
572 | sqr_add_c2(5,0,c3,c1,c2); | ||
573 | sqr_add_c2(4,1,c3,c1,c2); | ||
574 | sqr_add_c2(3,2,c3,c1,c2); | ||
575 | stg c3,5*8(%r2) | ||
576 | lghi c3,0 | ||
577 | |||
578 | sqr_add_c(3,c1,c2,c3); | ||
579 | sqr_add_c2(4,2,c1,c2,c3); | ||
580 | sqr_add_c2(5,1,c1,c2,c3); | ||
581 | sqr_add_c2(6,0,c1,c2,c3); | ||
582 | stg c1,6*8(%r2) | ||
583 | lghi c1,0 | ||
584 | |||
585 | sqr_add_c2(7,0,c2,c3,c1); | ||
586 | sqr_add_c2(6,1,c2,c3,c1); | ||
587 | sqr_add_c2(5,2,c2,c3,c1); | ||
588 | sqr_add_c2(4,3,c2,c3,c1); | ||
589 | stg c2,7*8(%r2) | ||
590 | lghi c2,0 | ||
591 | |||
592 | sqr_add_c(4,c3,c1,c2); | ||
593 | sqr_add_c2(5,3,c3,c1,c2); | ||
594 | sqr_add_c2(6,2,c3,c1,c2); | ||
595 | sqr_add_c2(7,1,c3,c1,c2); | ||
596 | stg c3,8*8(%r2) | ||
597 | lghi c3,0 | ||
598 | |||
599 | sqr_add_c2(7,2,c1,c2,c3); | ||
600 | sqr_add_c2(6,3,c1,c2,c3); | ||
601 | sqr_add_c2(5,4,c1,c2,c3); | ||
602 | stg c1,9*8(%r2) | ||
603 | lghi c1,0 | ||
604 | |||
605 | sqr_add_c(5,c2,c3,c1); | ||
606 | sqr_add_c2(6,4,c2,c3,c1); | ||
607 | sqr_add_c2(7,3,c2,c3,c1); | ||
608 | stg c2,10*8(%r2) | ||
609 | lghi c2,0 | ||
610 | |||
611 | sqr_add_c2(7,4,c3,c1,c2); | ||
612 | sqr_add_c2(6,5,c3,c1,c2); | ||
613 | stg c3,11*8(%r2) | ||
614 | lghi c3,0 | ||
615 | |||
616 | sqr_add_c(6,c1,c2,c3); | ||
617 | sqr_add_c2(7,5,c1,c2,c3); | ||
618 | stg c1,12*8(%r2) | ||
619 | lghi c1,0 | ||
620 | |||
621 | sqr_add_c2(7,6,c2,c3,c1); | ||
622 | stg c2,13*8(%r2) | ||
623 | lghi c2,0 | ||
624 | |||
625 | sqr_add_c(7,c3,c1,c2); | ||
626 | stg c3,14*8(%r2) | ||
627 | stg c1,15*8(%r2) | ||
628 | |||
629 | lmg %r6,%r8,48(%r15) | ||
630 | br %r14 | ||
631 | .size bn_sqr_comba8,.-bn_sqr_comba8 | ||
632 | |||
633 | // void bn_sqr_comba4(BN_ULONG *r2,BN_ULONG *r3); | ||
634 | .globl bn_sqr_comba4 | ||
635 | .type bn_sqr_comba4,@function | ||
636 | .align 4 | ||
637 | bn_sqr_comba4: | ||
638 | stmg %r6,%r8,48(%r15) | ||
639 | |||
640 | lghi c1,0 | ||
641 | lghi c2,0 | ||
642 | lghi c3,0 | ||
643 | lghi zero,0 | ||
644 | |||
645 | sqr_add_c(0,c1,c2,c3); | ||
646 | stg c1,0*8(%r2) | ||
647 | lghi c1,0 | ||
648 | |||
649 | sqr_add_c2(1,0,c2,c3,c1); | ||
650 | stg c2,1*8(%r2) | ||
651 | lghi c2,0 | ||
652 | |||
653 | sqr_add_c(1,c3,c1,c2); | ||
654 | sqr_add_c2(2,0,c3,c1,c2); | ||
655 | stg c3,2*8(%r2) | ||
656 | lghi c3,0 | ||
657 | |||
658 | sqr_add_c2(3,0,c1,c2,c3); | ||
659 | sqr_add_c2(2,1,c1,c2,c3); | ||
660 | stg c1,3*8(%r2) | ||
661 | lghi c1,0 | ||
662 | |||
663 | sqr_add_c(2,c2,c3,c1); | ||
664 | sqr_add_c2(3,1,c2,c3,c1); | ||
665 | stg c2,4*8(%r2) | ||
666 | lghi c2,0 | ||
667 | |||
668 | sqr_add_c2(3,2,c3,c1,c2); | ||
669 | stg c3,5*8(%r2) | ||
670 | lghi c3,0 | ||
671 | |||
672 | sqr_add_c(3,c1,c2,c3); | ||
673 | stg c1,6*8(%r2) | ||
674 | stg c2,7*8(%r2) | ||
675 | |||
676 | lmg %r6,%r8,48(%r15) | ||
677 | br %r14 | ||
678 | .size bn_sqr_comba4,.-bn_sqr_comba4 | ||
diff --git a/src/lib/libcrypto/bn/asm/sparcv8.S b/src/lib/libcrypto/bn/asm/sparcv8.S deleted file mode 100644 index 88c5dc480a..0000000000 --- a/src/lib/libcrypto/bn/asm/sparcv8.S +++ /dev/null | |||
@@ -1,1458 +0,0 @@ | |||
1 | .ident "sparcv8.s, Version 1.4" | ||
2 | .ident "SPARC v8 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>" | ||
3 | |||
4 | /* | ||
5 | * ==================================================================== | ||
6 | * Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
7 | * project. | ||
8 | * | ||
9 | * Rights for redistribution and usage in source and binary forms are | ||
10 | * granted according to the OpenSSL license. Warranty of any kind is | ||
11 | * disclaimed. | ||
12 | * ==================================================================== | ||
13 | */ | ||
14 | |||
15 | /* | ||
16 | * This is my modest contributon to OpenSSL project (see | ||
17 | * http://www.openssl.org/ for more information about it) and is | ||
18 | * a drop-in SuperSPARC ISA replacement for crypto/bn/bn_asm.c | ||
19 | * module. For updates see http://fy.chalmers.se/~appro/hpe/. | ||
20 | * | ||
21 | * See bn_asm.sparc.v8plus.S for more details. | ||
22 | */ | ||
23 | |||
24 | /* | ||
25 | * Revision history. | ||
26 | * | ||
27 | * 1.1 - new loop unrolling model(*); | ||
28 | * 1.2 - made gas friendly; | ||
29 | * 1.3 - fixed problem with /usr/ccs/lib/cpp; | ||
30 | * 1.4 - some retunes; | ||
31 | * | ||
32 | * (*) see bn_asm.sparc.v8plus.S for details | ||
33 | */ | ||
34 | |||
35 | .section ".text",#alloc,#execinstr | ||
36 | .file "bn_asm.sparc.v8.S" | ||
37 | |||
38 | .align 32 | ||
39 | |||
40 | .global bn_mul_add_words | ||
41 | /* | ||
42 | * BN_ULONG bn_mul_add_words(rp,ap,num,w) | ||
43 | * BN_ULONG *rp,*ap; | ||
44 | * int num; | ||
45 | * BN_ULONG w; | ||
46 | */ | ||
47 | bn_mul_add_words: | ||
48 | cmp %o2,0 | ||
49 | bg,a .L_bn_mul_add_words_proceed | ||
50 | ld [%o1],%g2 | ||
51 | retl | ||
52 | clr %o0 | ||
53 | |||
54 | .L_bn_mul_add_words_proceed: | ||
55 | andcc %o2,-4,%g0 | ||
56 | bz .L_bn_mul_add_words_tail | ||
57 | clr %o5 | ||
58 | |||
59 | .L_bn_mul_add_words_loop: | ||
60 | ld [%o0],%o4 | ||
61 | ld [%o1+4],%g3 | ||
62 | umul %o3,%g2,%g2 | ||
63 | rd %y,%g1 | ||
64 | addcc %o4,%o5,%o4 | ||
65 | addx %g1,0,%g1 | ||
66 | addcc %o4,%g2,%o4 | ||
67 | st %o4,[%o0] | ||
68 | addx %g1,0,%o5 | ||
69 | |||
70 | ld [%o0+4],%o4 | ||
71 | ld [%o1+8],%g2 | ||
72 | umul %o3,%g3,%g3 | ||
73 | dec 4,%o2 | ||
74 | rd %y,%g1 | ||
75 | addcc %o4,%o5,%o4 | ||
76 | addx %g1,0,%g1 | ||
77 | addcc %o4,%g3,%o4 | ||
78 | st %o4,[%o0+4] | ||
79 | addx %g1,0,%o5 | ||
80 | |||
81 | ld [%o0+8],%o4 | ||
82 | ld [%o1+12],%g3 | ||
83 | umul %o3,%g2,%g2 | ||
84 | inc 16,%o1 | ||
85 | rd %y,%g1 | ||
86 | addcc %o4,%o5,%o4 | ||
87 | addx %g1,0,%g1 | ||
88 | addcc %o4,%g2,%o4 | ||
89 | st %o4,[%o0+8] | ||
90 | addx %g1,0,%o5 | ||
91 | |||
92 | ld [%o0+12],%o4 | ||
93 | umul %o3,%g3,%g3 | ||
94 | inc 16,%o0 | ||
95 | rd %y,%g1 | ||
96 | addcc %o4,%o5,%o4 | ||
97 | addx %g1,0,%g1 | ||
98 | addcc %o4,%g3,%o4 | ||
99 | st %o4,[%o0-4] | ||
100 | addx %g1,0,%o5 | ||
101 | andcc %o2,-4,%g0 | ||
102 | bnz,a .L_bn_mul_add_words_loop | ||
103 | ld [%o1],%g2 | ||
104 | |||
105 | tst %o2 | ||
106 | bnz,a .L_bn_mul_add_words_tail | ||
107 | ld [%o1],%g2 | ||
108 | .L_bn_mul_add_words_return: | ||
109 | retl | ||
110 | mov %o5,%o0 | ||
111 | nop | ||
112 | |||
113 | .L_bn_mul_add_words_tail: | ||
114 | ld [%o0],%o4 | ||
115 | umul %o3,%g2,%g2 | ||
116 | addcc %o4,%o5,%o4 | ||
117 | rd %y,%g1 | ||
118 | addx %g1,0,%g1 | ||
119 | addcc %o4,%g2,%o4 | ||
120 | addx %g1,0,%o5 | ||
121 | deccc %o2 | ||
122 | bz .L_bn_mul_add_words_return | ||
123 | st %o4,[%o0] | ||
124 | |||
125 | ld [%o1+4],%g2 | ||
126 | ld [%o0+4],%o4 | ||
127 | umul %o3,%g2,%g2 | ||
128 | rd %y,%g1 | ||
129 | addcc %o4,%o5,%o4 | ||
130 | addx %g1,0,%g1 | ||
131 | addcc %o4,%g2,%o4 | ||
132 | addx %g1,0,%o5 | ||
133 | deccc %o2 | ||
134 | bz .L_bn_mul_add_words_return | ||
135 | st %o4,[%o0+4] | ||
136 | |||
137 | ld [%o1+8],%g2 | ||
138 | ld [%o0+8],%o4 | ||
139 | umul %o3,%g2,%g2 | ||
140 | rd %y,%g1 | ||
141 | addcc %o4,%o5,%o4 | ||
142 | addx %g1,0,%g1 | ||
143 | addcc %o4,%g2,%o4 | ||
144 | st %o4,[%o0+8] | ||
145 | retl | ||
146 | addx %g1,0,%o0 | ||
147 | |||
148 | .type bn_mul_add_words,#function | ||
149 | .size bn_mul_add_words,(.-bn_mul_add_words) | ||
150 | |||
151 | .align 32 | ||
152 | |||
153 | .global bn_mul_words | ||
154 | /* | ||
155 | * BN_ULONG bn_mul_words(rp,ap,num,w) | ||
156 | * BN_ULONG *rp,*ap; | ||
157 | * int num; | ||
158 | * BN_ULONG w; | ||
159 | */ | ||
160 | bn_mul_words: | ||
161 | cmp %o2,0 | ||
162 | bg,a .L_bn_mul_words_proceeed | ||
163 | ld [%o1],%g2 | ||
164 | retl | ||
165 | clr %o0 | ||
166 | |||
167 | .L_bn_mul_words_proceeed: | ||
168 | andcc %o2,-4,%g0 | ||
169 | bz .L_bn_mul_words_tail | ||
170 | clr %o5 | ||
171 | |||
172 | .L_bn_mul_words_loop: | ||
173 | ld [%o1+4],%g3 | ||
174 | umul %o3,%g2,%g2 | ||
175 | addcc %g2,%o5,%g2 | ||
176 | rd %y,%g1 | ||
177 | addx %g1,0,%o5 | ||
178 | st %g2,[%o0] | ||
179 | |||
180 | ld [%o1+8],%g2 | ||
181 | umul %o3,%g3,%g3 | ||
182 | addcc %g3,%o5,%g3 | ||
183 | rd %y,%g1 | ||
184 | dec 4,%o2 | ||
185 | addx %g1,0,%o5 | ||
186 | st %g3,[%o0+4] | ||
187 | |||
188 | ld [%o1+12],%g3 | ||
189 | umul %o3,%g2,%g2 | ||
190 | addcc %g2,%o5,%g2 | ||
191 | rd %y,%g1 | ||
192 | inc 16,%o1 | ||
193 | st %g2,[%o0+8] | ||
194 | addx %g1,0,%o5 | ||
195 | |||
196 | umul %o3,%g3,%g3 | ||
197 | addcc %g3,%o5,%g3 | ||
198 | rd %y,%g1 | ||
199 | inc 16,%o0 | ||
200 | addx %g1,0,%o5 | ||
201 | st %g3,[%o0-4] | ||
202 | andcc %o2,-4,%g0 | ||
203 | nop | ||
204 | bnz,a .L_bn_mul_words_loop | ||
205 | ld [%o1],%g2 | ||
206 | |||
207 | tst %o2 | ||
208 | bnz,a .L_bn_mul_words_tail | ||
209 | ld [%o1],%g2 | ||
210 | .L_bn_mul_words_return: | ||
211 | retl | ||
212 | mov %o5,%o0 | ||
213 | nop | ||
214 | |||
215 | .L_bn_mul_words_tail: | ||
216 | umul %o3,%g2,%g2 | ||
217 | addcc %g2,%o5,%g2 | ||
218 | rd %y,%g1 | ||
219 | addx %g1,0,%o5 | ||
220 | deccc %o2 | ||
221 | bz .L_bn_mul_words_return | ||
222 | st %g2,[%o0] | ||
223 | nop | ||
224 | |||
225 | ld [%o1+4],%g2 | ||
226 | umul %o3,%g2,%g2 | ||
227 | addcc %g2,%o5,%g2 | ||
228 | rd %y,%g1 | ||
229 | addx %g1,0,%o5 | ||
230 | deccc %o2 | ||
231 | bz .L_bn_mul_words_return | ||
232 | st %g2,[%o0+4] | ||
233 | |||
234 | ld [%o1+8],%g2 | ||
235 | umul %o3,%g2,%g2 | ||
236 | addcc %g2,%o5,%g2 | ||
237 | rd %y,%g1 | ||
238 | st %g2,[%o0+8] | ||
239 | retl | ||
240 | addx %g1,0,%o0 | ||
241 | |||
242 | .type bn_mul_words,#function | ||
243 | .size bn_mul_words,(.-bn_mul_words) | ||
244 | |||
245 | .align 32 | ||
246 | .global bn_sqr_words | ||
247 | /* | ||
248 | * void bn_sqr_words(r,a,n) | ||
249 | * BN_ULONG *r,*a; | ||
250 | * int n; | ||
251 | */ | ||
252 | bn_sqr_words: | ||
253 | cmp %o2,0 | ||
254 | bg,a .L_bn_sqr_words_proceeed | ||
255 | ld [%o1],%g2 | ||
256 | retl | ||
257 | clr %o0 | ||
258 | |||
259 | .L_bn_sqr_words_proceeed: | ||
260 | andcc %o2,-4,%g0 | ||
261 | bz .L_bn_sqr_words_tail | ||
262 | clr %o5 | ||
263 | |||
264 | .L_bn_sqr_words_loop: | ||
265 | ld [%o1+4],%g3 | ||
266 | umul %g2,%g2,%o4 | ||
267 | st %o4,[%o0] | ||
268 | rd %y,%o5 | ||
269 | st %o5,[%o0+4] | ||
270 | |||
271 | ld [%o1+8],%g2 | ||
272 | umul %g3,%g3,%o4 | ||
273 | dec 4,%o2 | ||
274 | st %o4,[%o0+8] | ||
275 | rd %y,%o5 | ||
276 | st %o5,[%o0+12] | ||
277 | nop | ||
278 | |||
279 | ld [%o1+12],%g3 | ||
280 | umul %g2,%g2,%o4 | ||
281 | st %o4,[%o0+16] | ||
282 | rd %y,%o5 | ||
283 | inc 16,%o1 | ||
284 | st %o5,[%o0+20] | ||
285 | |||
286 | umul %g3,%g3,%o4 | ||
287 | inc 32,%o0 | ||
288 | st %o4,[%o0-8] | ||
289 | rd %y,%o5 | ||
290 | st %o5,[%o0-4] | ||
291 | andcc %o2,-4,%g2 | ||
292 | bnz,a .L_bn_sqr_words_loop | ||
293 | ld [%o1],%g2 | ||
294 | |||
295 | tst %o2 | ||
296 | nop | ||
297 | bnz,a .L_bn_sqr_words_tail | ||
298 | ld [%o1],%g2 | ||
299 | .L_bn_sqr_words_return: | ||
300 | retl | ||
301 | clr %o0 | ||
302 | |||
303 | .L_bn_sqr_words_tail: | ||
304 | umul %g2,%g2,%o4 | ||
305 | st %o4,[%o0] | ||
306 | deccc %o2 | ||
307 | rd %y,%o5 | ||
308 | bz .L_bn_sqr_words_return | ||
309 | st %o5,[%o0+4] | ||
310 | |||
311 | ld [%o1+4],%g2 | ||
312 | umul %g2,%g2,%o4 | ||
313 | st %o4,[%o0+8] | ||
314 | deccc %o2 | ||
315 | rd %y,%o5 | ||
316 | nop | ||
317 | bz .L_bn_sqr_words_return | ||
318 | st %o5,[%o0+12] | ||
319 | |||
320 | ld [%o1+8],%g2 | ||
321 | umul %g2,%g2,%o4 | ||
322 | st %o4,[%o0+16] | ||
323 | rd %y,%o5 | ||
324 | st %o5,[%o0+20] | ||
325 | retl | ||
326 | clr %o0 | ||
327 | |||
328 | .type bn_sqr_words,#function | ||
329 | .size bn_sqr_words,(.-bn_sqr_words) | ||
330 | |||
331 | .align 32 | ||
332 | |||
333 | .global bn_div_words | ||
334 | /* | ||
335 | * BN_ULONG bn_div_words(h,l,d) | ||
336 | * BN_ULONG h,l,d; | ||
337 | */ | ||
338 | bn_div_words: | ||
339 | wr %o0,%y | ||
340 | udiv %o1,%o2,%o0 | ||
341 | retl | ||
342 | nop | ||
343 | |||
344 | .type bn_div_words,#function | ||
345 | .size bn_div_words,(.-bn_div_words) | ||
346 | |||
347 | .align 32 | ||
348 | |||
349 | .global bn_add_words | ||
350 | /* | ||
351 | * BN_ULONG bn_add_words(rp,ap,bp,n) | ||
352 | * BN_ULONG *rp,*ap,*bp; | ||
353 | * int n; | ||
354 | */ | ||
355 | bn_add_words: | ||
356 | cmp %o3,0 | ||
357 | bg,a .L_bn_add_words_proceed | ||
358 | ld [%o1],%o4 | ||
359 | retl | ||
360 | clr %o0 | ||
361 | |||
362 | .L_bn_add_words_proceed: | ||
363 | andcc %o3,-4,%g0 | ||
364 | bz .L_bn_add_words_tail | ||
365 | clr %g1 | ||
366 | ba .L_bn_add_words_warn_loop | ||
367 | addcc %g0,0,%g0 ! clear carry flag | ||
368 | |||
369 | .L_bn_add_words_loop: | ||
370 | ld [%o1],%o4 | ||
371 | .L_bn_add_words_warn_loop: | ||
372 | ld [%o2],%o5 | ||
373 | ld [%o1+4],%g3 | ||
374 | ld [%o2+4],%g4 | ||
375 | dec 4,%o3 | ||
376 | addxcc %o5,%o4,%o5 | ||
377 | st %o5,[%o0] | ||
378 | |||
379 | ld [%o1+8],%o4 | ||
380 | ld [%o2+8],%o5 | ||
381 | inc 16,%o1 | ||
382 | addxcc %g3,%g4,%g3 | ||
383 | st %g3,[%o0+4] | ||
384 | |||
385 | ld [%o1-4],%g3 | ||
386 | ld [%o2+12],%g4 | ||
387 | inc 16,%o2 | ||
388 | addxcc %o5,%o4,%o5 | ||
389 | st %o5,[%o0+8] | ||
390 | |||
391 | inc 16,%o0 | ||
392 | addxcc %g3,%g4,%g3 | ||
393 | st %g3,[%o0-4] | ||
394 | addx %g0,0,%g1 | ||
395 | andcc %o3,-4,%g0 | ||
396 | bnz,a .L_bn_add_words_loop | ||
397 | addcc %g1,-1,%g0 | ||
398 | |||
399 | tst %o3 | ||
400 | bnz,a .L_bn_add_words_tail | ||
401 | ld [%o1],%o4 | ||
402 | .L_bn_add_words_return: | ||
403 | retl | ||
404 | mov %g1,%o0 | ||
405 | |||
406 | .L_bn_add_words_tail: | ||
407 | addcc %g1,-1,%g0 | ||
408 | ld [%o2],%o5 | ||
409 | addxcc %o5,%o4,%o5 | ||
410 | addx %g0,0,%g1 | ||
411 | deccc %o3 | ||
412 | bz .L_bn_add_words_return | ||
413 | st %o5,[%o0] | ||
414 | |||
415 | ld [%o1+4],%o4 | ||
416 | addcc %g1,-1,%g0 | ||
417 | ld [%o2+4],%o5 | ||
418 | addxcc %o5,%o4,%o5 | ||
419 | addx %g0,0,%g1 | ||
420 | deccc %o3 | ||
421 | bz .L_bn_add_words_return | ||
422 | st %o5,[%o0+4] | ||
423 | |||
424 | ld [%o1+8],%o4 | ||
425 | addcc %g1,-1,%g0 | ||
426 | ld [%o2+8],%o5 | ||
427 | addxcc %o5,%o4,%o5 | ||
428 | st %o5,[%o0+8] | ||
429 | retl | ||
430 | addx %g0,0,%o0 | ||
431 | |||
432 | .type bn_add_words,#function | ||
433 | .size bn_add_words,(.-bn_add_words) | ||
434 | |||
435 | .align 32 | ||
436 | |||
437 | .global bn_sub_words | ||
438 | /* | ||
439 | * BN_ULONG bn_sub_words(rp,ap,bp,n) | ||
440 | * BN_ULONG *rp,*ap,*bp; | ||
441 | * int n; | ||
442 | */ | ||
443 | bn_sub_words: | ||
444 | cmp %o3,0 | ||
445 | bg,a .L_bn_sub_words_proceed | ||
446 | ld [%o1],%o4 | ||
447 | retl | ||
448 | clr %o0 | ||
449 | |||
450 | .L_bn_sub_words_proceed: | ||
451 | andcc %o3,-4,%g0 | ||
452 | bz .L_bn_sub_words_tail | ||
453 | clr %g1 | ||
454 | ba .L_bn_sub_words_warm_loop | ||
455 | addcc %g0,0,%g0 ! clear carry flag | ||
456 | |||
457 | .L_bn_sub_words_loop: | ||
458 | ld [%o1],%o4 | ||
459 | .L_bn_sub_words_warm_loop: | ||
460 | ld [%o2],%o5 | ||
461 | ld [%o1+4],%g3 | ||
462 | ld [%o2+4],%g4 | ||
463 | dec 4,%o3 | ||
464 | subxcc %o4,%o5,%o5 | ||
465 | st %o5,[%o0] | ||
466 | |||
467 | ld [%o1+8],%o4 | ||
468 | ld [%o2+8],%o5 | ||
469 | inc 16,%o1 | ||
470 | subxcc %g3,%g4,%g4 | ||
471 | st %g4,[%o0+4] | ||
472 | |||
473 | ld [%o1-4],%g3 | ||
474 | ld [%o2+12],%g4 | ||
475 | inc 16,%o2 | ||
476 | subxcc %o4,%o5,%o5 | ||
477 | st %o5,[%o0+8] | ||
478 | |||
479 | inc 16,%o0 | ||
480 | subxcc %g3,%g4,%g4 | ||
481 | st %g4,[%o0-4] | ||
482 | addx %g0,0,%g1 | ||
483 | andcc %o3,-4,%g0 | ||
484 | bnz,a .L_bn_sub_words_loop | ||
485 | addcc %g1,-1,%g0 | ||
486 | |||
487 | tst %o3 | ||
488 | nop | ||
489 | bnz,a .L_bn_sub_words_tail | ||
490 | ld [%o1],%o4 | ||
491 | .L_bn_sub_words_return: | ||
492 | retl | ||
493 | mov %g1,%o0 | ||
494 | |||
495 | .L_bn_sub_words_tail: | ||
496 | addcc %g1,-1,%g0 | ||
497 | ld [%o2],%o5 | ||
498 | subxcc %o4,%o5,%o5 | ||
499 | addx %g0,0,%g1 | ||
500 | deccc %o3 | ||
501 | bz .L_bn_sub_words_return | ||
502 | st %o5,[%o0] | ||
503 | nop | ||
504 | |||
505 | ld [%o1+4],%o4 | ||
506 | addcc %g1,-1,%g0 | ||
507 | ld [%o2+4],%o5 | ||
508 | subxcc %o4,%o5,%o5 | ||
509 | addx %g0,0,%g1 | ||
510 | deccc %o3 | ||
511 | bz .L_bn_sub_words_return | ||
512 | st %o5,[%o0+4] | ||
513 | |||
514 | ld [%o1+8],%o4 | ||
515 | addcc %g1,-1,%g0 | ||
516 | ld [%o2+8],%o5 | ||
517 | subxcc %o4,%o5,%o5 | ||
518 | st %o5,[%o0+8] | ||
519 | retl | ||
520 | addx %g0,0,%o0 | ||
521 | |||
522 | .type bn_sub_words,#function | ||
523 | .size bn_sub_words,(.-bn_sub_words) | ||
524 | |||
525 | #define FRAME_SIZE -96 | ||
526 | |||
527 | /* | ||
528 | * Here is register usage map for *all* routines below. | ||
529 | */ | ||
530 | #define t_1 %o0 | ||
531 | #define t_2 %o1 | ||
532 | #define c_1 %o2 | ||
533 | #define c_2 %o3 | ||
534 | #define c_3 %o4 | ||
535 | |||
536 | #define ap(I) [%i1+4*I] | ||
537 | #define bp(I) [%i2+4*I] | ||
538 | #define rp(I) [%i0+4*I] | ||
539 | |||
540 | #define a_0 %l0 | ||
541 | #define a_1 %l1 | ||
542 | #define a_2 %l2 | ||
543 | #define a_3 %l3 | ||
544 | #define a_4 %l4 | ||
545 | #define a_5 %l5 | ||
546 | #define a_6 %l6 | ||
547 | #define a_7 %l7 | ||
548 | |||
549 | #define b_0 %i3 | ||
550 | #define b_1 %i4 | ||
551 | #define b_2 %i5 | ||
552 | #define b_3 %o5 | ||
553 | #define b_4 %g1 | ||
554 | #define b_5 %g2 | ||
555 | #define b_6 %g3 | ||
556 | #define b_7 %g4 | ||
557 | |||
558 | .align 32 | ||
559 | .global bn_mul_comba8 | ||
560 | /* | ||
561 | * void bn_mul_comba8(r,a,b) | ||
562 | * BN_ULONG *r,*a,*b; | ||
563 | */ | ||
564 | bn_mul_comba8: | ||
565 | save %sp,FRAME_SIZE,%sp | ||
566 | ld ap(0),a_0 | ||
567 | ld bp(0),b_0 | ||
568 | umul a_0,b_0,c_1 !=!mul_add_c(a[0],b[0],c1,c2,c3); | ||
569 | ld bp(1),b_1 | ||
570 | rd %y,c_2 | ||
571 | st c_1,rp(0) !r[0]=c1; | ||
572 | |||
573 | umul a_0,b_1,t_1 !=!mul_add_c(a[0],b[1],c2,c3,c1); | ||
574 | ld ap(1),a_1 | ||
575 | addcc c_2,t_1,c_2 | ||
576 | rd %y,t_2 | ||
577 | addxcc %g0,t_2,c_3 != | ||
578 | addx %g0,%g0,c_1 | ||
579 | ld ap(2),a_2 | ||
580 | umul a_1,b_0,t_1 !mul_add_c(a[1],b[0],c2,c3,c1); | ||
581 | addcc c_2,t_1,c_2 != | ||
582 | rd %y,t_2 | ||
583 | addxcc c_3,t_2,c_3 | ||
584 | st c_2,rp(1) !r[1]=c2; | ||
585 | addx c_1,%g0,c_1 != | ||
586 | |||
587 | umul a_2,b_0,t_1 !mul_add_c(a[2],b[0],c3,c1,c2); | ||
588 | addcc c_3,t_1,c_3 | ||
589 | rd %y,t_2 | ||
590 | addxcc c_1,t_2,c_1 != | ||
591 | addx %g0,%g0,c_2 | ||
592 | ld bp(2),b_2 | ||
593 | umul a_1,b_1,t_1 !mul_add_c(a[1],b[1],c3,c1,c2); | ||
594 | addcc c_3,t_1,c_3 != | ||
595 | rd %y,t_2 | ||
596 | addxcc c_1,t_2,c_1 | ||
597 | ld bp(3),b_3 | ||
598 | addx c_2,%g0,c_2 != | ||
599 | umul a_0,b_2,t_1 !mul_add_c(a[0],b[2],c3,c1,c2); | ||
600 | addcc c_3,t_1,c_3 | ||
601 | rd %y,t_2 | ||
602 | addxcc c_1,t_2,c_1 != | ||
603 | addx c_2,%g0,c_2 | ||
604 | st c_3,rp(2) !r[2]=c3; | ||
605 | |||
606 | umul a_0,b_3,t_1 !mul_add_c(a[0],b[3],c1,c2,c3); | ||
607 | addcc c_1,t_1,c_1 != | ||
608 | rd %y,t_2 | ||
609 | addxcc c_2,t_2,c_2 | ||
610 | addx %g0,%g0,c_3 | ||
611 | umul a_1,b_2,t_1 !=!mul_add_c(a[1],b[2],c1,c2,c3); | ||
612 | addcc c_1,t_1,c_1 | ||
613 | rd %y,t_2 | ||
614 | addxcc c_2,t_2,c_2 | ||
615 | addx c_3,%g0,c_3 != | ||
616 | ld ap(3),a_3 | ||
617 | umul a_2,b_1,t_1 !mul_add_c(a[2],b[1],c1,c2,c3); | ||
618 | addcc c_1,t_1,c_1 | ||
619 | rd %y,t_2 != | ||
620 | addxcc c_2,t_2,c_2 | ||
621 | addx c_3,%g0,c_3 | ||
622 | ld ap(4),a_4 | ||
623 | umul a_3,b_0,t_1 !mul_add_c(a[3],b[0],c1,c2,c3);!= | ||
624 | addcc c_1,t_1,c_1 | ||
625 | rd %y,t_2 | ||
626 | addxcc c_2,t_2,c_2 | ||
627 | addx c_3,%g0,c_3 != | ||
628 | st c_1,rp(3) !r[3]=c1; | ||
629 | |||
630 | umul a_4,b_0,t_1 !mul_add_c(a[4],b[0],c2,c3,c1); | ||
631 | addcc c_2,t_1,c_2 | ||
632 | rd %y,t_2 != | ||
633 | addxcc c_3,t_2,c_3 | ||
634 | addx %g0,%g0,c_1 | ||
635 | umul a_3,b_1,t_1 !mul_add_c(a[3],b[1],c2,c3,c1); | ||
636 | addcc c_2,t_1,c_2 != | ||
637 | rd %y,t_2 | ||
638 | addxcc c_3,t_2,c_3 | ||
639 | addx c_1,%g0,c_1 | ||
640 | umul a_2,b_2,t_1 !=!mul_add_c(a[2],b[2],c2,c3,c1); | ||
641 | addcc c_2,t_1,c_2 | ||
642 | rd %y,t_2 | ||
643 | addxcc c_3,t_2,c_3 | ||
644 | addx c_1,%g0,c_1 != | ||
645 | ld bp(4),b_4 | ||
646 | umul a_1,b_3,t_1 !mul_add_c(a[1],b[3],c2,c3,c1); | ||
647 | addcc c_2,t_1,c_2 | ||
648 | rd %y,t_2 != | ||
649 | addxcc c_3,t_2,c_3 | ||
650 | addx c_1,%g0,c_1 | ||
651 | ld bp(5),b_5 | ||
652 | umul a_0,b_4,t_1 !=!mul_add_c(a[0],b[4],c2,c3,c1); | ||
653 | addcc c_2,t_1,c_2 | ||
654 | rd %y,t_2 | ||
655 | addxcc c_3,t_2,c_3 | ||
656 | addx c_1,%g0,c_1 != | ||
657 | st c_2,rp(4) !r[4]=c2; | ||
658 | |||
659 | umul a_0,b_5,t_1 !mul_add_c(a[0],b[5],c3,c1,c2); | ||
660 | addcc c_3,t_1,c_3 | ||
661 | rd %y,t_2 != | ||
662 | addxcc c_1,t_2,c_1 | ||
663 | addx %g0,%g0,c_2 | ||
664 | umul a_1,b_4,t_1 !mul_add_c(a[1],b[4],c3,c1,c2); | ||
665 | addcc c_3,t_1,c_3 != | ||
666 | rd %y,t_2 | ||
667 | addxcc c_1,t_2,c_1 | ||
668 | addx c_2,%g0,c_2 | ||
669 | umul a_2,b_3,t_1 !=!mul_add_c(a[2],b[3],c3,c1,c2); | ||
670 | addcc c_3,t_1,c_3 | ||
671 | rd %y,t_2 | ||
672 | addxcc c_1,t_2,c_1 | ||
673 | addx c_2,%g0,c_2 != | ||
674 | umul a_3,b_2,t_1 !mul_add_c(a[3],b[2],c3,c1,c2); | ||
675 | addcc c_3,t_1,c_3 | ||
676 | rd %y,t_2 | ||
677 | addxcc c_1,t_2,c_1 != | ||
678 | addx c_2,%g0,c_2 | ||
679 | ld ap(5),a_5 | ||
680 | umul a_4,b_1,t_1 !mul_add_c(a[4],b[1],c3,c1,c2); | ||
681 | addcc c_3,t_1,c_3 != | ||
682 | rd %y,t_2 | ||
683 | addxcc c_1,t_2,c_1 | ||
684 | ld ap(6),a_6 | ||
685 | addx c_2,%g0,c_2 != | ||
686 | umul a_5,b_0,t_1 !mul_add_c(a[5],b[0],c3,c1,c2); | ||
687 | addcc c_3,t_1,c_3 | ||
688 | rd %y,t_2 | ||
689 | addxcc c_1,t_2,c_1 != | ||
690 | addx c_2,%g0,c_2 | ||
691 | st c_3,rp(5) !r[5]=c3; | ||
692 | |||
693 | umul a_6,b_0,t_1 !mul_add_c(a[6],b[0],c1,c2,c3); | ||
694 | addcc c_1,t_1,c_1 != | ||
695 | rd %y,t_2 | ||
696 | addxcc c_2,t_2,c_2 | ||
697 | addx %g0,%g0,c_3 | ||
698 | umul a_5,b_1,t_1 !=!mul_add_c(a[5],b[1],c1,c2,c3); | ||
699 | addcc c_1,t_1,c_1 | ||
700 | rd %y,t_2 | ||
701 | addxcc c_2,t_2,c_2 | ||
702 | addx c_3,%g0,c_3 != | ||
703 | umul a_4,b_2,t_1 !mul_add_c(a[4],b[2],c1,c2,c3); | ||
704 | addcc c_1,t_1,c_1 | ||
705 | rd %y,t_2 | ||
706 | addxcc c_2,t_2,c_2 != | ||
707 | addx c_3,%g0,c_3 | ||
708 | umul a_3,b_3,t_1 !mul_add_c(a[3],b[3],c1,c2,c3); | ||
709 | addcc c_1,t_1,c_1 | ||
710 | rd %y,t_2 != | ||
711 | addxcc c_2,t_2,c_2 | ||
712 | addx c_3,%g0,c_3 | ||
713 | umul a_2,b_4,t_1 !mul_add_c(a[2],b[4],c1,c2,c3); | ||
714 | addcc c_1,t_1,c_1 != | ||
715 | rd %y,t_2 | ||
716 | addxcc c_2,t_2,c_2 | ||
717 | ld bp(6),b_6 | ||
718 | addx c_3,%g0,c_3 != | ||
719 | umul a_1,b_5,t_1 !mul_add_c(a[1],b[5],c1,c2,c3); | ||
720 | addcc c_1,t_1,c_1 | ||
721 | rd %y,t_2 | ||
722 | addxcc c_2,t_2,c_2 != | ||
723 | addx c_3,%g0,c_3 | ||
724 | ld bp(7),b_7 | ||
725 | umul a_0,b_6,t_1 !mul_add_c(a[0],b[6],c1,c2,c3); | ||
726 | addcc c_1,t_1,c_1 != | ||
727 | rd %y,t_2 | ||
728 | addxcc c_2,t_2,c_2 | ||
729 | st c_1,rp(6) !r[6]=c1; | ||
730 | addx c_3,%g0,c_3 != | ||
731 | |||
732 | umul a_0,b_7,t_1 !mul_add_c(a[0],b[7],c2,c3,c1); | ||
733 | addcc c_2,t_1,c_2 | ||
734 | rd %y,t_2 | ||
735 | addxcc c_3,t_2,c_3 != | ||
736 | addx %g0,%g0,c_1 | ||
737 | umul a_1,b_6,t_1 !mul_add_c(a[1],b[6],c2,c3,c1); | ||
738 | addcc c_2,t_1,c_2 | ||
739 | rd %y,t_2 != | ||
740 | addxcc c_3,t_2,c_3 | ||
741 | addx c_1,%g0,c_1 | ||
742 | umul a_2,b_5,t_1 !mul_add_c(a[2],b[5],c2,c3,c1); | ||
743 | addcc c_2,t_1,c_2 != | ||
744 | rd %y,t_2 | ||
745 | addxcc c_3,t_2,c_3 | ||
746 | addx c_1,%g0,c_1 | ||
747 | umul a_3,b_4,t_1 !=!mul_add_c(a[3],b[4],c2,c3,c1); | ||
748 | addcc c_2,t_1,c_2 | ||
749 | rd %y,t_2 | ||
750 | addxcc c_3,t_2,c_3 | ||
751 | addx c_1,%g0,c_1 != | ||
752 | umul a_4,b_3,t_1 !mul_add_c(a[4],b[3],c2,c3,c1); | ||
753 | addcc c_2,t_1,c_2 | ||
754 | rd %y,t_2 | ||
755 | addxcc c_3,t_2,c_3 != | ||
756 | addx c_1,%g0,c_1 | ||
757 | umul a_5,b_2,t_1 !mul_add_c(a[5],b[2],c2,c3,c1); | ||
758 | addcc c_2,t_1,c_2 | ||
759 | rd %y,t_2 != | ||
760 | addxcc c_3,t_2,c_3 | ||
761 | addx c_1,%g0,c_1 | ||
762 | ld ap(7),a_7 | ||
763 | umul a_6,b_1,t_1 !=!mul_add_c(a[6],b[1],c2,c3,c1); | ||
764 | addcc c_2,t_1,c_2 | ||
765 | rd %y,t_2 | ||
766 | addxcc c_3,t_2,c_3 | ||
767 | addx c_1,%g0,c_1 != | ||
768 | umul a_7,b_0,t_1 !mul_add_c(a[7],b[0],c2,c3,c1); | ||
769 | addcc c_2,t_1,c_2 | ||
770 | rd %y,t_2 | ||
771 | addxcc c_3,t_2,c_3 != | ||
772 | addx c_1,%g0,c_1 | ||
773 | st c_2,rp(7) !r[7]=c2; | ||
774 | |||
775 | umul a_7,b_1,t_1 !mul_add_c(a[7],b[1],c3,c1,c2); | ||
776 | addcc c_3,t_1,c_3 != | ||
777 | rd %y,t_2 | ||
778 | addxcc c_1,t_2,c_1 | ||
779 | addx %g0,%g0,c_2 | ||
780 | umul a_6,b_2,t_1 !=!mul_add_c(a[6],b[2],c3,c1,c2); | ||
781 | addcc c_3,t_1,c_3 | ||
782 | rd %y,t_2 | ||
783 | addxcc c_1,t_2,c_1 | ||
784 | addx c_2,%g0,c_2 != | ||
785 | umul a_5,b_3,t_1 !mul_add_c(a[5],b[3],c3,c1,c2); | ||
786 | addcc c_3,t_1,c_3 | ||
787 | rd %y,t_2 | ||
788 | addxcc c_1,t_2,c_1 != | ||
789 | addx c_2,%g0,c_2 | ||
790 | umul a_4,b_4,t_1 !mul_add_c(a[4],b[4],c3,c1,c2); | ||
791 | addcc c_3,t_1,c_3 | ||
792 | rd %y,t_2 != | ||
793 | addxcc c_1,t_2,c_1 | ||
794 | addx c_2,%g0,c_2 | ||
795 | umul a_3,b_5,t_1 !mul_add_c(a[3],b[5],c3,c1,c2); | ||
796 | addcc c_3,t_1,c_3 != | ||
797 | rd %y,t_2 | ||
798 | addxcc c_1,t_2,c_1 | ||
799 | addx c_2,%g0,c_2 | ||
800 | umul a_2,b_6,t_1 !=!mul_add_c(a[2],b[6],c3,c1,c2); | ||
801 | addcc c_3,t_1,c_3 | ||
802 | rd %y,t_2 | ||
803 | addxcc c_1,t_2,c_1 | ||
804 | addx c_2,%g0,c_2 != | ||
805 | umul a_1,b_7,t_1 !mul_add_c(a[1],b[7],c3,c1,c2); | ||
806 | addcc c_3,t_1,c_3 | ||
807 | rd %y,t_2 | ||
808 | addxcc c_1,t_2,c_1 ! | ||
809 | addx c_2,%g0,c_2 | ||
810 | st c_3,rp(8) !r[8]=c3; | ||
811 | |||
812 | umul a_2,b_7,t_1 !mul_add_c(a[2],b[7],c1,c2,c3); | ||
813 | addcc c_1,t_1,c_1 != | ||
814 | rd %y,t_2 | ||
815 | addxcc c_2,t_2,c_2 | ||
816 | addx %g0,%g0,c_3 | ||
817 | umul a_3,b_6,t_1 !=!mul_add_c(a[3],b[6],c1,c2,c3); | ||
818 | addcc c_1,t_1,c_1 | ||
819 | rd %y,t_2 | ||
820 | addxcc c_2,t_2,c_2 | ||
821 | addx c_3,%g0,c_3 != | ||
822 | umul a_4,b_5,t_1 !mul_add_c(a[4],b[5],c1,c2,c3); | ||
823 | addcc c_1,t_1,c_1 | ||
824 | rd %y,t_2 | ||
825 | addxcc c_2,t_2,c_2 != | ||
826 | addx c_3,%g0,c_3 | ||
827 | umul a_5,b_4,t_1 !mul_add_c(a[5],b[4],c1,c2,c3); | ||
828 | addcc c_1,t_1,c_1 | ||
829 | rd %y,t_2 != | ||
830 | addxcc c_2,t_2,c_2 | ||
831 | addx c_3,%g0,c_3 | ||
832 | umul a_6,b_3,t_1 !mul_add_c(a[6],b[3],c1,c2,c3); | ||
833 | addcc c_1,t_1,c_1 != | ||
834 | rd %y,t_2 | ||
835 | addxcc c_2,t_2,c_2 | ||
836 | addx c_3,%g0,c_3 | ||
837 | umul a_7,b_2,t_1 !=!mul_add_c(a[7],b[2],c1,c2,c3); | ||
838 | addcc c_1,t_1,c_1 | ||
839 | rd %y,t_2 | ||
840 | addxcc c_2,t_2,c_2 | ||
841 | addx c_3,%g0,c_3 != | ||
842 | st c_1,rp(9) !r[9]=c1; | ||
843 | |||
844 | umul a_7,b_3,t_1 !mul_add_c(a[7],b[3],c2,c3,c1); | ||
845 | addcc c_2,t_1,c_2 | ||
846 | rd %y,t_2 != | ||
847 | addxcc c_3,t_2,c_3 | ||
848 | addx %g0,%g0,c_1 | ||
849 | umul a_6,b_4,t_1 !mul_add_c(a[6],b[4],c2,c3,c1); | ||
850 | addcc c_2,t_1,c_2 != | ||
851 | rd %y,t_2 | ||
852 | addxcc c_3,t_2,c_3 | ||
853 | addx c_1,%g0,c_1 | ||
854 | umul a_5,b_5,t_1 !=!mul_add_c(a[5],b[5],c2,c3,c1); | ||
855 | addcc c_2,t_1,c_2 | ||
856 | rd %y,t_2 | ||
857 | addxcc c_3,t_2,c_3 | ||
858 | addx c_1,%g0,c_1 != | ||
859 | umul a_4,b_6,t_1 !mul_add_c(a[4],b[6],c2,c3,c1); | ||
860 | addcc c_2,t_1,c_2 | ||
861 | rd %y,t_2 | ||
862 | addxcc c_3,t_2,c_3 != | ||
863 | addx c_1,%g0,c_1 | ||
864 | umul a_3,b_7,t_1 !mul_add_c(a[3],b[7],c2,c3,c1); | ||
865 | addcc c_2,t_1,c_2 | ||
866 | rd %y,t_2 != | ||
867 | addxcc c_3,t_2,c_3 | ||
868 | addx c_1,%g0,c_1 | ||
869 | st c_2,rp(10) !r[10]=c2; | ||
870 | |||
871 | umul a_4,b_7,t_1 !=!mul_add_c(a[4],b[7],c3,c1,c2); | ||
872 | addcc c_3,t_1,c_3 | ||
873 | rd %y,t_2 | ||
874 | addxcc c_1,t_2,c_1 | ||
875 | addx %g0,%g0,c_2 != | ||
876 | umul a_5,b_6,t_1 !mul_add_c(a[5],b[6],c3,c1,c2); | ||
877 | addcc c_3,t_1,c_3 | ||
878 | rd %y,t_2 | ||
879 | addxcc c_1,t_2,c_1 != | ||
880 | addx c_2,%g0,c_2 | ||
881 | umul a_6,b_5,t_1 !mul_add_c(a[6],b[5],c3,c1,c2); | ||
882 | addcc c_3,t_1,c_3 | ||
883 | rd %y,t_2 != | ||
884 | addxcc c_1,t_2,c_1 | ||
885 | addx c_2,%g0,c_2 | ||
886 | umul a_7,b_4,t_1 !mul_add_c(a[7],b[4],c3,c1,c2); | ||
887 | addcc c_3,t_1,c_3 != | ||
888 | rd %y,t_2 | ||
889 | addxcc c_1,t_2,c_1 | ||
890 | st c_3,rp(11) !r[11]=c3; | ||
891 | addx c_2,%g0,c_2 != | ||
892 | |||
893 | umul a_7,b_5,t_1 !mul_add_c(a[7],b[5],c1,c2,c3); | ||
894 | addcc c_1,t_1,c_1 | ||
895 | rd %y,t_2 | ||
896 | addxcc c_2,t_2,c_2 != | ||
897 | addx %g0,%g0,c_3 | ||
898 | umul a_6,b_6,t_1 !mul_add_c(a[6],b[6],c1,c2,c3); | ||
899 | addcc c_1,t_1,c_1 | ||
900 | rd %y,t_2 != | ||
901 | addxcc c_2,t_2,c_2 | ||
902 | addx c_3,%g0,c_3 | ||
903 | umul a_5,b_7,t_1 !mul_add_c(a[5],b[7],c1,c2,c3); | ||
904 | addcc c_1,t_1,c_1 != | ||
905 | rd %y,t_2 | ||
906 | addxcc c_2,t_2,c_2 | ||
907 | st c_1,rp(12) !r[12]=c1; | ||
908 | addx c_3,%g0,c_3 != | ||
909 | |||
910 | umul a_6,b_7,t_1 !mul_add_c(a[6],b[7],c2,c3,c1); | ||
911 | addcc c_2,t_1,c_2 | ||
912 | rd %y,t_2 | ||
913 | addxcc c_3,t_2,c_3 != | ||
914 | addx %g0,%g0,c_1 | ||
915 | umul a_7,b_6,t_1 !mul_add_c(a[7],b[6],c2,c3,c1); | ||
916 | addcc c_2,t_1,c_2 | ||
917 | rd %y,t_2 != | ||
918 | addxcc c_3,t_2,c_3 | ||
919 | addx c_1,%g0,c_1 | ||
920 | st c_2,rp(13) !r[13]=c2; | ||
921 | |||
922 | umul a_7,b_7,t_1 !=!mul_add_c(a[7],b[7],c3,c1,c2); | ||
923 | addcc c_3,t_1,c_3 | ||
924 | rd %y,t_2 | ||
925 | addxcc c_1,t_2,c_1 | ||
926 | nop != | ||
927 | st c_3,rp(14) !r[14]=c3; | ||
928 | st c_1,rp(15) !r[15]=c1; | ||
929 | |||
930 | ret | ||
931 | restore %g0,%g0,%o0 | ||
932 | |||
933 | .type bn_mul_comba8,#function | ||
934 | .size bn_mul_comba8,(.-bn_mul_comba8) | ||
935 | |||
936 | .align 32 | ||
937 | |||
938 | .global bn_mul_comba4 | ||
939 | /* | ||
940 | * void bn_mul_comba4(r,a,b) | ||
941 | * BN_ULONG *r,*a,*b; | ||
942 | */ | ||
943 | bn_mul_comba4: | ||
944 | save %sp,FRAME_SIZE,%sp | ||
945 | ld ap(0),a_0 | ||
946 | ld bp(0),b_0 | ||
947 | umul a_0,b_0,c_1 !=!mul_add_c(a[0],b[0],c1,c2,c3); | ||
948 | ld bp(1),b_1 | ||
949 | rd %y,c_2 | ||
950 | st c_1,rp(0) !r[0]=c1; | ||
951 | |||
952 | umul a_0,b_1,t_1 !=!mul_add_c(a[0],b[1],c2,c3,c1); | ||
953 | ld ap(1),a_1 | ||
954 | addcc c_2,t_1,c_2 | ||
955 | rd %y,t_2 != | ||
956 | addxcc %g0,t_2,c_3 | ||
957 | addx %g0,%g0,c_1 | ||
958 | ld ap(2),a_2 | ||
959 | umul a_1,b_0,t_1 !=!mul_add_c(a[1],b[0],c2,c3,c1); | ||
960 | addcc c_2,t_1,c_2 | ||
961 | rd %y,t_2 | ||
962 | addxcc c_3,t_2,c_3 | ||
963 | addx c_1,%g0,c_1 != | ||
964 | st c_2,rp(1) !r[1]=c2; | ||
965 | |||
966 | umul a_2,b_0,t_1 !mul_add_c(a[2],b[0],c3,c1,c2); | ||
967 | addcc c_3,t_1,c_3 | ||
968 | rd %y,t_2 != | ||
969 | addxcc c_1,t_2,c_1 | ||
970 | addx %g0,%g0,c_2 | ||
971 | ld bp(2),b_2 | ||
972 | umul a_1,b_1,t_1 !=!mul_add_c(a[1],b[1],c3,c1,c2); | ||
973 | addcc c_3,t_1,c_3 | ||
974 | rd %y,t_2 | ||
975 | addxcc c_1,t_2,c_1 | ||
976 | addx c_2,%g0,c_2 != | ||
977 | ld bp(3),b_3 | ||
978 | umul a_0,b_2,t_1 !mul_add_c(a[0],b[2],c3,c1,c2); | ||
979 | addcc c_3,t_1,c_3 | ||
980 | rd %y,t_2 != | ||
981 | addxcc c_1,t_2,c_1 | ||
982 | addx c_2,%g0,c_2 | ||
983 | st c_3,rp(2) !r[2]=c3; | ||
984 | |||
985 | umul a_0,b_3,t_1 !=!mul_add_c(a[0],b[3],c1,c2,c3); | ||
986 | addcc c_1,t_1,c_1 | ||
987 | rd %y,t_2 | ||
988 | addxcc c_2,t_2,c_2 | ||
989 | addx %g0,%g0,c_3 != | ||
990 | umul a_1,b_2,t_1 !mul_add_c(a[1],b[2],c1,c2,c3); | ||
991 | addcc c_1,t_1,c_1 | ||
992 | rd %y,t_2 | ||
993 | addxcc c_2,t_2,c_2 != | ||
994 | addx c_3,%g0,c_3 | ||
995 | ld ap(3),a_3 | ||
996 | umul a_2,b_1,t_1 !mul_add_c(a[2],b[1],c1,c2,c3); | ||
997 | addcc c_1,t_1,c_1 != | ||
998 | rd %y,t_2 | ||
999 | addxcc c_2,t_2,c_2 | ||
1000 | addx c_3,%g0,c_3 | ||
1001 | umul a_3,b_0,t_1 !=!mul_add_c(a[3],b[0],c1,c2,c3); | ||
1002 | addcc c_1,t_1,c_1 | ||
1003 | rd %y,t_2 | ||
1004 | addxcc c_2,t_2,c_2 | ||
1005 | addx c_3,%g0,c_3 != | ||
1006 | st c_1,rp(3) !r[3]=c1; | ||
1007 | |||
1008 | umul a_3,b_1,t_1 !mul_add_c(a[3],b[1],c2,c3,c1); | ||
1009 | addcc c_2,t_1,c_2 | ||
1010 | rd %y,t_2 != | ||
1011 | addxcc c_3,t_2,c_3 | ||
1012 | addx %g0,%g0,c_1 | ||
1013 | umul a_2,b_2,t_1 !mul_add_c(a[2],b[2],c2,c3,c1); | ||
1014 | addcc c_2,t_1,c_2 != | ||
1015 | rd %y,t_2 | ||
1016 | addxcc c_3,t_2,c_3 | ||
1017 | addx c_1,%g0,c_1 | ||
1018 | umul a_1,b_3,t_1 !=!mul_add_c(a[1],b[3],c2,c3,c1); | ||
1019 | addcc c_2,t_1,c_2 | ||
1020 | rd %y,t_2 | ||
1021 | addxcc c_3,t_2,c_3 | ||
1022 | addx c_1,%g0,c_1 != | ||
1023 | st c_2,rp(4) !r[4]=c2; | ||
1024 | |||
1025 | umul a_2,b_3,t_1 !mul_add_c(a[2],b[3],c3,c1,c2); | ||
1026 | addcc c_3,t_1,c_3 | ||
1027 | rd %y,t_2 != | ||
1028 | addxcc c_1,t_2,c_1 | ||
1029 | addx %g0,%g0,c_2 | ||
1030 | umul a_3,b_2,t_1 !mul_add_c(a[3],b[2],c3,c1,c2); | ||
1031 | addcc c_3,t_1,c_3 != | ||
1032 | rd %y,t_2 | ||
1033 | addxcc c_1,t_2,c_1 | ||
1034 | st c_3,rp(5) !r[5]=c3; | ||
1035 | addx c_2,%g0,c_2 != | ||
1036 | |||
1037 | umul a_3,b_3,t_1 !mul_add_c(a[3],b[3],c1,c2,c3); | ||
1038 | addcc c_1,t_1,c_1 | ||
1039 | rd %y,t_2 | ||
1040 | addxcc c_2,t_2,c_2 != | ||
1041 | st c_1,rp(6) !r[6]=c1; | ||
1042 | st c_2,rp(7) !r[7]=c2; | ||
1043 | |||
1044 | ret | ||
1045 | restore %g0,%g0,%o0 | ||
1046 | |||
1047 | .type bn_mul_comba4,#function | ||
1048 | .size bn_mul_comba4,(.-bn_mul_comba4) | ||
1049 | |||
1050 | .align 32 | ||
1051 | |||
1052 | .global bn_sqr_comba8 | ||
1053 | bn_sqr_comba8: | ||
1054 | save %sp,FRAME_SIZE,%sp | ||
1055 | ld ap(0),a_0 | ||
1056 | ld ap(1),a_1 | ||
1057 | umul a_0,a_0,c_1 !=!sqr_add_c(a,0,c1,c2,c3); | ||
1058 | rd %y,c_2 | ||
1059 | st c_1,rp(0) !r[0]=c1; | ||
1060 | |||
1061 | ld ap(2),a_2 | ||
1062 | umul a_0,a_1,t_1 !=!sqr_add_c2(a,1,0,c2,c3,c1); | ||
1063 | addcc c_2,t_1,c_2 | ||
1064 | rd %y,t_2 | ||
1065 | addxcc %g0,t_2,c_3 | ||
1066 | addx %g0,%g0,c_1 != | ||
1067 | addcc c_2,t_1,c_2 | ||
1068 | addxcc c_3,t_2,c_3 | ||
1069 | st c_2,rp(1) !r[1]=c2; | ||
1070 | addx c_1,%g0,c_1 != | ||
1071 | |||
1072 | umul a_2,a_0,t_1 !sqr_add_c2(a,2,0,c3,c1,c2); | ||
1073 | addcc c_3,t_1,c_3 | ||
1074 | rd %y,t_2 | ||
1075 | addxcc c_1,t_2,c_1 != | ||
1076 | addx %g0,%g0,c_2 | ||
1077 | addcc c_3,t_1,c_3 | ||
1078 | addxcc c_1,t_2,c_1 | ||
1079 | addx c_2,%g0,c_2 != | ||
1080 | ld ap(3),a_3 | ||
1081 | umul a_1,a_1,t_1 !sqr_add_c(a,1,c3,c1,c2); | ||
1082 | addcc c_3,t_1,c_3 | ||
1083 | rd %y,t_2 != | ||
1084 | addxcc c_1,t_2,c_1 | ||
1085 | addx c_2,%g0,c_2 | ||
1086 | st c_3,rp(2) !r[2]=c3; | ||
1087 | |||
1088 | umul a_0,a_3,t_1 !=!sqr_add_c2(a,3,0,c1,c2,c3); | ||
1089 | addcc c_1,t_1,c_1 | ||
1090 | rd %y,t_2 | ||
1091 | addxcc c_2,t_2,c_2 | ||
1092 | addx %g0,%g0,c_3 != | ||
1093 | addcc c_1,t_1,c_1 | ||
1094 | addxcc c_2,t_2,c_2 | ||
1095 | ld ap(4),a_4 | ||
1096 | addx c_3,%g0,c_3 != | ||
1097 | umul a_1,a_2,t_1 !sqr_add_c2(a,2,1,c1,c2,c3); | ||
1098 | addcc c_1,t_1,c_1 | ||
1099 | rd %y,t_2 | ||
1100 | addxcc c_2,t_2,c_2 != | ||
1101 | addx c_3,%g0,c_3 | ||
1102 | addcc c_1,t_1,c_1 | ||
1103 | addxcc c_2,t_2,c_2 | ||
1104 | addx c_3,%g0,c_3 != | ||
1105 | st c_1,rp(3) !r[3]=c1; | ||
1106 | |||
1107 | umul a_4,a_0,t_1 !sqr_add_c2(a,4,0,c2,c3,c1); | ||
1108 | addcc c_2,t_1,c_2 | ||
1109 | rd %y,t_2 != | ||
1110 | addxcc c_3,t_2,c_3 | ||
1111 | addx %g0,%g0,c_1 | ||
1112 | addcc c_2,t_1,c_2 | ||
1113 | addxcc c_3,t_2,c_3 != | ||
1114 | addx c_1,%g0,c_1 | ||
1115 | umul a_3,a_1,t_1 !sqr_add_c2(a,3,1,c2,c3,c1); | ||
1116 | addcc c_2,t_1,c_2 | ||
1117 | rd %y,t_2 != | ||
1118 | addxcc c_3,t_2,c_3 | ||
1119 | addx c_1,%g0,c_1 | ||
1120 | addcc c_2,t_1,c_2 | ||
1121 | addxcc c_3,t_2,c_3 != | ||
1122 | addx c_1,%g0,c_1 | ||
1123 | ld ap(5),a_5 | ||
1124 | umul a_2,a_2,t_1 !sqr_add_c(a,2,c2,c3,c1); | ||
1125 | addcc c_2,t_1,c_2 != | ||
1126 | rd %y,t_2 | ||
1127 | addxcc c_3,t_2,c_3 | ||
1128 | st c_2,rp(4) !r[4]=c2; | ||
1129 | addx c_1,%g0,c_1 != | ||
1130 | |||
1131 | umul a_0,a_5,t_1 !sqr_add_c2(a,5,0,c3,c1,c2); | ||
1132 | addcc c_3,t_1,c_3 | ||
1133 | rd %y,t_2 | ||
1134 | addxcc c_1,t_2,c_1 != | ||
1135 | addx %g0,%g0,c_2 | ||
1136 | addcc c_3,t_1,c_3 | ||
1137 | addxcc c_1,t_2,c_1 | ||
1138 | addx c_2,%g0,c_2 != | ||
1139 | umul a_1,a_4,t_1 !sqr_add_c2(a,4,1,c3,c1,c2); | ||
1140 | addcc c_3,t_1,c_3 | ||
1141 | rd %y,t_2 | ||
1142 | addxcc c_1,t_2,c_1 != | ||
1143 | addx c_2,%g0,c_2 | ||
1144 | addcc c_3,t_1,c_3 | ||
1145 | addxcc c_1,t_2,c_1 | ||
1146 | addx c_2,%g0,c_2 != | ||
1147 | ld ap(6),a_6 | ||
1148 | umul a_2,a_3,t_1 !sqr_add_c2(a,3,2,c3,c1,c2); | ||
1149 | addcc c_3,t_1,c_3 | ||
1150 | rd %y,t_2 != | ||
1151 | addxcc c_1,t_2,c_1 | ||
1152 | addx c_2,%g0,c_2 | ||
1153 | addcc c_3,t_1,c_3 | ||
1154 | addxcc c_1,t_2,c_1 != | ||
1155 | addx c_2,%g0,c_2 | ||
1156 | st c_3,rp(5) !r[5]=c3; | ||
1157 | |||
1158 | umul a_6,a_0,t_1 !sqr_add_c2(a,6,0,c1,c2,c3); | ||
1159 | addcc c_1,t_1,c_1 != | ||
1160 | rd %y,t_2 | ||
1161 | addxcc c_2,t_2,c_2 | ||
1162 | addx %g0,%g0,c_3 | ||
1163 | addcc c_1,t_1,c_1 != | ||
1164 | addxcc c_2,t_2,c_2 | ||
1165 | addx c_3,%g0,c_3 | ||
1166 | umul a_5,a_1,t_1 !sqr_add_c2(a,5,1,c1,c2,c3); | ||
1167 | addcc c_1,t_1,c_1 != | ||
1168 | rd %y,t_2 | ||
1169 | addxcc c_2,t_2,c_2 | ||
1170 | addx c_3,%g0,c_3 | ||
1171 | addcc c_1,t_1,c_1 != | ||
1172 | addxcc c_2,t_2,c_2 | ||
1173 | addx c_3,%g0,c_3 | ||
1174 | umul a_4,a_2,t_1 !sqr_add_c2(a,4,2,c1,c2,c3); | ||
1175 | addcc c_1,t_1,c_1 != | ||
1176 | rd %y,t_2 | ||
1177 | addxcc c_2,t_2,c_2 | ||
1178 | addx c_3,%g0,c_3 | ||
1179 | addcc c_1,t_1,c_1 != | ||
1180 | addxcc c_2,t_2,c_2 | ||
1181 | addx c_3,%g0,c_3 | ||
1182 | ld ap(7),a_7 | ||
1183 | umul a_3,a_3,t_1 !=!sqr_add_c(a,3,c1,c2,c3); | ||
1184 | addcc c_1,t_1,c_1 | ||
1185 | rd %y,t_2 | ||
1186 | addxcc c_2,t_2,c_2 | ||
1187 | addx c_3,%g0,c_3 != | ||
1188 | st c_1,rp(6) !r[6]=c1; | ||
1189 | |||
1190 | umul a_0,a_7,t_1 !sqr_add_c2(a,7,0,c2,c3,c1); | ||
1191 | addcc c_2,t_1,c_2 | ||
1192 | rd %y,t_2 != | ||
1193 | addxcc c_3,t_2,c_3 | ||
1194 | addx %g0,%g0,c_1 | ||
1195 | addcc c_2,t_1,c_2 | ||
1196 | addxcc c_3,t_2,c_3 != | ||
1197 | addx c_1,%g0,c_1 | ||
1198 | umul a_1,a_6,t_1 !sqr_add_c2(a,6,1,c2,c3,c1); | ||
1199 | addcc c_2,t_1,c_2 | ||
1200 | rd %y,t_2 != | ||
1201 | addxcc c_3,t_2,c_3 | ||
1202 | addx c_1,%g0,c_1 | ||
1203 | addcc c_2,t_1,c_2 | ||
1204 | addxcc c_3,t_2,c_3 != | ||
1205 | addx c_1,%g0,c_1 | ||
1206 | umul a_2,a_5,t_1 !sqr_add_c2(a,5,2,c2,c3,c1); | ||
1207 | addcc c_2,t_1,c_2 | ||
1208 | rd %y,t_2 != | ||
1209 | addxcc c_3,t_2,c_3 | ||
1210 | addx c_1,%g0,c_1 | ||
1211 | addcc c_2,t_1,c_2 | ||
1212 | addxcc c_3,t_2,c_3 != | ||
1213 | addx c_1,%g0,c_1 | ||
1214 | umul a_3,a_4,t_1 !sqr_add_c2(a,4,3,c2,c3,c1); | ||
1215 | addcc c_2,t_1,c_2 | ||
1216 | rd %y,t_2 != | ||
1217 | addxcc c_3,t_2,c_3 | ||
1218 | addx c_1,%g0,c_1 | ||
1219 | addcc c_2,t_1,c_2 | ||
1220 | addxcc c_3,t_2,c_3 != | ||
1221 | addx c_1,%g0,c_1 | ||
1222 | st c_2,rp(7) !r[7]=c2; | ||
1223 | |||
1224 | umul a_7,a_1,t_1 !sqr_add_c2(a,7,1,c3,c1,c2); | ||
1225 | addcc c_3,t_1,c_3 != | ||
1226 | rd %y,t_2 | ||
1227 | addxcc c_1,t_2,c_1 | ||
1228 | addx %g0,%g0,c_2 | ||
1229 | addcc c_3,t_1,c_3 != | ||
1230 | addxcc c_1,t_2,c_1 | ||
1231 | addx c_2,%g0,c_2 | ||
1232 | umul a_6,a_2,t_1 !sqr_add_c2(a,6,2,c3,c1,c2); | ||
1233 | addcc c_3,t_1,c_3 != | ||
1234 | rd %y,t_2 | ||
1235 | addxcc c_1,t_2,c_1 | ||
1236 | addx c_2,%g0,c_2 | ||
1237 | addcc c_3,t_1,c_3 != | ||
1238 | addxcc c_1,t_2,c_1 | ||
1239 | addx c_2,%g0,c_2 | ||
1240 | umul a_5,a_3,t_1 !sqr_add_c2(a,5,3,c3,c1,c2); | ||
1241 | addcc c_3,t_1,c_3 != | ||
1242 | rd %y,t_2 | ||
1243 | addxcc c_1,t_2,c_1 | ||
1244 | addx c_2,%g0,c_2 | ||
1245 | addcc c_3,t_1,c_3 != | ||
1246 | addxcc c_1,t_2,c_1 | ||
1247 | addx c_2,%g0,c_2 | ||
1248 | umul a_4,a_4,t_1 !sqr_add_c(a,4,c3,c1,c2); | ||
1249 | addcc c_3,t_1,c_3 != | ||
1250 | rd %y,t_2 | ||
1251 | addxcc c_1,t_2,c_1 | ||
1252 | st c_3,rp(8) !r[8]=c3; | ||
1253 | addx c_2,%g0,c_2 != | ||
1254 | |||
1255 | umul a_2,a_7,t_1 !sqr_add_c2(a,7,2,c1,c2,c3); | ||
1256 | addcc c_1,t_1,c_1 | ||
1257 | rd %y,t_2 | ||
1258 | addxcc c_2,t_2,c_2 != | ||
1259 | addx %g0,%g0,c_3 | ||
1260 | addcc c_1,t_1,c_1 | ||
1261 | addxcc c_2,t_2,c_2 | ||
1262 | addx c_3,%g0,c_3 != | ||
1263 | umul a_3,a_6,t_1 !sqr_add_c2(a,6,3,c1,c2,c3); | ||
1264 | addcc c_1,t_1,c_1 | ||
1265 | rd %y,t_2 | ||
1266 | addxcc c_2,t_2,c_2 != | ||
1267 | addx c_3,%g0,c_3 | ||
1268 | addcc c_1,t_1,c_1 | ||
1269 | addxcc c_2,t_2,c_2 | ||
1270 | addx c_3,%g0,c_3 != | ||
1271 | umul a_4,a_5,t_1 !sqr_add_c2(a,5,4,c1,c2,c3); | ||
1272 | addcc c_1,t_1,c_1 | ||
1273 | rd %y,t_2 | ||
1274 | addxcc c_2,t_2,c_2 != | ||
1275 | addx c_3,%g0,c_3 | ||
1276 | addcc c_1,t_1,c_1 | ||
1277 | addxcc c_2,t_2,c_2 | ||
1278 | addx c_3,%g0,c_3 != | ||
1279 | st c_1,rp(9) !r[9]=c1; | ||
1280 | |||
1281 | umul a_7,a_3,t_1 !sqr_add_c2(a,7,3,c2,c3,c1); | ||
1282 | addcc c_2,t_1,c_2 | ||
1283 | rd %y,t_2 != | ||
1284 | addxcc c_3,t_2,c_3 | ||
1285 | addx %g0,%g0,c_1 | ||
1286 | addcc c_2,t_1,c_2 | ||
1287 | addxcc c_3,t_2,c_3 != | ||
1288 | addx c_1,%g0,c_1 | ||
1289 | umul a_6,a_4,t_1 !sqr_add_c2(a,6,4,c2,c3,c1); | ||
1290 | addcc c_2,t_1,c_2 | ||
1291 | rd %y,t_2 != | ||
1292 | addxcc c_3,t_2,c_3 | ||
1293 | addx c_1,%g0,c_1 | ||
1294 | addcc c_2,t_1,c_2 | ||
1295 | addxcc c_3,t_2,c_3 != | ||
1296 | addx c_1,%g0,c_1 | ||
1297 | umul a_5,a_5,t_1 !sqr_add_c(a,5,c2,c3,c1); | ||
1298 | addcc c_2,t_1,c_2 | ||
1299 | rd %y,t_2 != | ||
1300 | addxcc c_3,t_2,c_3 | ||
1301 | addx c_1,%g0,c_1 | ||
1302 | st c_2,rp(10) !r[10]=c2; | ||
1303 | |||
1304 | umul a_4,a_7,t_1 !=!sqr_add_c2(a,7,4,c3,c1,c2); | ||
1305 | addcc c_3,t_1,c_3 | ||
1306 | rd %y,t_2 | ||
1307 | addxcc c_1,t_2,c_1 | ||
1308 | addx %g0,%g0,c_2 != | ||
1309 | addcc c_3,t_1,c_3 | ||
1310 | addxcc c_1,t_2,c_1 | ||
1311 | addx c_2,%g0,c_2 | ||
1312 | umul a_5,a_6,t_1 !=!sqr_add_c2(a,6,5,c3,c1,c2); | ||
1313 | addcc c_3,t_1,c_3 | ||
1314 | rd %y,t_2 | ||
1315 | addxcc c_1,t_2,c_1 | ||
1316 | addx c_2,%g0,c_2 != | ||
1317 | addcc c_3,t_1,c_3 | ||
1318 | addxcc c_1,t_2,c_1 | ||
1319 | st c_3,rp(11) !r[11]=c3; | ||
1320 | addx c_2,%g0,c_2 != | ||
1321 | |||
1322 | umul a_7,a_5,t_1 !sqr_add_c2(a,7,5,c1,c2,c3); | ||
1323 | addcc c_1,t_1,c_1 | ||
1324 | rd %y,t_2 | ||
1325 | addxcc c_2,t_2,c_2 != | ||
1326 | addx %g0,%g0,c_3 | ||
1327 | addcc c_1,t_1,c_1 | ||
1328 | addxcc c_2,t_2,c_2 | ||
1329 | addx c_3,%g0,c_3 != | ||
1330 | umul a_6,a_6,t_1 !sqr_add_c(a,6,c1,c2,c3); | ||
1331 | addcc c_1,t_1,c_1 | ||
1332 | rd %y,t_2 | ||
1333 | addxcc c_2,t_2,c_2 != | ||
1334 | addx c_3,%g0,c_3 | ||
1335 | st c_1,rp(12) !r[12]=c1; | ||
1336 | |||
1337 | umul a_6,a_7,t_1 !sqr_add_c2(a,7,6,c2,c3,c1); | ||
1338 | addcc c_2,t_1,c_2 != | ||
1339 | rd %y,t_2 | ||
1340 | addxcc c_3,t_2,c_3 | ||
1341 | addx %g0,%g0,c_1 | ||
1342 | addcc c_2,t_1,c_2 != | ||
1343 | addxcc c_3,t_2,c_3 | ||
1344 | st c_2,rp(13) !r[13]=c2; | ||
1345 | addx c_1,%g0,c_1 != | ||
1346 | |||
1347 | umul a_7,a_7,t_1 !sqr_add_c(a,7,c3,c1,c2); | ||
1348 | addcc c_3,t_1,c_3 | ||
1349 | rd %y,t_2 | ||
1350 | addxcc c_1,t_2,c_1 != | ||
1351 | st c_3,rp(14) !r[14]=c3; | ||
1352 | st c_1,rp(15) !r[15]=c1; | ||
1353 | |||
1354 | ret | ||
1355 | restore %g0,%g0,%o0 | ||
1356 | |||
1357 | .type bn_sqr_comba8,#function | ||
1358 | .size bn_sqr_comba8,(.-bn_sqr_comba8) | ||
1359 | |||
1360 | .align 32 | ||
1361 | |||
1362 | .global bn_sqr_comba4 | ||
1363 | /* | ||
1364 | * void bn_sqr_comba4(r,a) | ||
1365 | * BN_ULONG *r,*a; | ||
1366 | */ | ||
1367 | bn_sqr_comba4: | ||
1368 | save %sp,FRAME_SIZE,%sp | ||
1369 | ld ap(0),a_0 | ||
1370 | umul a_0,a_0,c_1 !sqr_add_c(a,0,c1,c2,c3); | ||
1371 | ld ap(1),a_1 != | ||
1372 | rd %y,c_2 | ||
1373 | st c_1,rp(0) !r[0]=c1; | ||
1374 | |||
1375 | ld ap(2),a_2 | ||
1376 | umul a_0,a_1,t_1 !=!sqr_add_c2(a,1,0,c2,c3,c1); | ||
1377 | addcc c_2,t_1,c_2 | ||
1378 | rd %y,t_2 | ||
1379 | addxcc %g0,t_2,c_3 | ||
1380 | addx %g0,%g0,c_1 != | ||
1381 | addcc c_2,t_1,c_2 | ||
1382 | addxcc c_3,t_2,c_3 | ||
1383 | addx c_1,%g0,c_1 != | ||
1384 | st c_2,rp(1) !r[1]=c2; | ||
1385 | |||
1386 | umul a_2,a_0,t_1 !sqr_add_c2(a,2,0,c3,c1,c2); | ||
1387 | addcc c_3,t_1,c_3 | ||
1388 | rd %y,t_2 != | ||
1389 | addxcc c_1,t_2,c_1 | ||
1390 | addx %g0,%g0,c_2 | ||
1391 | addcc c_3,t_1,c_3 | ||
1392 | addxcc c_1,t_2,c_1 != | ||
1393 | addx c_2,%g0,c_2 | ||
1394 | ld ap(3),a_3 | ||
1395 | umul a_1,a_1,t_1 !sqr_add_c(a,1,c3,c1,c2); | ||
1396 | addcc c_3,t_1,c_3 != | ||
1397 | rd %y,t_2 | ||
1398 | addxcc c_1,t_2,c_1 | ||
1399 | st c_3,rp(2) !r[2]=c3; | ||
1400 | addx c_2,%g0,c_2 != | ||
1401 | |||
1402 | umul a_0,a_3,t_1 !sqr_add_c2(a,3,0,c1,c2,c3); | ||
1403 | addcc c_1,t_1,c_1 | ||
1404 | rd %y,t_2 | ||
1405 | addxcc c_2,t_2,c_2 != | ||
1406 | addx %g0,%g0,c_3 | ||
1407 | addcc c_1,t_1,c_1 | ||
1408 | addxcc c_2,t_2,c_2 | ||
1409 | addx c_3,%g0,c_3 != | ||
1410 | umul a_1,a_2,t_1 !sqr_add_c2(a,2,1,c1,c2,c3); | ||
1411 | addcc c_1,t_1,c_1 | ||
1412 | rd %y,t_2 | ||
1413 | addxcc c_2,t_2,c_2 != | ||
1414 | addx c_3,%g0,c_3 | ||
1415 | addcc c_1,t_1,c_1 | ||
1416 | addxcc c_2,t_2,c_2 | ||
1417 | addx c_3,%g0,c_3 != | ||
1418 | st c_1,rp(3) !r[3]=c1; | ||
1419 | |||
1420 | umul a_3,a_1,t_1 !sqr_add_c2(a,3,1,c2,c3,c1); | ||
1421 | addcc c_2,t_1,c_2 | ||
1422 | rd %y,t_2 != | ||
1423 | addxcc c_3,t_2,c_3 | ||
1424 | addx %g0,%g0,c_1 | ||
1425 | addcc c_2,t_1,c_2 | ||
1426 | addxcc c_3,t_2,c_3 != | ||
1427 | addx c_1,%g0,c_1 | ||
1428 | umul a_2,a_2,t_1 !sqr_add_c(a,2,c2,c3,c1); | ||
1429 | addcc c_2,t_1,c_2 | ||
1430 | rd %y,t_2 != | ||
1431 | addxcc c_3,t_2,c_3 | ||
1432 | addx c_1,%g0,c_1 | ||
1433 | st c_2,rp(4) !r[4]=c2; | ||
1434 | |||
1435 | umul a_2,a_3,t_1 !=!sqr_add_c2(a,3,2,c3,c1,c2); | ||
1436 | addcc c_3,t_1,c_3 | ||
1437 | rd %y,t_2 | ||
1438 | addxcc c_1,t_2,c_1 | ||
1439 | addx %g0,%g0,c_2 != | ||
1440 | addcc c_3,t_1,c_3 | ||
1441 | addxcc c_1,t_2,c_1 | ||
1442 | st c_3,rp(5) !r[5]=c3; | ||
1443 | addx c_2,%g0,c_2 != | ||
1444 | |||
1445 | umul a_3,a_3,t_1 !sqr_add_c(a,3,c1,c2,c3); | ||
1446 | addcc c_1,t_1,c_1 | ||
1447 | rd %y,t_2 | ||
1448 | addxcc c_2,t_2,c_2 != | ||
1449 | st c_1,rp(6) !r[6]=c1; | ||
1450 | st c_2,rp(7) !r[7]=c2; | ||
1451 | |||
1452 | ret | ||
1453 | restore %g0,%g0,%o0 | ||
1454 | |||
1455 | .type bn_sqr_comba4,#function | ||
1456 | .size bn_sqr_comba4,(.-bn_sqr_comba4) | ||
1457 | |||
1458 | .align 32 | ||
diff --git a/src/lib/libcrypto/bn/asm/sparcv8plus.S b/src/lib/libcrypto/bn/asm/sparcv8plus.S deleted file mode 100644 index 63de1860f2..0000000000 --- a/src/lib/libcrypto/bn/asm/sparcv8plus.S +++ /dev/null | |||
@@ -1,1558 +0,0 @@ | |||
1 | .ident "sparcv8plus.s, Version 1.4" | ||
2 | .ident "SPARC v9 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>" | ||
3 | |||
4 | /* | ||
5 | * ==================================================================== | ||
6 | * Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
7 | * project. | ||
8 | * | ||
9 | * Rights for redistribution and usage in source and binary forms are | ||
10 | * granted according to the OpenSSL license. Warranty of any kind is | ||
11 | * disclaimed. | ||
12 | * ==================================================================== | ||
13 | */ | ||
14 | |||
15 | /* | ||
16 | * This is my modest contributon to OpenSSL project (see | ||
17 | * http://www.openssl.org/ for more information about it) and is | ||
18 | * a drop-in UltraSPARC ISA replacement for crypto/bn/bn_asm.c | ||
19 | * module. For updates see http://fy.chalmers.se/~appro/hpe/. | ||
20 | * | ||
21 | * Questions-n-answers. | ||
22 | * | ||
23 | * Q. How to compile? | ||
24 | * A. With SC4.x/SC5.x: | ||
25 | * | ||
26 | * cc -xarch=v8plus -c bn_asm.sparc.v8plus.S -o bn_asm.o | ||
27 | * | ||
28 | * and with gcc: | ||
29 | * | ||
30 | * gcc -mcpu=ultrasparc -c bn_asm.sparc.v8plus.S -o bn_asm.o | ||
31 | * | ||
32 | * or if above fails (it does if you have gas installed): | ||
33 | * | ||
34 | * gcc -E bn_asm.sparc.v8plus.S | as -xarch=v8plus /dev/fd/0 -o bn_asm.o | ||
35 | * | ||
36 | * Quick-n-dirty way to fuse the module into the library. | ||
37 | * Provided that the library is already configured and built | ||
38 | * (in 0.9.2 case with no-asm option): | ||
39 | * | ||
40 | * # cd crypto/bn | ||
41 | * # cp /some/place/bn_asm.sparc.v8plus.S . | ||
42 | * # cc -xarch=v8plus -c bn_asm.sparc.v8plus.S -o bn_asm.o | ||
43 | * # make | ||
44 | * # cd ../.. | ||
45 | * # make; make test | ||
46 | * | ||
47 | * Quick-n-dirty way to get rid of it: | ||
48 | * | ||
49 | * # cd crypto/bn | ||
50 | * # touch bn_asm.c | ||
51 | * # make | ||
52 | * # cd ../.. | ||
53 | * # make; make test | ||
54 | * | ||
55 | * Q. V8plus achitecture? What kind of beast is that? | ||
56 | * A. Well, it's rather a programming model than an architecture... | ||
57 | * It's actually v9-compliant, i.e. *any* UltraSPARC, CPU under | ||
58 | * special conditions, namely when kernel doesn't preserve upper | ||
59 | * 32 bits of otherwise 64-bit registers during a context switch. | ||
60 | * | ||
61 | * Q. Why just UltraSPARC? What about SuperSPARC? | ||
62 | * A. Original release did target UltraSPARC only. Now SuperSPARC | ||
63 | * version is provided along. Both version share bn_*comba[48] | ||
64 | * implementations (see comment later in code for explanation). | ||
65 | * But what's so special about this UltraSPARC implementation? | ||
66 | * Why didn't I let compiler do the job? Trouble is that most of | ||
67 | * available compilers (well, SC5.0 is the only exception) don't | ||
68 | * attempt to take advantage of UltraSPARC's 64-bitness under | ||
69 | * 32-bit kernels even though it's perfectly possible (see next | ||
70 | * question). | ||
71 | * | ||
72 | * Q. 64-bit registers under 32-bit kernels? Didn't you just say it | ||
73 | * doesn't work? | ||
74 | * A. You can't adress *all* registers as 64-bit wide:-( The catch is | ||
75 | * that you actually may rely upon %o0-%o5 and %g1-%g4 being fully | ||
76 | * preserved if you're in a leaf function, i.e. such never calling | ||
77 | * any other functions. All functions in this module are leaf and | ||
78 | * 10 registers is a handful. And as a matter of fact none-"comba" | ||
79 | * routines don't require even that much and I could even afford to | ||
80 | * not allocate own stack frame for 'em:-) | ||
81 | * | ||
82 | * Q. What about 64-bit kernels? | ||
83 | * A. What about 'em? Just kidding:-) Pure 64-bit version is currently | ||
84 | * under evaluation and development... | ||
85 | * | ||
86 | * Q. What about shared libraries? | ||
87 | * A. What about 'em? Kidding again:-) Code does *not* contain any | ||
88 | * code position dependencies and it's safe to include it into | ||
89 | * shared library as is. | ||
90 | * | ||
91 | * Q. How much faster does it go? | ||
92 | * A. Do you have a good benchmark? In either case below is what I | ||
93 | * experience with crypto/bn/expspeed.c test program: | ||
94 | * | ||
95 | * v8plus module on U10/300MHz against bn_asm.c compiled with: | ||
96 | * | ||
97 | * cc-5.0 -xarch=v8plus -xO5 -xdepend +7-12% | ||
98 | * cc-4.2 -xarch=v8plus -xO5 -xdepend +25-35% | ||
99 | * egcs-1.1.2 -mcpu=ultrasparc -O3 +35-45% | ||
100 | * | ||
101 | * v8 module on SS10/60MHz against bn_asm.c compiled with: | ||
102 | * | ||
103 | * cc-5.0 -xarch=v8 -xO5 -xdepend +7-10% | ||
104 | * cc-4.2 -xarch=v8 -xO5 -xdepend +10% | ||
105 | * egcs-1.1.2 -mv8 -O3 +35-45% | ||
106 | * | ||
107 | * As you can see it's damn hard to beat the new Sun C compiler | ||
108 | * and it's in first place GNU C users who will appreciate this | ||
109 | * assembler implementation:-) | ||
110 | */ | ||
111 | |||
112 | /* | ||
113 | * Revision history. | ||
114 | * | ||
115 | * 1.0 - initial release; | ||
116 | * 1.1 - new loop unrolling model(*); | ||
117 | * - some more fine tuning; | ||
118 | * 1.2 - made gas friendly; | ||
119 | * - updates to documentation concerning v9; | ||
120 | * - new performance comparison matrix; | ||
121 | * 1.3 - fixed problem with /usr/ccs/lib/cpp; | ||
122 | * 1.4 - native V9 bn_*_comba[48] implementation (15% more efficient) | ||
123 | * resulting in slight overall performance kick; | ||
124 | * - some retunes; | ||
125 | * - support for GNU as added; | ||
126 | * | ||
127 | * (*) Originally unrolled loop looked like this: | ||
128 | * for (;;) { | ||
129 | * op(p+0); if (--n==0) break; | ||
130 | * op(p+1); if (--n==0) break; | ||
131 | * op(p+2); if (--n==0) break; | ||
132 | * op(p+3); if (--n==0) break; | ||
133 | * p+=4; | ||
134 | * } | ||
135 | * I unroll according to following: | ||
136 | * while (n&~3) { | ||
137 | * op(p+0); op(p+1); op(p+2); op(p+3); | ||
138 | * p+=4; n=-4; | ||
139 | * } | ||
140 | * if (n) { | ||
141 | * op(p+0); if (--n==0) return; | ||
142 | * op(p+2); if (--n==0) return; | ||
143 | * op(p+3); return; | ||
144 | * } | ||
145 | */ | ||
146 | |||
147 | #if defined(__SUNPRO_C) && defined(__sparcv9) | ||
148 | /* They've said -xarch=v9 at command line */ | ||
149 | .register %g2,#scratch | ||
150 | .register %g3,#scratch | ||
151 | # define FRAME_SIZE -192 | ||
152 | #elif defined(__GNUC__) && defined(__arch64__) | ||
153 | /* They've said -m64 at command line */ | ||
154 | .register %g2,#scratch | ||
155 | .register %g3,#scratch | ||
156 | # define FRAME_SIZE -192 | ||
157 | #else | ||
158 | # define FRAME_SIZE -96 | ||
159 | #endif | ||
160 | /* | ||
161 | * GNU assembler can't stand stuw:-( | ||
162 | */ | ||
163 | #define stuw st | ||
164 | |||
165 | .section ".text",#alloc,#execinstr | ||
166 | .file "bn_asm.sparc.v8plus.S" | ||
167 | |||
168 | .align 32 | ||
169 | |||
170 | .global bn_mul_add_words | ||
171 | /* | ||
172 | * BN_ULONG bn_mul_add_words(rp,ap,num,w) | ||
173 | * BN_ULONG *rp,*ap; | ||
174 | * int num; | ||
175 | * BN_ULONG w; | ||
176 | */ | ||
177 | bn_mul_add_words: | ||
178 | sra %o2,%g0,%o2 ! signx %o2 | ||
179 | brgz,a %o2,.L_bn_mul_add_words_proceed | ||
180 | lduw [%o1],%g2 | ||
181 | retl | ||
182 | clr %o0 | ||
183 | nop | ||
184 | nop | ||
185 | nop | ||
186 | |||
187 | .L_bn_mul_add_words_proceed: | ||
188 | srl %o3,%g0,%o3 ! clruw %o3 | ||
189 | andcc %o2,-4,%g0 | ||
190 | bz,pn %icc,.L_bn_mul_add_words_tail | ||
191 | clr %o5 | ||
192 | |||
193 | .L_bn_mul_add_words_loop: ! wow! 32 aligned! | ||
194 | lduw [%o0],%g1 | ||
195 | lduw [%o1+4],%g3 | ||
196 | mulx %o3,%g2,%g2 | ||
197 | add %g1,%o5,%o4 | ||
198 | nop | ||
199 | add %o4,%g2,%o4 | ||
200 | stuw %o4,[%o0] | ||
201 | srlx %o4,32,%o5 | ||
202 | |||
203 | lduw [%o0+4],%g1 | ||
204 | lduw [%o1+8],%g2 | ||
205 | mulx %o3,%g3,%g3 | ||
206 | add %g1,%o5,%o4 | ||
207 | dec 4,%o2 | ||
208 | add %o4,%g3,%o4 | ||
209 | stuw %o4,[%o0+4] | ||
210 | srlx %o4,32,%o5 | ||
211 | |||
212 | lduw [%o0+8],%g1 | ||
213 | lduw [%o1+12],%g3 | ||
214 | mulx %o3,%g2,%g2 | ||
215 | add %g1,%o5,%o4 | ||
216 | inc 16,%o1 | ||
217 | add %o4,%g2,%o4 | ||
218 | stuw %o4,[%o0+8] | ||
219 | srlx %o4,32,%o5 | ||
220 | |||
221 | lduw [%o0+12],%g1 | ||
222 | mulx %o3,%g3,%g3 | ||
223 | add %g1,%o5,%o4 | ||
224 | inc 16,%o0 | ||
225 | add %o4,%g3,%o4 | ||
226 | andcc %o2,-4,%g0 | ||
227 | stuw %o4,[%o0-4] | ||
228 | srlx %o4,32,%o5 | ||
229 | bnz,a,pt %icc,.L_bn_mul_add_words_loop | ||
230 | lduw [%o1],%g2 | ||
231 | |||
232 | brnz,a,pn %o2,.L_bn_mul_add_words_tail | ||
233 | lduw [%o1],%g2 | ||
234 | .L_bn_mul_add_words_return: | ||
235 | retl | ||
236 | mov %o5,%o0 | ||
237 | |||
238 | .L_bn_mul_add_words_tail: | ||
239 | lduw [%o0],%g1 | ||
240 | mulx %o3,%g2,%g2 | ||
241 | add %g1,%o5,%o4 | ||
242 | dec %o2 | ||
243 | add %o4,%g2,%o4 | ||
244 | srlx %o4,32,%o5 | ||
245 | brz,pt %o2,.L_bn_mul_add_words_return | ||
246 | stuw %o4,[%o0] | ||
247 | |||
248 | lduw [%o1+4],%g2 | ||
249 | lduw [%o0+4],%g1 | ||
250 | mulx %o3,%g2,%g2 | ||
251 | add %g1,%o5,%o4 | ||
252 | dec %o2 | ||
253 | add %o4,%g2,%o4 | ||
254 | srlx %o4,32,%o5 | ||
255 | brz,pt %o2,.L_bn_mul_add_words_return | ||
256 | stuw %o4,[%o0+4] | ||
257 | |||
258 | lduw [%o1+8],%g2 | ||
259 | lduw [%o0+8],%g1 | ||
260 | mulx %o3,%g2,%g2 | ||
261 | add %g1,%o5,%o4 | ||
262 | add %o4,%g2,%o4 | ||
263 | stuw %o4,[%o0+8] | ||
264 | retl | ||
265 | srlx %o4,32,%o0 | ||
266 | |||
267 | .type bn_mul_add_words,#function | ||
268 | .size bn_mul_add_words,(.-bn_mul_add_words) | ||
269 | |||
270 | .align 32 | ||
271 | |||
272 | .global bn_mul_words | ||
273 | /* | ||
274 | * BN_ULONG bn_mul_words(rp,ap,num,w) | ||
275 | * BN_ULONG *rp,*ap; | ||
276 | * int num; | ||
277 | * BN_ULONG w; | ||
278 | */ | ||
279 | bn_mul_words: | ||
280 | sra %o2,%g0,%o2 ! signx %o2 | ||
281 | brgz,a %o2,.L_bn_mul_words_proceeed | ||
282 | lduw [%o1],%g2 | ||
283 | retl | ||
284 | clr %o0 | ||
285 | nop | ||
286 | nop | ||
287 | nop | ||
288 | |||
289 | .L_bn_mul_words_proceeed: | ||
290 | srl %o3,%g0,%o3 ! clruw %o3 | ||
291 | andcc %o2,-4,%g0 | ||
292 | bz,pn %icc,.L_bn_mul_words_tail | ||
293 | clr %o5 | ||
294 | |||
295 | .L_bn_mul_words_loop: ! wow! 32 aligned! | ||
296 | lduw [%o1+4],%g3 | ||
297 | mulx %o3,%g2,%g2 | ||
298 | add %g2,%o5,%o4 | ||
299 | nop | ||
300 | stuw %o4,[%o0] | ||
301 | srlx %o4,32,%o5 | ||
302 | |||
303 | lduw [%o1+8],%g2 | ||
304 | mulx %o3,%g3,%g3 | ||
305 | add %g3,%o5,%o4 | ||
306 | dec 4,%o2 | ||
307 | stuw %o4,[%o0+4] | ||
308 | srlx %o4,32,%o5 | ||
309 | |||
310 | lduw [%o1+12],%g3 | ||
311 | mulx %o3,%g2,%g2 | ||
312 | add %g2,%o5,%o4 | ||
313 | inc 16,%o1 | ||
314 | stuw %o4,[%o0+8] | ||
315 | srlx %o4,32,%o5 | ||
316 | |||
317 | mulx %o3,%g3,%g3 | ||
318 | add %g3,%o5,%o4 | ||
319 | inc 16,%o0 | ||
320 | stuw %o4,[%o0-4] | ||
321 | srlx %o4,32,%o5 | ||
322 | andcc %o2,-4,%g0 | ||
323 | bnz,a,pt %icc,.L_bn_mul_words_loop | ||
324 | lduw [%o1],%g2 | ||
325 | nop | ||
326 | nop | ||
327 | |||
328 | brnz,a,pn %o2,.L_bn_mul_words_tail | ||
329 | lduw [%o1],%g2 | ||
330 | .L_bn_mul_words_return: | ||
331 | retl | ||
332 | mov %o5,%o0 | ||
333 | |||
334 | .L_bn_mul_words_tail: | ||
335 | mulx %o3,%g2,%g2 | ||
336 | add %g2,%o5,%o4 | ||
337 | dec %o2 | ||
338 | srlx %o4,32,%o5 | ||
339 | brz,pt %o2,.L_bn_mul_words_return | ||
340 | stuw %o4,[%o0] | ||
341 | |||
342 | lduw [%o1+4],%g2 | ||
343 | mulx %o3,%g2,%g2 | ||
344 | add %g2,%o5,%o4 | ||
345 | dec %o2 | ||
346 | srlx %o4,32,%o5 | ||
347 | brz,pt %o2,.L_bn_mul_words_return | ||
348 | stuw %o4,[%o0+4] | ||
349 | |||
350 | lduw [%o1+8],%g2 | ||
351 | mulx %o3,%g2,%g2 | ||
352 | add %g2,%o5,%o4 | ||
353 | stuw %o4,[%o0+8] | ||
354 | retl | ||
355 | srlx %o4,32,%o0 | ||
356 | |||
357 | .type bn_mul_words,#function | ||
358 | .size bn_mul_words,(.-bn_mul_words) | ||
359 | |||
360 | .align 32 | ||
361 | .global bn_sqr_words | ||
362 | /* | ||
363 | * void bn_sqr_words(r,a,n) | ||
364 | * BN_ULONG *r,*a; | ||
365 | * int n; | ||
366 | */ | ||
367 | bn_sqr_words: | ||
368 | sra %o2,%g0,%o2 ! signx %o2 | ||
369 | brgz,a %o2,.L_bn_sqr_words_proceeed | ||
370 | lduw [%o1],%g2 | ||
371 | retl | ||
372 | clr %o0 | ||
373 | nop | ||
374 | nop | ||
375 | nop | ||
376 | |||
377 | .L_bn_sqr_words_proceeed: | ||
378 | andcc %o2,-4,%g0 | ||
379 | nop | ||
380 | bz,pn %icc,.L_bn_sqr_words_tail | ||
381 | nop | ||
382 | |||
383 | .L_bn_sqr_words_loop: ! wow! 32 aligned! | ||
384 | lduw [%o1+4],%g3 | ||
385 | mulx %g2,%g2,%o4 | ||
386 | stuw %o4,[%o0] | ||
387 | srlx %o4,32,%o5 | ||
388 | stuw %o5,[%o0+4] | ||
389 | nop | ||
390 | |||
391 | lduw [%o1+8],%g2 | ||
392 | mulx %g3,%g3,%o4 | ||
393 | dec 4,%o2 | ||
394 | stuw %o4,[%o0+8] | ||
395 | srlx %o4,32,%o5 | ||
396 | stuw %o5,[%o0+12] | ||
397 | |||
398 | lduw [%o1+12],%g3 | ||
399 | mulx %g2,%g2,%o4 | ||
400 | srlx %o4,32,%o5 | ||
401 | stuw %o4,[%o0+16] | ||
402 | inc 16,%o1 | ||
403 | stuw %o5,[%o0+20] | ||
404 | |||
405 | mulx %g3,%g3,%o4 | ||
406 | inc 32,%o0 | ||
407 | stuw %o4,[%o0-8] | ||
408 | srlx %o4,32,%o5 | ||
409 | andcc %o2,-4,%g2 | ||
410 | stuw %o5,[%o0-4] | ||
411 | bnz,a,pt %icc,.L_bn_sqr_words_loop | ||
412 | lduw [%o1],%g2 | ||
413 | nop | ||
414 | |||
415 | brnz,a,pn %o2,.L_bn_sqr_words_tail | ||
416 | lduw [%o1],%g2 | ||
417 | .L_bn_sqr_words_return: | ||
418 | retl | ||
419 | clr %o0 | ||
420 | |||
421 | .L_bn_sqr_words_tail: | ||
422 | mulx %g2,%g2,%o4 | ||
423 | dec %o2 | ||
424 | stuw %o4,[%o0] | ||
425 | srlx %o4,32,%o5 | ||
426 | brz,pt %o2,.L_bn_sqr_words_return | ||
427 | stuw %o5,[%o0+4] | ||
428 | |||
429 | lduw [%o1+4],%g2 | ||
430 | mulx %g2,%g2,%o4 | ||
431 | dec %o2 | ||
432 | stuw %o4,[%o0+8] | ||
433 | srlx %o4,32,%o5 | ||
434 | brz,pt %o2,.L_bn_sqr_words_return | ||
435 | stuw %o5,[%o0+12] | ||
436 | |||
437 | lduw [%o1+8],%g2 | ||
438 | mulx %g2,%g2,%o4 | ||
439 | srlx %o4,32,%o5 | ||
440 | stuw %o4,[%o0+16] | ||
441 | stuw %o5,[%o0+20] | ||
442 | retl | ||
443 | clr %o0 | ||
444 | |||
445 | .type bn_sqr_words,#function | ||
446 | .size bn_sqr_words,(.-bn_sqr_words) | ||
447 | |||
448 | .align 32 | ||
449 | .global bn_div_words | ||
450 | /* | ||
451 | * BN_ULONG bn_div_words(h,l,d) | ||
452 | * BN_ULONG h,l,d; | ||
453 | */ | ||
454 | bn_div_words: | ||
455 | sllx %o0,32,%o0 | ||
456 | or %o0,%o1,%o0 | ||
457 | udivx %o0,%o2,%o0 | ||
458 | retl | ||
459 | srl %o0,%g0,%o0 ! clruw %o0 | ||
460 | |||
461 | .type bn_div_words,#function | ||
462 | .size bn_div_words,(.-bn_div_words) | ||
463 | |||
464 | .align 32 | ||
465 | |||
466 | .global bn_add_words | ||
467 | /* | ||
468 | * BN_ULONG bn_add_words(rp,ap,bp,n) | ||
469 | * BN_ULONG *rp,*ap,*bp; | ||
470 | * int n; | ||
471 | */ | ||
472 | bn_add_words: | ||
473 | sra %o3,%g0,%o3 ! signx %o3 | ||
474 | brgz,a %o3,.L_bn_add_words_proceed | ||
475 | lduw [%o1],%o4 | ||
476 | retl | ||
477 | clr %o0 | ||
478 | |||
479 | .L_bn_add_words_proceed: | ||
480 | andcc %o3,-4,%g0 | ||
481 | bz,pn %icc,.L_bn_add_words_tail | ||
482 | addcc %g0,0,%g0 ! clear carry flag | ||
483 | |||
484 | .L_bn_add_words_loop: ! wow! 32 aligned! | ||
485 | dec 4,%o3 | ||
486 | lduw [%o2],%o5 | ||
487 | lduw [%o1+4],%g1 | ||
488 | lduw [%o2+4],%g2 | ||
489 | lduw [%o1+8],%g3 | ||
490 | lduw [%o2+8],%g4 | ||
491 | addccc %o5,%o4,%o5 | ||
492 | stuw %o5,[%o0] | ||
493 | |||
494 | lduw [%o1+12],%o4 | ||
495 | lduw [%o2+12],%o5 | ||
496 | inc 16,%o1 | ||
497 | addccc %g1,%g2,%g1 | ||
498 | stuw %g1,[%o0+4] | ||
499 | |||
500 | inc 16,%o2 | ||
501 | addccc %g3,%g4,%g3 | ||
502 | stuw %g3,[%o0+8] | ||
503 | |||
504 | inc 16,%o0 | ||
505 | addccc %o5,%o4,%o5 | ||
506 | stuw %o5,[%o0-4] | ||
507 | and %o3,-4,%g1 | ||
508 | brnz,a,pt %g1,.L_bn_add_words_loop | ||
509 | lduw [%o1],%o4 | ||
510 | |||
511 | brnz,a,pn %o3,.L_bn_add_words_tail | ||
512 | lduw [%o1],%o4 | ||
513 | .L_bn_add_words_return: | ||
514 | clr %o0 | ||
515 | retl | ||
516 | movcs %icc,1,%o0 | ||
517 | nop | ||
518 | |||
519 | .L_bn_add_words_tail: | ||
520 | lduw [%o2],%o5 | ||
521 | dec %o3 | ||
522 | addccc %o5,%o4,%o5 | ||
523 | brz,pt %o3,.L_bn_add_words_return | ||
524 | stuw %o5,[%o0] | ||
525 | |||
526 | lduw [%o1+4],%o4 | ||
527 | lduw [%o2+4],%o5 | ||
528 | dec %o3 | ||
529 | addccc %o5,%o4,%o5 | ||
530 | brz,pt %o3,.L_bn_add_words_return | ||
531 | stuw %o5,[%o0+4] | ||
532 | |||
533 | lduw [%o1+8],%o4 | ||
534 | lduw [%o2+8],%o5 | ||
535 | addccc %o5,%o4,%o5 | ||
536 | stuw %o5,[%o0+8] | ||
537 | clr %o0 | ||
538 | retl | ||
539 | movcs %icc,1,%o0 | ||
540 | |||
541 | .type bn_add_words,#function | ||
542 | .size bn_add_words,(.-bn_add_words) | ||
543 | |||
544 | .global bn_sub_words | ||
545 | /* | ||
546 | * BN_ULONG bn_sub_words(rp,ap,bp,n) | ||
547 | * BN_ULONG *rp,*ap,*bp; | ||
548 | * int n; | ||
549 | */ | ||
550 | bn_sub_words: | ||
551 | sra %o3,%g0,%o3 ! signx %o3 | ||
552 | brgz,a %o3,.L_bn_sub_words_proceed | ||
553 | lduw [%o1],%o4 | ||
554 | retl | ||
555 | clr %o0 | ||
556 | |||
557 | .L_bn_sub_words_proceed: | ||
558 | andcc %o3,-4,%g0 | ||
559 | bz,pn %icc,.L_bn_sub_words_tail | ||
560 | addcc %g0,0,%g0 ! clear carry flag | ||
561 | |||
562 | .L_bn_sub_words_loop: ! wow! 32 aligned! | ||
563 | dec 4,%o3 | ||
564 | lduw [%o2],%o5 | ||
565 | lduw [%o1+4],%g1 | ||
566 | lduw [%o2+4],%g2 | ||
567 | lduw [%o1+8],%g3 | ||
568 | lduw [%o2+8],%g4 | ||
569 | subccc %o4,%o5,%o5 | ||
570 | stuw %o5,[%o0] | ||
571 | |||
572 | lduw [%o1+12],%o4 | ||
573 | lduw [%o2+12],%o5 | ||
574 | inc 16,%o1 | ||
575 | subccc %g1,%g2,%g2 | ||
576 | stuw %g2,[%o0+4] | ||
577 | |||
578 | inc 16,%o2 | ||
579 | subccc %g3,%g4,%g4 | ||
580 | stuw %g4,[%o0+8] | ||
581 | |||
582 | inc 16,%o0 | ||
583 | subccc %o4,%o5,%o5 | ||
584 | stuw %o5,[%o0-4] | ||
585 | and %o3,-4,%g1 | ||
586 | brnz,a,pt %g1,.L_bn_sub_words_loop | ||
587 | lduw [%o1],%o4 | ||
588 | |||
589 | brnz,a,pn %o3,.L_bn_sub_words_tail | ||
590 | lduw [%o1],%o4 | ||
591 | .L_bn_sub_words_return: | ||
592 | clr %o0 | ||
593 | retl | ||
594 | movcs %icc,1,%o0 | ||
595 | nop | ||
596 | |||
597 | .L_bn_sub_words_tail: ! wow! 32 aligned! | ||
598 | lduw [%o2],%o5 | ||
599 | dec %o3 | ||
600 | subccc %o4,%o5,%o5 | ||
601 | brz,pt %o3,.L_bn_sub_words_return | ||
602 | stuw %o5,[%o0] | ||
603 | |||
604 | lduw [%o1+4],%o4 | ||
605 | lduw [%o2+4],%o5 | ||
606 | dec %o3 | ||
607 | subccc %o4,%o5,%o5 | ||
608 | brz,pt %o3,.L_bn_sub_words_return | ||
609 | stuw %o5,[%o0+4] | ||
610 | |||
611 | lduw [%o1+8],%o4 | ||
612 | lduw [%o2+8],%o5 | ||
613 | subccc %o4,%o5,%o5 | ||
614 | stuw %o5,[%o0+8] | ||
615 | clr %o0 | ||
616 | retl | ||
617 | movcs %icc,1,%o0 | ||
618 | |||
619 | .type bn_sub_words,#function | ||
620 | .size bn_sub_words,(.-bn_sub_words) | ||
621 | |||
622 | /* | ||
623 | * Code below depends on the fact that upper parts of the %l0-%l7 | ||
624 | * and %i0-%i7 are zeroed by kernel after context switch. In | ||
625 | * previous versions this comment stated that "the trouble is that | ||
626 | * it's not feasible to implement the mumbo-jumbo in less V9 | ||
627 | * instructions:-(" which apparently isn't true thanks to | ||
628 | * 'bcs,a %xcc,.+8; inc %rd' pair. But the performance improvement | ||
629 | * results not from the shorter code, but from elimination of | ||
630 | * multicycle none-pairable 'rd %y,%rd' instructions. | ||
631 | * | ||
632 | * Andy. | ||
633 | */ | ||
634 | |||
635 | /* | ||
636 | * Here is register usage map for *all* routines below. | ||
637 | */ | ||
638 | #define t_1 %o0 | ||
639 | #define t_2 %o1 | ||
640 | #define c_12 %o2 | ||
641 | #define c_3 %o3 | ||
642 | |||
643 | #define ap(I) [%i1+4*I] | ||
644 | #define bp(I) [%i2+4*I] | ||
645 | #define rp(I) [%i0+4*I] | ||
646 | |||
647 | #define a_0 %l0 | ||
648 | #define a_1 %l1 | ||
649 | #define a_2 %l2 | ||
650 | #define a_3 %l3 | ||
651 | #define a_4 %l4 | ||
652 | #define a_5 %l5 | ||
653 | #define a_6 %l6 | ||
654 | #define a_7 %l7 | ||
655 | |||
656 | #define b_0 %i3 | ||
657 | #define b_1 %i4 | ||
658 | #define b_2 %i5 | ||
659 | #define b_3 %o4 | ||
660 | #define b_4 %o5 | ||
661 | #define b_5 %o7 | ||
662 | #define b_6 %g1 | ||
663 | #define b_7 %g4 | ||
664 | |||
665 | .align 32 | ||
666 | .global bn_mul_comba8 | ||
667 | /* | ||
668 | * void bn_mul_comba8(r,a,b) | ||
669 | * BN_ULONG *r,*a,*b; | ||
670 | */ | ||
671 | bn_mul_comba8: | ||
672 | save %sp,FRAME_SIZE,%sp | ||
673 | mov 1,t_2 | ||
674 | lduw ap(0),a_0 | ||
675 | sllx t_2,32,t_2 | ||
676 | lduw bp(0),b_0 != | ||
677 | lduw bp(1),b_1 | ||
678 | mulx a_0,b_0,t_1 !mul_add_c(a[0],b[0],c1,c2,c3); | ||
679 | srlx t_1,32,c_12 | ||
680 | stuw t_1,rp(0) !=!r[0]=c1; | ||
681 | |||
682 | lduw ap(1),a_1 | ||
683 | mulx a_0,b_1,t_1 !mul_add_c(a[0],b[1],c2,c3,c1); | ||
684 | addcc c_12,t_1,c_12 | ||
685 | clr c_3 != | ||
686 | bcs,a %xcc,.+8 | ||
687 | add c_3,t_2,c_3 | ||
688 | lduw ap(2),a_2 | ||
689 | mulx a_1,b_0,t_1 !=!mul_add_c(a[1],b[0],c2,c3,c1); | ||
690 | addcc c_12,t_1,t_1 | ||
691 | bcs,a %xcc,.+8 | ||
692 | add c_3,t_2,c_3 | ||
693 | srlx t_1,32,c_12 != | ||
694 | stuw t_1,rp(1) !r[1]=c2; | ||
695 | or c_12,c_3,c_12 | ||
696 | |||
697 | mulx a_2,b_0,t_1 !mul_add_c(a[2],b[0],c3,c1,c2); | ||
698 | addcc c_12,t_1,c_12 != | ||
699 | clr c_3 | ||
700 | bcs,a %xcc,.+8 | ||
701 | add c_3,t_2,c_3 | ||
702 | lduw bp(2),b_2 != | ||
703 | mulx a_1,b_1,t_1 !mul_add_c(a[1],b[1],c3,c1,c2); | ||
704 | addcc c_12,t_1,c_12 | ||
705 | bcs,a %xcc,.+8 | ||
706 | add c_3,t_2,c_3 != | ||
707 | lduw bp(3),b_3 | ||
708 | mulx a_0,b_2,t_1 !mul_add_c(a[0],b[2],c3,c1,c2); | ||
709 | addcc c_12,t_1,t_1 | ||
710 | bcs,a %xcc,.+8 != | ||
711 | add c_3,t_2,c_3 | ||
712 | srlx t_1,32,c_12 | ||
713 | stuw t_1,rp(2) !r[2]=c3; | ||
714 | or c_12,c_3,c_12 != | ||
715 | |||
716 | mulx a_0,b_3,t_1 !mul_add_c(a[0],b[3],c1,c2,c3); | ||
717 | addcc c_12,t_1,c_12 | ||
718 | clr c_3 | ||
719 | bcs,a %xcc,.+8 != | ||
720 | add c_3,t_2,c_3 | ||
721 | mulx a_1,b_2,t_1 !=!mul_add_c(a[1],b[2],c1,c2,c3); | ||
722 | addcc c_12,t_1,c_12 | ||
723 | bcs,a %xcc,.+8 != | ||
724 | add c_3,t_2,c_3 | ||
725 | lduw ap(3),a_3 | ||
726 | mulx a_2,b_1,t_1 !mul_add_c(a[2],b[1],c1,c2,c3); | ||
727 | addcc c_12,t_1,c_12 != | ||
728 | bcs,a %xcc,.+8 | ||
729 | add c_3,t_2,c_3 | ||
730 | lduw ap(4),a_4 | ||
731 | mulx a_3,b_0,t_1 !=!mul_add_c(a[3],b[0],c1,c2,c3);!= | ||
732 | addcc c_12,t_1,t_1 | ||
733 | bcs,a %xcc,.+8 | ||
734 | add c_3,t_2,c_3 | ||
735 | srlx t_1,32,c_12 != | ||
736 | stuw t_1,rp(3) !r[3]=c1; | ||
737 | or c_12,c_3,c_12 | ||
738 | |||
739 | mulx a_4,b_0,t_1 !mul_add_c(a[4],b[0],c2,c3,c1); | ||
740 | addcc c_12,t_1,c_12 != | ||
741 | clr c_3 | ||
742 | bcs,a %xcc,.+8 | ||
743 | add c_3,t_2,c_3 | ||
744 | mulx a_3,b_1,t_1 !=!mul_add_c(a[3],b[1],c2,c3,c1); | ||
745 | addcc c_12,t_1,c_12 | ||
746 | bcs,a %xcc,.+8 | ||
747 | add c_3,t_2,c_3 | ||
748 | mulx a_2,b_2,t_1 !=!mul_add_c(a[2],b[2],c2,c3,c1); | ||
749 | addcc c_12,t_1,c_12 | ||
750 | bcs,a %xcc,.+8 | ||
751 | add c_3,t_2,c_3 | ||
752 | lduw bp(4),b_4 != | ||
753 | mulx a_1,b_3,t_1 !mul_add_c(a[1],b[3],c2,c3,c1); | ||
754 | addcc c_12,t_1,c_12 | ||
755 | bcs,a %xcc,.+8 | ||
756 | add c_3,t_2,c_3 != | ||
757 | lduw bp(5),b_5 | ||
758 | mulx a_0,b_4,t_1 !mul_add_c(a[0],b[4],c2,c3,c1); | ||
759 | addcc c_12,t_1,t_1 | ||
760 | bcs,a %xcc,.+8 != | ||
761 | add c_3,t_2,c_3 | ||
762 | srlx t_1,32,c_12 | ||
763 | stuw t_1,rp(4) !r[4]=c2; | ||
764 | or c_12,c_3,c_12 != | ||
765 | |||
766 | mulx a_0,b_5,t_1 !mul_add_c(a[0],b[5],c3,c1,c2); | ||
767 | addcc c_12,t_1,c_12 | ||
768 | clr c_3 | ||
769 | bcs,a %xcc,.+8 != | ||
770 | add c_3,t_2,c_3 | ||
771 | mulx a_1,b_4,t_1 !mul_add_c(a[1],b[4],c3,c1,c2); | ||
772 | addcc c_12,t_1,c_12 | ||
773 | bcs,a %xcc,.+8 != | ||
774 | add c_3,t_2,c_3 | ||
775 | mulx a_2,b_3,t_1 !mul_add_c(a[2],b[3],c3,c1,c2); | ||
776 | addcc c_12,t_1,c_12 | ||
777 | bcs,a %xcc,.+8 != | ||
778 | add c_3,t_2,c_3 | ||
779 | mulx a_3,b_2,t_1 !mul_add_c(a[3],b[2],c3,c1,c2); | ||
780 | addcc c_12,t_1,c_12 | ||
781 | bcs,a %xcc,.+8 != | ||
782 | add c_3,t_2,c_3 | ||
783 | lduw ap(5),a_5 | ||
784 | mulx a_4,b_1,t_1 !mul_add_c(a[4],b[1],c3,c1,c2); | ||
785 | addcc c_12,t_1,c_12 != | ||
786 | bcs,a %xcc,.+8 | ||
787 | add c_3,t_2,c_3 | ||
788 | lduw ap(6),a_6 | ||
789 | mulx a_5,b_0,t_1 !=!mul_add_c(a[5],b[0],c3,c1,c2); | ||
790 | addcc c_12,t_1,t_1 | ||
791 | bcs,a %xcc,.+8 | ||
792 | add c_3,t_2,c_3 | ||
793 | srlx t_1,32,c_12 != | ||
794 | stuw t_1,rp(5) !r[5]=c3; | ||
795 | or c_12,c_3,c_12 | ||
796 | |||
797 | mulx a_6,b_0,t_1 !mul_add_c(a[6],b[0],c1,c2,c3); | ||
798 | addcc c_12,t_1,c_12 != | ||
799 | clr c_3 | ||
800 | bcs,a %xcc,.+8 | ||
801 | add c_3,t_2,c_3 | ||
802 | mulx a_5,b_1,t_1 !=!mul_add_c(a[5],b[1],c1,c2,c3); | ||
803 | addcc c_12,t_1,c_12 | ||
804 | bcs,a %xcc,.+8 | ||
805 | add c_3,t_2,c_3 | ||
806 | mulx a_4,b_2,t_1 !=!mul_add_c(a[4],b[2],c1,c2,c3); | ||
807 | addcc c_12,t_1,c_12 | ||
808 | bcs,a %xcc,.+8 | ||
809 | add c_3,t_2,c_3 | ||
810 | mulx a_3,b_3,t_1 !=!mul_add_c(a[3],b[3],c1,c2,c3); | ||
811 | addcc c_12,t_1,c_12 | ||
812 | bcs,a %xcc,.+8 | ||
813 | add c_3,t_2,c_3 | ||
814 | mulx a_2,b_4,t_1 !=!mul_add_c(a[2],b[4],c1,c2,c3); | ||
815 | addcc c_12,t_1,c_12 | ||
816 | bcs,a %xcc,.+8 | ||
817 | add c_3,t_2,c_3 | ||
818 | lduw bp(6),b_6 != | ||
819 | mulx a_1,b_5,t_1 !mul_add_c(a[1],b[5],c1,c2,c3); | ||
820 | addcc c_12,t_1,c_12 | ||
821 | bcs,a %xcc,.+8 | ||
822 | add c_3,t_2,c_3 != | ||
823 | lduw bp(7),b_7 | ||
824 | mulx a_0,b_6,t_1 !mul_add_c(a[0],b[6],c1,c2,c3); | ||
825 | addcc c_12,t_1,t_1 | ||
826 | bcs,a %xcc,.+8 != | ||
827 | add c_3,t_2,c_3 | ||
828 | srlx t_1,32,c_12 | ||
829 | stuw t_1,rp(6) !r[6]=c1; | ||
830 | or c_12,c_3,c_12 != | ||
831 | |||
832 | mulx a_0,b_7,t_1 !mul_add_c(a[0],b[7],c2,c3,c1); | ||
833 | addcc c_12,t_1,c_12 | ||
834 | clr c_3 | ||
835 | bcs,a %xcc,.+8 != | ||
836 | add c_3,t_2,c_3 | ||
837 | mulx a_1,b_6,t_1 !mul_add_c(a[1],b[6],c2,c3,c1); | ||
838 | addcc c_12,t_1,c_12 | ||
839 | bcs,a %xcc,.+8 != | ||
840 | add c_3,t_2,c_3 | ||
841 | mulx a_2,b_5,t_1 !mul_add_c(a[2],b[5],c2,c3,c1); | ||
842 | addcc c_12,t_1,c_12 | ||
843 | bcs,a %xcc,.+8 != | ||
844 | add c_3,t_2,c_3 | ||
845 | mulx a_3,b_4,t_1 !mul_add_c(a[3],b[4],c2,c3,c1); | ||
846 | addcc c_12,t_1,c_12 | ||
847 | bcs,a %xcc,.+8 != | ||
848 | add c_3,t_2,c_3 | ||
849 | mulx a_4,b_3,t_1 !mul_add_c(a[4],b[3],c2,c3,c1); | ||
850 | addcc c_12,t_1,c_12 | ||
851 | bcs,a %xcc,.+8 != | ||
852 | add c_3,t_2,c_3 | ||
853 | mulx a_5,b_2,t_1 !mul_add_c(a[5],b[2],c2,c3,c1); | ||
854 | addcc c_12,t_1,c_12 | ||
855 | bcs,a %xcc,.+8 != | ||
856 | add c_3,t_2,c_3 | ||
857 | lduw ap(7),a_7 | ||
858 | mulx a_6,b_1,t_1 !=!mul_add_c(a[6],b[1],c2,c3,c1); | ||
859 | addcc c_12,t_1,c_12 | ||
860 | bcs,a %xcc,.+8 | ||
861 | add c_3,t_2,c_3 | ||
862 | mulx a_7,b_0,t_1 !=!mul_add_c(a[7],b[0],c2,c3,c1); | ||
863 | addcc c_12,t_1,t_1 | ||
864 | bcs,a %xcc,.+8 | ||
865 | add c_3,t_2,c_3 | ||
866 | srlx t_1,32,c_12 != | ||
867 | stuw t_1,rp(7) !r[7]=c2; | ||
868 | or c_12,c_3,c_12 | ||
869 | |||
870 | mulx a_7,b_1,t_1 !=!mul_add_c(a[7],b[1],c3,c1,c2); | ||
871 | addcc c_12,t_1,c_12 | ||
872 | clr c_3 | ||
873 | bcs,a %xcc,.+8 | ||
874 | add c_3,t_2,c_3 != | ||
875 | mulx a_6,b_2,t_1 !mul_add_c(a[6],b[2],c3,c1,c2); | ||
876 | addcc c_12,t_1,c_12 | ||
877 | bcs,a %xcc,.+8 | ||
878 | add c_3,t_2,c_3 != | ||
879 | mulx a_5,b_3,t_1 !mul_add_c(a[5],b[3],c3,c1,c2); | ||
880 | addcc c_12,t_1,c_12 | ||
881 | bcs,a %xcc,.+8 | ||
882 | add c_3,t_2,c_3 != | ||
883 | mulx a_4,b_4,t_1 !mul_add_c(a[4],b[4],c3,c1,c2); | ||
884 | addcc c_12,t_1,c_12 | ||
885 | bcs,a %xcc,.+8 | ||
886 | add c_3,t_2,c_3 != | ||
887 | mulx a_3,b_5,t_1 !mul_add_c(a[3],b[5],c3,c1,c2); | ||
888 | addcc c_12,t_1,c_12 | ||
889 | bcs,a %xcc,.+8 | ||
890 | add c_3,t_2,c_3 != | ||
891 | mulx a_2,b_6,t_1 !mul_add_c(a[2],b[6],c3,c1,c2); | ||
892 | addcc c_12,t_1,c_12 | ||
893 | bcs,a %xcc,.+8 | ||
894 | add c_3,t_2,c_3 != | ||
895 | mulx a_1,b_7,t_1 !mul_add_c(a[1],b[7],c3,c1,c2); | ||
896 | addcc c_12,t_1,t_1 | ||
897 | bcs,a %xcc,.+8 | ||
898 | add c_3,t_2,c_3 != | ||
899 | srlx t_1,32,c_12 | ||
900 | stuw t_1,rp(8) !r[8]=c3; | ||
901 | or c_12,c_3,c_12 | ||
902 | |||
903 | mulx a_2,b_7,t_1 !=!mul_add_c(a[2],b[7],c1,c2,c3); | ||
904 | addcc c_12,t_1,c_12 | ||
905 | clr c_3 | ||
906 | bcs,a %xcc,.+8 | ||
907 | add c_3,t_2,c_3 != | ||
908 | mulx a_3,b_6,t_1 !mul_add_c(a[3],b[6],c1,c2,c3); | ||
909 | addcc c_12,t_1,c_12 | ||
910 | bcs,a %xcc,.+8 != | ||
911 | add c_3,t_2,c_3 | ||
912 | mulx a_4,b_5,t_1 !mul_add_c(a[4],b[5],c1,c2,c3); | ||
913 | addcc c_12,t_1,c_12 | ||
914 | bcs,a %xcc,.+8 != | ||
915 | add c_3,t_2,c_3 | ||
916 | mulx a_5,b_4,t_1 !mul_add_c(a[5],b[4],c1,c2,c3); | ||
917 | addcc c_12,t_1,c_12 | ||
918 | bcs,a %xcc,.+8 != | ||
919 | add c_3,t_2,c_3 | ||
920 | mulx a_6,b_3,t_1 !mul_add_c(a[6],b[3],c1,c2,c3); | ||
921 | addcc c_12,t_1,c_12 | ||
922 | bcs,a %xcc,.+8 != | ||
923 | add c_3,t_2,c_3 | ||
924 | mulx a_7,b_2,t_1 !mul_add_c(a[7],b[2],c1,c2,c3); | ||
925 | addcc c_12,t_1,t_1 | ||
926 | bcs,a %xcc,.+8 != | ||
927 | add c_3,t_2,c_3 | ||
928 | srlx t_1,32,c_12 | ||
929 | stuw t_1,rp(9) !r[9]=c1; | ||
930 | or c_12,c_3,c_12 != | ||
931 | |||
932 | mulx a_7,b_3,t_1 !mul_add_c(a[7],b[3],c2,c3,c1); | ||
933 | addcc c_12,t_1,c_12 | ||
934 | clr c_3 | ||
935 | bcs,a %xcc,.+8 != | ||
936 | add c_3,t_2,c_3 | ||
937 | mulx a_6,b_4,t_1 !mul_add_c(a[6],b[4],c2,c3,c1); | ||
938 | addcc c_12,t_1,c_12 | ||
939 | bcs,a %xcc,.+8 != | ||
940 | add c_3,t_2,c_3 | ||
941 | mulx a_5,b_5,t_1 !mul_add_c(a[5],b[5],c2,c3,c1); | ||
942 | addcc c_12,t_1,c_12 | ||
943 | bcs,a %xcc,.+8 != | ||
944 | add c_3,t_2,c_3 | ||
945 | mulx a_4,b_6,t_1 !mul_add_c(a[4],b[6],c2,c3,c1); | ||
946 | addcc c_12,t_1,c_12 | ||
947 | bcs,a %xcc,.+8 != | ||
948 | add c_3,t_2,c_3 | ||
949 | mulx a_3,b_7,t_1 !mul_add_c(a[3],b[7],c2,c3,c1); | ||
950 | addcc c_12,t_1,t_1 | ||
951 | bcs,a %xcc,.+8 != | ||
952 | add c_3,t_2,c_3 | ||
953 | srlx t_1,32,c_12 | ||
954 | stuw t_1,rp(10) !r[10]=c2; | ||
955 | or c_12,c_3,c_12 != | ||
956 | |||
957 | mulx a_4,b_7,t_1 !mul_add_c(a[4],b[7],c3,c1,c2); | ||
958 | addcc c_12,t_1,c_12 | ||
959 | clr c_3 | ||
960 | bcs,a %xcc,.+8 != | ||
961 | add c_3,t_2,c_3 | ||
962 | mulx a_5,b_6,t_1 !mul_add_c(a[5],b[6],c3,c1,c2); | ||
963 | addcc c_12,t_1,c_12 | ||
964 | bcs,a %xcc,.+8 != | ||
965 | add c_3,t_2,c_3 | ||
966 | mulx a_6,b_5,t_1 !mul_add_c(a[6],b[5],c3,c1,c2); | ||
967 | addcc c_12,t_1,c_12 | ||
968 | bcs,a %xcc,.+8 != | ||
969 | add c_3,t_2,c_3 | ||
970 | mulx a_7,b_4,t_1 !mul_add_c(a[7],b[4],c3,c1,c2); | ||
971 | addcc c_12,t_1,t_1 | ||
972 | bcs,a %xcc,.+8 != | ||
973 | add c_3,t_2,c_3 | ||
974 | srlx t_1,32,c_12 | ||
975 | stuw t_1,rp(11) !r[11]=c3; | ||
976 | or c_12,c_3,c_12 != | ||
977 | |||
978 | mulx a_7,b_5,t_1 !mul_add_c(a[7],b[5],c1,c2,c3); | ||
979 | addcc c_12,t_1,c_12 | ||
980 | clr c_3 | ||
981 | bcs,a %xcc,.+8 != | ||
982 | add c_3,t_2,c_3 | ||
983 | mulx a_6,b_6,t_1 !mul_add_c(a[6],b[6],c1,c2,c3); | ||
984 | addcc c_12,t_1,c_12 | ||
985 | bcs,a %xcc,.+8 != | ||
986 | add c_3,t_2,c_3 | ||
987 | mulx a_5,b_7,t_1 !mul_add_c(a[5],b[7],c1,c2,c3); | ||
988 | addcc c_12,t_1,t_1 | ||
989 | bcs,a %xcc,.+8 != | ||
990 | add c_3,t_2,c_3 | ||
991 | srlx t_1,32,c_12 | ||
992 | stuw t_1,rp(12) !r[12]=c1; | ||
993 | or c_12,c_3,c_12 != | ||
994 | |||
995 | mulx a_6,b_7,t_1 !mul_add_c(a[6],b[7],c2,c3,c1); | ||
996 | addcc c_12,t_1,c_12 | ||
997 | clr c_3 | ||
998 | bcs,a %xcc,.+8 != | ||
999 | add c_3,t_2,c_3 | ||
1000 | mulx a_7,b_6,t_1 !mul_add_c(a[7],b[6],c2,c3,c1); | ||
1001 | addcc c_12,t_1,t_1 | ||
1002 | bcs,a %xcc,.+8 != | ||
1003 | add c_3,t_2,c_3 | ||
1004 | srlx t_1,32,c_12 | ||
1005 | st t_1,rp(13) !r[13]=c2; | ||
1006 | or c_12,c_3,c_12 != | ||
1007 | |||
1008 | mulx a_7,b_7,t_1 !mul_add_c(a[7],b[7],c3,c1,c2); | ||
1009 | addcc c_12,t_1,t_1 | ||
1010 | srlx t_1,32,c_12 != | ||
1011 | stuw t_1,rp(14) !r[14]=c3; | ||
1012 | stuw c_12,rp(15) !r[15]=c1; | ||
1013 | |||
1014 | ret | ||
1015 | restore %g0,%g0,%o0 != | ||
1016 | |||
1017 | .type bn_mul_comba8,#function | ||
1018 | .size bn_mul_comba8,(.-bn_mul_comba8) | ||
1019 | |||
1020 | .align 32 | ||
1021 | |||
1022 | .global bn_mul_comba4 | ||
1023 | /* | ||
1024 | * void bn_mul_comba4(r,a,b) | ||
1025 | * BN_ULONG *r,*a,*b; | ||
1026 | */ | ||
1027 | bn_mul_comba4: | ||
1028 | save %sp,FRAME_SIZE,%sp | ||
1029 | lduw ap(0),a_0 | ||
1030 | mov 1,t_2 | ||
1031 | lduw bp(0),b_0 | ||
1032 | sllx t_2,32,t_2 != | ||
1033 | lduw bp(1),b_1 | ||
1034 | mulx a_0,b_0,t_1 !mul_add_c(a[0],b[0],c1,c2,c3); | ||
1035 | srlx t_1,32,c_12 | ||
1036 | stuw t_1,rp(0) !=!r[0]=c1; | ||
1037 | |||
1038 | lduw ap(1),a_1 | ||
1039 | mulx a_0,b_1,t_1 !mul_add_c(a[0],b[1],c2,c3,c1); | ||
1040 | addcc c_12,t_1,c_12 | ||
1041 | clr c_3 != | ||
1042 | bcs,a %xcc,.+8 | ||
1043 | add c_3,t_2,c_3 | ||
1044 | lduw ap(2),a_2 | ||
1045 | mulx a_1,b_0,t_1 !=!mul_add_c(a[1],b[0],c2,c3,c1); | ||
1046 | addcc c_12,t_1,t_1 | ||
1047 | bcs,a %xcc,.+8 | ||
1048 | add c_3,t_2,c_3 | ||
1049 | srlx t_1,32,c_12 != | ||
1050 | stuw t_1,rp(1) !r[1]=c2; | ||
1051 | or c_12,c_3,c_12 | ||
1052 | |||
1053 | mulx a_2,b_0,t_1 !mul_add_c(a[2],b[0],c3,c1,c2); | ||
1054 | addcc c_12,t_1,c_12 != | ||
1055 | clr c_3 | ||
1056 | bcs,a %xcc,.+8 | ||
1057 | add c_3,t_2,c_3 | ||
1058 | lduw bp(2),b_2 != | ||
1059 | mulx a_1,b_1,t_1 !mul_add_c(a[1],b[1],c3,c1,c2); | ||
1060 | addcc c_12,t_1,c_12 | ||
1061 | bcs,a %xcc,.+8 | ||
1062 | add c_3,t_2,c_3 != | ||
1063 | lduw bp(3),b_3 | ||
1064 | mulx a_0,b_2,t_1 !mul_add_c(a[0],b[2],c3,c1,c2); | ||
1065 | addcc c_12,t_1,t_1 | ||
1066 | bcs,a %xcc,.+8 != | ||
1067 | add c_3,t_2,c_3 | ||
1068 | srlx t_1,32,c_12 | ||
1069 | stuw t_1,rp(2) !r[2]=c3; | ||
1070 | or c_12,c_3,c_12 != | ||
1071 | |||
1072 | mulx a_0,b_3,t_1 !mul_add_c(a[0],b[3],c1,c2,c3); | ||
1073 | addcc c_12,t_1,c_12 | ||
1074 | clr c_3 | ||
1075 | bcs,a %xcc,.+8 != | ||
1076 | add c_3,t_2,c_3 | ||
1077 | mulx a_1,b_2,t_1 !mul_add_c(a[1],b[2],c1,c2,c3); | ||
1078 | addcc c_12,t_1,c_12 | ||
1079 | bcs,a %xcc,.+8 != | ||
1080 | add c_3,t_2,c_3 | ||
1081 | lduw ap(3),a_3 | ||
1082 | mulx a_2,b_1,t_1 !mul_add_c(a[2],b[1],c1,c2,c3); | ||
1083 | addcc c_12,t_1,c_12 != | ||
1084 | bcs,a %xcc,.+8 | ||
1085 | add c_3,t_2,c_3 | ||
1086 | mulx a_3,b_0,t_1 !mul_add_c(a[3],b[0],c1,c2,c3);!= | ||
1087 | addcc c_12,t_1,t_1 != | ||
1088 | bcs,a %xcc,.+8 | ||
1089 | add c_3,t_2,c_3 | ||
1090 | srlx t_1,32,c_12 | ||
1091 | stuw t_1,rp(3) !=!r[3]=c1; | ||
1092 | or c_12,c_3,c_12 | ||
1093 | |||
1094 | mulx a_3,b_1,t_1 !mul_add_c(a[3],b[1],c2,c3,c1); | ||
1095 | addcc c_12,t_1,c_12 | ||
1096 | clr c_3 != | ||
1097 | bcs,a %xcc,.+8 | ||
1098 | add c_3,t_2,c_3 | ||
1099 | mulx a_2,b_2,t_1 !mul_add_c(a[2],b[2],c2,c3,c1); | ||
1100 | addcc c_12,t_1,c_12 != | ||
1101 | bcs,a %xcc,.+8 | ||
1102 | add c_3,t_2,c_3 | ||
1103 | mulx a_1,b_3,t_1 !mul_add_c(a[1],b[3],c2,c3,c1); | ||
1104 | addcc c_12,t_1,t_1 != | ||
1105 | bcs,a %xcc,.+8 | ||
1106 | add c_3,t_2,c_3 | ||
1107 | srlx t_1,32,c_12 | ||
1108 | stuw t_1,rp(4) !=!r[4]=c2; | ||
1109 | or c_12,c_3,c_12 | ||
1110 | |||
1111 | mulx a_2,b_3,t_1 !mul_add_c(a[2],b[3],c3,c1,c2); | ||
1112 | addcc c_12,t_1,c_12 | ||
1113 | clr c_3 != | ||
1114 | bcs,a %xcc,.+8 | ||
1115 | add c_3,t_2,c_3 | ||
1116 | mulx a_3,b_2,t_1 !mul_add_c(a[3],b[2],c3,c1,c2); | ||
1117 | addcc c_12,t_1,t_1 != | ||
1118 | bcs,a %xcc,.+8 | ||
1119 | add c_3,t_2,c_3 | ||
1120 | srlx t_1,32,c_12 | ||
1121 | stuw t_1,rp(5) !=!r[5]=c3; | ||
1122 | or c_12,c_3,c_12 | ||
1123 | |||
1124 | mulx a_3,b_3,t_1 !mul_add_c(a[3],b[3],c1,c2,c3); | ||
1125 | addcc c_12,t_1,t_1 | ||
1126 | srlx t_1,32,c_12 != | ||
1127 | stuw t_1,rp(6) !r[6]=c1; | ||
1128 | stuw c_12,rp(7) !r[7]=c2; | ||
1129 | |||
1130 | ret | ||
1131 | restore %g0,%g0,%o0 | ||
1132 | |||
1133 | .type bn_mul_comba4,#function | ||
1134 | .size bn_mul_comba4,(.-bn_mul_comba4) | ||
1135 | |||
1136 | .align 32 | ||
1137 | |||
1138 | .global bn_sqr_comba8 | ||
1139 | bn_sqr_comba8: | ||
1140 | save %sp,FRAME_SIZE,%sp | ||
1141 | mov 1,t_2 | ||
1142 | lduw ap(0),a_0 | ||
1143 | sllx t_2,32,t_2 | ||
1144 | lduw ap(1),a_1 | ||
1145 | mulx a_0,a_0,t_1 !sqr_add_c(a,0,c1,c2,c3); | ||
1146 | srlx t_1,32,c_12 | ||
1147 | stuw t_1,rp(0) !r[0]=c1; | ||
1148 | |||
1149 | lduw ap(2),a_2 | ||
1150 | mulx a_0,a_1,t_1 !=!sqr_add_c2(a,1,0,c2,c3,c1); | ||
1151 | addcc c_12,t_1,c_12 | ||
1152 | clr c_3 | ||
1153 | bcs,a %xcc,.+8 | ||
1154 | add c_3,t_2,c_3 | ||
1155 | addcc c_12,t_1,t_1 | ||
1156 | bcs,a %xcc,.+8 | ||
1157 | add c_3,t_2,c_3 | ||
1158 | srlx t_1,32,c_12 | ||
1159 | stuw t_1,rp(1) !r[1]=c2; | ||
1160 | or c_12,c_3,c_12 | ||
1161 | |||
1162 | mulx a_2,a_0,t_1 !sqr_add_c2(a,2,0,c3,c1,c2); | ||
1163 | addcc c_12,t_1,c_12 | ||
1164 | clr c_3 | ||
1165 | bcs,a %xcc,.+8 | ||
1166 | add c_3,t_2,c_3 | ||
1167 | addcc c_12,t_1,c_12 | ||
1168 | bcs,a %xcc,.+8 | ||
1169 | add c_3,t_2,c_3 | ||
1170 | lduw ap(3),a_3 | ||
1171 | mulx a_1,a_1,t_1 !sqr_add_c(a,1,c3,c1,c2); | ||
1172 | addcc c_12,t_1,t_1 | ||
1173 | bcs,a %xcc,.+8 | ||
1174 | add c_3,t_2,c_3 | ||
1175 | srlx t_1,32,c_12 | ||
1176 | stuw t_1,rp(2) !r[2]=c3; | ||
1177 | or c_12,c_3,c_12 | ||
1178 | |||
1179 | mulx a_0,a_3,t_1 !sqr_add_c2(a,3,0,c1,c2,c3); | ||
1180 | addcc c_12,t_1,c_12 | ||
1181 | clr c_3 | ||
1182 | bcs,a %xcc,.+8 | ||
1183 | add c_3,t_2,c_3 | ||
1184 | addcc c_12,t_1,c_12 | ||
1185 | bcs,a %xcc,.+8 | ||
1186 | add c_3,t_2,c_3 | ||
1187 | lduw ap(4),a_4 | ||
1188 | mulx a_1,a_2,t_1 !sqr_add_c2(a,2,1,c1,c2,c3); | ||
1189 | addcc c_12,t_1,c_12 | ||
1190 | bcs,a %xcc,.+8 | ||
1191 | add c_3,t_2,c_3 | ||
1192 | addcc c_12,t_1,t_1 | ||
1193 | bcs,a %xcc,.+8 | ||
1194 | add c_3,t_2,c_3 | ||
1195 | srlx t_1,32,c_12 | ||
1196 | st t_1,rp(3) !r[3]=c1; | ||
1197 | or c_12,c_3,c_12 | ||
1198 | |||
1199 | mulx a_4,a_0,t_1 !sqr_add_c2(a,4,0,c2,c3,c1); | ||
1200 | addcc c_12,t_1,c_12 | ||
1201 | clr c_3 | ||
1202 | bcs,a %xcc,.+8 | ||
1203 | add c_3,t_2,c_3 | ||
1204 | addcc c_12,t_1,c_12 | ||
1205 | bcs,a %xcc,.+8 | ||
1206 | add c_3,t_2,c_3 | ||
1207 | mulx a_3,a_1,t_1 !sqr_add_c2(a,3,1,c2,c3,c1); | ||
1208 | addcc c_12,t_1,c_12 | ||
1209 | bcs,a %xcc,.+8 | ||
1210 | add c_3,t_2,c_3 | ||
1211 | addcc c_12,t_1,c_12 | ||
1212 | bcs,a %xcc,.+8 | ||
1213 | add c_3,t_2,c_3 | ||
1214 | lduw ap(5),a_5 | ||
1215 | mulx a_2,a_2,t_1 !sqr_add_c(a,2,c2,c3,c1); | ||
1216 | addcc c_12,t_1,t_1 | ||
1217 | bcs,a %xcc,.+8 | ||
1218 | add c_3,t_2,c_3 | ||
1219 | srlx t_1,32,c_12 | ||
1220 | stuw t_1,rp(4) !r[4]=c2; | ||
1221 | or c_12,c_3,c_12 | ||
1222 | |||
1223 | mulx a_0,a_5,t_1 !sqr_add_c2(a,5,0,c3,c1,c2); | ||
1224 | addcc c_12,t_1,c_12 | ||
1225 | clr c_3 | ||
1226 | bcs,a %xcc,.+8 | ||
1227 | add c_3,t_2,c_3 | ||
1228 | addcc c_12,t_1,c_12 | ||
1229 | bcs,a %xcc,.+8 | ||
1230 | add c_3,t_2,c_3 | ||
1231 | mulx a_1,a_4,t_1 !sqr_add_c2(a,4,1,c3,c1,c2); | ||
1232 | addcc c_12,t_1,c_12 | ||
1233 | bcs,a %xcc,.+8 | ||
1234 | add c_3,t_2,c_3 | ||
1235 | addcc c_12,t_1,c_12 | ||
1236 | bcs,a %xcc,.+8 | ||
1237 | add c_3,t_2,c_3 | ||
1238 | lduw ap(6),a_6 | ||
1239 | mulx a_2,a_3,t_1 !sqr_add_c2(a,3,2,c3,c1,c2); | ||
1240 | addcc c_12,t_1,c_12 | ||
1241 | bcs,a %xcc,.+8 | ||
1242 | add c_3,t_2,c_3 | ||
1243 | addcc c_12,t_1,t_1 | ||
1244 | bcs,a %xcc,.+8 | ||
1245 | add c_3,t_2,c_3 | ||
1246 | srlx t_1,32,c_12 | ||
1247 | stuw t_1,rp(5) !r[5]=c3; | ||
1248 | or c_12,c_3,c_12 | ||
1249 | |||
1250 | mulx a_6,a_0,t_1 !sqr_add_c2(a,6,0,c1,c2,c3); | ||
1251 | addcc c_12,t_1,c_12 | ||
1252 | clr c_3 | ||
1253 | bcs,a %xcc,.+8 | ||
1254 | add c_3,t_2,c_3 | ||
1255 | addcc c_12,t_1,c_12 | ||
1256 | bcs,a %xcc,.+8 | ||
1257 | add c_3,t_2,c_3 | ||
1258 | mulx a_5,a_1,t_1 !sqr_add_c2(a,5,1,c1,c2,c3); | ||
1259 | addcc c_12,t_1,c_12 | ||
1260 | bcs,a %xcc,.+8 | ||
1261 | add c_3,t_2,c_3 | ||
1262 | addcc c_12,t_1,c_12 | ||
1263 | bcs,a %xcc,.+8 | ||
1264 | add c_3,t_2,c_3 | ||
1265 | mulx a_4,a_2,t_1 !sqr_add_c2(a,4,2,c1,c2,c3); | ||
1266 | addcc c_12,t_1,c_12 | ||
1267 | bcs,a %xcc,.+8 | ||
1268 | add c_3,t_2,c_3 | ||
1269 | addcc c_12,t_1,c_12 | ||
1270 | bcs,a %xcc,.+8 | ||
1271 | add c_3,t_2,c_3 | ||
1272 | lduw ap(7),a_7 | ||
1273 | mulx a_3,a_3,t_1 !=!sqr_add_c(a,3,c1,c2,c3); | ||
1274 | addcc c_12,t_1,t_1 | ||
1275 | bcs,a %xcc,.+8 | ||
1276 | add c_3,t_2,c_3 | ||
1277 | srlx t_1,32,c_12 | ||
1278 | stuw t_1,rp(6) !r[6]=c1; | ||
1279 | or c_12,c_3,c_12 | ||
1280 | |||
1281 | mulx a_0,a_7,t_1 !sqr_add_c2(a,7,0,c2,c3,c1); | ||
1282 | addcc c_12,t_1,c_12 | ||
1283 | clr c_3 | ||
1284 | bcs,a %xcc,.+8 | ||
1285 | add c_3,t_2,c_3 | ||
1286 | addcc c_12,t_1,c_12 | ||
1287 | bcs,a %xcc,.+8 | ||
1288 | add c_3,t_2,c_3 | ||
1289 | mulx a_1,a_6,t_1 !sqr_add_c2(a,6,1,c2,c3,c1); | ||
1290 | addcc c_12,t_1,c_12 | ||
1291 | bcs,a %xcc,.+8 | ||
1292 | add c_3,t_2,c_3 | ||
1293 | addcc c_12,t_1,c_12 | ||
1294 | bcs,a %xcc,.+8 | ||
1295 | add c_3,t_2,c_3 | ||
1296 | mulx a_2,a_5,t_1 !sqr_add_c2(a,5,2,c2,c3,c1); | ||
1297 | addcc c_12,t_1,c_12 | ||
1298 | bcs,a %xcc,.+8 | ||
1299 | add c_3,t_2,c_3 | ||
1300 | addcc c_12,t_1,c_12 | ||
1301 | bcs,a %xcc,.+8 | ||
1302 | add c_3,t_2,c_3 | ||
1303 | mulx a_3,a_4,t_1 !sqr_add_c2(a,4,3,c2,c3,c1); | ||
1304 | addcc c_12,t_1,c_12 | ||
1305 | bcs,a %xcc,.+8 | ||
1306 | add c_3,t_2,c_3 | ||
1307 | addcc c_12,t_1,t_1 | ||
1308 | bcs,a %xcc,.+8 | ||
1309 | add c_3,t_2,c_3 | ||
1310 | srlx t_1,32,c_12 | ||
1311 | stuw t_1,rp(7) !r[7]=c2; | ||
1312 | or c_12,c_3,c_12 | ||
1313 | |||
1314 | mulx a_7,a_1,t_1 !sqr_add_c2(a,7,1,c3,c1,c2); | ||
1315 | addcc c_12,t_1,c_12 | ||
1316 | clr c_3 | ||
1317 | bcs,a %xcc,.+8 | ||
1318 | add c_3,t_2,c_3 | ||
1319 | addcc c_12,t_1,c_12 | ||
1320 | bcs,a %xcc,.+8 | ||
1321 | add c_3,t_2,c_3 | ||
1322 | mulx a_6,a_2,t_1 !sqr_add_c2(a,6,2,c3,c1,c2); | ||
1323 | addcc c_12,t_1,c_12 | ||
1324 | bcs,a %xcc,.+8 | ||
1325 | add c_3,t_2,c_3 | ||
1326 | addcc c_12,t_1,c_12 | ||
1327 | bcs,a %xcc,.+8 | ||
1328 | add c_3,t_2,c_3 | ||
1329 | mulx a_5,a_3,t_1 !sqr_add_c2(a,5,3,c3,c1,c2); | ||
1330 | addcc c_12,t_1,c_12 | ||
1331 | bcs,a %xcc,.+8 | ||
1332 | add c_3,t_2,c_3 | ||
1333 | addcc c_12,t_1,c_12 | ||
1334 | bcs,a %xcc,.+8 | ||
1335 | add c_3,t_2,c_3 | ||
1336 | mulx a_4,a_4,t_1 !sqr_add_c(a,4,c3,c1,c2); | ||
1337 | addcc c_12,t_1,t_1 | ||
1338 | bcs,a %xcc,.+8 | ||
1339 | add c_3,t_2,c_3 | ||
1340 | srlx t_1,32,c_12 | ||
1341 | stuw t_1,rp(8) !r[8]=c3; | ||
1342 | or c_12,c_3,c_12 | ||
1343 | |||
1344 | mulx a_2,a_7,t_1 !sqr_add_c2(a,7,2,c1,c2,c3); | ||
1345 | addcc c_12,t_1,c_12 | ||
1346 | clr c_3 | ||
1347 | bcs,a %xcc,.+8 | ||
1348 | add c_3,t_2,c_3 | ||
1349 | addcc c_12,t_1,c_12 | ||
1350 | bcs,a %xcc,.+8 | ||
1351 | add c_3,t_2,c_3 | ||
1352 | mulx a_3,a_6,t_1 !sqr_add_c2(a,6,3,c1,c2,c3); | ||
1353 | addcc c_12,t_1,c_12 | ||
1354 | bcs,a %xcc,.+8 | ||
1355 | add c_3,t_2,c_3 | ||
1356 | addcc c_12,t_1,c_12 | ||
1357 | bcs,a %xcc,.+8 | ||
1358 | add c_3,t_2,c_3 | ||
1359 | mulx a_4,a_5,t_1 !sqr_add_c2(a,5,4,c1,c2,c3); | ||
1360 | addcc c_12,t_1,c_12 | ||
1361 | bcs,a %xcc,.+8 | ||
1362 | add c_3,t_2,c_3 | ||
1363 | addcc c_12,t_1,t_1 | ||
1364 | bcs,a %xcc,.+8 | ||
1365 | add c_3,t_2,c_3 | ||
1366 | srlx t_1,32,c_12 | ||
1367 | stuw t_1,rp(9) !r[9]=c1; | ||
1368 | or c_12,c_3,c_12 | ||
1369 | |||
1370 | mulx a_7,a_3,t_1 !sqr_add_c2(a,7,3,c2,c3,c1); | ||
1371 | addcc c_12,t_1,c_12 | ||
1372 | clr c_3 | ||
1373 | bcs,a %xcc,.+8 | ||
1374 | add c_3,t_2,c_3 | ||
1375 | addcc c_12,t_1,c_12 | ||
1376 | bcs,a %xcc,.+8 | ||
1377 | add c_3,t_2,c_3 | ||
1378 | mulx a_6,a_4,t_1 !sqr_add_c2(a,6,4,c2,c3,c1); | ||
1379 | addcc c_12,t_1,c_12 | ||
1380 | bcs,a %xcc,.+8 | ||
1381 | add c_3,t_2,c_3 | ||
1382 | addcc c_12,t_1,c_12 | ||
1383 | bcs,a %xcc,.+8 | ||
1384 | add c_3,t_2,c_3 | ||
1385 | mulx a_5,a_5,t_1 !sqr_add_c(a,5,c2,c3,c1); | ||
1386 | addcc c_12,t_1,t_1 | ||
1387 | bcs,a %xcc,.+8 | ||
1388 | add c_3,t_2,c_3 | ||
1389 | srlx t_1,32,c_12 | ||
1390 | stuw t_1,rp(10) !r[10]=c2; | ||
1391 | or c_12,c_3,c_12 | ||
1392 | |||
1393 | mulx a_4,a_7,t_1 !sqr_add_c2(a,7,4,c3,c1,c2); | ||
1394 | addcc c_12,t_1,c_12 | ||
1395 | clr c_3 | ||
1396 | bcs,a %xcc,.+8 | ||
1397 | add c_3,t_2,c_3 | ||
1398 | addcc c_12,t_1,c_12 | ||
1399 | bcs,a %xcc,.+8 | ||
1400 | add c_3,t_2,c_3 | ||
1401 | mulx a_5,a_6,t_1 !sqr_add_c2(a,6,5,c3,c1,c2); | ||
1402 | addcc c_12,t_1,c_12 | ||
1403 | bcs,a %xcc,.+8 | ||
1404 | add c_3,t_2,c_3 | ||
1405 | addcc c_12,t_1,t_1 | ||
1406 | bcs,a %xcc,.+8 | ||
1407 | add c_3,t_2,c_3 | ||
1408 | srlx t_1,32,c_12 | ||
1409 | stuw t_1,rp(11) !r[11]=c3; | ||
1410 | or c_12,c_3,c_12 | ||
1411 | |||
1412 | mulx a_7,a_5,t_1 !sqr_add_c2(a,7,5,c1,c2,c3); | ||
1413 | addcc c_12,t_1,c_12 | ||
1414 | clr c_3 | ||
1415 | bcs,a %xcc,.+8 | ||
1416 | add c_3,t_2,c_3 | ||
1417 | addcc c_12,t_1,c_12 | ||
1418 | bcs,a %xcc,.+8 | ||
1419 | add c_3,t_2,c_3 | ||
1420 | mulx a_6,a_6,t_1 !sqr_add_c(a,6,c1,c2,c3); | ||
1421 | addcc c_12,t_1,t_1 | ||
1422 | bcs,a %xcc,.+8 | ||
1423 | add c_3,t_2,c_3 | ||
1424 | srlx t_1,32,c_12 | ||
1425 | stuw t_1,rp(12) !r[12]=c1; | ||
1426 | or c_12,c_3,c_12 | ||
1427 | |||
1428 | mulx a_6,a_7,t_1 !sqr_add_c2(a,7,6,c2,c3,c1); | ||
1429 | addcc c_12,t_1,c_12 | ||
1430 | clr c_3 | ||
1431 | bcs,a %xcc,.+8 | ||
1432 | add c_3,t_2,c_3 | ||
1433 | addcc c_12,t_1,t_1 | ||
1434 | bcs,a %xcc,.+8 | ||
1435 | add c_3,t_2,c_3 | ||
1436 | srlx t_1,32,c_12 | ||
1437 | stuw t_1,rp(13) !r[13]=c2; | ||
1438 | or c_12,c_3,c_12 | ||
1439 | |||
1440 | mulx a_7,a_7,t_1 !sqr_add_c(a,7,c3,c1,c2); | ||
1441 | addcc c_12,t_1,t_1 | ||
1442 | srlx t_1,32,c_12 | ||
1443 | stuw t_1,rp(14) !r[14]=c3; | ||
1444 | stuw c_12,rp(15) !r[15]=c1; | ||
1445 | |||
1446 | ret | ||
1447 | restore %g0,%g0,%o0 | ||
1448 | |||
1449 | .type bn_sqr_comba8,#function | ||
1450 | .size bn_sqr_comba8,(.-bn_sqr_comba8) | ||
1451 | |||
1452 | .align 32 | ||
1453 | |||
1454 | .global bn_sqr_comba4 | ||
1455 | /* | ||
1456 | * void bn_sqr_comba4(r,a) | ||
1457 | * BN_ULONG *r,*a; | ||
1458 | */ | ||
1459 | bn_sqr_comba4: | ||
1460 | save %sp,FRAME_SIZE,%sp | ||
1461 | mov 1,t_2 | ||
1462 | lduw ap(0),a_0 | ||
1463 | sllx t_2,32,t_2 | ||
1464 | lduw ap(1),a_1 | ||
1465 | mulx a_0,a_0,t_1 !sqr_add_c(a,0,c1,c2,c3); | ||
1466 | srlx t_1,32,c_12 | ||
1467 | stuw t_1,rp(0) !r[0]=c1; | ||
1468 | |||
1469 | lduw ap(2),a_2 | ||
1470 | mulx a_0,a_1,t_1 !sqr_add_c2(a,1,0,c2,c3,c1); | ||
1471 | addcc c_12,t_1,c_12 | ||
1472 | clr c_3 | ||
1473 | bcs,a %xcc,.+8 | ||
1474 | add c_3,t_2,c_3 | ||
1475 | addcc c_12,t_1,t_1 | ||
1476 | bcs,a %xcc,.+8 | ||
1477 | add c_3,t_2,c_3 | ||
1478 | srlx t_1,32,c_12 | ||
1479 | stuw t_1,rp(1) !r[1]=c2; | ||
1480 | or c_12,c_3,c_12 | ||
1481 | |||
1482 | mulx a_2,a_0,t_1 !sqr_add_c2(a,2,0,c3,c1,c2); | ||
1483 | addcc c_12,t_1,c_12 | ||
1484 | clr c_3 | ||
1485 | bcs,a %xcc,.+8 | ||
1486 | add c_3,t_2,c_3 | ||
1487 | addcc c_12,t_1,c_12 | ||
1488 | bcs,a %xcc,.+8 | ||
1489 | add c_3,t_2,c_3 | ||
1490 | lduw ap(3),a_3 | ||
1491 | mulx a_1,a_1,t_1 !sqr_add_c(a,1,c3,c1,c2); | ||
1492 | addcc c_12,t_1,t_1 | ||
1493 | bcs,a %xcc,.+8 | ||
1494 | add c_3,t_2,c_3 | ||
1495 | srlx t_1,32,c_12 | ||
1496 | stuw t_1,rp(2) !r[2]=c3; | ||
1497 | or c_12,c_3,c_12 | ||
1498 | |||
1499 | mulx a_0,a_3,t_1 !sqr_add_c2(a,3,0,c1,c2,c3); | ||
1500 | addcc c_12,t_1,c_12 | ||
1501 | clr c_3 | ||
1502 | bcs,a %xcc,.+8 | ||
1503 | add c_3,t_2,c_3 | ||
1504 | addcc c_12,t_1,c_12 | ||
1505 | bcs,a %xcc,.+8 | ||
1506 | add c_3,t_2,c_3 | ||
1507 | mulx a_1,a_2,t_1 !sqr_add_c2(a,2,1,c1,c2,c3); | ||
1508 | addcc c_12,t_1,c_12 | ||
1509 | bcs,a %xcc,.+8 | ||
1510 | add c_3,t_2,c_3 | ||
1511 | addcc c_12,t_1,t_1 | ||
1512 | bcs,a %xcc,.+8 | ||
1513 | add c_3,t_2,c_3 | ||
1514 | srlx t_1,32,c_12 | ||
1515 | stuw t_1,rp(3) !r[3]=c1; | ||
1516 | or c_12,c_3,c_12 | ||
1517 | |||
1518 | mulx a_3,a_1,t_1 !sqr_add_c2(a,3,1,c2,c3,c1); | ||
1519 | addcc c_12,t_1,c_12 | ||
1520 | clr c_3 | ||
1521 | bcs,a %xcc,.+8 | ||
1522 | add c_3,t_2,c_3 | ||
1523 | addcc c_12,t_1,c_12 | ||
1524 | bcs,a %xcc,.+8 | ||
1525 | add c_3,t_2,c_3 | ||
1526 | mulx a_2,a_2,t_1 !sqr_add_c(a,2,c2,c3,c1); | ||
1527 | addcc c_12,t_1,t_1 | ||
1528 | bcs,a %xcc,.+8 | ||
1529 | add c_3,t_2,c_3 | ||
1530 | srlx t_1,32,c_12 | ||
1531 | stuw t_1,rp(4) !r[4]=c2; | ||
1532 | or c_12,c_3,c_12 | ||
1533 | |||
1534 | mulx a_2,a_3,t_1 !sqr_add_c2(a,3,2,c3,c1,c2); | ||
1535 | addcc c_12,t_1,c_12 | ||
1536 | clr c_3 | ||
1537 | bcs,a %xcc,.+8 | ||
1538 | add c_3,t_2,c_3 | ||
1539 | addcc c_12,t_1,t_1 | ||
1540 | bcs,a %xcc,.+8 | ||
1541 | add c_3,t_2,c_3 | ||
1542 | srlx t_1,32,c_12 | ||
1543 | stuw t_1,rp(5) !r[5]=c3; | ||
1544 | or c_12,c_3,c_12 | ||
1545 | |||
1546 | mulx a_3,a_3,t_1 !sqr_add_c(a,3,c1,c2,c3); | ||
1547 | addcc c_12,t_1,t_1 | ||
1548 | srlx t_1,32,c_12 | ||
1549 | stuw t_1,rp(6) !r[6]=c1; | ||
1550 | stuw c_12,rp(7) !r[7]=c2; | ||
1551 | |||
1552 | ret | ||
1553 | restore %g0,%g0,%o0 | ||
1554 | |||
1555 | .type bn_sqr_comba4,#function | ||
1556 | .size bn_sqr_comba4,(.-bn_sqr_comba4) | ||
1557 | |||
1558 | .align 32 | ||
diff --git a/src/lib/libcrypto/bn/asm/sparcv9-mont.pl b/src/lib/libcrypto/bn/asm/sparcv9-mont.pl deleted file mode 100644 index b8fb1e8a25..0000000000 --- a/src/lib/libcrypto/bn/asm/sparcv9-mont.pl +++ /dev/null | |||
@@ -1,606 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # December 2005 | ||
11 | # | ||
12 | # Pure SPARCv9/8+ and IALU-only bn_mul_mont implementation. The reasons | ||
13 | # for undertaken effort are multiple. First of all, UltraSPARC is not | ||
14 | # the whole SPARCv9 universe and other VIS-free implementations deserve | ||
15 | # optimized code as much. Secondly, newly introduced UltraSPARC T1, | ||
16 | # a.k.a. Niagara, has shared FPU and concurrent FPU-intensive pathes, | ||
17 | # such as sparcv9a-mont, will simply sink it. Yes, T1 is equipped with | ||
18 | # several integrated RSA/DSA accelerator circuits accessible through | ||
19 | # kernel driver [only(*)], but having decent user-land software | ||
20 | # implementation is important too. Finally, reasons like desire to | ||
21 | # experiment with dedicated squaring procedure. Yes, this module | ||
22 | # implements one, because it was easiest to draft it in SPARCv9 | ||
23 | # instructions... | ||
24 | |||
25 | # (*) Engine accessing the driver in question is on my TODO list. | ||
26 | # For reference, acceleator is estimated to give 6 to 10 times | ||
27 | # improvement on single-threaded RSA sign. It should be noted | ||
28 | # that 6-10x improvement coefficient does not actually mean | ||
29 | # something extraordinary in terms of absolute [single-threaded] | ||
30 | # performance, as SPARCv9 instruction set is by all means least | ||
31 | # suitable for high performance crypto among other 64 bit | ||
32 | # platforms. 6-10x factor simply places T1 in same performance | ||
33 | # domain as say AMD64 and IA-64. Improvement of RSA verify don't | ||
34 | # appear impressive at all, but it's the sign operation which is | ||
35 | # far more critical/interesting. | ||
36 | |||
37 | # You might notice that inner loops are modulo-scheduled:-) This has | ||
38 | # essentially negligible impact on UltraSPARC performance, it's | ||
39 | # Fujitsu SPARC64 V users who should notice and hopefully appreciate | ||
40 | # the advantage... Currently this module surpasses sparcv9a-mont.pl | ||
41 | # by ~20% on UltraSPARC-III and later cores, but recall that sparcv9a | ||
42 | # module still have hidden potential [see TODO list there], which is | ||
43 | # estimated to be larger than 20%... | ||
44 | |||
45 | # int bn_mul_mont( | ||
46 | $rp="%i0"; # BN_ULONG *rp, | ||
47 | $ap="%i1"; # const BN_ULONG *ap, | ||
48 | $bp="%i2"; # const BN_ULONG *bp, | ||
49 | $np="%i3"; # const BN_ULONG *np, | ||
50 | $n0="%i4"; # const BN_ULONG *n0, | ||
51 | $num="%i5"; # int num); | ||
52 | |||
53 | $bits=32; | ||
54 | for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); } | ||
55 | if ($bits==64) { $bias=2047; $frame=192; } | ||
56 | else { $bias=0; $frame=128; } | ||
57 | |||
58 | $car0="%o0"; | ||
59 | $car1="%o1"; | ||
60 | $car2="%o2"; # 1 bit | ||
61 | $acc0="%o3"; | ||
62 | $acc1="%o4"; | ||
63 | $mask="%g1"; # 32 bits, what a waste... | ||
64 | $tmp0="%g4"; | ||
65 | $tmp1="%g5"; | ||
66 | |||
67 | $i="%l0"; | ||
68 | $j="%l1"; | ||
69 | $mul0="%l2"; | ||
70 | $mul1="%l3"; | ||
71 | $tp="%l4"; | ||
72 | $apj="%l5"; | ||
73 | $npj="%l6"; | ||
74 | $tpj="%l7"; | ||
75 | |||
76 | $fname="bn_mul_mont_int"; | ||
77 | |||
78 | $code=<<___; | ||
79 | .section ".text",#alloc,#execinstr | ||
80 | |||
81 | .global $fname | ||
82 | .align 32 | ||
83 | $fname: | ||
84 | cmp %o5,4 ! 128 bits minimum | ||
85 | bge,pt %icc,.Lenter | ||
86 | sethi %hi(0xffffffff),$mask | ||
87 | retl | ||
88 | clr %o0 | ||
89 | .align 32 | ||
90 | .Lenter: | ||
91 | save %sp,-$frame,%sp | ||
92 | sll $num,2,$num ! num*=4 | ||
93 | or $mask,%lo(0xffffffff),$mask | ||
94 | ld [$n0],$n0 | ||
95 | cmp $ap,$bp | ||
96 | and $num,$mask,$num | ||
97 | ld [$bp],$mul0 ! bp[0] | ||
98 | nop | ||
99 | |||
100 | add %sp,$bias,%o7 ! real top of stack | ||
101 | ld [$ap],$car0 ! ap[0] ! redundant in squaring context | ||
102 | sub %o7,$num,%o7 | ||
103 | ld [$ap+4],$apj ! ap[1] | ||
104 | and %o7,-1024,%o7 | ||
105 | ld [$np],$car1 ! np[0] | ||
106 | sub %o7,$bias,%sp ! alloca | ||
107 | ld [$np+4],$npj ! np[1] | ||
108 | be,pt `$bits==32?"%icc":"%xcc"`,.Lbn_sqr_mont | ||
109 | mov 12,$j | ||
110 | |||
111 | mulx $car0,$mul0,$car0 ! ap[0]*bp[0] | ||
112 | mulx $apj,$mul0,$tmp0 !prologue! ap[1]*bp[0] | ||
113 | and $car0,$mask,$acc0 | ||
114 | add %sp,$bias+$frame,$tp | ||
115 | ld [$ap+8],$apj !prologue! | ||
116 | |||
117 | mulx $n0,$acc0,$mul1 ! "t[0]"*n0 | ||
118 | and $mul1,$mask,$mul1 | ||
119 | |||
120 | mulx $car1,$mul1,$car1 ! np[0]*"t[0]"*n0 | ||
121 | mulx $npj,$mul1,$acc1 !prologue! np[1]*"t[0]"*n0 | ||
122 | srlx $car0,32,$car0 | ||
123 | add $acc0,$car1,$car1 | ||
124 | ld [$np+8],$npj !prologue! | ||
125 | srlx $car1,32,$car1 | ||
126 | mov $tmp0,$acc0 !prologue! | ||
127 | |||
128 | .L1st: | ||
129 | mulx $apj,$mul0,$tmp0 | ||
130 | mulx $npj,$mul1,$tmp1 | ||
131 | add $acc0,$car0,$car0 | ||
132 | ld [$ap+$j],$apj ! ap[j] | ||
133 | and $car0,$mask,$acc0 | ||
134 | add $acc1,$car1,$car1 | ||
135 | ld [$np+$j],$npj ! np[j] | ||
136 | srlx $car0,32,$car0 | ||
137 | add $acc0,$car1,$car1 | ||
138 | add $j,4,$j ! j++ | ||
139 | mov $tmp0,$acc0 | ||
140 | st $car1,[$tp] | ||
141 | cmp $j,$num | ||
142 | mov $tmp1,$acc1 | ||
143 | srlx $car1,32,$car1 | ||
144 | bl %icc,.L1st | ||
145 | add $tp,4,$tp ! tp++ | ||
146 | !.L1st | ||
147 | |||
148 | mulx $apj,$mul0,$tmp0 !epilogue! | ||
149 | mulx $npj,$mul1,$tmp1 | ||
150 | add $acc0,$car0,$car0 | ||
151 | and $car0,$mask,$acc0 | ||
152 | add $acc1,$car1,$car1 | ||
153 | srlx $car0,32,$car0 | ||
154 | add $acc0,$car1,$car1 | ||
155 | st $car1,[$tp] | ||
156 | srlx $car1,32,$car1 | ||
157 | |||
158 | add $tmp0,$car0,$car0 | ||
159 | and $car0,$mask,$acc0 | ||
160 | add $tmp1,$car1,$car1 | ||
161 | srlx $car0,32,$car0 | ||
162 | add $acc0,$car1,$car1 | ||
163 | st $car1,[$tp+4] | ||
164 | srlx $car1,32,$car1 | ||
165 | |||
166 | add $car0,$car1,$car1 | ||
167 | st $car1,[$tp+8] | ||
168 | srlx $car1,32,$car2 | ||
169 | |||
170 | mov 4,$i ! i++ | ||
171 | ld [$bp+4],$mul0 ! bp[1] | ||
172 | .Louter: | ||
173 | add %sp,$bias+$frame,$tp | ||
174 | ld [$ap],$car0 ! ap[0] | ||
175 | ld [$ap+4],$apj ! ap[1] | ||
176 | ld [$np],$car1 ! np[0] | ||
177 | ld [$np+4],$npj ! np[1] | ||
178 | ld [$tp],$tmp1 ! tp[0] | ||
179 | ld [$tp+4],$tpj ! tp[1] | ||
180 | mov 12,$j | ||
181 | |||
182 | mulx $car0,$mul0,$car0 | ||
183 | mulx $apj,$mul0,$tmp0 !prologue! | ||
184 | add $tmp1,$car0,$car0 | ||
185 | ld [$ap+8],$apj !prologue! | ||
186 | and $car0,$mask,$acc0 | ||
187 | |||
188 | mulx $n0,$acc0,$mul1 | ||
189 | and $mul1,$mask,$mul1 | ||
190 | |||
191 | mulx $car1,$mul1,$car1 | ||
192 | mulx $npj,$mul1,$acc1 !prologue! | ||
193 | srlx $car0,32,$car0 | ||
194 | add $acc0,$car1,$car1 | ||
195 | ld [$np+8],$npj !prologue! | ||
196 | srlx $car1,32,$car1 | ||
197 | mov $tmp0,$acc0 !prologue! | ||
198 | |||
199 | .Linner: | ||
200 | mulx $apj,$mul0,$tmp0 | ||
201 | mulx $npj,$mul1,$tmp1 | ||
202 | add $tpj,$car0,$car0 | ||
203 | ld [$ap+$j],$apj ! ap[j] | ||
204 | add $acc0,$car0,$car0 | ||
205 | add $acc1,$car1,$car1 | ||
206 | ld [$np+$j],$npj ! np[j] | ||
207 | and $car0,$mask,$acc0 | ||
208 | ld [$tp+8],$tpj ! tp[j] | ||
209 | srlx $car0,32,$car0 | ||
210 | add $acc0,$car1,$car1 | ||
211 | add $j,4,$j ! j++ | ||
212 | mov $tmp0,$acc0 | ||
213 | st $car1,[$tp] ! tp[j-1] | ||
214 | srlx $car1,32,$car1 | ||
215 | mov $tmp1,$acc1 | ||
216 | cmp $j,$num | ||
217 | bl %icc,.Linner | ||
218 | add $tp,4,$tp ! tp++ | ||
219 | !.Linner | ||
220 | |||
221 | mulx $apj,$mul0,$tmp0 !epilogue! | ||
222 | mulx $npj,$mul1,$tmp1 | ||
223 | add $tpj,$car0,$car0 | ||
224 | add $acc0,$car0,$car0 | ||
225 | ld [$tp+8],$tpj ! tp[j] | ||
226 | and $car0,$mask,$acc0 | ||
227 | add $acc1,$car1,$car1 | ||
228 | srlx $car0,32,$car0 | ||
229 | add $acc0,$car1,$car1 | ||
230 | st $car1,[$tp] ! tp[j-1] | ||
231 | srlx $car1,32,$car1 | ||
232 | |||
233 | add $tpj,$car0,$car0 | ||
234 | add $tmp0,$car0,$car0 | ||
235 | and $car0,$mask,$acc0 | ||
236 | add $tmp1,$car1,$car1 | ||
237 | add $acc0,$car1,$car1 | ||
238 | st $car1,[$tp+4] ! tp[j-1] | ||
239 | srlx $car0,32,$car0 | ||
240 | add $i,4,$i ! i++ | ||
241 | srlx $car1,32,$car1 | ||
242 | |||
243 | add $car0,$car1,$car1 | ||
244 | cmp $i,$num | ||
245 | add $car2,$car1,$car1 | ||
246 | st $car1,[$tp+8] | ||
247 | |||
248 | srlx $car1,32,$car2 | ||
249 | bl,a %icc,.Louter | ||
250 | ld [$bp+$i],$mul0 ! bp[i] | ||
251 | !.Louter | ||
252 | |||
253 | add $tp,12,$tp | ||
254 | |||
255 | .Ltail: | ||
256 | add $np,$num,$np | ||
257 | add $rp,$num,$rp | ||
258 | mov $tp,$ap | ||
259 | sub %g0,$num,%o7 ! k=-num | ||
260 | ba .Lsub | ||
261 | subcc %g0,%g0,%g0 ! clear %icc.c | ||
262 | .align 16 | ||
263 | .Lsub: | ||
264 | ld [$tp+%o7],%o0 | ||
265 | ld [$np+%o7],%o1 | ||
266 | subccc %o0,%o1,%o1 ! tp[j]-np[j] | ||
267 | add $rp,%o7,$i | ||
268 | add %o7,4,%o7 | ||
269 | brnz %o7,.Lsub | ||
270 | st %o1,[$i] | ||
271 | subc $car2,0,$car2 ! handle upmost overflow bit | ||
272 | and $tp,$car2,$ap | ||
273 | andn $rp,$car2,$np | ||
274 | or $ap,$np,$ap | ||
275 | sub %g0,$num,%o7 | ||
276 | |||
277 | .Lcopy: | ||
278 | ld [$ap+%o7],%o0 ! copy or in-place refresh | ||
279 | st %g0,[$tp+%o7] ! zap tp | ||
280 | st %o0,[$rp+%o7] | ||
281 | add %o7,4,%o7 | ||
282 | brnz %o7,.Lcopy | ||
283 | nop | ||
284 | mov 1,%i0 | ||
285 | ret | ||
286 | restore | ||
287 | ___ | ||
288 | |||
289 | ######## | ||
290 | ######## .Lbn_sqr_mont gives up to 20% *overall* improvement over | ||
291 | ######## code without following dedicated squaring procedure. | ||
292 | ######## | ||
293 | $sbit="%i2"; # re-use $bp! | ||
294 | |||
295 | $code.=<<___; | ||
296 | .align 32 | ||
297 | .Lbn_sqr_mont: | ||
298 | mulx $mul0,$mul0,$car0 ! ap[0]*ap[0] | ||
299 | mulx $apj,$mul0,$tmp0 !prologue! | ||
300 | and $car0,$mask,$acc0 | ||
301 | add %sp,$bias+$frame,$tp | ||
302 | ld [$ap+8],$apj !prologue! | ||
303 | |||
304 | mulx $n0,$acc0,$mul1 ! "t[0]"*n0 | ||
305 | srlx $car0,32,$car0 | ||
306 | and $mul1,$mask,$mul1 | ||
307 | |||
308 | mulx $car1,$mul1,$car1 ! np[0]*"t[0]"*n0 | ||
309 | mulx $npj,$mul1,$acc1 !prologue! | ||
310 | and $car0,1,$sbit | ||
311 | ld [$np+8],$npj !prologue! | ||
312 | srlx $car0,1,$car0 | ||
313 | add $acc0,$car1,$car1 | ||
314 | srlx $car1,32,$car1 | ||
315 | mov $tmp0,$acc0 !prologue! | ||
316 | |||
317 | .Lsqr_1st: | ||
318 | mulx $apj,$mul0,$tmp0 | ||
319 | mulx $npj,$mul1,$tmp1 | ||
320 | add $acc0,$car0,$car0 ! ap[j]*a0+c0 | ||
321 | add $acc1,$car1,$car1 | ||
322 | ld [$ap+$j],$apj ! ap[j] | ||
323 | and $car0,$mask,$acc0 | ||
324 | ld [$np+$j],$npj ! np[j] | ||
325 | srlx $car0,32,$car0 | ||
326 | add $acc0,$acc0,$acc0 | ||
327 | or $sbit,$acc0,$acc0 | ||
328 | mov $tmp1,$acc1 | ||
329 | srlx $acc0,32,$sbit | ||
330 | add $j,4,$j ! j++ | ||
331 | and $acc0,$mask,$acc0 | ||
332 | cmp $j,$num | ||
333 | add $acc0,$car1,$car1 | ||
334 | st $car1,[$tp] | ||
335 | mov $tmp0,$acc0 | ||
336 | srlx $car1,32,$car1 | ||
337 | bl %icc,.Lsqr_1st | ||
338 | add $tp,4,$tp ! tp++ | ||
339 | !.Lsqr_1st | ||
340 | |||
341 | mulx $apj,$mul0,$tmp0 ! epilogue | ||
342 | mulx $npj,$mul1,$tmp1 | ||
343 | add $acc0,$car0,$car0 ! ap[j]*a0+c0 | ||
344 | add $acc1,$car1,$car1 | ||
345 | and $car0,$mask,$acc0 | ||
346 | srlx $car0,32,$car0 | ||
347 | add $acc0,$acc0,$acc0 | ||
348 | or $sbit,$acc0,$acc0 | ||
349 | srlx $acc0,32,$sbit | ||
350 | and $acc0,$mask,$acc0 | ||
351 | add $acc0,$car1,$car1 | ||
352 | st $car1,[$tp] | ||
353 | srlx $car1,32,$car1 | ||
354 | |||
355 | add $tmp0,$car0,$car0 ! ap[j]*a0+c0 | ||
356 | add $tmp1,$car1,$car1 | ||
357 | and $car0,$mask,$acc0 | ||
358 | srlx $car0,32,$car0 | ||
359 | add $acc0,$acc0,$acc0 | ||
360 | or $sbit,$acc0,$acc0 | ||
361 | srlx $acc0,32,$sbit | ||
362 | and $acc0,$mask,$acc0 | ||
363 | add $acc0,$car1,$car1 | ||
364 | st $car1,[$tp+4] | ||
365 | srlx $car1,32,$car1 | ||
366 | |||
367 | add $car0,$car0,$car0 | ||
368 | or $sbit,$car0,$car0 | ||
369 | add $car0,$car1,$car1 | ||
370 | st $car1,[$tp+8] | ||
371 | srlx $car1,32,$car2 | ||
372 | |||
373 | ld [%sp+$bias+$frame],$tmp0 ! tp[0] | ||
374 | ld [%sp+$bias+$frame+4],$tmp1 ! tp[1] | ||
375 | ld [%sp+$bias+$frame+8],$tpj ! tp[2] | ||
376 | ld [$ap+4],$mul0 ! ap[1] | ||
377 | ld [$ap+8],$apj ! ap[2] | ||
378 | ld [$np],$car1 ! np[0] | ||
379 | ld [$np+4],$npj ! np[1] | ||
380 | mulx $n0,$tmp0,$mul1 | ||
381 | |||
382 | mulx $mul0,$mul0,$car0 | ||
383 | and $mul1,$mask,$mul1 | ||
384 | |||
385 | mulx $car1,$mul1,$car1 | ||
386 | mulx $npj,$mul1,$acc1 | ||
387 | add $tmp0,$car1,$car1 | ||
388 | and $car0,$mask,$acc0 | ||
389 | ld [$np+8],$npj ! np[2] | ||
390 | srlx $car1,32,$car1 | ||
391 | add $tmp1,$car1,$car1 | ||
392 | srlx $car0,32,$car0 | ||
393 | add $acc0,$car1,$car1 | ||
394 | and $car0,1,$sbit | ||
395 | add $acc1,$car1,$car1 | ||
396 | srlx $car0,1,$car0 | ||
397 | mov 12,$j | ||
398 | st $car1,[%sp+$bias+$frame] ! tp[0]= | ||
399 | srlx $car1,32,$car1 | ||
400 | add %sp,$bias+$frame+4,$tp | ||
401 | |||
402 | .Lsqr_2nd: | ||
403 | mulx $apj,$mul0,$acc0 | ||
404 | mulx $npj,$mul1,$acc1 | ||
405 | add $acc0,$car0,$car0 | ||
406 | add $tpj,$car1,$car1 | ||
407 | ld [$ap+$j],$apj ! ap[j] | ||
408 | and $car0,$mask,$acc0 | ||
409 | ld [$np+$j],$npj ! np[j] | ||
410 | srlx $car0,32,$car0 | ||
411 | add $acc1,$car1,$car1 | ||
412 | ld [$tp+8],$tpj ! tp[j] | ||
413 | add $acc0,$acc0,$acc0 | ||
414 | add $j,4,$j ! j++ | ||
415 | or $sbit,$acc0,$acc0 | ||
416 | srlx $acc0,32,$sbit | ||
417 | and $acc0,$mask,$acc0 | ||
418 | cmp $j,$num | ||
419 | add $acc0,$car1,$car1 | ||
420 | st $car1,[$tp] ! tp[j-1] | ||
421 | srlx $car1,32,$car1 | ||
422 | bl %icc,.Lsqr_2nd | ||
423 | add $tp,4,$tp ! tp++ | ||
424 | !.Lsqr_2nd | ||
425 | |||
426 | mulx $apj,$mul0,$acc0 | ||
427 | mulx $npj,$mul1,$acc1 | ||
428 | add $acc0,$car0,$car0 | ||
429 | add $tpj,$car1,$car1 | ||
430 | and $car0,$mask,$acc0 | ||
431 | srlx $car0,32,$car0 | ||
432 | add $acc1,$car1,$car1 | ||
433 | add $acc0,$acc0,$acc0 | ||
434 | or $sbit,$acc0,$acc0 | ||
435 | srlx $acc0,32,$sbit | ||
436 | and $acc0,$mask,$acc0 | ||
437 | add $acc0,$car1,$car1 | ||
438 | st $car1,[$tp] ! tp[j-1] | ||
439 | srlx $car1,32,$car1 | ||
440 | |||
441 | add $car0,$car0,$car0 | ||
442 | or $sbit,$car0,$car0 | ||
443 | add $car0,$car1,$car1 | ||
444 | add $car2,$car1,$car1 | ||
445 | st $car1,[$tp+4] | ||
446 | srlx $car1,32,$car2 | ||
447 | |||
448 | ld [%sp+$bias+$frame],$tmp1 ! tp[0] | ||
449 | ld [%sp+$bias+$frame+4],$tpj ! tp[1] | ||
450 | ld [$ap+8],$mul0 ! ap[2] | ||
451 | ld [$np],$car1 ! np[0] | ||
452 | ld [$np+4],$npj ! np[1] | ||
453 | mulx $n0,$tmp1,$mul1 | ||
454 | and $mul1,$mask,$mul1 | ||
455 | mov 8,$i | ||
456 | |||
457 | mulx $mul0,$mul0,$car0 | ||
458 | mulx $car1,$mul1,$car1 | ||
459 | and $car0,$mask,$acc0 | ||
460 | add $tmp1,$car1,$car1 | ||
461 | srlx $car0,32,$car0 | ||
462 | add %sp,$bias+$frame,$tp | ||
463 | srlx $car1,32,$car1 | ||
464 | and $car0,1,$sbit | ||
465 | srlx $car0,1,$car0 | ||
466 | mov 4,$j | ||
467 | |||
468 | .Lsqr_outer: | ||
469 | .Lsqr_inner1: | ||
470 | mulx $npj,$mul1,$acc1 | ||
471 | add $tpj,$car1,$car1 | ||
472 | add $j,4,$j | ||
473 | ld [$tp+8],$tpj | ||
474 | cmp $j,$i | ||
475 | add $acc1,$car1,$car1 | ||
476 | ld [$np+$j],$npj | ||
477 | st $car1,[$tp] | ||
478 | srlx $car1,32,$car1 | ||
479 | bl %icc,.Lsqr_inner1 | ||
480 | add $tp,4,$tp | ||
481 | !.Lsqr_inner1 | ||
482 | |||
483 | add $j,4,$j | ||
484 | ld [$ap+$j],$apj ! ap[j] | ||
485 | mulx $npj,$mul1,$acc1 | ||
486 | add $tpj,$car1,$car1 | ||
487 | ld [$np+$j],$npj ! np[j] | ||
488 | add $acc0,$car1,$car1 | ||
489 | ld [$tp+8],$tpj ! tp[j] | ||
490 | add $acc1,$car1,$car1 | ||
491 | st $car1,[$tp] | ||
492 | srlx $car1,32,$car1 | ||
493 | |||
494 | add $j,4,$j | ||
495 | cmp $j,$num | ||
496 | be,pn %icc,.Lsqr_no_inner2 | ||
497 | add $tp,4,$tp | ||
498 | |||
499 | .Lsqr_inner2: | ||
500 | mulx $apj,$mul0,$acc0 | ||
501 | mulx $npj,$mul1,$acc1 | ||
502 | add $tpj,$car1,$car1 | ||
503 | add $acc0,$car0,$car0 | ||
504 | ld [$ap+$j],$apj ! ap[j] | ||
505 | and $car0,$mask,$acc0 | ||
506 | ld [$np+$j],$npj ! np[j] | ||
507 | srlx $car0,32,$car0 | ||
508 | add $acc0,$acc0,$acc0 | ||
509 | ld [$tp+8],$tpj ! tp[j] | ||
510 | or $sbit,$acc0,$acc0 | ||
511 | add $j,4,$j ! j++ | ||
512 | srlx $acc0,32,$sbit | ||
513 | and $acc0,$mask,$acc0 | ||
514 | cmp $j,$num | ||
515 | add $acc0,$car1,$car1 | ||
516 | add $acc1,$car1,$car1 | ||
517 | st $car1,[$tp] ! tp[j-1] | ||
518 | srlx $car1,32,$car1 | ||
519 | bl %icc,.Lsqr_inner2 | ||
520 | add $tp,4,$tp ! tp++ | ||
521 | |||
522 | .Lsqr_no_inner2: | ||
523 | mulx $apj,$mul0,$acc0 | ||
524 | mulx $npj,$mul1,$acc1 | ||
525 | add $tpj,$car1,$car1 | ||
526 | add $acc0,$car0,$car0 | ||
527 | and $car0,$mask,$acc0 | ||
528 | srlx $car0,32,$car0 | ||
529 | add $acc0,$acc0,$acc0 | ||
530 | or $sbit,$acc0,$acc0 | ||
531 | srlx $acc0,32,$sbit | ||
532 | and $acc0,$mask,$acc0 | ||
533 | add $acc0,$car1,$car1 | ||
534 | add $acc1,$car1,$car1 | ||
535 | st $car1,[$tp] ! tp[j-1] | ||
536 | srlx $car1,32,$car1 | ||
537 | |||
538 | add $car0,$car0,$car0 | ||
539 | or $sbit,$car0,$car0 | ||
540 | add $car0,$car1,$car1 | ||
541 | add $car2,$car1,$car1 | ||
542 | st $car1,[$tp+4] | ||
543 | srlx $car1,32,$car2 | ||
544 | |||
545 | add $i,4,$i ! i++ | ||
546 | ld [%sp+$bias+$frame],$tmp1 ! tp[0] | ||
547 | ld [%sp+$bias+$frame+4],$tpj ! tp[1] | ||
548 | ld [$ap+$i],$mul0 ! ap[j] | ||
549 | ld [$np],$car1 ! np[0] | ||
550 | ld [$np+4],$npj ! np[1] | ||
551 | mulx $n0,$tmp1,$mul1 | ||
552 | and $mul1,$mask,$mul1 | ||
553 | add $i,4,$tmp0 | ||
554 | |||
555 | mulx $mul0,$mul0,$car0 | ||
556 | mulx $car1,$mul1,$car1 | ||
557 | and $car0,$mask,$acc0 | ||
558 | add $tmp1,$car1,$car1 | ||
559 | srlx $car0,32,$car0 | ||
560 | add %sp,$bias+$frame,$tp | ||
561 | srlx $car1,32,$car1 | ||
562 | and $car0,1,$sbit | ||
563 | srlx $car0,1,$car0 | ||
564 | |||
565 | cmp $tmp0,$num ! i<num-1 | ||
566 | bl %icc,.Lsqr_outer | ||
567 | mov 4,$j | ||
568 | |||
569 | .Lsqr_last: | ||
570 | mulx $npj,$mul1,$acc1 | ||
571 | add $tpj,$car1,$car1 | ||
572 | add $j,4,$j | ||
573 | ld [$tp+8],$tpj | ||
574 | cmp $j,$i | ||
575 | add $acc1,$car1,$car1 | ||
576 | ld [$np+$j],$npj | ||
577 | st $car1,[$tp] | ||
578 | srlx $car1,32,$car1 | ||
579 | bl %icc,.Lsqr_last | ||
580 | add $tp,4,$tp | ||
581 | !.Lsqr_last | ||
582 | |||
583 | mulx $npj,$mul1,$acc1 | ||
584 | add $tpj,$car1,$car1 | ||
585 | add $acc0,$car1,$car1 | ||
586 | add $acc1,$car1,$car1 | ||
587 | st $car1,[$tp] | ||
588 | srlx $car1,32,$car1 | ||
589 | |||
590 | add $car0,$car0,$car0 ! recover $car0 | ||
591 | or $sbit,$car0,$car0 | ||
592 | add $car0,$car1,$car1 | ||
593 | add $car2,$car1,$car1 | ||
594 | st $car1,[$tp+4] | ||
595 | srlx $car1,32,$car2 | ||
596 | |||
597 | ba .Ltail | ||
598 | add $tp,8,$tp | ||
599 | .type $fname,#function | ||
600 | .size $fname,(.-$fname) | ||
601 | .asciz "Montgomery Multipltication for SPARCv9, CRYPTOGAMS by <appro\@openssl.org>" | ||
602 | .align 32 | ||
603 | ___ | ||
604 | $code =~ s/\`([^\`]*)\`/eval($1)/gem; | ||
605 | print $code; | ||
606 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/sparcv9a-mont.pl b/src/lib/libcrypto/bn/asm/sparcv9a-mont.pl deleted file mode 100755 index a14205f2f0..0000000000 --- a/src/lib/libcrypto/bn/asm/sparcv9a-mont.pl +++ /dev/null | |||
@@ -1,882 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # October 2005 | ||
11 | # | ||
12 | # "Teaser" Montgomery multiplication module for UltraSPARC. Why FPU? | ||
13 | # Because unlike integer multiplier, which simply stalls whole CPU, | ||
14 | # FPU is fully pipelined and can effectively emit 48 bit partial | ||
15 | # product every cycle. Why not blended SPARC v9? One can argue that | ||
16 | # making this module dependent on UltraSPARC VIS extension limits its | ||
17 | # binary compatibility. Well yes, it does exclude SPARC64 prior-V(!) | ||
18 | # implementations from compatibility matrix. But the rest, whole Sun | ||
19 | # UltraSPARC family and brand new Fujitsu's SPARC64 V, all support | ||
20 | # VIS extension instructions used in this module. This is considered | ||
21 | # good enough to not care about HAL SPARC64 users [if any] who have | ||
22 | # integer-only pure SPARCv9 module to "fall down" to. | ||
23 | |||
24 | # USI&II cores currently exhibit uniform 2x improvement [over pre- | ||
25 | # bn_mul_mont codebase] for all key lengths and benchmarks. On USIII | ||
26 | # performance improves few percents for shorter keys and worsens few | ||
27 | # percents for longer keys. This is because USIII integer multiplier | ||
28 | # is >3x faster than USI&II one, which is harder to match [but see | ||
29 | # TODO list below]. It should also be noted that SPARC64 V features | ||
30 | # out-of-order execution, which *might* mean that integer multiplier | ||
31 | # is pipelined, which in turn *might* be impossible to match... On | ||
32 | # additional note, SPARC64 V implements FP Multiply-Add instruction, | ||
33 | # which is perfectly usable in this context... In other words, as far | ||
34 | # as Fujitsu SPARC64 V goes, talk to the author:-) | ||
35 | |||
36 | # The implementation implies following "non-natural" limitations on | ||
37 | # input arguments: | ||
38 | # - num may not be less than 4; | ||
39 | # - num has to be even; | ||
40 | # Failure to meet either condition has no fatal effects, simply | ||
41 | # doesn't give any performance gain. | ||
42 | |||
43 | # TODO: | ||
44 | # - modulo-schedule inner loop for better performance (on in-order | ||
45 | # execution core such as UltraSPARC this shall result in further | ||
46 | # noticeable(!) improvement); | ||
47 | # - dedicated squaring procedure[?]; | ||
48 | |||
49 | ###################################################################### | ||
50 | # November 2006 | ||
51 | # | ||
52 | # Modulo-scheduled inner loops allow to interleave floating point and | ||
53 | # integer instructions and minimize Read-After-Write penalties. This | ||
54 | # results in *further* 20-50% perfromance improvement [depending on | ||
55 | # key length, more for longer keys] on USI&II cores and 30-80% - on | ||
56 | # USIII&IV. | ||
57 | |||
58 | $fname="bn_mul_mont_fpu"; | ||
59 | $bits=32; | ||
60 | for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); } | ||
61 | |||
62 | if ($bits==64) { | ||
63 | $bias=2047; | ||
64 | $frame=192; | ||
65 | } else { | ||
66 | $bias=0; | ||
67 | $frame=128; # 96 rounded up to largest known cache-line | ||
68 | } | ||
69 | $locals=64; | ||
70 | |||
71 | # In order to provide for 32-/64-bit ABI duality, I keep integers wider | ||
72 | # than 32 bit in %g1-%g4 and %o0-%o5. %l0-%l7 and %i0-%i5 are used | ||
73 | # exclusively for pointers, indexes and other small values... | ||
74 | # int bn_mul_mont( | ||
75 | $rp="%i0"; # BN_ULONG *rp, | ||
76 | $ap="%i1"; # const BN_ULONG *ap, | ||
77 | $bp="%i2"; # const BN_ULONG *bp, | ||
78 | $np="%i3"; # const BN_ULONG *np, | ||
79 | $n0="%i4"; # const BN_ULONG *n0, | ||
80 | $num="%i5"; # int num); | ||
81 | |||
82 | $tp="%l0"; # t[num] | ||
83 | $ap_l="%l1"; # a[num],n[num] are smashed to 32-bit words and saved | ||
84 | $ap_h="%l2"; # to these four vectors as double-precision FP values. | ||
85 | $np_l="%l3"; # This way a bunch of fxtods are eliminated in second | ||
86 | $np_h="%l4"; # loop and L1-cache aliasing is minimized... | ||
87 | $i="%l5"; | ||
88 | $j="%l6"; | ||
89 | $mask="%l7"; # 16-bit mask, 0xffff | ||
90 | |||
91 | $n0="%g4"; # reassigned(!) to "64-bit" register | ||
92 | $carry="%i4"; # %i4 reused(!) for a carry bit | ||
93 | |||
94 | # FP register naming chart | ||
95 | # | ||
96 | # ..HILO | ||
97 | # dcba | ||
98 | # -------- | ||
99 | # LOa | ||
100 | # LOb | ||
101 | # LOc | ||
102 | # LOd | ||
103 | # HIa | ||
104 | # HIb | ||
105 | # HIc | ||
106 | # HId | ||
107 | # ..a | ||
108 | # ..b | ||
109 | $ba="%f0"; $bb="%f2"; $bc="%f4"; $bd="%f6"; | ||
110 | $na="%f8"; $nb="%f10"; $nc="%f12"; $nd="%f14"; | ||
111 | $alo="%f16"; $alo_="%f17"; $ahi="%f18"; $ahi_="%f19"; | ||
112 | $nlo="%f20"; $nlo_="%f21"; $nhi="%f22"; $nhi_="%f23"; | ||
113 | |||
114 | $dota="%f24"; $dotb="%f26"; | ||
115 | |||
116 | $aloa="%f32"; $alob="%f34"; $aloc="%f36"; $alod="%f38"; | ||
117 | $ahia="%f40"; $ahib="%f42"; $ahic="%f44"; $ahid="%f46"; | ||
118 | $nloa="%f48"; $nlob="%f50"; $nloc="%f52"; $nlod="%f54"; | ||
119 | $nhia="%f56"; $nhib="%f58"; $nhic="%f60"; $nhid="%f62"; | ||
120 | |||
121 | $ASI_FL16_P=0xD2; # magic ASI value to engage 16-bit FP load | ||
122 | |||
123 | $code=<<___; | ||
124 | .section ".text",#alloc,#execinstr | ||
125 | |||
126 | .global $fname | ||
127 | .align 32 | ||
128 | $fname: | ||
129 | save %sp,-$frame-$locals,%sp | ||
130 | |||
131 | cmp $num,4 | ||
132 | bl,a,pn %icc,.Lret | ||
133 | clr %i0 | ||
134 | andcc $num,1,%g0 ! $num has to be even... | ||
135 | bnz,a,pn %icc,.Lret | ||
136 | clr %i0 ! signal "unsupported input value" | ||
137 | |||
138 | srl $num,1,$num | ||
139 | sethi %hi(0xffff),$mask | ||
140 | ld [%i4+0],$n0 ! $n0 reassigned, remember? | ||
141 | or $mask,%lo(0xffff),$mask | ||
142 | ld [%i4+4],%o0 | ||
143 | sllx %o0,32,%o0 | ||
144 | or %o0,$n0,$n0 ! $n0=n0[1].n0[0] | ||
145 | |||
146 | sll $num,3,$num ! num*=8 | ||
147 | |||
148 | add %sp,$bias,%o0 ! real top of stack | ||
149 | sll $num,2,%o1 | ||
150 | add %o1,$num,%o1 ! %o1=num*5 | ||
151 | sub %o0,%o1,%o0 | ||
152 | and %o0,-2048,%o0 ! optimize TLB utilization | ||
153 | sub %o0,$bias,%sp ! alloca(5*num*8) | ||
154 | |||
155 | rd %asi,%o7 ! save %asi | ||
156 | add %sp,$bias+$frame+$locals,$tp | ||
157 | add $tp,$num,$ap_l | ||
158 | add $ap_l,$num,$ap_l ! [an]p_[lh] point at the vectors' ends ! | ||
159 | add $ap_l,$num,$ap_h | ||
160 | add $ap_h,$num,$np_l | ||
161 | add $np_l,$num,$np_h | ||
162 | |||
163 | wr %g0,$ASI_FL16_P,%asi ! setup %asi for 16-bit FP loads | ||
164 | |||
165 | add $rp,$num,$rp ! readjust input pointers to point | ||
166 | add $ap,$num,$ap ! at the ends too... | ||
167 | add $bp,$num,$bp | ||
168 | add $np,$num,$np | ||
169 | |||
170 | stx %o7,[%sp+$bias+$frame+48] ! save %asi | ||
171 | |||
172 | sub %g0,$num,$i ! i=-num | ||
173 | sub %g0,$num,$j ! j=-num | ||
174 | |||
175 | add $ap,$j,%o3 | ||
176 | add $bp,$i,%o4 | ||
177 | |||
178 | ld [%o3+4],%g1 ! bp[0] | ||
179 | ld [%o3+0],%o0 | ||
180 | ld [%o4+4],%g5 ! ap[0] | ||
181 | sllx %g1,32,%g1 | ||
182 | ld [%o4+0],%o1 | ||
183 | sllx %g5,32,%g5 | ||
184 | or %g1,%o0,%o0 | ||
185 | or %g5,%o1,%o1 | ||
186 | |||
187 | add $np,$j,%o5 | ||
188 | |||
189 | mulx %o1,%o0,%o0 ! ap[0]*bp[0] | ||
190 | mulx $n0,%o0,%o0 ! ap[0]*bp[0]*n0 | ||
191 | stx %o0,[%sp+$bias+$frame+0] | ||
192 | |||
193 | ld [%o3+0],$alo_ ! load a[j] as pair of 32-bit words | ||
194 | fzeros $alo | ||
195 | ld [%o3+4],$ahi_ | ||
196 | fzeros $ahi | ||
197 | ld [%o5+0],$nlo_ ! load n[j] as pair of 32-bit words | ||
198 | fzeros $nlo | ||
199 | ld [%o5+4],$nhi_ | ||
200 | fzeros $nhi | ||
201 | |||
202 | ! transfer b[i] to FPU as 4x16-bit values | ||
203 | ldda [%o4+2]%asi,$ba | ||
204 | fxtod $alo,$alo | ||
205 | ldda [%o4+0]%asi,$bb | ||
206 | fxtod $ahi,$ahi | ||
207 | ldda [%o4+6]%asi,$bc | ||
208 | fxtod $nlo,$nlo | ||
209 | ldda [%o4+4]%asi,$bd | ||
210 | fxtod $nhi,$nhi | ||
211 | |||
212 | ! transfer ap[0]*b[0]*n0 to FPU as 4x16-bit values | ||
213 | ldda [%sp+$bias+$frame+6]%asi,$na | ||
214 | fxtod $ba,$ba | ||
215 | ldda [%sp+$bias+$frame+4]%asi,$nb | ||
216 | fxtod $bb,$bb | ||
217 | ldda [%sp+$bias+$frame+2]%asi,$nc | ||
218 | fxtod $bc,$bc | ||
219 | ldda [%sp+$bias+$frame+0]%asi,$nd | ||
220 | fxtod $bd,$bd | ||
221 | |||
222 | std $alo,[$ap_l+$j] ! save smashed ap[j] in double format | ||
223 | fxtod $na,$na | ||
224 | std $ahi,[$ap_h+$j] | ||
225 | fxtod $nb,$nb | ||
226 | std $nlo,[$np_l+$j] ! save smashed np[j] in double format | ||
227 | fxtod $nc,$nc | ||
228 | std $nhi,[$np_h+$j] | ||
229 | fxtod $nd,$nd | ||
230 | |||
231 | fmuld $alo,$ba,$aloa | ||
232 | fmuld $nlo,$na,$nloa | ||
233 | fmuld $alo,$bb,$alob | ||
234 | fmuld $nlo,$nb,$nlob | ||
235 | fmuld $alo,$bc,$aloc | ||
236 | faddd $aloa,$nloa,$nloa | ||
237 | fmuld $nlo,$nc,$nloc | ||
238 | fmuld $alo,$bd,$alod | ||
239 | faddd $alob,$nlob,$nlob | ||
240 | fmuld $nlo,$nd,$nlod | ||
241 | fmuld $ahi,$ba,$ahia | ||
242 | faddd $aloc,$nloc,$nloc | ||
243 | fmuld $nhi,$na,$nhia | ||
244 | fmuld $ahi,$bb,$ahib | ||
245 | faddd $alod,$nlod,$nlod | ||
246 | fmuld $nhi,$nb,$nhib | ||
247 | fmuld $ahi,$bc,$ahic | ||
248 | faddd $ahia,$nhia,$nhia | ||
249 | fmuld $nhi,$nc,$nhic | ||
250 | fmuld $ahi,$bd,$ahid | ||
251 | faddd $ahib,$nhib,$nhib | ||
252 | fmuld $nhi,$nd,$nhid | ||
253 | |||
254 | faddd $ahic,$nhic,$dota ! $nhic | ||
255 | faddd $ahid,$nhid,$dotb ! $nhid | ||
256 | |||
257 | faddd $nloc,$nhia,$nloc | ||
258 | faddd $nlod,$nhib,$nlod | ||
259 | |||
260 | fdtox $nloa,$nloa | ||
261 | fdtox $nlob,$nlob | ||
262 | fdtox $nloc,$nloc | ||
263 | fdtox $nlod,$nlod | ||
264 | |||
265 | std $nloa,[%sp+$bias+$frame+0] | ||
266 | add $j,8,$j | ||
267 | std $nlob,[%sp+$bias+$frame+8] | ||
268 | add $ap,$j,%o4 | ||
269 | std $nloc,[%sp+$bias+$frame+16] | ||
270 | add $np,$j,%o5 | ||
271 | std $nlod,[%sp+$bias+$frame+24] | ||
272 | |||
273 | ld [%o4+0],$alo_ ! load a[j] as pair of 32-bit words | ||
274 | fzeros $alo | ||
275 | ld [%o4+4],$ahi_ | ||
276 | fzeros $ahi | ||
277 | ld [%o5+0],$nlo_ ! load n[j] as pair of 32-bit words | ||
278 | fzeros $nlo | ||
279 | ld [%o5+4],$nhi_ | ||
280 | fzeros $nhi | ||
281 | |||
282 | fxtod $alo,$alo | ||
283 | fxtod $ahi,$ahi | ||
284 | fxtod $nlo,$nlo | ||
285 | fxtod $nhi,$nhi | ||
286 | |||
287 | ldx [%sp+$bias+$frame+0],%o0 | ||
288 | fmuld $alo,$ba,$aloa | ||
289 | ldx [%sp+$bias+$frame+8],%o1 | ||
290 | fmuld $nlo,$na,$nloa | ||
291 | ldx [%sp+$bias+$frame+16],%o2 | ||
292 | fmuld $alo,$bb,$alob | ||
293 | ldx [%sp+$bias+$frame+24],%o3 | ||
294 | fmuld $nlo,$nb,$nlob | ||
295 | |||
296 | srlx %o0,16,%o7 | ||
297 | std $alo,[$ap_l+$j] ! save smashed ap[j] in double format | ||
298 | fmuld $alo,$bc,$aloc | ||
299 | add %o7,%o1,%o1 | ||
300 | std $ahi,[$ap_h+$j] | ||
301 | faddd $aloa,$nloa,$nloa | ||
302 | fmuld $nlo,$nc,$nloc | ||
303 | srlx %o1,16,%o7 | ||
304 | std $nlo,[$np_l+$j] ! save smashed np[j] in double format | ||
305 | fmuld $alo,$bd,$alod | ||
306 | add %o7,%o2,%o2 | ||
307 | std $nhi,[$np_h+$j] | ||
308 | faddd $alob,$nlob,$nlob | ||
309 | fmuld $nlo,$nd,$nlod | ||
310 | srlx %o2,16,%o7 | ||
311 | fmuld $ahi,$ba,$ahia | ||
312 | add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] | ||
313 | faddd $aloc,$nloc,$nloc | ||
314 | fmuld $nhi,$na,$nhia | ||
315 | !and %o0,$mask,%o0 | ||
316 | !and %o1,$mask,%o1 | ||
317 | !and %o2,$mask,%o2 | ||
318 | !sllx %o1,16,%o1 | ||
319 | !sllx %o2,32,%o2 | ||
320 | !sllx %o3,48,%o7 | ||
321 | !or %o1,%o0,%o0 | ||
322 | !or %o2,%o0,%o0 | ||
323 | !or %o7,%o0,%o0 ! 64-bit result | ||
324 | srlx %o3,16,%g1 ! 34-bit carry | ||
325 | fmuld $ahi,$bb,$ahib | ||
326 | |||
327 | faddd $alod,$nlod,$nlod | ||
328 | fmuld $nhi,$nb,$nhib | ||
329 | fmuld $ahi,$bc,$ahic | ||
330 | faddd $ahia,$nhia,$nhia | ||
331 | fmuld $nhi,$nc,$nhic | ||
332 | fmuld $ahi,$bd,$ahid | ||
333 | faddd $ahib,$nhib,$nhib | ||
334 | fmuld $nhi,$nd,$nhid | ||
335 | |||
336 | faddd $dota,$nloa,$nloa | ||
337 | faddd $dotb,$nlob,$nlob | ||
338 | faddd $ahic,$nhic,$dota ! $nhic | ||
339 | faddd $ahid,$nhid,$dotb ! $nhid | ||
340 | |||
341 | faddd $nloc,$nhia,$nloc | ||
342 | faddd $nlod,$nhib,$nlod | ||
343 | |||
344 | fdtox $nloa,$nloa | ||
345 | fdtox $nlob,$nlob | ||
346 | fdtox $nloc,$nloc | ||
347 | fdtox $nlod,$nlod | ||
348 | |||
349 | std $nloa,[%sp+$bias+$frame+0] | ||
350 | std $nlob,[%sp+$bias+$frame+8] | ||
351 | addcc $j,8,$j | ||
352 | std $nloc,[%sp+$bias+$frame+16] | ||
353 | bz,pn %icc,.L1stskip | ||
354 | std $nlod,[%sp+$bias+$frame+24] | ||
355 | |||
356 | .align 32 ! incidentally already aligned ! | ||
357 | .L1st: | ||
358 | add $ap,$j,%o4 | ||
359 | add $np,$j,%o5 | ||
360 | ld [%o4+0],$alo_ ! load a[j] as pair of 32-bit words | ||
361 | fzeros $alo | ||
362 | ld [%o4+4],$ahi_ | ||
363 | fzeros $ahi | ||
364 | ld [%o5+0],$nlo_ ! load n[j] as pair of 32-bit words | ||
365 | fzeros $nlo | ||
366 | ld [%o5+4],$nhi_ | ||
367 | fzeros $nhi | ||
368 | |||
369 | fxtod $alo,$alo | ||
370 | fxtod $ahi,$ahi | ||
371 | fxtod $nlo,$nlo | ||
372 | fxtod $nhi,$nhi | ||
373 | |||
374 | ldx [%sp+$bias+$frame+0],%o0 | ||
375 | fmuld $alo,$ba,$aloa | ||
376 | ldx [%sp+$bias+$frame+8],%o1 | ||
377 | fmuld $nlo,$na,$nloa | ||
378 | ldx [%sp+$bias+$frame+16],%o2 | ||
379 | fmuld $alo,$bb,$alob | ||
380 | ldx [%sp+$bias+$frame+24],%o3 | ||
381 | fmuld $nlo,$nb,$nlob | ||
382 | |||
383 | srlx %o0,16,%o7 | ||
384 | std $alo,[$ap_l+$j] ! save smashed ap[j] in double format | ||
385 | fmuld $alo,$bc,$aloc | ||
386 | add %o7,%o1,%o1 | ||
387 | std $ahi,[$ap_h+$j] | ||
388 | faddd $aloa,$nloa,$nloa | ||
389 | fmuld $nlo,$nc,$nloc | ||
390 | srlx %o1,16,%o7 | ||
391 | std $nlo,[$np_l+$j] ! save smashed np[j] in double format | ||
392 | fmuld $alo,$bd,$alod | ||
393 | add %o7,%o2,%o2 | ||
394 | std $nhi,[$np_h+$j] | ||
395 | faddd $alob,$nlob,$nlob | ||
396 | fmuld $nlo,$nd,$nlod | ||
397 | srlx %o2,16,%o7 | ||
398 | fmuld $ahi,$ba,$ahia | ||
399 | add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] | ||
400 | and %o0,$mask,%o0 | ||
401 | faddd $aloc,$nloc,$nloc | ||
402 | fmuld $nhi,$na,$nhia | ||
403 | and %o1,$mask,%o1 | ||
404 | and %o2,$mask,%o2 | ||
405 | fmuld $ahi,$bb,$ahib | ||
406 | sllx %o1,16,%o1 | ||
407 | faddd $alod,$nlod,$nlod | ||
408 | fmuld $nhi,$nb,$nhib | ||
409 | sllx %o2,32,%o2 | ||
410 | fmuld $ahi,$bc,$ahic | ||
411 | sllx %o3,48,%o7 | ||
412 | or %o1,%o0,%o0 | ||
413 | faddd $ahia,$nhia,$nhia | ||
414 | fmuld $nhi,$nc,$nhic | ||
415 | or %o2,%o0,%o0 | ||
416 | fmuld $ahi,$bd,$ahid | ||
417 | or %o7,%o0,%o0 ! 64-bit result | ||
418 | faddd $ahib,$nhib,$nhib | ||
419 | fmuld $nhi,$nd,$nhid | ||
420 | addcc %g1,%o0,%o0 | ||
421 | faddd $dota,$nloa,$nloa | ||
422 | srlx %o3,16,%g1 ! 34-bit carry | ||
423 | faddd $dotb,$nlob,$nlob | ||
424 | bcs,a %xcc,.+8 | ||
425 | add %g1,1,%g1 | ||
426 | |||
427 | stx %o0,[$tp] ! tp[j-1]= | ||
428 | |||
429 | faddd $ahic,$nhic,$dota ! $nhic | ||
430 | faddd $ahid,$nhid,$dotb ! $nhid | ||
431 | |||
432 | faddd $nloc,$nhia,$nloc | ||
433 | faddd $nlod,$nhib,$nlod | ||
434 | |||
435 | fdtox $nloa,$nloa | ||
436 | fdtox $nlob,$nlob | ||
437 | fdtox $nloc,$nloc | ||
438 | fdtox $nlod,$nlod | ||
439 | |||
440 | std $nloa,[%sp+$bias+$frame+0] | ||
441 | std $nlob,[%sp+$bias+$frame+8] | ||
442 | std $nloc,[%sp+$bias+$frame+16] | ||
443 | std $nlod,[%sp+$bias+$frame+24] | ||
444 | |||
445 | addcc $j,8,$j | ||
446 | bnz,pt %icc,.L1st | ||
447 | add $tp,8,$tp | ||
448 | |||
449 | .L1stskip: | ||
450 | fdtox $dota,$dota | ||
451 | fdtox $dotb,$dotb | ||
452 | |||
453 | ldx [%sp+$bias+$frame+0],%o0 | ||
454 | ldx [%sp+$bias+$frame+8],%o1 | ||
455 | ldx [%sp+$bias+$frame+16],%o2 | ||
456 | ldx [%sp+$bias+$frame+24],%o3 | ||
457 | |||
458 | srlx %o0,16,%o7 | ||
459 | std $dota,[%sp+$bias+$frame+32] | ||
460 | add %o7,%o1,%o1 | ||
461 | std $dotb,[%sp+$bias+$frame+40] | ||
462 | srlx %o1,16,%o7 | ||
463 | add %o7,%o2,%o2 | ||
464 | srlx %o2,16,%o7 | ||
465 | add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] | ||
466 | and %o0,$mask,%o0 | ||
467 | and %o1,$mask,%o1 | ||
468 | and %o2,$mask,%o2 | ||
469 | sllx %o1,16,%o1 | ||
470 | sllx %o2,32,%o2 | ||
471 | sllx %o3,48,%o7 | ||
472 | or %o1,%o0,%o0 | ||
473 | or %o2,%o0,%o0 | ||
474 | or %o7,%o0,%o0 ! 64-bit result | ||
475 | ldx [%sp+$bias+$frame+32],%o4 | ||
476 | addcc %g1,%o0,%o0 | ||
477 | ldx [%sp+$bias+$frame+40],%o5 | ||
478 | srlx %o3,16,%g1 ! 34-bit carry | ||
479 | bcs,a %xcc,.+8 | ||
480 | add %g1,1,%g1 | ||
481 | |||
482 | stx %o0,[$tp] ! tp[j-1]= | ||
483 | add $tp,8,$tp | ||
484 | |||
485 | srlx %o4,16,%o7 | ||
486 | add %o7,%o5,%o5 | ||
487 | and %o4,$mask,%o4 | ||
488 | sllx %o5,16,%o7 | ||
489 | or %o7,%o4,%o4 | ||
490 | addcc %g1,%o4,%o4 | ||
491 | srlx %o5,48,%g1 | ||
492 | bcs,a %xcc,.+8 | ||
493 | add %g1,1,%g1 | ||
494 | |||
495 | mov %g1,$carry | ||
496 | stx %o4,[$tp] ! tp[num-1]= | ||
497 | |||
498 | ba .Louter | ||
499 | add $i,8,$i | ||
500 | .align 32 | ||
501 | .Louter: | ||
502 | sub %g0,$num,$j ! j=-num | ||
503 | add %sp,$bias+$frame+$locals,$tp | ||
504 | |||
505 | add $ap,$j,%o3 | ||
506 | add $bp,$i,%o4 | ||
507 | |||
508 | ld [%o3+4],%g1 ! bp[i] | ||
509 | ld [%o3+0],%o0 | ||
510 | ld [%o4+4],%g5 ! ap[0] | ||
511 | sllx %g1,32,%g1 | ||
512 | ld [%o4+0],%o1 | ||
513 | sllx %g5,32,%g5 | ||
514 | or %g1,%o0,%o0 | ||
515 | or %g5,%o1,%o1 | ||
516 | |||
517 | ldx [$tp],%o2 ! tp[0] | ||
518 | mulx %o1,%o0,%o0 | ||
519 | addcc %o2,%o0,%o0 | ||
520 | mulx $n0,%o0,%o0 ! (ap[0]*bp[i]+t[0])*n0 | ||
521 | stx %o0,[%sp+$bias+$frame+0] | ||
522 | |||
523 | ! transfer b[i] to FPU as 4x16-bit values | ||
524 | ldda [%o4+2]%asi,$ba | ||
525 | ldda [%o4+0]%asi,$bb | ||
526 | ldda [%o4+6]%asi,$bc | ||
527 | ldda [%o4+4]%asi,$bd | ||
528 | |||
529 | ! transfer (ap[0]*b[i]+t[0])*n0 to FPU as 4x16-bit values | ||
530 | ldda [%sp+$bias+$frame+6]%asi,$na | ||
531 | fxtod $ba,$ba | ||
532 | ldda [%sp+$bias+$frame+4]%asi,$nb | ||
533 | fxtod $bb,$bb | ||
534 | ldda [%sp+$bias+$frame+2]%asi,$nc | ||
535 | fxtod $bc,$bc | ||
536 | ldda [%sp+$bias+$frame+0]%asi,$nd | ||
537 | fxtod $bd,$bd | ||
538 | ldd [$ap_l+$j],$alo ! load a[j] in double format | ||
539 | fxtod $na,$na | ||
540 | ldd [$ap_h+$j],$ahi | ||
541 | fxtod $nb,$nb | ||
542 | ldd [$np_l+$j],$nlo ! load n[j] in double format | ||
543 | fxtod $nc,$nc | ||
544 | ldd [$np_h+$j],$nhi | ||
545 | fxtod $nd,$nd | ||
546 | |||
547 | fmuld $alo,$ba,$aloa | ||
548 | fmuld $nlo,$na,$nloa | ||
549 | fmuld $alo,$bb,$alob | ||
550 | fmuld $nlo,$nb,$nlob | ||
551 | fmuld $alo,$bc,$aloc | ||
552 | faddd $aloa,$nloa,$nloa | ||
553 | fmuld $nlo,$nc,$nloc | ||
554 | fmuld $alo,$bd,$alod | ||
555 | faddd $alob,$nlob,$nlob | ||
556 | fmuld $nlo,$nd,$nlod | ||
557 | fmuld $ahi,$ba,$ahia | ||
558 | faddd $aloc,$nloc,$nloc | ||
559 | fmuld $nhi,$na,$nhia | ||
560 | fmuld $ahi,$bb,$ahib | ||
561 | faddd $alod,$nlod,$nlod | ||
562 | fmuld $nhi,$nb,$nhib | ||
563 | fmuld $ahi,$bc,$ahic | ||
564 | faddd $ahia,$nhia,$nhia | ||
565 | fmuld $nhi,$nc,$nhic | ||
566 | fmuld $ahi,$bd,$ahid | ||
567 | faddd $ahib,$nhib,$nhib | ||
568 | fmuld $nhi,$nd,$nhid | ||
569 | |||
570 | faddd $ahic,$nhic,$dota ! $nhic | ||
571 | faddd $ahid,$nhid,$dotb ! $nhid | ||
572 | |||
573 | faddd $nloc,$nhia,$nloc | ||
574 | faddd $nlod,$nhib,$nlod | ||
575 | |||
576 | fdtox $nloa,$nloa | ||
577 | fdtox $nlob,$nlob | ||
578 | fdtox $nloc,$nloc | ||
579 | fdtox $nlod,$nlod | ||
580 | |||
581 | std $nloa,[%sp+$bias+$frame+0] | ||
582 | std $nlob,[%sp+$bias+$frame+8] | ||
583 | std $nloc,[%sp+$bias+$frame+16] | ||
584 | add $j,8,$j | ||
585 | std $nlod,[%sp+$bias+$frame+24] | ||
586 | |||
587 | ldd [$ap_l+$j],$alo ! load a[j] in double format | ||
588 | ldd [$ap_h+$j],$ahi | ||
589 | ldd [$np_l+$j],$nlo ! load n[j] in double format | ||
590 | ldd [$np_h+$j],$nhi | ||
591 | |||
592 | fmuld $alo,$ba,$aloa | ||
593 | fmuld $nlo,$na,$nloa | ||
594 | fmuld $alo,$bb,$alob | ||
595 | fmuld $nlo,$nb,$nlob | ||
596 | fmuld $alo,$bc,$aloc | ||
597 | ldx [%sp+$bias+$frame+0],%o0 | ||
598 | faddd $aloa,$nloa,$nloa | ||
599 | fmuld $nlo,$nc,$nloc | ||
600 | ldx [%sp+$bias+$frame+8],%o1 | ||
601 | fmuld $alo,$bd,$alod | ||
602 | ldx [%sp+$bias+$frame+16],%o2 | ||
603 | faddd $alob,$nlob,$nlob | ||
604 | fmuld $nlo,$nd,$nlod | ||
605 | ldx [%sp+$bias+$frame+24],%o3 | ||
606 | fmuld $ahi,$ba,$ahia | ||
607 | |||
608 | srlx %o0,16,%o7 | ||
609 | faddd $aloc,$nloc,$nloc | ||
610 | fmuld $nhi,$na,$nhia | ||
611 | add %o7,%o1,%o1 | ||
612 | fmuld $ahi,$bb,$ahib | ||
613 | srlx %o1,16,%o7 | ||
614 | faddd $alod,$nlod,$nlod | ||
615 | fmuld $nhi,$nb,$nhib | ||
616 | add %o7,%o2,%o2 | ||
617 | fmuld $ahi,$bc,$ahic | ||
618 | srlx %o2,16,%o7 | ||
619 | faddd $ahia,$nhia,$nhia | ||
620 | fmuld $nhi,$nc,$nhic | ||
621 | add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] | ||
622 | ! why? | ||
623 | and %o0,$mask,%o0 | ||
624 | fmuld $ahi,$bd,$ahid | ||
625 | and %o1,$mask,%o1 | ||
626 | and %o2,$mask,%o2 | ||
627 | faddd $ahib,$nhib,$nhib | ||
628 | fmuld $nhi,$nd,$nhid | ||
629 | sllx %o1,16,%o1 | ||
630 | faddd $dota,$nloa,$nloa | ||
631 | sllx %o2,32,%o2 | ||
632 | faddd $dotb,$nlob,$nlob | ||
633 | sllx %o3,48,%o7 | ||
634 | or %o1,%o0,%o0 | ||
635 | faddd $ahic,$nhic,$dota ! $nhic | ||
636 | or %o2,%o0,%o0 | ||
637 | faddd $ahid,$nhid,$dotb ! $nhid | ||
638 | or %o7,%o0,%o0 ! 64-bit result | ||
639 | ldx [$tp],%o7 | ||
640 | faddd $nloc,$nhia,$nloc | ||
641 | addcc %o7,%o0,%o0 | ||
642 | ! end-of-why? | ||
643 | faddd $nlod,$nhib,$nlod | ||
644 | srlx %o3,16,%g1 ! 34-bit carry | ||
645 | fdtox $nloa,$nloa | ||
646 | bcs,a %xcc,.+8 | ||
647 | add %g1,1,%g1 | ||
648 | |||
649 | fdtox $nlob,$nlob | ||
650 | fdtox $nloc,$nloc | ||
651 | fdtox $nlod,$nlod | ||
652 | |||
653 | std $nloa,[%sp+$bias+$frame+0] | ||
654 | std $nlob,[%sp+$bias+$frame+8] | ||
655 | addcc $j,8,$j | ||
656 | std $nloc,[%sp+$bias+$frame+16] | ||
657 | bz,pn %icc,.Linnerskip | ||
658 | std $nlod,[%sp+$bias+$frame+24] | ||
659 | |||
660 | ba .Linner | ||
661 | nop | ||
662 | .align 32 | ||
663 | .Linner: | ||
664 | ldd [$ap_l+$j],$alo ! load a[j] in double format | ||
665 | ldd [$ap_h+$j],$ahi | ||
666 | ldd [$np_l+$j],$nlo ! load n[j] in double format | ||
667 | ldd [$np_h+$j],$nhi | ||
668 | |||
669 | fmuld $alo,$ba,$aloa | ||
670 | fmuld $nlo,$na,$nloa | ||
671 | fmuld $alo,$bb,$alob | ||
672 | fmuld $nlo,$nb,$nlob | ||
673 | fmuld $alo,$bc,$aloc | ||
674 | ldx [%sp+$bias+$frame+0],%o0 | ||
675 | faddd $aloa,$nloa,$nloa | ||
676 | fmuld $nlo,$nc,$nloc | ||
677 | ldx [%sp+$bias+$frame+8],%o1 | ||
678 | fmuld $alo,$bd,$alod | ||
679 | ldx [%sp+$bias+$frame+16],%o2 | ||
680 | faddd $alob,$nlob,$nlob | ||
681 | fmuld $nlo,$nd,$nlod | ||
682 | ldx [%sp+$bias+$frame+24],%o3 | ||
683 | fmuld $ahi,$ba,$ahia | ||
684 | |||
685 | srlx %o0,16,%o7 | ||
686 | faddd $aloc,$nloc,$nloc | ||
687 | fmuld $nhi,$na,$nhia | ||
688 | add %o7,%o1,%o1 | ||
689 | fmuld $ahi,$bb,$ahib | ||
690 | srlx %o1,16,%o7 | ||
691 | faddd $alod,$nlod,$nlod | ||
692 | fmuld $nhi,$nb,$nhib | ||
693 | add %o7,%o2,%o2 | ||
694 | fmuld $ahi,$bc,$ahic | ||
695 | srlx %o2,16,%o7 | ||
696 | faddd $ahia,$nhia,$nhia | ||
697 | fmuld $nhi,$nc,$nhic | ||
698 | add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] | ||
699 | and %o0,$mask,%o0 | ||
700 | fmuld $ahi,$bd,$ahid | ||
701 | and %o1,$mask,%o1 | ||
702 | and %o2,$mask,%o2 | ||
703 | faddd $ahib,$nhib,$nhib | ||
704 | fmuld $nhi,$nd,$nhid | ||
705 | sllx %o1,16,%o1 | ||
706 | faddd $dota,$nloa,$nloa | ||
707 | sllx %o2,32,%o2 | ||
708 | faddd $dotb,$nlob,$nlob | ||
709 | sllx %o3,48,%o7 | ||
710 | or %o1,%o0,%o0 | ||
711 | faddd $ahic,$nhic,$dota ! $nhic | ||
712 | or %o2,%o0,%o0 | ||
713 | faddd $ahid,$nhid,$dotb ! $nhid | ||
714 | or %o7,%o0,%o0 ! 64-bit result | ||
715 | faddd $nloc,$nhia,$nloc | ||
716 | addcc %g1,%o0,%o0 | ||
717 | ldx [$tp+8],%o7 ! tp[j] | ||
718 | faddd $nlod,$nhib,$nlod | ||
719 | srlx %o3,16,%g1 ! 34-bit carry | ||
720 | fdtox $nloa,$nloa | ||
721 | bcs,a %xcc,.+8 | ||
722 | add %g1,1,%g1 | ||
723 | fdtox $nlob,$nlob | ||
724 | addcc %o7,%o0,%o0 | ||
725 | fdtox $nloc,$nloc | ||
726 | bcs,a %xcc,.+8 | ||
727 | add %g1,1,%g1 | ||
728 | |||
729 | stx %o0,[$tp] ! tp[j-1] | ||
730 | fdtox $nlod,$nlod | ||
731 | |||
732 | std $nloa,[%sp+$bias+$frame+0] | ||
733 | std $nlob,[%sp+$bias+$frame+8] | ||
734 | std $nloc,[%sp+$bias+$frame+16] | ||
735 | addcc $j,8,$j | ||
736 | std $nlod,[%sp+$bias+$frame+24] | ||
737 | bnz,pt %icc,.Linner | ||
738 | add $tp,8,$tp | ||
739 | |||
740 | .Linnerskip: | ||
741 | fdtox $dota,$dota | ||
742 | fdtox $dotb,$dotb | ||
743 | |||
744 | ldx [%sp+$bias+$frame+0],%o0 | ||
745 | ldx [%sp+$bias+$frame+8],%o1 | ||
746 | ldx [%sp+$bias+$frame+16],%o2 | ||
747 | ldx [%sp+$bias+$frame+24],%o3 | ||
748 | |||
749 | srlx %o0,16,%o7 | ||
750 | std $dota,[%sp+$bias+$frame+32] | ||
751 | add %o7,%o1,%o1 | ||
752 | std $dotb,[%sp+$bias+$frame+40] | ||
753 | srlx %o1,16,%o7 | ||
754 | add %o7,%o2,%o2 | ||
755 | srlx %o2,16,%o7 | ||
756 | add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] | ||
757 | and %o0,$mask,%o0 | ||
758 | and %o1,$mask,%o1 | ||
759 | and %o2,$mask,%o2 | ||
760 | sllx %o1,16,%o1 | ||
761 | sllx %o2,32,%o2 | ||
762 | sllx %o3,48,%o7 | ||
763 | or %o1,%o0,%o0 | ||
764 | or %o2,%o0,%o0 | ||
765 | ldx [%sp+$bias+$frame+32],%o4 | ||
766 | or %o7,%o0,%o0 ! 64-bit result | ||
767 | ldx [%sp+$bias+$frame+40],%o5 | ||
768 | addcc %g1,%o0,%o0 | ||
769 | ldx [$tp+8],%o7 ! tp[j] | ||
770 | srlx %o3,16,%g1 ! 34-bit carry | ||
771 | bcs,a %xcc,.+8 | ||
772 | add %g1,1,%g1 | ||
773 | |||
774 | addcc %o7,%o0,%o0 | ||
775 | bcs,a %xcc,.+8 | ||
776 | add %g1,1,%g1 | ||
777 | |||
778 | stx %o0,[$tp] ! tp[j-1] | ||
779 | add $tp,8,$tp | ||
780 | |||
781 | srlx %o4,16,%o7 | ||
782 | add %o7,%o5,%o5 | ||
783 | and %o4,$mask,%o4 | ||
784 | sllx %o5,16,%o7 | ||
785 | or %o7,%o4,%o4 | ||
786 | addcc %g1,%o4,%o4 | ||
787 | srlx %o5,48,%g1 | ||
788 | bcs,a %xcc,.+8 | ||
789 | add %g1,1,%g1 | ||
790 | |||
791 | addcc $carry,%o4,%o4 | ||
792 | stx %o4,[$tp] ! tp[num-1] | ||
793 | mov %g1,$carry | ||
794 | bcs,a %xcc,.+8 | ||
795 | add $carry,1,$carry | ||
796 | |||
797 | addcc $i,8,$i | ||
798 | bnz %icc,.Louter | ||
799 | nop | ||
800 | |||
801 | add $tp,8,$tp ! adjust tp to point at the end | ||
802 | orn %g0,%g0,%g4 | ||
803 | sub %g0,$num,%o7 ! n=-num | ||
804 | ba .Lsub | ||
805 | subcc %g0,%g0,%g0 ! clear %icc.c | ||
806 | |||
807 | .align 32 | ||
808 | .Lsub: | ||
809 | ldx [$tp+%o7],%o0 | ||
810 | add $np,%o7,%g1 | ||
811 | ld [%g1+0],%o2 | ||
812 | ld [%g1+4],%o3 | ||
813 | srlx %o0,32,%o1 | ||
814 | subccc %o0,%o2,%o2 | ||
815 | add $rp,%o7,%g1 | ||
816 | subccc %o1,%o3,%o3 | ||
817 | st %o2,[%g1+0] | ||
818 | add %o7,8,%o7 | ||
819 | brnz,pt %o7,.Lsub | ||
820 | st %o3,[%g1+4] | ||
821 | subc $carry,0,%g4 | ||
822 | sub %g0,$num,%o7 ! n=-num | ||
823 | ba .Lcopy | ||
824 | nop | ||
825 | |||
826 | .align 32 | ||
827 | .Lcopy: | ||
828 | ldx [$tp+%o7],%o0 | ||
829 | add $rp,%o7,%g1 | ||
830 | ld [%g1+0],%o2 | ||
831 | ld [%g1+4],%o3 | ||
832 | stx %g0,[$tp+%o7] | ||
833 | and %o0,%g4,%o0 | ||
834 | srlx %o0,32,%o1 | ||
835 | andn %o2,%g4,%o2 | ||
836 | andn %o3,%g4,%o3 | ||
837 | or %o2,%o0,%o0 | ||
838 | or %o3,%o1,%o1 | ||
839 | st %o0,[%g1+0] | ||
840 | add %o7,8,%o7 | ||
841 | brnz,pt %o7,.Lcopy | ||
842 | st %o1,[%g1+4] | ||
843 | sub %g0,$num,%o7 ! n=-num | ||
844 | |||
845 | .Lzap: | ||
846 | stx %g0,[$ap_l+%o7] | ||
847 | stx %g0,[$ap_h+%o7] | ||
848 | stx %g0,[$np_l+%o7] | ||
849 | stx %g0,[$np_h+%o7] | ||
850 | add %o7,8,%o7 | ||
851 | brnz,pt %o7,.Lzap | ||
852 | nop | ||
853 | |||
854 | ldx [%sp+$bias+$frame+48],%o7 | ||
855 | wr %g0,%o7,%asi ! restore %asi | ||
856 | |||
857 | mov 1,%i0 | ||
858 | .Lret: | ||
859 | ret | ||
860 | restore | ||
861 | .type $fname,#function | ||
862 | .size $fname,(.-$fname) | ||
863 | .asciz "Montgomery Multipltication for UltraSPARC, CRYPTOGAMS by <appro\@openssl.org>" | ||
864 | .align 32 | ||
865 | ___ | ||
866 | |||
867 | $code =~ s/\`([^\`]*)\`/eval($1)/gem; | ||
868 | |||
869 | # Below substitution makes it possible to compile without demanding | ||
870 | # VIS extentions on command line, e.g. -xarch=v9 vs. -xarch=v9a. I | ||
871 | # dare to do this, because VIS capability is detected at run-time now | ||
872 | # and this routine is not called on CPU not capable to execute it. Do | ||
873 | # note that fzeros is not the only VIS dependency! Another dependency | ||
874 | # is implicit and is just _a_ numerical value loaded to %asi register, | ||
875 | # which assembler can't recognize as VIS specific... | ||
876 | $code =~ s/fzeros\s+%f([0-9]+)/ | ||
877 | sprintf(".word\t0x%x\t! fzeros %%f%d",0x81b00c20|($1<<25),$1) | ||
878 | /gem; | ||
879 | |||
880 | print $code; | ||
881 | # flush | ||
882 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/via-mont.pl b/src/lib/libcrypto/bn/asm/via-mont.pl deleted file mode 100644 index c046a514c8..0000000000 --- a/src/lib/libcrypto/bn/asm/via-mont.pl +++ /dev/null | |||
@@ -1,242 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # Wrapper around 'rep montmul', VIA-specific instruction accessing | ||
11 | # PadLock Montgomery Multiplier. The wrapper is designed as drop-in | ||
12 | # replacement for OpenSSL bn_mul_mont [first implemented in 0.9.9]. | ||
13 | # | ||
14 | # Below are interleaved outputs from 'openssl speed rsa dsa' for 4 | ||
15 | # different software configurations on 1.5GHz VIA Esther processor. | ||
16 | # Lines marked with "software integer" denote performance of hand- | ||
17 | # coded integer-only assembler found in OpenSSL 0.9.7. "Software SSE2" | ||
18 | # refers to hand-coded SSE2 Montgomery multiplication procedure found | ||
19 | # OpenSSL 0.9.9. "Hardware VIA SDK" refers to padlock_pmm routine from | ||
20 | # Padlock SDK 2.0.1 available for download from VIA, which naturally | ||
21 | # utilizes the magic 'repz montmul' instruction. And finally "hardware | ||
22 | # this" refers to *this* implementation which also uses 'repz montmul' | ||
23 | # | ||
24 | # sign verify sign/s verify/s | ||
25 | # rsa 512 bits 0.001720s 0.000140s 581.4 7149.7 software integer | ||
26 | # rsa 512 bits 0.000690s 0.000086s 1450.3 11606.0 software SSE2 | ||
27 | # rsa 512 bits 0.006136s 0.000201s 163.0 4974.5 hardware VIA SDK | ||
28 | # rsa 512 bits 0.000712s 0.000050s 1404.9 19858.5 hardware this | ||
29 | # | ||
30 | # rsa 1024 bits 0.008518s 0.000413s 117.4 2420.8 software integer | ||
31 | # rsa 1024 bits 0.004275s 0.000277s 233.9 3609.7 software SSE2 | ||
32 | # rsa 1024 bits 0.012136s 0.000260s 82.4 3844.5 hardware VIA SDK | ||
33 | # rsa 1024 bits 0.002522s 0.000116s 396.5 8650.9 hardware this | ||
34 | # | ||
35 | # rsa 2048 bits 0.050101s 0.001371s 20.0 729.6 software integer | ||
36 | # rsa 2048 bits 0.030273s 0.001008s 33.0 991.9 software SSE2 | ||
37 | # rsa 2048 bits 0.030833s 0.000976s 32.4 1025.1 hardware VIA SDK | ||
38 | # rsa 2048 bits 0.011879s 0.000342s 84.2 2921.7 hardware this | ||
39 | # | ||
40 | # rsa 4096 bits 0.327097s 0.004859s 3.1 205.8 software integer | ||
41 | # rsa 4096 bits 0.229318s 0.003859s 4.4 259.2 software SSE2 | ||
42 | # rsa 4096 bits 0.233953s 0.003274s 4.3 305.4 hardware VIA SDK | ||
43 | # rsa 4096 bits 0.070493s 0.001166s 14.2 857.6 hardware this | ||
44 | # | ||
45 | # dsa 512 bits 0.001342s 0.001651s 745.2 605.7 software integer | ||
46 | # dsa 512 bits 0.000844s 0.000987s 1185.3 1013.1 software SSE2 | ||
47 | # dsa 512 bits 0.001902s 0.002247s 525.6 444.9 hardware VIA SDK | ||
48 | # dsa 512 bits 0.000458s 0.000524s 2182.2 1909.1 hardware this | ||
49 | # | ||
50 | # dsa 1024 bits 0.003964s 0.004926s 252.3 203.0 software integer | ||
51 | # dsa 1024 bits 0.002686s 0.003166s 372.3 315.8 software SSE2 | ||
52 | # dsa 1024 bits 0.002397s 0.002823s 417.1 354.3 hardware VIA SDK | ||
53 | # dsa 1024 bits 0.000978s 0.001170s 1022.2 855.0 hardware this | ||
54 | # | ||
55 | # dsa 2048 bits 0.013280s 0.016518s 75.3 60.5 software integer | ||
56 | # dsa 2048 bits 0.009911s 0.011522s 100.9 86.8 software SSE2 | ||
57 | # dsa 2048 bits 0.009542s 0.011763s 104.8 85.0 hardware VIA SDK | ||
58 | # dsa 2048 bits 0.002884s 0.003352s 346.8 298.3 hardware this | ||
59 | # | ||
60 | # To give you some other reference point here is output for 2.4GHz P4 | ||
61 | # running hand-coded SSE2 bn_mul_mont found in 0.9.9, i.e. "software | ||
62 | # SSE2" in above terms. | ||
63 | # | ||
64 | # rsa 512 bits 0.000407s 0.000047s 2454.2 21137.0 | ||
65 | # rsa 1024 bits 0.002426s 0.000141s 412.1 7100.0 | ||
66 | # rsa 2048 bits 0.015046s 0.000491s 66.5 2034.9 | ||
67 | # rsa 4096 bits 0.109770s 0.002379s 9.1 420.3 | ||
68 | # dsa 512 bits 0.000438s 0.000525s 2281.1 1904.1 | ||
69 | # dsa 1024 bits 0.001346s 0.001595s 742.7 627.0 | ||
70 | # dsa 2048 bits 0.004745s 0.005582s 210.7 179.1 | ||
71 | # | ||
72 | # Conclusions: | ||
73 | # - VIA SDK leaves a *lot* of room for improvement (which this | ||
74 | # implementation successfully fills:-); | ||
75 | # - 'rep montmul' gives up to >3x performance improvement depending on | ||
76 | # key length; | ||
77 | # - in terms of absolute performance it delivers approximately as much | ||
78 | # as modern out-of-order 32-bit cores [again, for longer keys]. | ||
79 | |||
80 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
81 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
82 | require "x86asm.pl"; | ||
83 | |||
84 | &asm_init($ARGV[0],"via-mont.pl"); | ||
85 | |||
86 | # int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num); | ||
87 | $func="bn_mul_mont_padlock"; | ||
88 | |||
89 | $pad=16*1; # amount of reserved bytes on top of every vector | ||
90 | |||
91 | # stack layout | ||
92 | $mZeroPrime=&DWP(0,"esp"); # these are specified by VIA | ||
93 | $A=&DWP(4,"esp"); | ||
94 | $B=&DWP(8,"esp"); | ||
95 | $T=&DWP(12,"esp"); | ||
96 | $M=&DWP(16,"esp"); | ||
97 | $scratch=&DWP(20,"esp"); | ||
98 | $rp=&DWP(24,"esp"); # these are mine | ||
99 | $sp=&DWP(28,"esp"); | ||
100 | # &DWP(32,"esp") # 32 byte scratch area | ||
101 | # &DWP(64+(4*$num+$pad)*0,"esp") # padded tp[num] | ||
102 | # &DWP(64+(4*$num+$pad)*1,"esp") # padded copy of ap[num] | ||
103 | # &DWP(64+(4*$num+$pad)*2,"esp") # padded copy of bp[num] | ||
104 | # &DWP(64+(4*$num+$pad)*3,"esp") # padded copy of np[num] | ||
105 | # Note that SDK suggests to unconditionally allocate 2K per vector. This | ||
106 | # has quite an impact on performance. It naturally depends on key length, | ||
107 | # but to give an example 1024 bit private RSA key operations suffer >30% | ||
108 | # penalty. I allocate only as much as actually required... | ||
109 | |||
110 | &function_begin($func); | ||
111 | &xor ("eax","eax"); | ||
112 | &mov ("ecx",&wparam(5)); # num | ||
113 | # meet VIA's limitations for num [note that the specification | ||
114 | # expresses them in bits, while we work with amount of 32-bit words] | ||
115 | &test ("ecx",3); | ||
116 | &jnz (&label("leave")); # num % 4 != 0 | ||
117 | &cmp ("ecx",8); | ||
118 | &jb (&label("leave")); # num < 8 | ||
119 | &cmp ("ecx",1024); | ||
120 | &ja (&label("leave")); # num > 1024 | ||
121 | |||
122 | &pushf (); | ||
123 | &cld (); | ||
124 | |||
125 | &mov ("edi",&wparam(0)); # rp | ||
126 | &mov ("eax",&wparam(1)); # ap | ||
127 | &mov ("ebx",&wparam(2)); # bp | ||
128 | &mov ("edx",&wparam(3)); # np | ||
129 | &mov ("esi",&wparam(4)); # n0 | ||
130 | &mov ("esi",&DWP(0,"esi")); # *n0 | ||
131 | |||
132 | &lea ("ecx",&DWP($pad,"","ecx",4)); # ecx becomes vector size in bytes | ||
133 | &lea ("ebp",&DWP(64,"","ecx",4)); # allocate 4 vectors + 64 bytes | ||
134 | &neg ("ebp"); | ||
135 | &add ("ebp","esp"); | ||
136 | &and ("ebp",-64); # align to cache-line | ||
137 | &xchg ("ebp","esp"); # alloca | ||
138 | |||
139 | &mov ($rp,"edi"); # save rp | ||
140 | &mov ($sp,"ebp"); # save esp | ||
141 | |||
142 | &mov ($mZeroPrime,"esi"); | ||
143 | &lea ("esi",&DWP(64,"esp")); # tp | ||
144 | &mov ($T,"esi"); | ||
145 | &lea ("edi",&DWP(32,"esp")); # scratch area | ||
146 | &mov ($scratch,"edi"); | ||
147 | &mov ("esi","eax"); | ||
148 | |||
149 | &lea ("ebp",&DWP(-$pad,"ecx")); | ||
150 | &shr ("ebp",2); # restore original num value in ebp | ||
151 | |||
152 | &xor ("eax","eax"); | ||
153 | |||
154 | &mov ("ecx","ebp"); | ||
155 | &lea ("ecx",&DWP((32+$pad)/4,"ecx"));# padded tp + scratch | ||
156 | &data_byte(0xf3,0xab); # rep stosl, bzero | ||
157 | |||
158 | &mov ("ecx","ebp"); | ||
159 | &lea ("edi",&DWP(64+$pad,"esp","ecx",4));# pointer to ap copy | ||
160 | &mov ($A,"edi"); | ||
161 | &data_byte(0xf3,0xa5); # rep movsl, memcpy | ||
162 | &mov ("ecx",$pad/4); | ||
163 | &data_byte(0xf3,0xab); # rep stosl, bzero pad | ||
164 | # edi points at the end of padded ap copy... | ||
165 | |||
166 | &mov ("ecx","ebp"); | ||
167 | &mov ("esi","ebx"); | ||
168 | &mov ($B,"edi"); | ||
169 | &data_byte(0xf3,0xa5); # rep movsl, memcpy | ||
170 | &mov ("ecx",$pad/4); | ||
171 | &data_byte(0xf3,0xab); # rep stosl, bzero pad | ||
172 | # edi points at the end of padded bp copy... | ||
173 | |||
174 | &mov ("ecx","ebp"); | ||
175 | &mov ("esi","edx"); | ||
176 | &mov ($M,"edi"); | ||
177 | &data_byte(0xf3,0xa5); # rep movsl, memcpy | ||
178 | &mov ("ecx",$pad/4); | ||
179 | &data_byte(0xf3,0xab); # rep stosl, bzero pad | ||
180 | # edi points at the end of padded np copy... | ||
181 | |||
182 | # let magic happen... | ||
183 | &mov ("ecx","ebp"); | ||
184 | &mov ("esi","esp"); | ||
185 | &shl ("ecx",5); # convert word counter to bit counter | ||
186 | &align (4); | ||
187 | &data_byte(0xf3,0x0f,0xa6,0xc0);# rep montmul | ||
188 | |||
189 | &mov ("ecx","ebp"); | ||
190 | &lea ("esi",&DWP(64,"esp")); # tp | ||
191 | # edi still points at the end of padded np copy... | ||
192 | &neg ("ebp"); | ||
193 | &lea ("ebp",&DWP(-$pad,"edi","ebp",4)); # so just "rewind" | ||
194 | &mov ("edi",$rp); # restore rp | ||
195 | &xor ("edx","edx"); # i=0 and clear CF | ||
196 | |||
197 | &set_label("sub",8); | ||
198 | &mov ("eax",&DWP(0,"esi","edx",4)); | ||
199 | &sbb ("eax",&DWP(0,"ebp","edx",4)); | ||
200 | &mov (&DWP(0,"edi","edx",4),"eax"); # rp[i]=tp[i]-np[i] | ||
201 | &lea ("edx",&DWP(1,"edx")); # i++ | ||
202 | &loop (&label("sub")); # doesn't affect CF! | ||
203 | |||
204 | &mov ("eax",&DWP(0,"esi","edx",4)); # upmost overflow bit | ||
205 | &sbb ("eax",0); | ||
206 | &and ("esi","eax"); | ||
207 | ¬ ("eax"); | ||
208 | &mov ("ebp","edi"); | ||
209 | &and ("ebp","eax"); | ||
210 | &or ("esi","ebp"); # tp=carry?tp:rp | ||
211 | |||
212 | &mov ("ecx","edx"); # num | ||
213 | &xor ("edx","edx"); # i=0 | ||
214 | |||
215 | &set_label("copy",8); | ||
216 | &mov ("eax",&DWP(0,"esi","edx",4)); | ||
217 | &mov (&DWP(64,"esp","edx",4),"ecx"); # zap tp | ||
218 | &mov (&DWP(0,"edi","edx",4),"eax"); | ||
219 | &lea ("edx",&DWP(1,"edx")); # i++ | ||
220 | &loop (&label("copy")); | ||
221 | |||
222 | &mov ("ebp",$sp); | ||
223 | &xor ("eax","eax"); | ||
224 | |||
225 | &mov ("ecx",64/4); | ||
226 | &mov ("edi","esp"); # zap frame including scratch area | ||
227 | &data_byte(0xf3,0xab); # rep stosl, bzero | ||
228 | |||
229 | # zap copies of ap, bp and np | ||
230 | &lea ("edi",&DWP(64+$pad,"esp","edx",4));# pointer to ap | ||
231 | &lea ("ecx",&DWP(3*$pad/4,"edx","edx",2)); | ||
232 | &data_byte(0xf3,0xab); # rep stosl, bzero | ||
233 | |||
234 | &mov ("esp","ebp"); | ||
235 | &inc ("eax"); # signal "done" | ||
236 | &popf (); | ||
237 | &set_label("leave"); | ||
238 | &function_end($func); | ||
239 | |||
240 | &asciz("Padlock Montgomery Multiplication, CRYPTOGAMS by <appro\@openssl.org>"); | ||
241 | |||
242 | &asm_finish(); | ||
diff --git a/src/lib/libcrypto/bn/asm/x86-mont.pl b/src/lib/libcrypto/bn/asm/x86-mont.pl deleted file mode 100755 index e8f6b05084..0000000000 --- a/src/lib/libcrypto/bn/asm/x86-mont.pl +++ /dev/null | |||
@@ -1,593 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # October 2005 | ||
11 | # | ||
12 | # This is a "teaser" code, as it can be improved in several ways... | ||
13 | # First of all non-SSE2 path should be implemented (yes, for now it | ||
14 | # performs Montgomery multiplication/convolution only on SSE2-capable | ||
15 | # CPUs such as P4, others fall down to original code). Then inner loop | ||
16 | # can be unrolled and modulo-scheduled to improve ILP and possibly | ||
17 | # moved to 128-bit XMM register bank (though it would require input | ||
18 | # rearrangement and/or increase bus bandwidth utilization). Dedicated | ||
19 | # squaring procedure should give further performance improvement... | ||
20 | # Yet, for being draft, the code improves rsa512 *sign* benchmark by | ||
21 | # 110%(!), rsa1024 one - by 70% and rsa4096 - by 20%:-) | ||
22 | |||
23 | # December 2006 | ||
24 | # | ||
25 | # Modulo-scheduling SSE2 loops results in further 15-20% improvement. | ||
26 | # Integer-only code [being equipped with dedicated squaring procedure] | ||
27 | # gives ~40% on rsa512 sign benchmark... | ||
28 | |||
29 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
30 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
31 | require "x86asm.pl"; | ||
32 | |||
33 | &asm_init($ARGV[0],$0); | ||
34 | |||
35 | $sse2=0; | ||
36 | for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } | ||
37 | |||
38 | &external_label("OPENSSL_ia32cap_P") if ($sse2); | ||
39 | |||
40 | &function_begin("bn_mul_mont"); | ||
41 | |||
42 | $i="edx"; | ||
43 | $j="ecx"; | ||
44 | $ap="esi"; $tp="esi"; # overlapping variables!!! | ||
45 | $rp="edi"; $bp="edi"; # overlapping variables!!! | ||
46 | $np="ebp"; | ||
47 | $num="ebx"; | ||
48 | |||
49 | $_num=&DWP(4*0,"esp"); # stack top layout | ||
50 | $_rp=&DWP(4*1,"esp"); | ||
51 | $_ap=&DWP(4*2,"esp"); | ||
52 | $_bp=&DWP(4*3,"esp"); | ||
53 | $_np=&DWP(4*4,"esp"); | ||
54 | $_n0=&DWP(4*5,"esp"); $_n0q=&QWP(4*5,"esp"); | ||
55 | $_sp=&DWP(4*6,"esp"); | ||
56 | $_bpend=&DWP(4*7,"esp"); | ||
57 | $frame=32; # size of above frame rounded up to 16n | ||
58 | |||
59 | &xor ("eax","eax"); | ||
60 | &mov ("edi",&wparam(5)); # int num | ||
61 | &cmp ("edi",4); | ||
62 | &jl (&label("just_leave")); | ||
63 | |||
64 | &lea ("esi",&wparam(0)); # put aside pointer to argument block | ||
65 | &lea ("edx",&wparam(1)); # load ap | ||
66 | &mov ("ebp","esp"); # saved stack pointer! | ||
67 | &add ("edi",2); # extra two words on top of tp | ||
68 | &neg ("edi"); | ||
69 | &lea ("esp",&DWP(-$frame,"esp","edi",4)); # alloca($frame+4*(num+2)) | ||
70 | &neg ("edi"); | ||
71 | |||
72 | # minimize cache contention by arraning 2K window between stack | ||
73 | # pointer and ap argument [np is also position sensitive vector, | ||
74 | # but it's assumed to be near ap, as it's allocated at ~same | ||
75 | # time]. | ||
76 | &mov ("eax","esp"); | ||
77 | &sub ("eax","edx"); | ||
78 | &and ("eax",2047); | ||
79 | &sub ("esp","eax"); # this aligns sp and ap modulo 2048 | ||
80 | |||
81 | &xor ("edx","esp"); | ||
82 | &and ("edx",2048); | ||
83 | &xor ("edx",2048); | ||
84 | &sub ("esp","edx"); # this splits them apart modulo 4096 | ||
85 | |||
86 | &and ("esp",-64); # align to cache line | ||
87 | |||
88 | ################################# load argument block... | ||
89 | &mov ("eax",&DWP(0*4,"esi"));# BN_ULONG *rp | ||
90 | &mov ("ebx",&DWP(1*4,"esi"));# const BN_ULONG *ap | ||
91 | &mov ("ecx",&DWP(2*4,"esi"));# const BN_ULONG *bp | ||
92 | &mov ("edx",&DWP(3*4,"esi"));# const BN_ULONG *np | ||
93 | &mov ("esi",&DWP(4*4,"esi"));# const BN_ULONG *n0 | ||
94 | #&mov ("edi",&DWP(5*4,"esi"));# int num | ||
95 | |||
96 | &mov ("esi",&DWP(0,"esi")); # pull n0[0] | ||
97 | &mov ($_rp,"eax"); # ... save a copy of argument block | ||
98 | &mov ($_ap,"ebx"); | ||
99 | &mov ($_bp,"ecx"); | ||
100 | &mov ($_np,"edx"); | ||
101 | &mov ($_n0,"esi"); | ||
102 | &lea ($num,&DWP(-3,"edi")); # num=num-1 to assist modulo-scheduling | ||
103 | #&mov ($_num,$num); # redundant as $num is not reused | ||
104 | &mov ($_sp,"ebp"); # saved stack pointer! | ||
105 | |||
106 | if($sse2) { | ||
107 | $acc0="mm0"; # mmx register bank layout | ||
108 | $acc1="mm1"; | ||
109 | $car0="mm2"; | ||
110 | $car1="mm3"; | ||
111 | $mul0="mm4"; | ||
112 | $mul1="mm5"; | ||
113 | $temp="mm6"; | ||
114 | $mask="mm7"; | ||
115 | |||
116 | &picmeup("eax","OPENSSL_ia32cap_P"); | ||
117 | &bt (&DWP(0,"eax"),26); | ||
118 | &jnc (&label("non_sse2")); | ||
119 | |||
120 | &mov ("eax",-1); | ||
121 | &movd ($mask,"eax"); # mask 32 lower bits | ||
122 | |||
123 | &mov ($ap,$_ap); # load input pointers | ||
124 | &mov ($bp,$_bp); | ||
125 | &mov ($np,$_np); | ||
126 | |||
127 | &xor ($i,$i); # i=0 | ||
128 | &xor ($j,$j); # j=0 | ||
129 | |||
130 | &movd ($mul0,&DWP(0,$bp)); # bp[0] | ||
131 | &movd ($mul1,&DWP(0,$ap)); # ap[0] | ||
132 | &movd ($car1,&DWP(0,$np)); # np[0] | ||
133 | |||
134 | &pmuludq($mul1,$mul0); # ap[0]*bp[0] | ||
135 | &movq ($car0,$mul1); | ||
136 | &movq ($acc0,$mul1); # I wish movd worked for | ||
137 | &pand ($acc0,$mask); # inter-register transfers | ||
138 | |||
139 | &pmuludq($mul1,$_n0q); # *=n0 | ||
140 | |||
141 | &pmuludq($car1,$mul1); # "t[0]"*np[0]*n0 | ||
142 | &paddq ($car1,$acc0); | ||
143 | |||
144 | &movd ($acc1,&DWP(4,$np)); # np[1] | ||
145 | &movd ($acc0,&DWP(4,$ap)); # ap[1] | ||
146 | |||
147 | &psrlq ($car0,32); | ||
148 | &psrlq ($car1,32); | ||
149 | |||
150 | &inc ($j); # j++ | ||
151 | &set_label("1st",16); | ||
152 | &pmuludq($acc0,$mul0); # ap[j]*bp[0] | ||
153 | &pmuludq($acc1,$mul1); # np[j]*m1 | ||
154 | &paddq ($car0,$acc0); # +=c0 | ||
155 | &paddq ($car1,$acc1); # +=c1 | ||
156 | |||
157 | &movq ($acc0,$car0); | ||
158 | &pand ($acc0,$mask); | ||
159 | &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1] | ||
160 | &paddq ($car1,$acc0); # +=ap[j]*bp[0]; | ||
161 | &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1] | ||
162 | &psrlq ($car0,32); | ||
163 | &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[j-1]= | ||
164 | &psrlq ($car1,32); | ||
165 | |||
166 | &lea ($j,&DWP(1,$j)); | ||
167 | &cmp ($j,$num); | ||
168 | &jl (&label("1st")); | ||
169 | |||
170 | &pmuludq($acc0,$mul0); # ap[num-1]*bp[0] | ||
171 | &pmuludq($acc1,$mul1); # np[num-1]*m1 | ||
172 | &paddq ($car0,$acc0); # +=c0 | ||
173 | &paddq ($car1,$acc1); # +=c1 | ||
174 | |||
175 | &movq ($acc0,$car0); | ||
176 | &pand ($acc0,$mask); | ||
177 | &paddq ($car1,$acc0); # +=ap[num-1]*bp[0]; | ||
178 | &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]= | ||
179 | |||
180 | &psrlq ($car0,32); | ||
181 | &psrlq ($car1,32); | ||
182 | |||
183 | &paddq ($car1,$car0); | ||
184 | &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1] | ||
185 | |||
186 | &inc ($i); # i++ | ||
187 | &set_label("outer"); | ||
188 | &xor ($j,$j); # j=0 | ||
189 | |||
190 | &movd ($mul0,&DWP(0,$bp,$i,4)); # bp[i] | ||
191 | &movd ($mul1,&DWP(0,$ap)); # ap[0] | ||
192 | &movd ($temp,&DWP($frame,"esp")); # tp[0] | ||
193 | &movd ($car1,&DWP(0,$np)); # np[0] | ||
194 | &pmuludq($mul1,$mul0); # ap[0]*bp[i] | ||
195 | |||
196 | &paddq ($mul1,$temp); # +=tp[0] | ||
197 | &movq ($acc0,$mul1); | ||
198 | &movq ($car0,$mul1); | ||
199 | &pand ($acc0,$mask); | ||
200 | |||
201 | &pmuludq($mul1,$_n0q); # *=n0 | ||
202 | |||
203 | &pmuludq($car1,$mul1); | ||
204 | &paddq ($car1,$acc0); | ||
205 | |||
206 | &movd ($temp,&DWP($frame+4,"esp")); # tp[1] | ||
207 | &movd ($acc1,&DWP(4,$np)); # np[1] | ||
208 | &movd ($acc0,&DWP(4,$ap)); # ap[1] | ||
209 | |||
210 | &psrlq ($car0,32); | ||
211 | &psrlq ($car1,32); | ||
212 | &paddq ($car0,$temp); # +=tp[1] | ||
213 | |||
214 | &inc ($j); # j++ | ||
215 | &dec ($num); | ||
216 | &set_label("inner"); | ||
217 | &pmuludq($acc0,$mul0); # ap[j]*bp[i] | ||
218 | &pmuludq($acc1,$mul1); # np[j]*m1 | ||
219 | &paddq ($car0,$acc0); # +=c0 | ||
220 | &paddq ($car1,$acc1); # +=c1 | ||
221 | |||
222 | &movq ($acc0,$car0); | ||
223 | &movd ($temp,&DWP($frame+4,"esp",$j,4));# tp[j+1] | ||
224 | &pand ($acc0,$mask); | ||
225 | &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1] | ||
226 | &paddq ($car1,$acc0); # +=ap[j]*bp[i]+tp[j] | ||
227 | &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1] | ||
228 | &psrlq ($car0,32); | ||
229 | &movd (&DWP($frame-4,"esp",$j,4),$car1);# tp[j-1]= | ||
230 | &psrlq ($car1,32); | ||
231 | &paddq ($car0,$temp); # +=tp[j+1] | ||
232 | |||
233 | &dec ($num); | ||
234 | &lea ($j,&DWP(1,$j)); # j++ | ||
235 | &jnz (&label("inner")); | ||
236 | |||
237 | &mov ($num,$j); | ||
238 | &pmuludq($acc0,$mul0); # ap[num-1]*bp[i] | ||
239 | &pmuludq($acc1,$mul1); # np[num-1]*m1 | ||
240 | &paddq ($car0,$acc0); # +=c0 | ||
241 | &paddq ($car1,$acc1); # +=c1 | ||
242 | |||
243 | &movq ($acc0,$car0); | ||
244 | &pand ($acc0,$mask); | ||
245 | &paddq ($car1,$acc0); # +=ap[num-1]*bp[i]+tp[num-1] | ||
246 | &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]= | ||
247 | &psrlq ($car0,32); | ||
248 | &psrlq ($car1,32); | ||
249 | |||
250 | &movd ($temp,&DWP($frame+4,"esp",$num,4)); # += tp[num] | ||
251 | &paddq ($car1,$car0); | ||
252 | &paddq ($car1,$temp); | ||
253 | &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1] | ||
254 | |||
255 | &lea ($i,&DWP(1,$i)); # i++ | ||
256 | &cmp ($i,$num); | ||
257 | &jle (&label("outer")); | ||
258 | |||
259 | &emms (); # done with mmx bank | ||
260 | &jmp (&label("common_tail")); | ||
261 | |||
262 | &set_label("non_sse2",16); | ||
263 | } | ||
264 | |||
265 | if (0) { | ||
266 | &mov ("esp",$_sp); | ||
267 | &xor ("eax","eax"); # signal "not fast enough [yet]" | ||
268 | &jmp (&label("just_leave")); | ||
269 | # While the below code provides competitive performance for | ||
270 | # all key lengthes on modern Intel cores, it's still more | ||
271 | # than 10% slower for 4096-bit key elsewhere:-( "Competitive" | ||
272 | # means compared to the original integer-only assembler. | ||
273 | # 512-bit RSA sign is better by ~40%, but that's about all | ||
274 | # one can say about all CPUs... | ||
275 | } else { | ||
276 | $inp="esi"; # integer path uses these registers differently | ||
277 | $word="edi"; | ||
278 | $carry="ebp"; | ||
279 | |||
280 | &mov ($inp,$_ap); | ||
281 | &lea ($carry,&DWP(1,$num)); | ||
282 | &mov ($word,$_bp); | ||
283 | &xor ($j,$j); # j=0 | ||
284 | &mov ("edx",$inp); | ||
285 | &and ($carry,1); # see if num is even | ||
286 | &sub ("edx",$word); # see if ap==bp | ||
287 | &lea ("eax",&DWP(4,$word,$num,4)); # &bp[num] | ||
288 | &or ($carry,"edx"); | ||
289 | &mov ($word,&DWP(0,$word)); # bp[0] | ||
290 | &jz (&label("bn_sqr_mont")); | ||
291 | &mov ($_bpend,"eax"); | ||
292 | &mov ("eax",&DWP(0,$inp)); | ||
293 | &xor ("edx","edx"); | ||
294 | |||
295 | &set_label("mull",16); | ||
296 | &mov ($carry,"edx"); | ||
297 | &mul ($word); # ap[j]*bp[0] | ||
298 | &add ($carry,"eax"); | ||
299 | &lea ($j,&DWP(1,$j)); | ||
300 | &adc ("edx",0); | ||
301 | &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1] | ||
302 | &cmp ($j,$num); | ||
303 | &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= | ||
304 | &jl (&label("mull")); | ||
305 | |||
306 | &mov ($carry,"edx"); | ||
307 | &mul ($word); # ap[num-1]*bp[0] | ||
308 | &mov ($word,$_n0); | ||
309 | &add ("eax",$carry); | ||
310 | &mov ($inp,$_np); | ||
311 | &adc ("edx",0); | ||
312 | &imul ($word,&DWP($frame,"esp")); # n0*tp[0] | ||
313 | |||
314 | &mov (&DWP($frame,"esp",$num,4),"eax"); # tp[num-1]= | ||
315 | &xor ($j,$j); | ||
316 | &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]= | ||
317 | &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]= | ||
318 | |||
319 | &mov ("eax",&DWP(0,$inp)); # np[0] | ||
320 | &mul ($word); # np[0]*m | ||
321 | &add ("eax",&DWP($frame,"esp")); # +=tp[0] | ||
322 | &mov ("eax",&DWP(4,$inp)); # np[1] | ||
323 | &adc ("edx",0); | ||
324 | &inc ($j); | ||
325 | |||
326 | &jmp (&label("2ndmadd")); | ||
327 | |||
328 | &set_label("1stmadd",16); | ||
329 | &mov ($carry,"edx"); | ||
330 | &mul ($word); # ap[j]*bp[i] | ||
331 | &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] | ||
332 | &lea ($j,&DWP(1,$j)); | ||
333 | &adc ("edx",0); | ||
334 | &add ($carry,"eax"); | ||
335 | &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1] | ||
336 | &adc ("edx",0); | ||
337 | &cmp ($j,$num); | ||
338 | &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= | ||
339 | &jl (&label("1stmadd")); | ||
340 | |||
341 | &mov ($carry,"edx"); | ||
342 | &mul ($word); # ap[num-1]*bp[i] | ||
343 | &add ("eax",&DWP($frame,"esp",$num,4)); # +=tp[num-1] | ||
344 | &mov ($word,$_n0); | ||
345 | &adc ("edx",0); | ||
346 | &mov ($inp,$_np); | ||
347 | &add ($carry,"eax"); | ||
348 | &adc ("edx",0); | ||
349 | &imul ($word,&DWP($frame,"esp")); # n0*tp[0] | ||
350 | |||
351 | &xor ($j,$j); | ||
352 | &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num] | ||
353 | &mov (&DWP($frame,"esp",$num,4),$carry); # tp[num-1]= | ||
354 | &adc ($j,0); | ||
355 | &mov ("eax",&DWP(0,$inp)); # np[0] | ||
356 | &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]= | ||
357 | &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]= | ||
358 | |||
359 | &mul ($word); # np[0]*m | ||
360 | &add ("eax",&DWP($frame,"esp")); # +=tp[0] | ||
361 | &mov ("eax",&DWP(4,$inp)); # np[1] | ||
362 | &adc ("edx",0); | ||
363 | &mov ($j,1); | ||
364 | |||
365 | &set_label("2ndmadd",16); | ||
366 | &mov ($carry,"edx"); | ||
367 | &mul ($word); # np[j]*m | ||
368 | &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] | ||
369 | &lea ($j,&DWP(1,$j)); | ||
370 | &adc ("edx",0); | ||
371 | &add ($carry,"eax"); | ||
372 | &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+1] | ||
373 | &adc ("edx",0); | ||
374 | &cmp ($j,$num); | ||
375 | &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j-1]= | ||
376 | &jl (&label("2ndmadd")); | ||
377 | |||
378 | &mov ($carry,"edx"); | ||
379 | &mul ($word); # np[j]*m | ||
380 | &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1] | ||
381 | &adc ("edx",0); | ||
382 | &add ($carry,"eax"); | ||
383 | &adc ("edx",0); | ||
384 | &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]= | ||
385 | |||
386 | &xor ("eax","eax"); | ||
387 | &mov ($j,$_bp); # &bp[i] | ||
388 | &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num] | ||
389 | &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1] | ||
390 | &lea ($j,&DWP(4,$j)); | ||
391 | &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]= | ||
392 | &cmp ($j,$_bpend); | ||
393 | &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]= | ||
394 | &je (&label("common_tail")); | ||
395 | |||
396 | &mov ($word,&DWP(0,$j)); # bp[i+1] | ||
397 | &mov ($inp,$_ap); | ||
398 | &mov ($_bp,$j); # &bp[++i] | ||
399 | &xor ($j,$j); | ||
400 | &xor ("edx","edx"); | ||
401 | &mov ("eax",&DWP(0,$inp)); | ||
402 | &jmp (&label("1stmadd")); | ||
403 | |||
404 | &set_label("bn_sqr_mont",16); | ||
405 | $sbit=$num; | ||
406 | &mov ($_num,$num); | ||
407 | &mov ($_bp,$j); # i=0 | ||
408 | |||
409 | &mov ("eax",$word); # ap[0] | ||
410 | &mul ($word); # ap[0]*ap[0] | ||
411 | &mov (&DWP($frame,"esp"),"eax"); # tp[0]= | ||
412 | &mov ($sbit,"edx"); | ||
413 | &shr ("edx",1); | ||
414 | &and ($sbit,1); | ||
415 | &inc ($j); | ||
416 | &set_label("sqr",16); | ||
417 | &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j] | ||
418 | &mov ($carry,"edx"); | ||
419 | &mul ($word); # ap[j]*ap[0] | ||
420 | &add ("eax",$carry); | ||
421 | &lea ($j,&DWP(1,$j)); | ||
422 | &adc ("edx",0); | ||
423 | &lea ($carry,&DWP(0,$sbit,"eax",2)); | ||
424 | &shr ("eax",31); | ||
425 | &cmp ($j,$_num); | ||
426 | &mov ($sbit,"eax"); | ||
427 | &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= | ||
428 | &jl (&label("sqr")); | ||
429 | |||
430 | &mov ("eax",&DWP(0,$inp,$j,4)); # ap[num-1] | ||
431 | &mov ($carry,"edx"); | ||
432 | &mul ($word); # ap[num-1]*ap[0] | ||
433 | &add ("eax",$carry); | ||
434 | &mov ($word,$_n0); | ||
435 | &adc ("edx",0); | ||
436 | &mov ($inp,$_np); | ||
437 | &lea ($carry,&DWP(0,$sbit,"eax",2)); | ||
438 | &imul ($word,&DWP($frame,"esp")); # n0*tp[0] | ||
439 | &shr ("eax",31); | ||
440 | &mov (&DWP($frame,"esp",$j,4),$carry); # tp[num-1]= | ||
441 | |||
442 | &lea ($carry,&DWP(0,"eax","edx",2)); | ||
443 | &mov ("eax",&DWP(0,$inp)); # np[0] | ||
444 | &shr ("edx",31); | ||
445 | &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num]= | ||
446 | &mov (&DWP($frame+8,"esp",$j,4),"edx"); # tp[num+1]= | ||
447 | |||
448 | &mul ($word); # np[0]*m | ||
449 | &add ("eax",&DWP($frame,"esp")); # +=tp[0] | ||
450 | &mov ($num,$j); | ||
451 | &adc ("edx",0); | ||
452 | &mov ("eax",&DWP(4,$inp)); # np[1] | ||
453 | &mov ($j,1); | ||
454 | |||
455 | &set_label("3rdmadd",16); | ||
456 | &mov ($carry,"edx"); | ||
457 | &mul ($word); # np[j]*m | ||
458 | &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] | ||
459 | &adc ("edx",0); | ||
460 | &add ($carry,"eax"); | ||
461 | &mov ("eax",&DWP(4,$inp,$j,4)); # np[j+1] | ||
462 | &adc ("edx",0); | ||
463 | &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j-1]= | ||
464 | |||
465 | &mov ($carry,"edx"); | ||
466 | &mul ($word); # np[j+1]*m | ||
467 | &add ($carry,&DWP($frame+4,"esp",$j,4)); # +=tp[j+1] | ||
468 | &lea ($j,&DWP(2,$j)); | ||
469 | &adc ("edx",0); | ||
470 | &add ($carry,"eax"); | ||
471 | &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+2] | ||
472 | &adc ("edx",0); | ||
473 | &cmp ($j,$num); | ||
474 | &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j]= | ||
475 | &jl (&label("3rdmadd")); | ||
476 | |||
477 | &mov ($carry,"edx"); | ||
478 | &mul ($word); # np[j]*m | ||
479 | &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1] | ||
480 | &adc ("edx",0); | ||
481 | &add ($carry,"eax"); | ||
482 | &adc ("edx",0); | ||
483 | &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]= | ||
484 | |||
485 | &mov ($j,$_bp); # i | ||
486 | &xor ("eax","eax"); | ||
487 | &mov ($inp,$_ap); | ||
488 | &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num] | ||
489 | &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1] | ||
490 | &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]= | ||
491 | &cmp ($j,$num); | ||
492 | &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]= | ||
493 | &je (&label("common_tail")); | ||
494 | |||
495 | &mov ($word,&DWP(4,$inp,$j,4)); # ap[i] | ||
496 | &lea ($j,&DWP(1,$j)); | ||
497 | &mov ("eax",$word); | ||
498 | &mov ($_bp,$j); # ++i | ||
499 | &mul ($word); # ap[i]*ap[i] | ||
500 | &add ("eax",&DWP($frame,"esp",$j,4)); # +=tp[i] | ||
501 | &adc ("edx",0); | ||
502 | &mov (&DWP($frame,"esp",$j,4),"eax"); # tp[i]= | ||
503 | &xor ($carry,$carry); | ||
504 | &cmp ($j,$num); | ||
505 | &lea ($j,&DWP(1,$j)); | ||
506 | &je (&label("sqrlast")); | ||
507 | |||
508 | &mov ($sbit,"edx"); # zaps $num | ||
509 | &shr ("edx",1); | ||
510 | &and ($sbit,1); | ||
511 | &set_label("sqradd",16); | ||
512 | &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j] | ||
513 | &mov ($carry,"edx"); | ||
514 | &mul ($word); # ap[j]*ap[i] | ||
515 | &add ("eax",$carry); | ||
516 | &lea ($carry,&DWP(0,"eax","eax")); | ||
517 | &adc ("edx",0); | ||
518 | &shr ("eax",31); | ||
519 | &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] | ||
520 | &lea ($j,&DWP(1,$j)); | ||
521 | &adc ("eax",0); | ||
522 | &add ($carry,$sbit); | ||
523 | &adc ("eax",0); | ||
524 | &cmp ($j,$_num); | ||
525 | &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= | ||
526 | &mov ($sbit,"eax"); | ||
527 | &jle (&label("sqradd")); | ||
528 | |||
529 | &mov ($carry,"edx"); | ||
530 | &add ("edx","edx"); | ||
531 | &shr ($carry,31); | ||
532 | &add ("edx",$sbit); | ||
533 | &adc ($carry,0); | ||
534 | &set_label("sqrlast"); | ||
535 | &mov ($word,$_n0); | ||
536 | &mov ($inp,$_np); | ||
537 | &imul ($word,&DWP($frame,"esp")); # n0*tp[0] | ||
538 | |||
539 | &add ("edx",&DWP($frame,"esp",$j,4)); # +=tp[num] | ||
540 | &mov ("eax",&DWP(0,$inp)); # np[0] | ||
541 | &adc ($carry,0); | ||
542 | &mov (&DWP($frame,"esp",$j,4),"edx"); # tp[num]= | ||
543 | &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num+1]= | ||
544 | |||
545 | &mul ($word); # np[0]*m | ||
546 | &add ("eax",&DWP($frame,"esp")); # +=tp[0] | ||
547 | &lea ($num,&DWP(-1,$j)); | ||
548 | &adc ("edx",0); | ||
549 | &mov ($j,1); | ||
550 | &mov ("eax",&DWP(4,$inp)); # np[1] | ||
551 | |||
552 | &jmp (&label("3rdmadd")); | ||
553 | } | ||
554 | |||
555 | &set_label("common_tail",16); | ||
556 | &mov ($np,$_np); # load modulus pointer | ||
557 | &mov ($rp,$_rp); # load result pointer | ||
558 | &lea ($tp,&DWP($frame,"esp")); # [$ap and $bp are zapped] | ||
559 | |||
560 | &mov ("eax",&DWP(0,$tp)); # tp[0] | ||
561 | &mov ($j,$num); # j=num-1 | ||
562 | &xor ($i,$i); # i=0 and clear CF! | ||
563 | |||
564 | &set_label("sub",16); | ||
565 | &sbb ("eax",&DWP(0,$np,$i,4)); | ||
566 | &mov (&DWP(0,$rp,$i,4),"eax"); # rp[i]=tp[i]-np[i] | ||
567 | &dec ($j); # doesn't affect CF! | ||
568 | &mov ("eax",&DWP(4,$tp,$i,4)); # tp[i+1] | ||
569 | &lea ($i,&DWP(1,$i)); # i++ | ||
570 | &jge (&label("sub")); | ||
571 | |||
572 | &sbb ("eax",0); # handle upmost overflow bit | ||
573 | &and ($tp,"eax"); | ||
574 | ¬ ("eax"); | ||
575 | &mov ($np,$rp); | ||
576 | &and ($np,"eax"); | ||
577 | &or ($tp,$np); # tp=carry?tp:rp | ||
578 | |||
579 | &set_label("copy",16); # copy or in-place refresh | ||
580 | &mov ("eax",&DWP(0,$tp,$num,4)); | ||
581 | &mov (&DWP(0,$rp,$num,4),"eax"); # rp[i]=tp[i] | ||
582 | &mov (&DWP($frame,"esp",$num,4),$j); # zap temporary vector | ||
583 | &dec ($num); | ||
584 | &jge (&label("copy")); | ||
585 | |||
586 | &mov ("esp",$_sp); # pull saved stack pointer | ||
587 | &mov ("eax",1); | ||
588 | &set_label("just_leave"); | ||
589 | &function_end("bn_mul_mont"); | ||
590 | |||
591 | &asciz("Montgomery Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>"); | ||
592 | |||
593 | &asm_finish(); | ||
diff --git a/src/lib/libcrypto/bn/asm/x86.pl b/src/lib/libcrypto/bn/asm/x86.pl deleted file mode 100644 index 1bc4f1bb27..0000000000 --- a/src/lib/libcrypto/bn/asm/x86.pl +++ /dev/null | |||
@@ -1,28 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | |||
3 | push(@INC,"perlasm","../../perlasm"); | ||
4 | require "x86asm.pl"; | ||
5 | |||
6 | require("x86/mul_add.pl"); | ||
7 | require("x86/mul.pl"); | ||
8 | require("x86/sqr.pl"); | ||
9 | require("x86/div.pl"); | ||
10 | require("x86/add.pl"); | ||
11 | require("x86/sub.pl"); | ||
12 | require("x86/comba.pl"); | ||
13 | |||
14 | &asm_init($ARGV[0],$0); | ||
15 | |||
16 | &bn_mul_add_words("bn_mul_add_words"); | ||
17 | &bn_mul_words("bn_mul_words"); | ||
18 | &bn_sqr_words("bn_sqr_words"); | ||
19 | &bn_div_words("bn_div_words"); | ||
20 | &bn_add_words("bn_add_words"); | ||
21 | &bn_sub_words("bn_sub_words"); | ||
22 | &bn_mul_comba("bn_mul_comba8",8); | ||
23 | &bn_mul_comba("bn_mul_comba4",4); | ||
24 | &bn_sqr_comba("bn_sqr_comba8",8); | ||
25 | &bn_sqr_comba("bn_sqr_comba4",4); | ||
26 | |||
27 | &asm_finish(); | ||
28 | |||
diff --git a/src/lib/libcrypto/bn/asm/x86/add.pl b/src/lib/libcrypto/bn/asm/x86/add.pl deleted file mode 100644 index 0b5cf583e3..0000000000 --- a/src/lib/libcrypto/bn/asm/x86/add.pl +++ /dev/null | |||
@@ -1,76 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # x86 assember | ||
3 | |||
4 | sub bn_add_words | ||
5 | { | ||
6 | local($name)=@_; | ||
7 | |||
8 | &function_begin($name,""); | ||
9 | |||
10 | &comment(""); | ||
11 | $a="esi"; | ||
12 | $b="edi"; | ||
13 | $c="eax"; | ||
14 | $r="ebx"; | ||
15 | $tmp1="ecx"; | ||
16 | $tmp2="edx"; | ||
17 | $num="ebp"; | ||
18 | |||
19 | &mov($r,&wparam(0)); # get r | ||
20 | &mov($a,&wparam(1)); # get a | ||
21 | &mov($b,&wparam(2)); # get b | ||
22 | &mov($num,&wparam(3)); # get num | ||
23 | &xor($c,$c); # clear carry | ||
24 | &and($num,0xfffffff8); # num / 8 | ||
25 | |||
26 | &jz(&label("aw_finish")); | ||
27 | |||
28 | &set_label("aw_loop",0); | ||
29 | for ($i=0; $i<8; $i++) | ||
30 | { | ||
31 | &comment("Round $i"); | ||
32 | |||
33 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
34 | &mov($tmp2,&DWP($i*4,$b,"",0)); # *b | ||
35 | &add($tmp1,$c); | ||
36 | &mov($c,0); | ||
37 | &adc($c,$c); | ||
38 | &add($tmp1,$tmp2); | ||
39 | &adc($c,0); | ||
40 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
41 | } | ||
42 | |||
43 | &comment(""); | ||
44 | &add($a,32); | ||
45 | &add($b,32); | ||
46 | &add($r,32); | ||
47 | &sub($num,8); | ||
48 | &jnz(&label("aw_loop")); | ||
49 | |||
50 | &set_label("aw_finish",0); | ||
51 | &mov($num,&wparam(3)); # get num | ||
52 | &and($num,7); | ||
53 | &jz(&label("aw_end")); | ||
54 | |||
55 | for ($i=0; $i<7; $i++) | ||
56 | { | ||
57 | &comment("Tail Round $i"); | ||
58 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
59 | &mov($tmp2,&DWP($i*4,$b,"",0));# *b | ||
60 | &add($tmp1,$c); | ||
61 | &mov($c,0); | ||
62 | &adc($c,$c); | ||
63 | &add($tmp1,$tmp2); | ||
64 | &adc($c,0); | ||
65 | &dec($num) if ($i != 6); | ||
66 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *a | ||
67 | &jz(&label("aw_end")) if ($i != 6); | ||
68 | } | ||
69 | &set_label("aw_end",0); | ||
70 | |||
71 | # &mov("eax",$c); # $c is "eax" | ||
72 | |||
73 | &function_end($name); | ||
74 | } | ||
75 | |||
76 | 1; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86/comba.pl b/src/lib/libcrypto/bn/asm/x86/comba.pl deleted file mode 100644 index 2291253629..0000000000 --- a/src/lib/libcrypto/bn/asm/x86/comba.pl +++ /dev/null | |||
@@ -1,277 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # x86 assember | ||
3 | |||
4 | sub mul_add_c | ||
5 | { | ||
6 | local($a,$ai,$b,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; | ||
7 | |||
8 | # pos == -1 if eax and edx are pre-loaded, 0 to load from next | ||
9 | # words, and 1 if load return value | ||
10 | |||
11 | &comment("mul a[$ai]*b[$bi]"); | ||
12 | |||
13 | # "eax" and "edx" will always be pre-loaded. | ||
14 | # &mov("eax",&DWP($ai*4,$a,"",0)) ; | ||
15 | # &mov("edx",&DWP($bi*4,$b,"",0)); | ||
16 | |||
17 | &mul("edx"); | ||
18 | &add($c0,"eax"); | ||
19 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # laod next a | ||
20 | &mov("eax",&wparam(0)) if $pos > 0; # load r[] | ||
21 | ### | ||
22 | &adc($c1,"edx"); | ||
23 | &mov("edx",&DWP(($nb)*4,$b,"",0)) if $pos == 0; # laod next b | ||
24 | &mov("edx",&DWP(($nb)*4,$b,"",0)) if $pos == 1; # laod next b | ||
25 | ### | ||
26 | &adc($c2,0); | ||
27 | # is pos > 1, it means it is the last loop | ||
28 | &mov(&DWP($i*4,"eax","",0),$c0) if $pos > 0; # save r[]; | ||
29 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # laod next a | ||
30 | } | ||
31 | |||
32 | sub sqr_add_c | ||
33 | { | ||
34 | local($r,$a,$ai,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; | ||
35 | |||
36 | # pos == -1 if eax and edx are pre-loaded, 0 to load from next | ||
37 | # words, and 1 if load return value | ||
38 | |||
39 | &comment("sqr a[$ai]*a[$bi]"); | ||
40 | |||
41 | # "eax" and "edx" will always be pre-loaded. | ||
42 | # &mov("eax",&DWP($ai*4,$a,"",0)) ; | ||
43 | # &mov("edx",&DWP($bi*4,$b,"",0)); | ||
44 | |||
45 | if ($ai == $bi) | ||
46 | { &mul("eax");} | ||
47 | else | ||
48 | { &mul("edx");} | ||
49 | &add($c0,"eax"); | ||
50 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a | ||
51 | ### | ||
52 | &adc($c1,"edx"); | ||
53 | &mov("edx",&DWP(($nb)*4,$a,"",0)) if ($pos == 1) && ($na != $nb); | ||
54 | ### | ||
55 | &adc($c2,0); | ||
56 | # is pos > 1, it means it is the last loop | ||
57 | &mov(&DWP($i*4,$r,"",0),$c0) if $pos > 0; # save r[]; | ||
58 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next b | ||
59 | } | ||
60 | |||
61 | sub sqr_add_c2 | ||
62 | { | ||
63 | local($r,$a,$ai,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; | ||
64 | |||
65 | # pos == -1 if eax and edx are pre-loaded, 0 to load from next | ||
66 | # words, and 1 if load return value | ||
67 | |||
68 | &comment("sqr a[$ai]*a[$bi]"); | ||
69 | |||
70 | # "eax" and "edx" will always be pre-loaded. | ||
71 | # &mov("eax",&DWP($ai*4,$a,"",0)) ; | ||
72 | # &mov("edx",&DWP($bi*4,$a,"",0)); | ||
73 | |||
74 | if ($ai == $bi) | ||
75 | { &mul("eax");} | ||
76 | else | ||
77 | { &mul("edx");} | ||
78 | &add("eax","eax"); | ||
79 | ### | ||
80 | &adc("edx","edx"); | ||
81 | ### | ||
82 | &adc($c2,0); | ||
83 | &add($c0,"eax"); | ||
84 | &adc($c1,"edx"); | ||
85 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a | ||
86 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next b | ||
87 | &adc($c2,0); | ||
88 | &mov(&DWP($i*4,$r,"",0),$c0) if $pos > 0; # save r[]; | ||
89 | &mov("edx",&DWP(($nb)*4,$a,"",0)) if ($pos <= 1) && ($na != $nb); | ||
90 | ### | ||
91 | } | ||
92 | |||
93 | sub bn_mul_comba | ||
94 | { | ||
95 | local($name,$num)=@_; | ||
96 | local($a,$b,$c0,$c1,$c2); | ||
97 | local($i,$as,$ae,$bs,$be,$ai,$bi); | ||
98 | local($tot,$end); | ||
99 | |||
100 | &function_begin_B($name,""); | ||
101 | |||
102 | $c0="ebx"; | ||
103 | $c1="ecx"; | ||
104 | $c2="ebp"; | ||
105 | $a="esi"; | ||
106 | $b="edi"; | ||
107 | |||
108 | $as=0; | ||
109 | $ae=0; | ||
110 | $bs=0; | ||
111 | $be=0; | ||
112 | $tot=$num+$num-1; | ||
113 | |||
114 | &push("esi"); | ||
115 | &mov($a,&wparam(1)); | ||
116 | &push("edi"); | ||
117 | &mov($b,&wparam(2)); | ||
118 | &push("ebp"); | ||
119 | &push("ebx"); | ||
120 | |||
121 | &xor($c0,$c0); | ||
122 | &mov("eax",&DWP(0,$a,"",0)); # load the first word | ||
123 | &xor($c1,$c1); | ||
124 | &mov("edx",&DWP(0,$b,"",0)); # load the first second | ||
125 | |||
126 | for ($i=0; $i<$tot; $i++) | ||
127 | { | ||
128 | $ai=$as; | ||
129 | $bi=$bs; | ||
130 | $end=$be+1; | ||
131 | |||
132 | &comment("################## Calculate word $i"); | ||
133 | |||
134 | for ($j=$bs; $j<$end; $j++) | ||
135 | { | ||
136 | &xor($c2,$c2) if ($j == $bs); | ||
137 | if (($j+1) == $end) | ||
138 | { | ||
139 | $v=1; | ||
140 | $v=2 if (($i+1) == $tot); | ||
141 | } | ||
142 | else | ||
143 | { $v=0; } | ||
144 | if (($j+1) != $end) | ||
145 | { | ||
146 | $na=($ai-1); | ||
147 | $nb=($bi+1); | ||
148 | } | ||
149 | else | ||
150 | { | ||
151 | $na=$as+($i < ($num-1)); | ||
152 | $nb=$bs+($i >= ($num-1)); | ||
153 | } | ||
154 | #printf STDERR "[$ai,$bi] -> [$na,$nb]\n"; | ||
155 | &mul_add_c($a,$ai,$b,$bi,$c0,$c1,$c2,$v,$i,$na,$nb); | ||
156 | if ($v) | ||
157 | { | ||
158 | &comment("saved r[$i]"); | ||
159 | # &mov("eax",&wparam(0)); | ||
160 | # &mov(&DWP($i*4,"eax","",0),$c0); | ||
161 | ($c0,$c1,$c2)=($c1,$c2,$c0); | ||
162 | } | ||
163 | $ai--; | ||
164 | $bi++; | ||
165 | } | ||
166 | $as++ if ($i < ($num-1)); | ||
167 | $ae++ if ($i >= ($num-1)); | ||
168 | |||
169 | $bs++ if ($i >= ($num-1)); | ||
170 | $be++ if ($i < ($num-1)); | ||
171 | } | ||
172 | &comment("save r[$i]"); | ||
173 | # &mov("eax",&wparam(0)); | ||
174 | &mov(&DWP($i*4,"eax","",0),$c0); | ||
175 | |||
176 | &pop("ebx"); | ||
177 | &pop("ebp"); | ||
178 | &pop("edi"); | ||
179 | &pop("esi"); | ||
180 | &ret(); | ||
181 | &function_end_B($name); | ||
182 | } | ||
183 | |||
184 | sub bn_sqr_comba | ||
185 | { | ||
186 | local($name,$num)=@_; | ||
187 | local($r,$a,$c0,$c1,$c2)=@_; | ||
188 | local($i,$as,$ae,$bs,$be,$ai,$bi); | ||
189 | local($b,$tot,$end,$half); | ||
190 | |||
191 | &function_begin_B($name,""); | ||
192 | |||
193 | $c0="ebx"; | ||
194 | $c1="ecx"; | ||
195 | $c2="ebp"; | ||
196 | $a="esi"; | ||
197 | $r="edi"; | ||
198 | |||
199 | &push("esi"); | ||
200 | &push("edi"); | ||
201 | &push("ebp"); | ||
202 | &push("ebx"); | ||
203 | &mov($r,&wparam(0)); | ||
204 | &mov($a,&wparam(1)); | ||
205 | &xor($c0,$c0); | ||
206 | &xor($c1,$c1); | ||
207 | &mov("eax",&DWP(0,$a,"",0)); # load the first word | ||
208 | |||
209 | $as=0; | ||
210 | $ae=0; | ||
211 | $bs=0; | ||
212 | $be=0; | ||
213 | $tot=$num+$num-1; | ||
214 | |||
215 | for ($i=0; $i<$tot; $i++) | ||
216 | { | ||
217 | $ai=$as; | ||
218 | $bi=$bs; | ||
219 | $end=$be+1; | ||
220 | |||
221 | &comment("############### Calculate word $i"); | ||
222 | for ($j=$bs; $j<$end; $j++) | ||
223 | { | ||
224 | &xor($c2,$c2) if ($j == $bs); | ||
225 | if (($ai-1) < ($bi+1)) | ||
226 | { | ||
227 | $v=1; | ||
228 | $v=2 if ($i+1) == $tot; | ||
229 | } | ||
230 | else | ||
231 | { $v=0; } | ||
232 | if (!$v) | ||
233 | { | ||
234 | $na=$ai-1; | ||
235 | $nb=$bi+1; | ||
236 | } | ||
237 | else | ||
238 | { | ||
239 | $na=$as+($i < ($num-1)); | ||
240 | $nb=$bs+($i >= ($num-1)); | ||
241 | } | ||
242 | if ($ai == $bi) | ||
243 | { | ||
244 | &sqr_add_c($r,$a,$ai,$bi, | ||
245 | $c0,$c1,$c2,$v,$i,$na,$nb); | ||
246 | } | ||
247 | else | ||
248 | { | ||
249 | &sqr_add_c2($r,$a,$ai,$bi, | ||
250 | $c0,$c1,$c2,$v,$i,$na,$nb); | ||
251 | } | ||
252 | if ($v) | ||
253 | { | ||
254 | &comment("saved r[$i]"); | ||
255 | #&mov(&DWP($i*4,$r,"",0),$c0); | ||
256 | ($c0,$c1,$c2)=($c1,$c2,$c0); | ||
257 | last; | ||
258 | } | ||
259 | $ai--; | ||
260 | $bi++; | ||
261 | } | ||
262 | $as++ if ($i < ($num-1)); | ||
263 | $ae++ if ($i >= ($num-1)); | ||
264 | |||
265 | $bs++ if ($i >= ($num-1)); | ||
266 | $be++ if ($i < ($num-1)); | ||
267 | } | ||
268 | &mov(&DWP($i*4,$r,"",0),$c0); | ||
269 | &pop("ebx"); | ||
270 | &pop("ebp"); | ||
271 | &pop("edi"); | ||
272 | &pop("esi"); | ||
273 | &ret(); | ||
274 | &function_end_B($name); | ||
275 | } | ||
276 | |||
277 | 1; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86/div.pl b/src/lib/libcrypto/bn/asm/x86/div.pl deleted file mode 100644 index 0e90152caa..0000000000 --- a/src/lib/libcrypto/bn/asm/x86/div.pl +++ /dev/null | |||
@@ -1,15 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # x86 assember | ||
3 | |||
4 | sub bn_div_words | ||
5 | { | ||
6 | local($name)=@_; | ||
7 | |||
8 | &function_begin($name,""); | ||
9 | &mov("edx",&wparam(0)); # | ||
10 | &mov("eax",&wparam(1)); # | ||
11 | &mov("ebx",&wparam(2)); # | ||
12 | &div("ebx"); | ||
13 | &function_end($name); | ||
14 | } | ||
15 | 1; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86/mul.pl b/src/lib/libcrypto/bn/asm/x86/mul.pl deleted file mode 100644 index 674cb9b055..0000000000 --- a/src/lib/libcrypto/bn/asm/x86/mul.pl +++ /dev/null | |||
@@ -1,77 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # x86 assember | ||
3 | |||
4 | sub bn_mul_words | ||
5 | { | ||
6 | local($name)=@_; | ||
7 | |||
8 | &function_begin($name,""); | ||
9 | |||
10 | &comment(""); | ||
11 | $Low="eax"; | ||
12 | $High="edx"; | ||
13 | $a="ebx"; | ||
14 | $w="ecx"; | ||
15 | $r="edi"; | ||
16 | $c="esi"; | ||
17 | $num="ebp"; | ||
18 | |||
19 | &xor($c,$c); # clear carry | ||
20 | &mov($r,&wparam(0)); # | ||
21 | &mov($a,&wparam(1)); # | ||
22 | &mov($num,&wparam(2)); # | ||
23 | &mov($w,&wparam(3)); # | ||
24 | |||
25 | &and($num,0xfffffff8); # num / 8 | ||
26 | &jz(&label("mw_finish")); | ||
27 | |||
28 | &set_label("mw_loop",0); | ||
29 | for ($i=0; $i<32; $i+=4) | ||
30 | { | ||
31 | &comment("Round $i"); | ||
32 | |||
33 | &mov("eax",&DWP($i,$a,"",0)); # *a | ||
34 | &mul($w); # *a * w | ||
35 | &add("eax",$c); # L(t)+=c | ||
36 | # XXX | ||
37 | |||
38 | &adc("edx",0); # H(t)+=carry | ||
39 | &mov(&DWP($i,$r,"",0),"eax"); # *r= L(t); | ||
40 | |||
41 | &mov($c,"edx"); # c= H(t); | ||
42 | } | ||
43 | |||
44 | &comment(""); | ||
45 | &add($a,32); | ||
46 | &add($r,32); | ||
47 | &sub($num,8); | ||
48 | &jz(&label("mw_finish")); | ||
49 | &jmp(&label("mw_loop")); | ||
50 | |||
51 | &set_label("mw_finish",0); | ||
52 | &mov($num,&wparam(2)); # get num | ||
53 | &and($num,7); | ||
54 | &jnz(&label("mw_finish2")); | ||
55 | &jmp(&label("mw_end")); | ||
56 | |||
57 | &set_label("mw_finish2",1); | ||
58 | for ($i=0; $i<7; $i++) | ||
59 | { | ||
60 | &comment("Tail Round $i"); | ||
61 | &mov("eax",&DWP($i*4,$a,"",0));# *a | ||
62 | &mul($w); # *a * w | ||
63 | &add("eax",$c); # L(t)+=c | ||
64 | # XXX | ||
65 | &adc("edx",0); # H(t)+=carry | ||
66 | &mov(&DWP($i*4,$r,"",0),"eax");# *r= L(t); | ||
67 | &mov($c,"edx"); # c= H(t); | ||
68 | &dec($num) if ($i != 7-1); | ||
69 | &jz(&label("mw_end")) if ($i != 7-1); | ||
70 | } | ||
71 | &set_label("mw_end",0); | ||
72 | &mov("eax",$c); | ||
73 | |||
74 | &function_end($name); | ||
75 | } | ||
76 | |||
77 | 1; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86/mul_add.pl b/src/lib/libcrypto/bn/asm/x86/mul_add.pl deleted file mode 100644 index 61830d3a90..0000000000 --- a/src/lib/libcrypto/bn/asm/x86/mul_add.pl +++ /dev/null | |||
@@ -1,87 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # x86 assember | ||
3 | |||
4 | sub bn_mul_add_words | ||
5 | { | ||
6 | local($name)=@_; | ||
7 | |||
8 | &function_begin($name,""); | ||
9 | |||
10 | &comment(""); | ||
11 | $Low="eax"; | ||
12 | $High="edx"; | ||
13 | $a="ebx"; | ||
14 | $w="ebp"; | ||
15 | $r="edi"; | ||
16 | $c="esi"; | ||
17 | |||
18 | &xor($c,$c); # clear carry | ||
19 | &mov($r,&wparam(0)); # | ||
20 | |||
21 | &mov("ecx",&wparam(2)); # | ||
22 | &mov($a,&wparam(1)); # | ||
23 | |||
24 | &and("ecx",0xfffffff8); # num / 8 | ||
25 | &mov($w,&wparam(3)); # | ||
26 | |||
27 | &push("ecx"); # Up the stack for a tmp variable | ||
28 | |||
29 | &jz(&label("maw_finish")); | ||
30 | |||
31 | &set_label("maw_loop",0); | ||
32 | |||
33 | &mov(&swtmp(0),"ecx"); # | ||
34 | |||
35 | for ($i=0; $i<32; $i+=4) | ||
36 | { | ||
37 | &comment("Round $i"); | ||
38 | |||
39 | &mov("eax",&DWP($i,$a,"",0)); # *a | ||
40 | &mul($w); # *a * w | ||
41 | &add("eax",$c); # L(t)+= *r | ||
42 | &mov($c,&DWP($i,$r,"",0)); # L(t)+= *r | ||
43 | &adc("edx",0); # H(t)+=carry | ||
44 | &add("eax",$c); # L(t)+=c | ||
45 | &adc("edx",0); # H(t)+=carry | ||
46 | &mov(&DWP($i,$r,"",0),"eax"); # *r= L(t); | ||
47 | &mov($c,"edx"); # c= H(t); | ||
48 | } | ||
49 | |||
50 | &comment(""); | ||
51 | &mov("ecx",&swtmp(0)); # | ||
52 | &add($a,32); | ||
53 | &add($r,32); | ||
54 | &sub("ecx",8); | ||
55 | &jnz(&label("maw_loop")); | ||
56 | |||
57 | &set_label("maw_finish",0); | ||
58 | &mov("ecx",&wparam(2)); # get num | ||
59 | &and("ecx",7); | ||
60 | &jnz(&label("maw_finish2")); # helps branch prediction | ||
61 | &jmp(&label("maw_end")); | ||
62 | |||
63 | &set_label("maw_finish2",1); | ||
64 | for ($i=0; $i<7; $i++) | ||
65 | { | ||
66 | &comment("Tail Round $i"); | ||
67 | &mov("eax",&DWP($i*4,$a,"",0));# *a | ||
68 | &mul($w); # *a * w | ||
69 | &add("eax",$c); # L(t)+=c | ||
70 | &mov($c,&DWP($i*4,$r,"",0)); # L(t)+= *r | ||
71 | &adc("edx",0); # H(t)+=carry | ||
72 | &add("eax",$c); | ||
73 | &adc("edx",0); # H(t)+=carry | ||
74 | &dec("ecx") if ($i != 7-1); | ||
75 | &mov(&DWP($i*4,$r,"",0),"eax"); # *r= L(t); | ||
76 | &mov($c,"edx"); # c= H(t); | ||
77 | &jz(&label("maw_end")) if ($i != 7-1); | ||
78 | } | ||
79 | &set_label("maw_end",0); | ||
80 | &mov("eax",$c); | ||
81 | |||
82 | &pop("ecx"); # clear variable from | ||
83 | |||
84 | &function_end($name); | ||
85 | } | ||
86 | |||
87 | 1; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86/sqr.pl b/src/lib/libcrypto/bn/asm/x86/sqr.pl deleted file mode 100644 index 1f90993cf6..0000000000 --- a/src/lib/libcrypto/bn/asm/x86/sqr.pl +++ /dev/null | |||
@@ -1,60 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # x86 assember | ||
3 | |||
4 | sub bn_sqr_words | ||
5 | { | ||
6 | local($name)=@_; | ||
7 | |||
8 | &function_begin($name,""); | ||
9 | |||
10 | &comment(""); | ||
11 | $r="esi"; | ||
12 | $a="edi"; | ||
13 | $num="ebx"; | ||
14 | |||
15 | &mov($r,&wparam(0)); # | ||
16 | &mov($a,&wparam(1)); # | ||
17 | &mov($num,&wparam(2)); # | ||
18 | |||
19 | &and($num,0xfffffff8); # num / 8 | ||
20 | &jz(&label("sw_finish")); | ||
21 | |||
22 | &set_label("sw_loop",0); | ||
23 | for ($i=0; $i<32; $i+=4) | ||
24 | { | ||
25 | &comment("Round $i"); | ||
26 | &mov("eax",&DWP($i,$a,"",0)); # *a | ||
27 | # XXX | ||
28 | &mul("eax"); # *a * *a | ||
29 | &mov(&DWP($i*2,$r,"",0),"eax"); # | ||
30 | &mov(&DWP($i*2+4,$r,"",0),"edx");# | ||
31 | } | ||
32 | |||
33 | &comment(""); | ||
34 | &add($a,32); | ||
35 | &add($r,64); | ||
36 | &sub($num,8); | ||
37 | &jnz(&label("sw_loop")); | ||
38 | |||
39 | &set_label("sw_finish",0); | ||
40 | &mov($num,&wparam(2)); # get num | ||
41 | &and($num,7); | ||
42 | &jz(&label("sw_end")); | ||
43 | |||
44 | for ($i=0; $i<7; $i++) | ||
45 | { | ||
46 | &comment("Tail Round $i"); | ||
47 | &mov("eax",&DWP($i*4,$a,"",0)); # *a | ||
48 | # XXX | ||
49 | &mul("eax"); # *a * *a | ||
50 | &mov(&DWP($i*8,$r,"",0),"eax"); # | ||
51 | &dec($num) if ($i != 7-1); | ||
52 | &mov(&DWP($i*8+4,$r,"",0),"edx"); | ||
53 | &jz(&label("sw_end")) if ($i != 7-1); | ||
54 | } | ||
55 | &set_label("sw_end",0); | ||
56 | |||
57 | &function_end($name); | ||
58 | } | ||
59 | |||
60 | 1; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86/sub.pl b/src/lib/libcrypto/bn/asm/x86/sub.pl deleted file mode 100644 index 837b0e1b07..0000000000 --- a/src/lib/libcrypto/bn/asm/x86/sub.pl +++ /dev/null | |||
@@ -1,76 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # x86 assember | ||
3 | |||
4 | sub bn_sub_words | ||
5 | { | ||
6 | local($name)=@_; | ||
7 | |||
8 | &function_begin($name,""); | ||
9 | |||
10 | &comment(""); | ||
11 | $a="esi"; | ||
12 | $b="edi"; | ||
13 | $c="eax"; | ||
14 | $r="ebx"; | ||
15 | $tmp1="ecx"; | ||
16 | $tmp2="edx"; | ||
17 | $num="ebp"; | ||
18 | |||
19 | &mov($r,&wparam(0)); # get r | ||
20 | &mov($a,&wparam(1)); # get a | ||
21 | &mov($b,&wparam(2)); # get b | ||
22 | &mov($num,&wparam(3)); # get num | ||
23 | &xor($c,$c); # clear carry | ||
24 | &and($num,0xfffffff8); # num / 8 | ||
25 | |||
26 | &jz(&label("aw_finish")); | ||
27 | |||
28 | &set_label("aw_loop",0); | ||
29 | for ($i=0; $i<8; $i++) | ||
30 | { | ||
31 | &comment("Round $i"); | ||
32 | |||
33 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
34 | &mov($tmp2,&DWP($i*4,$b,"",0)); # *b | ||
35 | &sub($tmp1,$c); | ||
36 | &mov($c,0); | ||
37 | &adc($c,$c); | ||
38 | &sub($tmp1,$tmp2); | ||
39 | &adc($c,0); | ||
40 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
41 | } | ||
42 | |||
43 | &comment(""); | ||
44 | &add($a,32); | ||
45 | &add($b,32); | ||
46 | &add($r,32); | ||
47 | &sub($num,8); | ||
48 | &jnz(&label("aw_loop")); | ||
49 | |||
50 | &set_label("aw_finish",0); | ||
51 | &mov($num,&wparam(3)); # get num | ||
52 | &and($num,7); | ||
53 | &jz(&label("aw_end")); | ||
54 | |||
55 | for ($i=0; $i<7; $i++) | ||
56 | { | ||
57 | &comment("Tail Round $i"); | ||
58 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
59 | &mov($tmp2,&DWP($i*4,$b,"",0));# *b | ||
60 | &sub($tmp1,$c); | ||
61 | &mov($c,0); | ||
62 | &adc($c,$c); | ||
63 | &sub($tmp1,$tmp2); | ||
64 | &adc($c,0); | ||
65 | &dec($num) if ($i != 6); | ||
66 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *a | ||
67 | &jz(&label("aw_end")) if ($i != 6); | ||
68 | } | ||
69 | &set_label("aw_end",0); | ||
70 | |||
71 | # &mov("eax",$c); # $c is "eax" | ||
72 | |||
73 | &function_end($name); | ||
74 | } | ||
75 | |||
76 | 1; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86_64-gcc.c b/src/lib/libcrypto/bn/asm/x86_64-gcc.c deleted file mode 100644 index acb0b40118..0000000000 --- a/src/lib/libcrypto/bn/asm/x86_64-gcc.c +++ /dev/null | |||
@@ -1,606 +0,0 @@ | |||
1 | #include "../bn_lcl.h" | ||
2 | #if !(defined(__GNUC__) && __GNUC__>=2) | ||
3 | # include "../bn_asm.c" /* kind of dirty hack for Sun Studio */ | ||
4 | #else | ||
5 | /* | ||
6 | * x86_64 BIGNUM accelerator version 0.1, December 2002. | ||
7 | * | ||
8 | * Implemented by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
9 | * project. | ||
10 | * | ||
11 | * Rights for redistribution and usage in source and binary forms are | ||
12 | * granted according to the OpenSSL license. Warranty of any kind is | ||
13 | * disclaimed. | ||
14 | * | ||
15 | * Q. Version 0.1? It doesn't sound like Andy, he used to assign real | ||
16 | * versions, like 1.0... | ||
17 | * A. Well, that's because this code is basically a quick-n-dirty | ||
18 | * proof-of-concept hack. As you can see it's implemented with | ||
19 | * inline assembler, which means that you're bound to GCC and that | ||
20 | * there might be enough room for further improvement. | ||
21 | * | ||
22 | * Q. Why inline assembler? | ||
23 | * A. x86_64 features own ABI which I'm not familiar with. This is | ||
24 | * why I decided to let the compiler take care of subroutine | ||
25 | * prologue/epilogue as well as register allocation. For reference. | ||
26 | * Win64 implements different ABI for AMD64, different from Linux. | ||
27 | * | ||
28 | * Q. How much faster does it get? | ||
29 | * A. 'apps/openssl speed rsa dsa' output with no-asm: | ||
30 | * | ||
31 | * sign verify sign/s verify/s | ||
32 | * rsa 512 bits 0.0006s 0.0001s 1683.8 18456.2 | ||
33 | * rsa 1024 bits 0.0028s 0.0002s 356.0 6407.0 | ||
34 | * rsa 2048 bits 0.0172s 0.0005s 58.0 1957.8 | ||
35 | * rsa 4096 bits 0.1155s 0.0018s 8.7 555.6 | ||
36 | * sign verify sign/s verify/s | ||
37 | * dsa 512 bits 0.0005s 0.0006s 2100.8 1768.3 | ||
38 | * dsa 1024 bits 0.0014s 0.0018s 692.3 559.2 | ||
39 | * dsa 2048 bits 0.0049s 0.0061s 204.7 165.0 | ||
40 | * | ||
41 | * 'apps/openssl speed rsa dsa' output with this module: | ||
42 | * | ||
43 | * sign verify sign/s verify/s | ||
44 | * rsa 512 bits 0.0004s 0.0000s 2767.1 33297.9 | ||
45 | * rsa 1024 bits 0.0012s 0.0001s 867.4 14674.7 | ||
46 | * rsa 2048 bits 0.0061s 0.0002s 164.0 5270.0 | ||
47 | * rsa 4096 bits 0.0384s 0.0006s 26.1 1650.8 | ||
48 | * sign verify sign/s verify/s | ||
49 | * dsa 512 bits 0.0002s 0.0003s 4442.2 3786.3 | ||
50 | * dsa 1024 bits 0.0005s 0.0007s 1835.1 1497.4 | ||
51 | * dsa 2048 bits 0.0016s 0.0020s 620.4 504.6 | ||
52 | * | ||
53 | * For the reference. IA-32 assembler implementation performs | ||
54 | * very much like 64-bit code compiled with no-asm on the same | ||
55 | * machine. | ||
56 | */ | ||
57 | |||
58 | #ifdef _WIN64 | ||
59 | #define BN_ULONG unsigned long long | ||
60 | #else | ||
61 | #define BN_ULONG unsigned long | ||
62 | #endif | ||
63 | |||
64 | #undef mul | ||
65 | #undef mul_add | ||
66 | #undef sqr | ||
67 | |||
68 | /* | ||
69 | * "m"(a), "+m"(r) is the way to favor DirectPath µ-code; | ||
70 | * "g"(0) let the compiler to decide where does it | ||
71 | * want to keep the value of zero; | ||
72 | */ | ||
73 | #define mul_add(r,a,word,carry) do { \ | ||
74 | register BN_ULONG high,low; \ | ||
75 | asm ("mulq %3" \ | ||
76 | : "=a"(low),"=d"(high) \ | ||
77 | : "a"(word),"m"(a) \ | ||
78 | : "cc"); \ | ||
79 | asm ("addq %2,%0; adcq %3,%1" \ | ||
80 | : "+r"(carry),"+d"(high)\ | ||
81 | : "a"(low),"g"(0) \ | ||
82 | : "cc"); \ | ||
83 | asm ("addq %2,%0; adcq %3,%1" \ | ||
84 | : "+m"(r),"+d"(high) \ | ||
85 | : "r"(carry),"g"(0) \ | ||
86 | : "cc"); \ | ||
87 | carry=high; \ | ||
88 | } while (0) | ||
89 | |||
90 | #define mul(r,a,word,carry) do { \ | ||
91 | register BN_ULONG high,low; \ | ||
92 | asm ("mulq %3" \ | ||
93 | : "=a"(low),"=d"(high) \ | ||
94 | : "a"(word),"g"(a) \ | ||
95 | : "cc"); \ | ||
96 | asm ("addq %2,%0; adcq %3,%1" \ | ||
97 | : "+r"(carry),"+d"(high)\ | ||
98 | : "a"(low),"g"(0) \ | ||
99 | : "cc"); \ | ||
100 | (r)=carry, carry=high; \ | ||
101 | } while (0) | ||
102 | |||
103 | #define sqr(r0,r1,a) \ | ||
104 | asm ("mulq %2" \ | ||
105 | : "=a"(r0),"=d"(r1) \ | ||
106 | : "a"(a) \ | ||
107 | : "cc"); | ||
108 | |||
109 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
110 | { | ||
111 | BN_ULONG c1=0; | ||
112 | |||
113 | if (num <= 0) return(c1); | ||
114 | |||
115 | while (num&~3) | ||
116 | { | ||
117 | mul_add(rp[0],ap[0],w,c1); | ||
118 | mul_add(rp[1],ap[1],w,c1); | ||
119 | mul_add(rp[2],ap[2],w,c1); | ||
120 | mul_add(rp[3],ap[3],w,c1); | ||
121 | ap+=4; rp+=4; num-=4; | ||
122 | } | ||
123 | if (num) | ||
124 | { | ||
125 | mul_add(rp[0],ap[0],w,c1); if (--num==0) return c1; | ||
126 | mul_add(rp[1],ap[1],w,c1); if (--num==0) return c1; | ||
127 | mul_add(rp[2],ap[2],w,c1); return c1; | ||
128 | } | ||
129 | |||
130 | return(c1); | ||
131 | } | ||
132 | |||
133 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
134 | { | ||
135 | BN_ULONG c1=0; | ||
136 | |||
137 | if (num <= 0) return(c1); | ||
138 | |||
139 | while (num&~3) | ||
140 | { | ||
141 | mul(rp[0],ap[0],w,c1); | ||
142 | mul(rp[1],ap[1],w,c1); | ||
143 | mul(rp[2],ap[2],w,c1); | ||
144 | mul(rp[3],ap[3],w,c1); | ||
145 | ap+=4; rp+=4; num-=4; | ||
146 | } | ||
147 | if (num) | ||
148 | { | ||
149 | mul(rp[0],ap[0],w,c1); if (--num == 0) return c1; | ||
150 | mul(rp[1],ap[1],w,c1); if (--num == 0) return c1; | ||
151 | mul(rp[2],ap[2],w,c1); | ||
152 | } | ||
153 | return(c1); | ||
154 | } | ||
155 | |||
156 | void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) | ||
157 | { | ||
158 | if (n <= 0) return; | ||
159 | |||
160 | while (n&~3) | ||
161 | { | ||
162 | sqr(r[0],r[1],a[0]); | ||
163 | sqr(r[2],r[3],a[1]); | ||
164 | sqr(r[4],r[5],a[2]); | ||
165 | sqr(r[6],r[7],a[3]); | ||
166 | a+=4; r+=8; n-=4; | ||
167 | } | ||
168 | if (n) | ||
169 | { | ||
170 | sqr(r[0],r[1],a[0]); if (--n == 0) return; | ||
171 | sqr(r[2],r[3],a[1]); if (--n == 0) return; | ||
172 | sqr(r[4],r[5],a[2]); | ||
173 | } | ||
174 | } | ||
175 | |||
176 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
177 | { BN_ULONG ret,waste; | ||
178 | |||
179 | asm ("divq %4" | ||
180 | : "=a"(ret),"=d"(waste) | ||
181 | : "a"(l),"d"(h),"g"(d) | ||
182 | : "cc"); | ||
183 | |||
184 | return ret; | ||
185 | } | ||
186 | |||
187 | BN_ULONG bn_add_words (BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int n) | ||
188 | { BN_ULONG ret=0,i=0; | ||
189 | |||
190 | if (n <= 0) return 0; | ||
191 | |||
192 | asm ( | ||
193 | " subq %2,%2 \n" | ||
194 | ".p2align 4 \n" | ||
195 | "1: movq (%4,%2,8),%0 \n" | ||
196 | " adcq (%5,%2,8),%0 \n" | ||
197 | " movq %0,(%3,%2,8) \n" | ||
198 | " leaq 1(%2),%2 \n" | ||
199 | " loop 1b \n" | ||
200 | " sbbq %0,%0 \n" | ||
201 | : "=&a"(ret),"+c"(n),"=&r"(i) | ||
202 | : "r"(rp),"r"(ap),"r"(bp) | ||
203 | : "cc" | ||
204 | ); | ||
205 | |||
206 | return ret&1; | ||
207 | } | ||
208 | |||
209 | #ifndef SIMICS | ||
210 | BN_ULONG bn_sub_words (BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int n) | ||
211 | { BN_ULONG ret=0,i=0; | ||
212 | |||
213 | if (n <= 0) return 0; | ||
214 | |||
215 | asm ( | ||
216 | " subq %2,%2 \n" | ||
217 | ".p2align 4 \n" | ||
218 | "1: movq (%4,%2,8),%0 \n" | ||
219 | " sbbq (%5,%2,8),%0 \n" | ||
220 | " movq %0,(%3,%2,8) \n" | ||
221 | " leaq 1(%2),%2 \n" | ||
222 | " loop 1b \n" | ||
223 | " sbbq %0,%0 \n" | ||
224 | : "=&a"(ret),"+c"(n),"=&r"(i) | ||
225 | : "r"(rp),"r"(ap),"r"(bp) | ||
226 | : "cc" | ||
227 | ); | ||
228 | |||
229 | return ret&1; | ||
230 | } | ||
231 | #else | ||
232 | /* Simics 1.4<7 has buggy sbbq:-( */ | ||
233 | #define BN_MASK2 0xffffffffffffffffL | ||
234 | BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
235 | { | ||
236 | BN_ULONG t1,t2; | ||
237 | int c=0; | ||
238 | |||
239 | if (n <= 0) return((BN_ULONG)0); | ||
240 | |||
241 | for (;;) | ||
242 | { | ||
243 | t1=a[0]; t2=b[0]; | ||
244 | r[0]=(t1-t2-c)&BN_MASK2; | ||
245 | if (t1 != t2) c=(t1 < t2); | ||
246 | if (--n <= 0) break; | ||
247 | |||
248 | t1=a[1]; t2=b[1]; | ||
249 | r[1]=(t1-t2-c)&BN_MASK2; | ||
250 | if (t1 != t2) c=(t1 < t2); | ||
251 | if (--n <= 0) break; | ||
252 | |||
253 | t1=a[2]; t2=b[2]; | ||
254 | r[2]=(t1-t2-c)&BN_MASK2; | ||
255 | if (t1 != t2) c=(t1 < t2); | ||
256 | if (--n <= 0) break; | ||
257 | |||
258 | t1=a[3]; t2=b[3]; | ||
259 | r[3]=(t1-t2-c)&BN_MASK2; | ||
260 | if (t1 != t2) c=(t1 < t2); | ||
261 | if (--n <= 0) break; | ||
262 | |||
263 | a+=4; | ||
264 | b+=4; | ||
265 | r+=4; | ||
266 | } | ||
267 | return(c); | ||
268 | } | ||
269 | #endif | ||
270 | |||
271 | /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ | ||
272 | /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ | ||
273 | /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ | ||
274 | /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */ | ||
275 | |||
276 | #if 0 | ||
277 | /* original macros are kept for reference purposes */ | ||
278 | #define mul_add_c(a,b,c0,c1,c2) { \ | ||
279 | BN_ULONG ta=(a),tb=(b); \ | ||
280 | t1 = ta * tb; \ | ||
281 | t2 = BN_UMULT_HIGH(ta,tb); \ | ||
282 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
283 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
284 | } | ||
285 | |||
286 | #define mul_add_c2(a,b,c0,c1,c2) { \ | ||
287 | BN_ULONG ta=(a),tb=(b),t0; \ | ||
288 | t1 = BN_UMULT_HIGH(ta,tb); \ | ||
289 | t0 = ta * tb; \ | ||
290 | t2 = t1+t1; c2 += (t2<t1)?1:0; \ | ||
291 | t1 = t0+t0; t2 += (t1<t0)?1:0; \ | ||
292 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
293 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
294 | } | ||
295 | #else | ||
296 | #define mul_add_c(a,b,c0,c1,c2) do { \ | ||
297 | asm ("mulq %3" \ | ||
298 | : "=a"(t1),"=d"(t2) \ | ||
299 | : "a"(a),"m"(b) \ | ||
300 | : "cc"); \ | ||
301 | asm ("addq %2,%0; adcq %3,%1" \ | ||
302 | : "+r"(c0),"+d"(t2) \ | ||
303 | : "a"(t1),"g"(0) \ | ||
304 | : "cc"); \ | ||
305 | asm ("addq %2,%0; adcq %3,%1" \ | ||
306 | : "+r"(c1),"+r"(c2) \ | ||
307 | : "d"(t2),"g"(0) \ | ||
308 | : "cc"); \ | ||
309 | } while (0) | ||
310 | |||
311 | #define sqr_add_c(a,i,c0,c1,c2) do { \ | ||
312 | asm ("mulq %2" \ | ||
313 | : "=a"(t1),"=d"(t2) \ | ||
314 | : "a"(a[i]) \ | ||
315 | : "cc"); \ | ||
316 | asm ("addq %2,%0; adcq %3,%1" \ | ||
317 | : "+r"(c0),"+d"(t2) \ | ||
318 | : "a"(t1),"g"(0) \ | ||
319 | : "cc"); \ | ||
320 | asm ("addq %2,%0; adcq %3,%1" \ | ||
321 | : "+r"(c1),"+r"(c2) \ | ||
322 | : "d"(t2),"g"(0) \ | ||
323 | : "cc"); \ | ||
324 | } while (0) | ||
325 | |||
326 | #define mul_add_c2(a,b,c0,c1,c2) do { \ | ||
327 | asm ("mulq %3" \ | ||
328 | : "=a"(t1),"=d"(t2) \ | ||
329 | : "a"(a),"m"(b) \ | ||
330 | : "cc"); \ | ||
331 | asm ("addq %0,%0; adcq %2,%1" \ | ||
332 | : "+d"(t2),"+r"(c2) \ | ||
333 | : "g"(0) \ | ||
334 | : "cc"); \ | ||
335 | asm ("addq %0,%0; adcq %2,%1" \ | ||
336 | : "+a"(t1),"+d"(t2) \ | ||
337 | : "g"(0) \ | ||
338 | : "cc"); \ | ||
339 | asm ("addq %2,%0; adcq %3,%1" \ | ||
340 | : "+r"(c0),"+d"(t2) \ | ||
341 | : "a"(t1),"g"(0) \ | ||
342 | : "cc"); \ | ||
343 | asm ("addq %2,%0; adcq %3,%1" \ | ||
344 | : "+r"(c1),"+r"(c2) \ | ||
345 | : "d"(t2),"g"(0) \ | ||
346 | : "cc"); \ | ||
347 | } while (0) | ||
348 | #endif | ||
349 | |||
350 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
351 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
352 | |||
353 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
354 | { | ||
355 | BN_ULONG t1,t2; | ||
356 | BN_ULONG c1,c2,c3; | ||
357 | |||
358 | c1=0; | ||
359 | c2=0; | ||
360 | c3=0; | ||
361 | mul_add_c(a[0],b[0],c1,c2,c3); | ||
362 | r[0]=c1; | ||
363 | c1=0; | ||
364 | mul_add_c(a[0],b[1],c2,c3,c1); | ||
365 | mul_add_c(a[1],b[0],c2,c3,c1); | ||
366 | r[1]=c2; | ||
367 | c2=0; | ||
368 | mul_add_c(a[2],b[0],c3,c1,c2); | ||
369 | mul_add_c(a[1],b[1],c3,c1,c2); | ||
370 | mul_add_c(a[0],b[2],c3,c1,c2); | ||
371 | r[2]=c3; | ||
372 | c3=0; | ||
373 | mul_add_c(a[0],b[3],c1,c2,c3); | ||
374 | mul_add_c(a[1],b[2],c1,c2,c3); | ||
375 | mul_add_c(a[2],b[1],c1,c2,c3); | ||
376 | mul_add_c(a[3],b[0],c1,c2,c3); | ||
377 | r[3]=c1; | ||
378 | c1=0; | ||
379 | mul_add_c(a[4],b[0],c2,c3,c1); | ||
380 | mul_add_c(a[3],b[1],c2,c3,c1); | ||
381 | mul_add_c(a[2],b[2],c2,c3,c1); | ||
382 | mul_add_c(a[1],b[3],c2,c3,c1); | ||
383 | mul_add_c(a[0],b[4],c2,c3,c1); | ||
384 | r[4]=c2; | ||
385 | c2=0; | ||
386 | mul_add_c(a[0],b[5],c3,c1,c2); | ||
387 | mul_add_c(a[1],b[4],c3,c1,c2); | ||
388 | mul_add_c(a[2],b[3],c3,c1,c2); | ||
389 | mul_add_c(a[3],b[2],c3,c1,c2); | ||
390 | mul_add_c(a[4],b[1],c3,c1,c2); | ||
391 | mul_add_c(a[5],b[0],c3,c1,c2); | ||
392 | r[5]=c3; | ||
393 | c3=0; | ||
394 | mul_add_c(a[6],b[0],c1,c2,c3); | ||
395 | mul_add_c(a[5],b[1],c1,c2,c3); | ||
396 | mul_add_c(a[4],b[2],c1,c2,c3); | ||
397 | mul_add_c(a[3],b[3],c1,c2,c3); | ||
398 | mul_add_c(a[2],b[4],c1,c2,c3); | ||
399 | mul_add_c(a[1],b[5],c1,c2,c3); | ||
400 | mul_add_c(a[0],b[6],c1,c2,c3); | ||
401 | r[6]=c1; | ||
402 | c1=0; | ||
403 | mul_add_c(a[0],b[7],c2,c3,c1); | ||
404 | mul_add_c(a[1],b[6],c2,c3,c1); | ||
405 | mul_add_c(a[2],b[5],c2,c3,c1); | ||
406 | mul_add_c(a[3],b[4],c2,c3,c1); | ||
407 | mul_add_c(a[4],b[3],c2,c3,c1); | ||
408 | mul_add_c(a[5],b[2],c2,c3,c1); | ||
409 | mul_add_c(a[6],b[1],c2,c3,c1); | ||
410 | mul_add_c(a[7],b[0],c2,c3,c1); | ||
411 | r[7]=c2; | ||
412 | c2=0; | ||
413 | mul_add_c(a[7],b[1],c3,c1,c2); | ||
414 | mul_add_c(a[6],b[2],c3,c1,c2); | ||
415 | mul_add_c(a[5],b[3],c3,c1,c2); | ||
416 | mul_add_c(a[4],b[4],c3,c1,c2); | ||
417 | mul_add_c(a[3],b[5],c3,c1,c2); | ||
418 | mul_add_c(a[2],b[6],c3,c1,c2); | ||
419 | mul_add_c(a[1],b[7],c3,c1,c2); | ||
420 | r[8]=c3; | ||
421 | c3=0; | ||
422 | mul_add_c(a[2],b[7],c1,c2,c3); | ||
423 | mul_add_c(a[3],b[6],c1,c2,c3); | ||
424 | mul_add_c(a[4],b[5],c1,c2,c3); | ||
425 | mul_add_c(a[5],b[4],c1,c2,c3); | ||
426 | mul_add_c(a[6],b[3],c1,c2,c3); | ||
427 | mul_add_c(a[7],b[2],c1,c2,c3); | ||
428 | r[9]=c1; | ||
429 | c1=0; | ||
430 | mul_add_c(a[7],b[3],c2,c3,c1); | ||
431 | mul_add_c(a[6],b[4],c2,c3,c1); | ||
432 | mul_add_c(a[5],b[5],c2,c3,c1); | ||
433 | mul_add_c(a[4],b[6],c2,c3,c1); | ||
434 | mul_add_c(a[3],b[7],c2,c3,c1); | ||
435 | r[10]=c2; | ||
436 | c2=0; | ||
437 | mul_add_c(a[4],b[7],c3,c1,c2); | ||
438 | mul_add_c(a[5],b[6],c3,c1,c2); | ||
439 | mul_add_c(a[6],b[5],c3,c1,c2); | ||
440 | mul_add_c(a[7],b[4],c3,c1,c2); | ||
441 | r[11]=c3; | ||
442 | c3=0; | ||
443 | mul_add_c(a[7],b[5],c1,c2,c3); | ||
444 | mul_add_c(a[6],b[6],c1,c2,c3); | ||
445 | mul_add_c(a[5],b[7],c1,c2,c3); | ||
446 | r[12]=c1; | ||
447 | c1=0; | ||
448 | mul_add_c(a[6],b[7],c2,c3,c1); | ||
449 | mul_add_c(a[7],b[6],c2,c3,c1); | ||
450 | r[13]=c2; | ||
451 | c2=0; | ||
452 | mul_add_c(a[7],b[7],c3,c1,c2); | ||
453 | r[14]=c3; | ||
454 | r[15]=c1; | ||
455 | } | ||
456 | |||
457 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
458 | { | ||
459 | BN_ULONG t1,t2; | ||
460 | BN_ULONG c1,c2,c3; | ||
461 | |||
462 | c1=0; | ||
463 | c2=0; | ||
464 | c3=0; | ||
465 | mul_add_c(a[0],b[0],c1,c2,c3); | ||
466 | r[0]=c1; | ||
467 | c1=0; | ||
468 | mul_add_c(a[0],b[1],c2,c3,c1); | ||
469 | mul_add_c(a[1],b[0],c2,c3,c1); | ||
470 | r[1]=c2; | ||
471 | c2=0; | ||
472 | mul_add_c(a[2],b[0],c3,c1,c2); | ||
473 | mul_add_c(a[1],b[1],c3,c1,c2); | ||
474 | mul_add_c(a[0],b[2],c3,c1,c2); | ||
475 | r[2]=c3; | ||
476 | c3=0; | ||
477 | mul_add_c(a[0],b[3],c1,c2,c3); | ||
478 | mul_add_c(a[1],b[2],c1,c2,c3); | ||
479 | mul_add_c(a[2],b[1],c1,c2,c3); | ||
480 | mul_add_c(a[3],b[0],c1,c2,c3); | ||
481 | r[3]=c1; | ||
482 | c1=0; | ||
483 | mul_add_c(a[3],b[1],c2,c3,c1); | ||
484 | mul_add_c(a[2],b[2],c2,c3,c1); | ||
485 | mul_add_c(a[1],b[3],c2,c3,c1); | ||
486 | r[4]=c2; | ||
487 | c2=0; | ||
488 | mul_add_c(a[2],b[3],c3,c1,c2); | ||
489 | mul_add_c(a[3],b[2],c3,c1,c2); | ||
490 | r[5]=c3; | ||
491 | c3=0; | ||
492 | mul_add_c(a[3],b[3],c1,c2,c3); | ||
493 | r[6]=c1; | ||
494 | r[7]=c2; | ||
495 | } | ||
496 | |||
497 | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) | ||
498 | { | ||
499 | BN_ULONG t1,t2; | ||
500 | BN_ULONG c1,c2,c3; | ||
501 | |||
502 | c1=0; | ||
503 | c2=0; | ||
504 | c3=0; | ||
505 | sqr_add_c(a,0,c1,c2,c3); | ||
506 | r[0]=c1; | ||
507 | c1=0; | ||
508 | sqr_add_c2(a,1,0,c2,c3,c1); | ||
509 | r[1]=c2; | ||
510 | c2=0; | ||
511 | sqr_add_c(a,1,c3,c1,c2); | ||
512 | sqr_add_c2(a,2,0,c3,c1,c2); | ||
513 | r[2]=c3; | ||
514 | c3=0; | ||
515 | sqr_add_c2(a,3,0,c1,c2,c3); | ||
516 | sqr_add_c2(a,2,1,c1,c2,c3); | ||
517 | r[3]=c1; | ||
518 | c1=0; | ||
519 | sqr_add_c(a,2,c2,c3,c1); | ||
520 | sqr_add_c2(a,3,1,c2,c3,c1); | ||
521 | sqr_add_c2(a,4,0,c2,c3,c1); | ||
522 | r[4]=c2; | ||
523 | c2=0; | ||
524 | sqr_add_c2(a,5,0,c3,c1,c2); | ||
525 | sqr_add_c2(a,4,1,c3,c1,c2); | ||
526 | sqr_add_c2(a,3,2,c3,c1,c2); | ||
527 | r[5]=c3; | ||
528 | c3=0; | ||
529 | sqr_add_c(a,3,c1,c2,c3); | ||
530 | sqr_add_c2(a,4,2,c1,c2,c3); | ||
531 | sqr_add_c2(a,5,1,c1,c2,c3); | ||
532 | sqr_add_c2(a,6,0,c1,c2,c3); | ||
533 | r[6]=c1; | ||
534 | c1=0; | ||
535 | sqr_add_c2(a,7,0,c2,c3,c1); | ||
536 | sqr_add_c2(a,6,1,c2,c3,c1); | ||
537 | sqr_add_c2(a,5,2,c2,c3,c1); | ||
538 | sqr_add_c2(a,4,3,c2,c3,c1); | ||
539 | r[7]=c2; | ||
540 | c2=0; | ||
541 | sqr_add_c(a,4,c3,c1,c2); | ||
542 | sqr_add_c2(a,5,3,c3,c1,c2); | ||
543 | sqr_add_c2(a,6,2,c3,c1,c2); | ||
544 | sqr_add_c2(a,7,1,c3,c1,c2); | ||
545 | r[8]=c3; | ||
546 | c3=0; | ||
547 | sqr_add_c2(a,7,2,c1,c2,c3); | ||
548 | sqr_add_c2(a,6,3,c1,c2,c3); | ||
549 | sqr_add_c2(a,5,4,c1,c2,c3); | ||
550 | r[9]=c1; | ||
551 | c1=0; | ||
552 | sqr_add_c(a,5,c2,c3,c1); | ||
553 | sqr_add_c2(a,6,4,c2,c3,c1); | ||
554 | sqr_add_c2(a,7,3,c2,c3,c1); | ||
555 | r[10]=c2; | ||
556 | c2=0; | ||
557 | sqr_add_c2(a,7,4,c3,c1,c2); | ||
558 | sqr_add_c2(a,6,5,c3,c1,c2); | ||
559 | r[11]=c3; | ||
560 | c3=0; | ||
561 | sqr_add_c(a,6,c1,c2,c3); | ||
562 | sqr_add_c2(a,7,5,c1,c2,c3); | ||
563 | r[12]=c1; | ||
564 | c1=0; | ||
565 | sqr_add_c2(a,7,6,c2,c3,c1); | ||
566 | r[13]=c2; | ||
567 | c2=0; | ||
568 | sqr_add_c(a,7,c3,c1,c2); | ||
569 | r[14]=c3; | ||
570 | r[15]=c1; | ||
571 | } | ||
572 | |||
573 | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) | ||
574 | { | ||
575 | BN_ULONG t1,t2; | ||
576 | BN_ULONG c1,c2,c3; | ||
577 | |||
578 | c1=0; | ||
579 | c2=0; | ||
580 | c3=0; | ||
581 | sqr_add_c(a,0,c1,c2,c3); | ||
582 | r[0]=c1; | ||
583 | c1=0; | ||
584 | sqr_add_c2(a,1,0,c2,c3,c1); | ||
585 | r[1]=c2; | ||
586 | c2=0; | ||
587 | sqr_add_c(a,1,c3,c1,c2); | ||
588 | sqr_add_c2(a,2,0,c3,c1,c2); | ||
589 | r[2]=c3; | ||
590 | c3=0; | ||
591 | sqr_add_c2(a,3,0,c1,c2,c3); | ||
592 | sqr_add_c2(a,2,1,c1,c2,c3); | ||
593 | r[3]=c1; | ||
594 | c1=0; | ||
595 | sqr_add_c(a,2,c2,c3,c1); | ||
596 | sqr_add_c2(a,3,1,c2,c3,c1); | ||
597 | r[4]=c2; | ||
598 | c2=0; | ||
599 | sqr_add_c2(a,3,2,c3,c1,c2); | ||
600 | r[5]=c3; | ||
601 | c3=0; | ||
602 | sqr_add_c(a,3,c1,c2,c3); | ||
603 | r[6]=c1; | ||
604 | r[7]=c2; | ||
605 | } | ||
606 | #endif | ||
diff --git a/src/lib/libcrypto/bn/asm/x86_64-mont.pl b/src/lib/libcrypto/bn/asm/x86_64-mont.pl deleted file mode 100755 index 3b7a6f243f..0000000000 --- a/src/lib/libcrypto/bn/asm/x86_64-mont.pl +++ /dev/null | |||
@@ -1,330 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # October 2005. | ||
11 | # | ||
12 | # Montgomery multiplication routine for x86_64. While it gives modest | ||
13 | # 9% improvement of rsa4096 sign on Opteron, rsa512 sign runs more | ||
14 | # than twice, >2x, as fast. Most common rsa1024 sign is improved by | ||
15 | # respectful 50%. It remains to be seen if loop unrolling and | ||
16 | # dedicated squaring routine can provide further improvement... | ||
17 | |||
18 | $flavour = shift; | ||
19 | $output = shift; | ||
20 | if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } | ||
21 | |||
22 | $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); | ||
23 | |||
24 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
25 | ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or | ||
26 | ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or | ||
27 | die "can't locate x86_64-xlate.pl"; | ||
28 | |||
29 | open STDOUT,"| $^X $xlate $flavour $output"; | ||
30 | |||
31 | # int bn_mul_mont( | ||
32 | $rp="%rdi"; # BN_ULONG *rp, | ||
33 | $ap="%rsi"; # const BN_ULONG *ap, | ||
34 | $bp="%rdx"; # const BN_ULONG *bp, | ||
35 | $np="%rcx"; # const BN_ULONG *np, | ||
36 | $n0="%r8"; # const BN_ULONG *n0, | ||
37 | $num="%r9"; # int num); | ||
38 | $lo0="%r10"; | ||
39 | $hi0="%r11"; | ||
40 | $bp="%r12"; # reassign $bp | ||
41 | $hi1="%r13"; | ||
42 | $i="%r14"; | ||
43 | $j="%r15"; | ||
44 | $m0="%rbx"; | ||
45 | $m1="%rbp"; | ||
46 | |||
47 | $code=<<___; | ||
48 | .text | ||
49 | |||
50 | .globl bn_mul_mont | ||
51 | .type bn_mul_mont,\@function,6 | ||
52 | .align 16 | ||
53 | bn_mul_mont: | ||
54 | push %rbx | ||
55 | push %rbp | ||
56 | push %r12 | ||
57 | push %r13 | ||
58 | push %r14 | ||
59 | push %r15 | ||
60 | |||
61 | mov ${num}d,${num}d | ||
62 | lea 2($num),%r10 | ||
63 | mov %rsp,%r11 | ||
64 | neg %r10 | ||
65 | lea (%rsp,%r10,8),%rsp # tp=alloca(8*(num+2)) | ||
66 | and \$-1024,%rsp # minimize TLB usage | ||
67 | |||
68 | mov %r11,8(%rsp,$num,8) # tp[num+1]=%rsp | ||
69 | .Lprologue: | ||
70 | mov %rdx,$bp # $bp reassigned, remember? | ||
71 | |||
72 | mov ($n0),$n0 # pull n0[0] value | ||
73 | |||
74 | xor $i,$i # i=0 | ||
75 | xor $j,$j # j=0 | ||
76 | |||
77 | mov ($bp),$m0 # m0=bp[0] | ||
78 | mov ($ap),%rax | ||
79 | mulq $m0 # ap[0]*bp[0] | ||
80 | mov %rax,$lo0 | ||
81 | mov %rdx,$hi0 | ||
82 | |||
83 | imulq $n0,%rax # "tp[0]"*n0 | ||
84 | mov %rax,$m1 | ||
85 | |||
86 | mulq ($np) # np[0]*m1 | ||
87 | add $lo0,%rax # discarded | ||
88 | adc \$0,%rdx | ||
89 | mov %rdx,$hi1 | ||
90 | |||
91 | lea 1($j),$j # j++ | ||
92 | .L1st: | ||
93 | mov ($ap,$j,8),%rax | ||
94 | mulq $m0 # ap[j]*bp[0] | ||
95 | add $hi0,%rax | ||
96 | adc \$0,%rdx | ||
97 | mov %rax,$lo0 | ||
98 | mov ($np,$j,8),%rax | ||
99 | mov %rdx,$hi0 | ||
100 | |||
101 | mulq $m1 # np[j]*m1 | ||
102 | add $hi1,%rax | ||
103 | lea 1($j),$j # j++ | ||
104 | adc \$0,%rdx | ||
105 | add $lo0,%rax # np[j]*m1+ap[j]*bp[0] | ||
106 | adc \$0,%rdx | ||
107 | mov %rax,-16(%rsp,$j,8) # tp[j-1] | ||
108 | cmp $num,$j | ||
109 | mov %rdx,$hi1 | ||
110 | jl .L1st | ||
111 | |||
112 | xor %rdx,%rdx | ||
113 | add $hi0,$hi1 | ||
114 | adc \$0,%rdx | ||
115 | mov $hi1,-8(%rsp,$num,8) | ||
116 | mov %rdx,(%rsp,$num,8) # store upmost overflow bit | ||
117 | |||
118 | lea 1($i),$i # i++ | ||
119 | .align 4 | ||
120 | .Louter: | ||
121 | xor $j,$j # j=0 | ||
122 | |||
123 | mov ($bp,$i,8),$m0 # m0=bp[i] | ||
124 | mov ($ap),%rax # ap[0] | ||
125 | mulq $m0 # ap[0]*bp[i] | ||
126 | add (%rsp),%rax # ap[0]*bp[i]+tp[0] | ||
127 | adc \$0,%rdx | ||
128 | mov %rax,$lo0 | ||
129 | mov %rdx,$hi0 | ||
130 | |||
131 | imulq $n0,%rax # tp[0]*n0 | ||
132 | mov %rax,$m1 | ||
133 | |||
134 | mulq ($np,$j,8) # np[0]*m1 | ||
135 | add $lo0,%rax # discarded | ||
136 | mov 8(%rsp),$lo0 # tp[1] | ||
137 | adc \$0,%rdx | ||
138 | mov %rdx,$hi1 | ||
139 | |||
140 | lea 1($j),$j # j++ | ||
141 | .align 4 | ||
142 | .Linner: | ||
143 | mov ($ap,$j,8),%rax | ||
144 | mulq $m0 # ap[j]*bp[i] | ||
145 | add $hi0,%rax | ||
146 | adc \$0,%rdx | ||
147 | add %rax,$lo0 # ap[j]*bp[i]+tp[j] | ||
148 | mov ($np,$j,8),%rax | ||
149 | adc \$0,%rdx | ||
150 | mov %rdx,$hi0 | ||
151 | |||
152 | mulq $m1 # np[j]*m1 | ||
153 | add $hi1,%rax | ||
154 | lea 1($j),$j # j++ | ||
155 | adc \$0,%rdx | ||
156 | add $lo0,%rax # np[j]*m1+ap[j]*bp[i]+tp[j] | ||
157 | adc \$0,%rdx | ||
158 | mov (%rsp,$j,8),$lo0 | ||
159 | cmp $num,$j | ||
160 | mov %rax,-16(%rsp,$j,8) # tp[j-1] | ||
161 | mov %rdx,$hi1 | ||
162 | jl .Linner | ||
163 | |||
164 | xor %rdx,%rdx | ||
165 | add $hi0,$hi1 | ||
166 | adc \$0,%rdx | ||
167 | add $lo0,$hi1 # pull upmost overflow bit | ||
168 | adc \$0,%rdx | ||
169 | mov $hi1,-8(%rsp,$num,8) | ||
170 | mov %rdx,(%rsp,$num,8) # store upmost overflow bit | ||
171 | |||
172 | lea 1($i),$i # i++ | ||
173 | cmp $num,$i | ||
174 | jl .Louter | ||
175 | |||
176 | lea (%rsp),$ap # borrow ap for tp | ||
177 | lea -1($num),$j # j=num-1 | ||
178 | |||
179 | mov ($ap),%rax # tp[0] | ||
180 | xor $i,$i # i=0 and clear CF! | ||
181 | jmp .Lsub | ||
182 | .align 16 | ||
183 | .Lsub: sbb ($np,$i,8),%rax | ||
184 | mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
185 | dec $j # doesn't affect CF! | ||
186 | mov 8($ap,$i,8),%rax # tp[i+1] | ||
187 | lea 1($i),$i # i++ | ||
188 | jge .Lsub | ||
189 | |||
190 | sbb \$0,%rax # handle upmost overflow bit | ||
191 | and %rax,$ap | ||
192 | not %rax | ||
193 | mov $rp,$np | ||
194 | and %rax,$np | ||
195 | lea -1($num),$j | ||
196 | or $np,$ap # ap=borrow?tp:rp | ||
197 | .align 16 | ||
198 | .Lcopy: # copy or in-place refresh | ||
199 | mov ($ap,$j,8),%rax | ||
200 | mov %rax,($rp,$j,8) # rp[i]=tp[i] | ||
201 | mov $i,(%rsp,$j,8) # zap temporary vector | ||
202 | dec $j | ||
203 | jge .Lcopy | ||
204 | |||
205 | mov 8(%rsp,$num,8),%rsi # restore %rsp | ||
206 | mov \$1,%rax | ||
207 | mov (%rsi),%r15 | ||
208 | mov 8(%rsi),%r14 | ||
209 | mov 16(%rsi),%r13 | ||
210 | mov 24(%rsi),%r12 | ||
211 | mov 32(%rsi),%rbp | ||
212 | mov 40(%rsi),%rbx | ||
213 | lea 48(%rsi),%rsp | ||
214 | .Lepilogue: | ||
215 | ret | ||
216 | .size bn_mul_mont,.-bn_mul_mont | ||
217 | .asciz "Montgomery Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org>" | ||
218 | .align 16 | ||
219 | ___ | ||
220 | |||
221 | # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, | ||
222 | # CONTEXT *context,DISPATCHER_CONTEXT *disp) | ||
223 | if ($win64) { | ||
224 | $rec="%rcx"; | ||
225 | $frame="%rdx"; | ||
226 | $context="%r8"; | ||
227 | $disp="%r9"; | ||
228 | |||
229 | $code.=<<___; | ||
230 | .extern __imp_RtlVirtualUnwind | ||
231 | .type se_handler,\@abi-omnipotent | ||
232 | .align 16 | ||
233 | se_handler: | ||
234 | push %rsi | ||
235 | push %rdi | ||
236 | push %rbx | ||
237 | push %rbp | ||
238 | push %r12 | ||
239 | push %r13 | ||
240 | push %r14 | ||
241 | push %r15 | ||
242 | pushfq | ||
243 | sub \$64,%rsp | ||
244 | |||
245 | mov 120($context),%rax # pull context->Rax | ||
246 | mov 248($context),%rbx # pull context->Rip | ||
247 | |||
248 | lea .Lprologue(%rip),%r10 | ||
249 | cmp %r10,%rbx # context->Rip<.Lprologue | ||
250 | jb .Lin_prologue | ||
251 | |||
252 | mov 152($context),%rax # pull context->Rsp | ||
253 | |||
254 | lea .Lepilogue(%rip),%r10 | ||
255 | cmp %r10,%rbx # context->Rip>=.Lepilogue | ||
256 | jae .Lin_prologue | ||
257 | |||
258 | mov 192($context),%r10 # pull $num | ||
259 | mov 8(%rax,%r10,8),%rax # pull saved stack pointer | ||
260 | lea 48(%rax),%rax | ||
261 | |||
262 | mov -8(%rax),%rbx | ||
263 | mov -16(%rax),%rbp | ||
264 | mov -24(%rax),%r12 | ||
265 | mov -32(%rax),%r13 | ||
266 | mov -40(%rax),%r14 | ||
267 | mov -48(%rax),%r15 | ||
268 | mov %rbx,144($context) # restore context->Rbx | ||
269 | mov %rbp,160($context) # restore context->Rbp | ||
270 | mov %r12,216($context) # restore context->R12 | ||
271 | mov %r13,224($context) # restore context->R13 | ||
272 | mov %r14,232($context) # restore context->R14 | ||
273 | mov %r15,240($context) # restore context->R15 | ||
274 | |||
275 | .Lin_prologue: | ||
276 | mov 8(%rax),%rdi | ||
277 | mov 16(%rax),%rsi | ||
278 | mov %rax,152($context) # restore context->Rsp | ||
279 | mov %rsi,168($context) # restore context->Rsi | ||
280 | mov %rdi,176($context) # restore context->Rdi | ||
281 | |||
282 | mov 40($disp),%rdi # disp->ContextRecord | ||
283 | mov $context,%rsi # context | ||
284 | mov \$154,%ecx # sizeof(CONTEXT) | ||
285 | .long 0xa548f3fc # cld; rep movsq | ||
286 | |||
287 | mov $disp,%rsi | ||
288 | xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER | ||
289 | mov 8(%rsi),%rdx # arg2, disp->ImageBase | ||
290 | mov 0(%rsi),%r8 # arg3, disp->ControlPc | ||
291 | mov 16(%rsi),%r9 # arg4, disp->FunctionEntry | ||
292 | mov 40(%rsi),%r10 # disp->ContextRecord | ||
293 | lea 56(%rsi),%r11 # &disp->HandlerData | ||
294 | lea 24(%rsi),%r12 # &disp->EstablisherFrame | ||
295 | mov %r10,32(%rsp) # arg5 | ||
296 | mov %r11,40(%rsp) # arg6 | ||
297 | mov %r12,48(%rsp) # arg7 | ||
298 | mov %rcx,56(%rsp) # arg8, (NULL) | ||
299 | call *__imp_RtlVirtualUnwind(%rip) | ||
300 | |||
301 | mov \$1,%eax # ExceptionContinueSearch | ||
302 | add \$64,%rsp | ||
303 | popfq | ||
304 | pop %r15 | ||
305 | pop %r14 | ||
306 | pop %r13 | ||
307 | pop %r12 | ||
308 | pop %rbp | ||
309 | pop %rbx | ||
310 | pop %rdi | ||
311 | pop %rsi | ||
312 | ret | ||
313 | .size se_handler,.-se_handler | ||
314 | |||
315 | .section .pdata | ||
316 | .align 4 | ||
317 | .rva .LSEH_begin_bn_mul_mont | ||
318 | .rva .LSEH_end_bn_mul_mont | ||
319 | .rva .LSEH_info_bn_mul_mont | ||
320 | |||
321 | .section .xdata | ||
322 | .align 8 | ||
323 | .LSEH_info_bn_mul_mont: | ||
324 | .byte 9,0,0,0 | ||
325 | .rva se_handler | ||
326 | ___ | ||
327 | } | ||
328 | |||
329 | print $code; | ||
330 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/bn.h b/src/lib/libcrypto/bn/bn.h deleted file mode 100644 index a0bc47837d..0000000000 --- a/src/lib/libcrypto/bn/bn.h +++ /dev/null | |||
@@ -1,876 +0,0 @@ | |||
1 | /* crypto/bn/bn.h */ | ||
2 | /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | /* ==================================================================== | ||
112 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
113 | * | ||
114 | * Portions of the attached software ("Contribution") are developed by | ||
115 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. | ||
116 | * | ||
117 | * The Contribution is licensed pursuant to the Eric Young open source | ||
118 | * license provided above. | ||
119 | * | ||
120 | * The binary polynomial arithmetic software is originally written by | ||
121 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories. | ||
122 | * | ||
123 | */ | ||
124 | |||
125 | #ifndef HEADER_BN_H | ||
126 | #define HEADER_BN_H | ||
127 | |||
128 | #include <openssl/e_os2.h> | ||
129 | #ifndef OPENSSL_NO_FP_API | ||
130 | #include <stdio.h> /* FILE */ | ||
131 | #endif | ||
132 | #include <openssl/ossl_typ.h> | ||
133 | #include <openssl/crypto.h> | ||
134 | |||
135 | #ifdef __cplusplus | ||
136 | extern "C" { | ||
137 | #endif | ||
138 | |||
139 | /* These preprocessor symbols control various aspects of the bignum headers and | ||
140 | * library code. They're not defined by any "normal" configuration, as they are | ||
141 | * intended for development and testing purposes. NB: defining all three can be | ||
142 | * useful for debugging application code as well as openssl itself. | ||
143 | * | ||
144 | * BN_DEBUG - turn on various debugging alterations to the bignum code | ||
145 | * BN_DEBUG_RAND - uses random poisoning of unused words to trip up | ||
146 | * mismanagement of bignum internals. You must also define BN_DEBUG. | ||
147 | */ | ||
148 | /* #define BN_DEBUG */ | ||
149 | /* #define BN_DEBUG_RAND */ | ||
150 | |||
151 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
152 | #define BN_MUL_COMBA | ||
153 | #define BN_SQR_COMBA | ||
154 | #define BN_RECURSION | ||
155 | #endif | ||
156 | |||
157 | /* This next option uses the C libraries (2 word)/(1 word) function. | ||
158 | * If it is not defined, I use my C version (which is slower). | ||
159 | * The reason for this flag is that when the particular C compiler | ||
160 | * library routine is used, and the library is linked with a different | ||
161 | * compiler, the library is missing. This mostly happens when the | ||
162 | * library is built with gcc and then linked using normal cc. This would | ||
163 | * be a common occurrence because gcc normally produces code that is | ||
164 | * 2 times faster than system compilers for the big number stuff. | ||
165 | * For machines with only one compiler (or shared libraries), this should | ||
166 | * be on. Again this in only really a problem on machines | ||
167 | * using "long long's", are 32bit, and are not using my assembler code. */ | ||
168 | #if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \ | ||
169 | defined(OPENSSL_SYS_WIN32) || defined(linux) | ||
170 | # ifndef BN_DIV2W | ||
171 | # define BN_DIV2W | ||
172 | # endif | ||
173 | #endif | ||
174 | |||
175 | /* assuming long is 64bit - this is the DEC Alpha | ||
176 | * unsigned long long is only 64 bits :-(, don't define | ||
177 | * BN_LLONG for the DEC Alpha */ | ||
178 | #ifdef SIXTY_FOUR_BIT_LONG | ||
179 | #define BN_ULLONG unsigned long long | ||
180 | #define BN_ULONG unsigned long | ||
181 | #define BN_LONG long | ||
182 | #define BN_BITS 128 | ||
183 | #define BN_BYTES 8 | ||
184 | #define BN_BITS2 64 | ||
185 | #define BN_BITS4 32 | ||
186 | #define BN_MASK (0xffffffffffffffffffffffffffffffffLL) | ||
187 | #define BN_MASK2 (0xffffffffffffffffL) | ||
188 | #define BN_MASK2l (0xffffffffL) | ||
189 | #define BN_MASK2h (0xffffffff00000000L) | ||
190 | #define BN_MASK2h1 (0xffffffff80000000L) | ||
191 | #define BN_TBIT (0x8000000000000000L) | ||
192 | #define BN_DEC_CONV (10000000000000000000UL) | ||
193 | #define BN_DEC_FMT1 "%lu" | ||
194 | #define BN_DEC_FMT2 "%019lu" | ||
195 | #define BN_DEC_NUM 19 | ||
196 | #define BN_HEX_FMT1 "%lX" | ||
197 | #define BN_HEX_FMT2 "%016lX" | ||
198 | #endif | ||
199 | |||
200 | /* This is where the long long data type is 64 bits, but long is 32. | ||
201 | * For machines where there are 64bit registers, this is the mode to use. | ||
202 | * IRIX, on R4000 and above should use this mode, along with the relevant | ||
203 | * assembler code :-). Do NOT define BN_LLONG. | ||
204 | */ | ||
205 | #ifdef SIXTY_FOUR_BIT | ||
206 | #undef BN_LLONG | ||
207 | #undef BN_ULLONG | ||
208 | #define BN_ULONG unsigned long long | ||
209 | #define BN_LONG long long | ||
210 | #define BN_BITS 128 | ||
211 | #define BN_BYTES 8 | ||
212 | #define BN_BITS2 64 | ||
213 | #define BN_BITS4 32 | ||
214 | #define BN_MASK2 (0xffffffffffffffffLL) | ||
215 | #define BN_MASK2l (0xffffffffL) | ||
216 | #define BN_MASK2h (0xffffffff00000000LL) | ||
217 | #define BN_MASK2h1 (0xffffffff80000000LL) | ||
218 | #define BN_TBIT (0x8000000000000000LL) | ||
219 | #define BN_DEC_CONV (10000000000000000000ULL) | ||
220 | #define BN_DEC_FMT1 "%llu" | ||
221 | #define BN_DEC_FMT2 "%019llu" | ||
222 | #define BN_DEC_NUM 19 | ||
223 | #define BN_HEX_FMT1 "%llX" | ||
224 | #define BN_HEX_FMT2 "%016llX" | ||
225 | #endif | ||
226 | |||
227 | #ifdef THIRTY_TWO_BIT | ||
228 | #ifdef BN_LLONG | ||
229 | # if defined(_WIN32) && !defined(__GNUC__) | ||
230 | # define BN_ULLONG unsigned __int64 | ||
231 | # define BN_MASK (0xffffffffffffffffI64) | ||
232 | # else | ||
233 | # define BN_ULLONG unsigned long long | ||
234 | # define BN_MASK (0xffffffffffffffffLL) | ||
235 | # endif | ||
236 | #endif | ||
237 | #define BN_ULONG unsigned int | ||
238 | #define BN_LONG int | ||
239 | #define BN_BITS 64 | ||
240 | #define BN_BYTES 4 | ||
241 | #define BN_BITS2 32 | ||
242 | #define BN_BITS4 16 | ||
243 | #define BN_MASK2 (0xffffffffL) | ||
244 | #define BN_MASK2l (0xffff) | ||
245 | #define BN_MASK2h1 (0xffff8000L) | ||
246 | #define BN_MASK2h (0xffff0000L) | ||
247 | #define BN_TBIT (0x80000000L) | ||
248 | #define BN_DEC_CONV (1000000000L) | ||
249 | #define BN_DEC_FMT1 "%u" | ||
250 | #define BN_DEC_FMT2 "%09u" | ||
251 | #define BN_DEC_NUM 9 | ||
252 | #define BN_HEX_FMT1 "%X" | ||
253 | #define BN_HEX_FMT2 "%08X" | ||
254 | #endif | ||
255 | |||
256 | /* 2011-02-22 SMS. | ||
257 | * In various places, a size_t variable or a type cast to size_t was | ||
258 | * used to perform integer-only operations on pointers. This failed on | ||
259 | * VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t is | ||
260 | * still only 32 bits. What's needed in these cases is an integer type | ||
261 | * with the same size as a pointer, which size_t is not certain to be. | ||
262 | * The only fix here is VMS-specific. | ||
263 | */ | ||
264 | #if defined(OPENSSL_SYS_VMS) | ||
265 | # if __INITIAL_POINTER_SIZE == 64 | ||
266 | # define PTR_SIZE_INT long long | ||
267 | # else /* __INITIAL_POINTER_SIZE == 64 */ | ||
268 | # define PTR_SIZE_INT int | ||
269 | # endif /* __INITIAL_POINTER_SIZE == 64 [else] */ | ||
270 | #else /* defined(OPENSSL_SYS_VMS) */ | ||
271 | # define PTR_SIZE_INT size_t | ||
272 | #endif /* defined(OPENSSL_SYS_VMS) [else] */ | ||
273 | |||
274 | #define BN_DEFAULT_BITS 1280 | ||
275 | |||
276 | #define BN_FLG_MALLOCED 0x01 | ||
277 | #define BN_FLG_STATIC_DATA 0x02 | ||
278 | #define BN_FLG_CONSTTIME 0x04 /* avoid leaking exponent information through timing, | ||
279 | * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime, | ||
280 | * BN_div() will call BN_div_no_branch, | ||
281 | * BN_mod_inverse() will call BN_mod_inverse_no_branch. | ||
282 | */ | ||
283 | |||
284 | #ifndef OPENSSL_NO_DEPRECATED | ||
285 | #define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME /* deprecated name for the flag */ | ||
286 | /* avoid leaking exponent information through timings | ||
287 | * (BN_mod_exp_mont() will call BN_mod_exp_mont_consttime) */ | ||
288 | #endif | ||
289 | |||
290 | #ifndef OPENSSL_NO_DEPRECATED | ||
291 | #define BN_FLG_FREE 0x8000 /* used for debuging */ | ||
292 | #endif | ||
293 | #define BN_set_flags(b,n) ((b)->flags|=(n)) | ||
294 | #define BN_get_flags(b,n) ((b)->flags&(n)) | ||
295 | |||
296 | /* get a clone of a BIGNUM with changed flags, for *temporary* use only | ||
297 | * (the two BIGNUMs cannot not be used in parallel!) */ | ||
298 | #define BN_with_flags(dest,b,n) ((dest)->d=(b)->d, \ | ||
299 | (dest)->top=(b)->top, \ | ||
300 | (dest)->dmax=(b)->dmax, \ | ||
301 | (dest)->neg=(b)->neg, \ | ||
302 | (dest)->flags=(((dest)->flags & BN_FLG_MALLOCED) \ | ||
303 | | ((b)->flags & ~BN_FLG_MALLOCED) \ | ||
304 | | BN_FLG_STATIC_DATA \ | ||
305 | | (n))) | ||
306 | |||
307 | /* Already declared in ossl_typ.h */ | ||
308 | #if 0 | ||
309 | typedef struct bignum_st BIGNUM; | ||
310 | /* Used for temp variables (declaration hidden in bn_lcl.h) */ | ||
311 | typedef struct bignum_ctx BN_CTX; | ||
312 | typedef struct bn_blinding_st BN_BLINDING; | ||
313 | typedef struct bn_mont_ctx_st BN_MONT_CTX; | ||
314 | typedef struct bn_recp_ctx_st BN_RECP_CTX; | ||
315 | typedef struct bn_gencb_st BN_GENCB; | ||
316 | #endif | ||
317 | |||
318 | struct bignum_st | ||
319 | { | ||
320 | BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */ | ||
321 | int top; /* Index of last used d +1. */ | ||
322 | /* The next are internal book keeping for bn_expand. */ | ||
323 | int dmax; /* Size of the d array. */ | ||
324 | int neg; /* one if the number is negative */ | ||
325 | int flags; | ||
326 | }; | ||
327 | |||
328 | /* Used for montgomery multiplication */ | ||
329 | struct bn_mont_ctx_st | ||
330 | { | ||
331 | int ri; /* number of bits in R */ | ||
332 | BIGNUM RR; /* used to convert to montgomery form */ | ||
333 | BIGNUM N; /* The modulus */ | ||
334 | BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 | ||
335 | * (Ni is only stored for bignum algorithm) */ | ||
336 | BN_ULONG n0[2];/* least significant word(s) of Ni; | ||
337 | (type changed with 0.9.9, was "BN_ULONG n0;" before) */ | ||
338 | int flags; | ||
339 | }; | ||
340 | |||
341 | /* Used for reciprocal division/mod functions | ||
342 | * It cannot be shared between threads | ||
343 | */ | ||
344 | struct bn_recp_ctx_st | ||
345 | { | ||
346 | BIGNUM N; /* the divisor */ | ||
347 | BIGNUM Nr; /* the reciprocal */ | ||
348 | int num_bits; | ||
349 | int shift; | ||
350 | int flags; | ||
351 | }; | ||
352 | |||
353 | /* Used for slow "generation" functions. */ | ||
354 | struct bn_gencb_st | ||
355 | { | ||
356 | unsigned int ver; /* To handle binary (in)compatibility */ | ||
357 | void *arg; /* callback-specific data */ | ||
358 | union | ||
359 | { | ||
360 | /* if(ver==1) - handles old style callbacks */ | ||
361 | void (*cb_1)(int, int, void *); | ||
362 | /* if(ver==2) - new callback style */ | ||
363 | int (*cb_2)(int, int, BN_GENCB *); | ||
364 | } cb; | ||
365 | }; | ||
366 | /* Wrapper function to make using BN_GENCB easier, */ | ||
367 | int BN_GENCB_call(BN_GENCB *cb, int a, int b); | ||
368 | /* Macro to populate a BN_GENCB structure with an "old"-style callback */ | ||
369 | #define BN_GENCB_set_old(gencb, callback, cb_arg) { \ | ||
370 | BN_GENCB *tmp_gencb = (gencb); \ | ||
371 | tmp_gencb->ver = 1; \ | ||
372 | tmp_gencb->arg = (cb_arg); \ | ||
373 | tmp_gencb->cb.cb_1 = (callback); } | ||
374 | /* Macro to populate a BN_GENCB structure with a "new"-style callback */ | ||
375 | #define BN_GENCB_set(gencb, callback, cb_arg) { \ | ||
376 | BN_GENCB *tmp_gencb = (gencb); \ | ||
377 | tmp_gencb->ver = 2; \ | ||
378 | tmp_gencb->arg = (cb_arg); \ | ||
379 | tmp_gencb->cb.cb_2 = (callback); } | ||
380 | |||
381 | #define BN_prime_checks 0 /* default: select number of iterations | ||
382 | based on the size of the number */ | ||
383 | |||
384 | /* number of Miller-Rabin iterations for an error rate of less than 2^-80 | ||
385 | * for random 'b'-bit input, b >= 100 (taken from table 4.4 in the Handbook | ||
386 | * of Applied Cryptography [Menezes, van Oorschot, Vanstone; CRC Press 1996]; | ||
387 | * original paper: Damgaard, Landrock, Pomerance: Average case error estimates | ||
388 | * for the strong probable prime test. -- Math. Comp. 61 (1993) 177-194) */ | ||
389 | #define BN_prime_checks_for_size(b) ((b) >= 1300 ? 2 : \ | ||
390 | (b) >= 850 ? 3 : \ | ||
391 | (b) >= 650 ? 4 : \ | ||
392 | (b) >= 550 ? 5 : \ | ||
393 | (b) >= 450 ? 6 : \ | ||
394 | (b) >= 400 ? 7 : \ | ||
395 | (b) >= 350 ? 8 : \ | ||
396 | (b) >= 300 ? 9 : \ | ||
397 | (b) >= 250 ? 12 : \ | ||
398 | (b) >= 200 ? 15 : \ | ||
399 | (b) >= 150 ? 18 : \ | ||
400 | /* b >= 100 */ 27) | ||
401 | |||
402 | #define BN_num_bytes(a) ((BN_num_bits(a)+7)/8) | ||
403 | |||
404 | /* Note that BN_abs_is_word didn't work reliably for w == 0 until 0.9.8 */ | ||
405 | #define BN_abs_is_word(a,w) ((((a)->top == 1) && ((a)->d[0] == (BN_ULONG)(w))) || \ | ||
406 | (((w) == 0) && ((a)->top == 0))) | ||
407 | #define BN_is_zero(a) ((a)->top == 0) | ||
408 | #define BN_is_one(a) (BN_abs_is_word((a),1) && !(a)->neg) | ||
409 | #define BN_is_word(a,w) (BN_abs_is_word((a),(w)) && (!(w) || !(a)->neg)) | ||
410 | #define BN_is_odd(a) (((a)->top > 0) && ((a)->d[0] & 1)) | ||
411 | |||
412 | #define BN_one(a) (BN_set_word((a),1)) | ||
413 | #define BN_zero_ex(a) \ | ||
414 | do { \ | ||
415 | BIGNUM *_tmp_bn = (a); \ | ||
416 | _tmp_bn->top = 0; \ | ||
417 | _tmp_bn->neg = 0; \ | ||
418 | } while(0) | ||
419 | #ifdef OPENSSL_NO_DEPRECATED | ||
420 | #define BN_zero(a) BN_zero_ex(a) | ||
421 | #else | ||
422 | #define BN_zero(a) (BN_set_word((a),0)) | ||
423 | #endif | ||
424 | |||
425 | const BIGNUM *BN_value_one(void); | ||
426 | char * BN_options(void); | ||
427 | BN_CTX *BN_CTX_new(void); | ||
428 | #ifndef OPENSSL_NO_DEPRECATED | ||
429 | void BN_CTX_init(BN_CTX *c); | ||
430 | #endif | ||
431 | void BN_CTX_free(BN_CTX *c); | ||
432 | void BN_CTX_start(BN_CTX *ctx); | ||
433 | BIGNUM *BN_CTX_get(BN_CTX *ctx); | ||
434 | void BN_CTX_end(BN_CTX *ctx); | ||
435 | int BN_rand(BIGNUM *rnd, int bits, int top,int bottom); | ||
436 | int BN_pseudo_rand(BIGNUM *rnd, int bits, int top,int bottom); | ||
437 | int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); | ||
438 | int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); | ||
439 | int BN_num_bits(const BIGNUM *a); | ||
440 | int BN_num_bits_word(BN_ULONG); | ||
441 | BIGNUM *BN_new(void); | ||
442 | void BN_init(BIGNUM *); | ||
443 | void BN_clear_free(BIGNUM *a); | ||
444 | BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b); | ||
445 | void BN_swap(BIGNUM *a, BIGNUM *b); | ||
446 | BIGNUM *BN_bin2bn(const unsigned char *s,int len,BIGNUM *ret); | ||
447 | int BN_bn2bin(const BIGNUM *a, unsigned char *to); | ||
448 | BIGNUM *BN_mpi2bn(const unsigned char *s,int len,BIGNUM *ret); | ||
449 | int BN_bn2mpi(const BIGNUM *a, unsigned char *to); | ||
450 | int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | ||
451 | int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | ||
452 | int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | ||
453 | int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | ||
454 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | ||
455 | int BN_sqr(BIGNUM *r, const BIGNUM *a,BN_CTX *ctx); | ||
456 | /** BN_set_negative sets sign of a BIGNUM | ||
457 | * \param b pointer to the BIGNUM object | ||
458 | * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise | ||
459 | */ | ||
460 | void BN_set_negative(BIGNUM *b, int n); | ||
461 | /** BN_is_negative returns 1 if the BIGNUM is negative | ||
462 | * \param a pointer to the BIGNUM object | ||
463 | * \return 1 if a < 0 and 0 otherwise | ||
464 | */ | ||
465 | #define BN_is_negative(a) ((a)->neg != 0) | ||
466 | |||
467 | int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, | ||
468 | BN_CTX *ctx); | ||
469 | #define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx)) | ||
470 | int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx); | ||
471 | int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); | ||
472 | int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m); | ||
473 | int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); | ||
474 | int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m); | ||
475 | int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
476 | const BIGNUM *m, BN_CTX *ctx); | ||
477 | int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); | ||
478 | int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); | ||
479 | int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m); | ||
480 | int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx); | ||
481 | int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m); | ||
482 | |||
483 | BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); | ||
484 | BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w); | ||
485 | int BN_mul_word(BIGNUM *a, BN_ULONG w); | ||
486 | int BN_add_word(BIGNUM *a, BN_ULONG w); | ||
487 | int BN_sub_word(BIGNUM *a, BN_ULONG w); | ||
488 | int BN_set_word(BIGNUM *a, BN_ULONG w); | ||
489 | BN_ULONG BN_get_word(const BIGNUM *a); | ||
490 | |||
491 | int BN_cmp(const BIGNUM *a, const BIGNUM *b); | ||
492 | void BN_free(BIGNUM *a); | ||
493 | int BN_is_bit_set(const BIGNUM *a, int n); | ||
494 | int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); | ||
495 | int BN_lshift1(BIGNUM *r, const BIGNUM *a); | ||
496 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,BN_CTX *ctx); | ||
497 | |||
498 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
499 | const BIGNUM *m,BN_CTX *ctx); | ||
500 | int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
501 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); | ||
502 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
503 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont); | ||
504 | int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, | ||
505 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); | ||
506 | int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1, | ||
507 | const BIGNUM *a2, const BIGNUM *p2,const BIGNUM *m, | ||
508 | BN_CTX *ctx,BN_MONT_CTX *m_ctx); | ||
509 | int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
510 | const BIGNUM *m,BN_CTX *ctx); | ||
511 | |||
512 | int BN_mask_bits(BIGNUM *a,int n); | ||
513 | #ifndef OPENSSL_NO_FP_API | ||
514 | int BN_print_fp(FILE *fp, const BIGNUM *a); | ||
515 | #endif | ||
516 | #ifdef HEADER_BIO_H | ||
517 | int BN_print(BIO *fp, const BIGNUM *a); | ||
518 | #else | ||
519 | int BN_print(void *fp, const BIGNUM *a); | ||
520 | #endif | ||
521 | int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx); | ||
522 | int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); | ||
523 | int BN_rshift1(BIGNUM *r, const BIGNUM *a); | ||
524 | void BN_clear(BIGNUM *a); | ||
525 | BIGNUM *BN_dup(const BIGNUM *a); | ||
526 | int BN_ucmp(const BIGNUM *a, const BIGNUM *b); | ||
527 | int BN_set_bit(BIGNUM *a, int n); | ||
528 | int BN_clear_bit(BIGNUM *a, int n); | ||
529 | char * BN_bn2hex(const BIGNUM *a); | ||
530 | char * BN_bn2dec(const BIGNUM *a); | ||
531 | int BN_hex2bn(BIGNUM **a, const char *str); | ||
532 | int BN_dec2bn(BIGNUM **a, const char *str); | ||
533 | int BN_asc2bn(BIGNUM **a, const char *str); | ||
534 | int BN_gcd(BIGNUM *r,const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx); | ||
535 | int BN_kronecker(const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx); /* returns -2 for error */ | ||
536 | BIGNUM *BN_mod_inverse(BIGNUM *ret, | ||
537 | const BIGNUM *a, const BIGNUM *n,BN_CTX *ctx); | ||
538 | BIGNUM *BN_mod_sqrt(BIGNUM *ret, | ||
539 | const BIGNUM *a, const BIGNUM *n,BN_CTX *ctx); | ||
540 | |||
541 | /* Deprecated versions */ | ||
542 | #ifndef OPENSSL_NO_DEPRECATED | ||
543 | BIGNUM *BN_generate_prime(BIGNUM *ret,int bits,int safe, | ||
544 | const BIGNUM *add, const BIGNUM *rem, | ||
545 | void (*callback)(int,int,void *),void *cb_arg); | ||
546 | int BN_is_prime(const BIGNUM *p,int nchecks, | ||
547 | void (*callback)(int,int,void *), | ||
548 | BN_CTX *ctx,void *cb_arg); | ||
549 | int BN_is_prime_fasttest(const BIGNUM *p,int nchecks, | ||
550 | void (*callback)(int,int,void *),BN_CTX *ctx,void *cb_arg, | ||
551 | int do_trial_division); | ||
552 | #endif /* !defined(OPENSSL_NO_DEPRECATED) */ | ||
553 | |||
554 | /* Newer versions */ | ||
555 | int BN_generate_prime_ex(BIGNUM *ret,int bits,int safe, const BIGNUM *add, | ||
556 | const BIGNUM *rem, BN_GENCB *cb); | ||
557 | int BN_is_prime_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx, BN_GENCB *cb); | ||
558 | int BN_is_prime_fasttest_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx, | ||
559 | int do_trial_division, BN_GENCB *cb); | ||
560 | |||
561 | BN_MONT_CTX *BN_MONT_CTX_new(void ); | ||
562 | void BN_MONT_CTX_init(BN_MONT_CTX *ctx); | ||
563 | int BN_mod_mul_montgomery(BIGNUM *r,const BIGNUM *a,const BIGNUM *b, | ||
564 | BN_MONT_CTX *mont, BN_CTX *ctx); | ||
565 | #define BN_to_montgomery(r,a,mont,ctx) BN_mod_mul_montgomery(\ | ||
566 | (r),(a),&((mont)->RR),(mont),(ctx)) | ||
567 | int BN_from_montgomery(BIGNUM *r,const BIGNUM *a, | ||
568 | BN_MONT_CTX *mont, BN_CTX *ctx); | ||
569 | void BN_MONT_CTX_free(BN_MONT_CTX *mont); | ||
570 | int BN_MONT_CTX_set(BN_MONT_CTX *mont,const BIGNUM *mod,BN_CTX *ctx); | ||
571 | BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to,BN_MONT_CTX *from); | ||
572 | BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, int lock, | ||
573 | const BIGNUM *mod, BN_CTX *ctx); | ||
574 | |||
575 | /* BN_BLINDING flags */ | ||
576 | #define BN_BLINDING_NO_UPDATE 0x00000001 | ||
577 | #define BN_BLINDING_NO_RECREATE 0x00000002 | ||
578 | |||
579 | BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod); | ||
580 | void BN_BLINDING_free(BN_BLINDING *b); | ||
581 | int BN_BLINDING_update(BN_BLINDING *b,BN_CTX *ctx); | ||
582 | int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); | ||
583 | int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); | ||
584 | int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *); | ||
585 | int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, BN_CTX *); | ||
586 | #ifndef OPENSSL_NO_DEPRECATED | ||
587 | unsigned long BN_BLINDING_get_thread_id(const BN_BLINDING *); | ||
588 | void BN_BLINDING_set_thread_id(BN_BLINDING *, unsigned long); | ||
589 | #endif | ||
590 | CRYPTO_THREADID *BN_BLINDING_thread_id(BN_BLINDING *); | ||
591 | unsigned long BN_BLINDING_get_flags(const BN_BLINDING *); | ||
592 | void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long); | ||
593 | BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b, | ||
594 | const BIGNUM *e, BIGNUM *m, BN_CTX *ctx, | ||
595 | int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
596 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx), | ||
597 | BN_MONT_CTX *m_ctx); | ||
598 | |||
599 | #ifndef OPENSSL_NO_DEPRECATED | ||
600 | void BN_set_params(int mul,int high,int low,int mont); | ||
601 | int BN_get_params(int which); /* 0, mul, 1 high, 2 low, 3 mont */ | ||
602 | #endif | ||
603 | |||
604 | void BN_RECP_CTX_init(BN_RECP_CTX *recp); | ||
605 | BN_RECP_CTX *BN_RECP_CTX_new(void); | ||
606 | void BN_RECP_CTX_free(BN_RECP_CTX *recp); | ||
607 | int BN_RECP_CTX_set(BN_RECP_CTX *recp,const BIGNUM *rdiv,BN_CTX *ctx); | ||
608 | int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, | ||
609 | BN_RECP_CTX *recp,BN_CTX *ctx); | ||
610 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
611 | const BIGNUM *m, BN_CTX *ctx); | ||
612 | int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, | ||
613 | BN_RECP_CTX *recp, BN_CTX *ctx); | ||
614 | |||
615 | /* Functions for arithmetic over binary polynomials represented by BIGNUMs. | ||
616 | * | ||
617 | * The BIGNUM::neg property of BIGNUMs representing binary polynomials is | ||
618 | * ignored. | ||
619 | * | ||
620 | * Note that input arguments are not const so that their bit arrays can | ||
621 | * be expanded to the appropriate size if needed. | ||
622 | */ | ||
623 | |||
624 | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); /*r = a + b*/ | ||
625 | #define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b) | ||
626 | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p); /*r=a mod p*/ | ||
627 | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
628 | const BIGNUM *p, BN_CTX *ctx); /* r = (a * b) mod p */ | ||
629 | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
630 | BN_CTX *ctx); /* r = (a * a) mod p */ | ||
631 | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, | ||
632 | BN_CTX *ctx); /* r = (1 / b) mod p */ | ||
633 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
634 | const BIGNUM *p, BN_CTX *ctx); /* r = (a / b) mod p */ | ||
635 | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
636 | const BIGNUM *p, BN_CTX *ctx); /* r = (a ^ b) mod p */ | ||
637 | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
638 | BN_CTX *ctx); /* r = sqrt(a) mod p */ | ||
639 | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
640 | BN_CTX *ctx); /* r^2 + r = a mod p */ | ||
641 | #define BN_GF2m_cmp(a, b) BN_ucmp((a), (b)) | ||
642 | /* Some functions allow for representation of the irreducible polynomials | ||
643 | * as an unsigned int[], say p. The irreducible f(t) is then of the form: | ||
644 | * t^p[0] + t^p[1] + ... + t^p[k] | ||
645 | * where m = p[0] > p[1] > ... > p[k] = 0. | ||
646 | */ | ||
647 | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]); | ||
648 | /* r = a mod p */ | ||
649 | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
650 | const int p[], BN_CTX *ctx); /* r = (a * b) mod p */ | ||
651 | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], | ||
652 | BN_CTX *ctx); /* r = (a * a) mod p */ | ||
653 | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[], | ||
654 | BN_CTX *ctx); /* r = (1 / b) mod p */ | ||
655 | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
656 | const int p[], BN_CTX *ctx); /* r = (a / b) mod p */ | ||
657 | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
658 | const int p[], BN_CTX *ctx); /* r = (a ^ b) mod p */ | ||
659 | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, | ||
660 | const int p[], BN_CTX *ctx); /* r = sqrt(a) mod p */ | ||
661 | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a, | ||
662 | const int p[], BN_CTX *ctx); /* r^2 + r = a mod p */ | ||
663 | int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max); | ||
664 | int BN_GF2m_arr2poly(const int p[], BIGNUM *a); | ||
665 | |||
666 | /* faster mod functions for the 'NIST primes' | ||
667 | * 0 <= a < p^2 */ | ||
668 | int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | ||
669 | int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | ||
670 | int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | ||
671 | int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | ||
672 | int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | ||
673 | |||
674 | const BIGNUM *BN_get0_nist_prime_192(void); | ||
675 | const BIGNUM *BN_get0_nist_prime_224(void); | ||
676 | const BIGNUM *BN_get0_nist_prime_256(void); | ||
677 | const BIGNUM *BN_get0_nist_prime_384(void); | ||
678 | const BIGNUM *BN_get0_nist_prime_521(void); | ||
679 | |||
680 | /* library internal functions */ | ||
681 | |||
682 | #define bn_expand(a,bits) ((((((bits+BN_BITS2-1))/BN_BITS2)) <= (a)->dmax)?\ | ||
683 | (a):bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2)) | ||
684 | #define bn_wexpand(a,words) (((words) <= (a)->dmax)?(a):bn_expand2((a),(words))) | ||
685 | BIGNUM *bn_expand2(BIGNUM *a, int words); | ||
686 | #ifndef OPENSSL_NO_DEPRECATED | ||
687 | BIGNUM *bn_dup_expand(const BIGNUM *a, int words); /* unused */ | ||
688 | #endif | ||
689 | |||
690 | /* Bignum consistency macros | ||
691 | * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from | ||
692 | * bignum data after direct manipulations on the data. There is also an | ||
693 | * "internal" macro, bn_check_top(), for verifying that there are no leading | ||
694 | * zeroes. Unfortunately, some auditing is required due to the fact that | ||
695 | * bn_fix_top() has become an overabused duct-tape because bignum data is | ||
696 | * occasionally passed around in an inconsistent state. So the following | ||
697 | * changes have been made to sort this out; | ||
698 | * - bn_fix_top()s implementation has been moved to bn_correct_top() | ||
699 | * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and | ||
700 | * bn_check_top() is as before. | ||
701 | * - if BN_DEBUG *is* defined; | ||
702 | * - bn_check_top() tries to pollute unused words even if the bignum 'top' is | ||
703 | * consistent. (ed: only if BN_DEBUG_RAND is defined) | ||
704 | * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything. | ||
705 | * The idea is to have debug builds flag up inconsistent bignums when they | ||
706 | * occur. If that occurs in a bn_fix_top(), we examine the code in question; if | ||
707 | * the use of bn_fix_top() was appropriate (ie. it follows directly after code | ||
708 | * that manipulates the bignum) it is converted to bn_correct_top(), and if it | ||
709 | * was not appropriate, we convert it permanently to bn_check_top() and track | ||
710 | * down the cause of the bug. Eventually, no internal code should be using the | ||
711 | * bn_fix_top() macro. External applications and libraries should try this with | ||
712 | * their own code too, both in terms of building against the openssl headers | ||
713 | * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it | ||
714 | * defined. This not only improves external code, it provides more test | ||
715 | * coverage for openssl's own code. | ||
716 | */ | ||
717 | |||
718 | #ifdef BN_DEBUG | ||
719 | |||
720 | /* We only need assert() when debugging */ | ||
721 | #include <assert.h> | ||
722 | |||
723 | #ifdef BN_DEBUG_RAND | ||
724 | /* To avoid "make update" cvs wars due to BN_DEBUG, use some tricks */ | ||
725 | #ifndef RAND_pseudo_bytes | ||
726 | int RAND_pseudo_bytes(unsigned char *buf,int num); | ||
727 | #define BN_DEBUG_TRIX | ||
728 | #endif | ||
729 | #define bn_pollute(a) \ | ||
730 | do { \ | ||
731 | const BIGNUM *_bnum1 = (a); \ | ||
732 | if(_bnum1->top < _bnum1->dmax) { \ | ||
733 | unsigned char _tmp_char; \ | ||
734 | /* We cast away const without the compiler knowing, any \ | ||
735 | * *genuinely* constant variables that aren't mutable \ | ||
736 | * wouldn't be constructed with top!=dmax. */ \ | ||
737 | BN_ULONG *_not_const; \ | ||
738 | memcpy(&_not_const, &_bnum1->d, sizeof(BN_ULONG*)); \ | ||
739 | RAND_pseudo_bytes(&_tmp_char, 1); \ | ||
740 | memset((unsigned char *)(_not_const + _bnum1->top), _tmp_char, \ | ||
741 | (_bnum1->dmax - _bnum1->top) * sizeof(BN_ULONG)); \ | ||
742 | } \ | ||
743 | } while(0) | ||
744 | #ifdef BN_DEBUG_TRIX | ||
745 | #undef RAND_pseudo_bytes | ||
746 | #endif | ||
747 | #else | ||
748 | #define bn_pollute(a) | ||
749 | #endif | ||
750 | #define bn_check_top(a) \ | ||
751 | do { \ | ||
752 | const BIGNUM *_bnum2 = (a); \ | ||
753 | if (_bnum2 != NULL) { \ | ||
754 | assert((_bnum2->top == 0) || \ | ||
755 | (_bnum2->d[_bnum2->top - 1] != 0)); \ | ||
756 | bn_pollute(_bnum2); \ | ||
757 | } \ | ||
758 | } while(0) | ||
759 | |||
760 | #define bn_fix_top(a) bn_check_top(a) | ||
761 | |||
762 | #else /* !BN_DEBUG */ | ||
763 | |||
764 | #define bn_pollute(a) | ||
765 | #define bn_check_top(a) | ||
766 | #define bn_fix_top(a) bn_correct_top(a) | ||
767 | |||
768 | #endif | ||
769 | |||
770 | #define bn_correct_top(a) \ | ||
771 | { \ | ||
772 | BN_ULONG *ftl; \ | ||
773 | int tmp_top = (a)->top; \ | ||
774 | if (tmp_top > 0) \ | ||
775 | { \ | ||
776 | for (ftl= &((a)->d[tmp_top-1]); tmp_top > 0; tmp_top--) \ | ||
777 | if (*(ftl--)) break; \ | ||
778 | (a)->top = tmp_top; \ | ||
779 | } \ | ||
780 | bn_pollute(a); \ | ||
781 | } | ||
782 | |||
783 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w); | ||
784 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w); | ||
785 | void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num); | ||
786 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); | ||
787 | BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int num); | ||
788 | BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int num); | ||
789 | |||
790 | /* Primes from RFC 2409 */ | ||
791 | BIGNUM *get_rfc2409_prime_768(BIGNUM *bn); | ||
792 | BIGNUM *get_rfc2409_prime_1024(BIGNUM *bn); | ||
793 | |||
794 | /* Primes from RFC 3526 */ | ||
795 | BIGNUM *get_rfc3526_prime_1536(BIGNUM *bn); | ||
796 | BIGNUM *get_rfc3526_prime_2048(BIGNUM *bn); | ||
797 | BIGNUM *get_rfc3526_prime_3072(BIGNUM *bn); | ||
798 | BIGNUM *get_rfc3526_prime_4096(BIGNUM *bn); | ||
799 | BIGNUM *get_rfc3526_prime_6144(BIGNUM *bn); | ||
800 | BIGNUM *get_rfc3526_prime_8192(BIGNUM *bn); | ||
801 | |||
802 | int BN_bntest_rand(BIGNUM *rnd, int bits, int top,int bottom); | ||
803 | |||
804 | /* BEGIN ERROR CODES */ | ||
805 | /* The following lines are auto generated by the script mkerr.pl. Any changes | ||
806 | * made after this point may be overwritten when the script is next run. | ||
807 | */ | ||
808 | void ERR_load_BN_strings(void); | ||
809 | |||
810 | /* Error codes for the BN functions. */ | ||
811 | |||
812 | /* Function codes. */ | ||
813 | #define BN_F_BNRAND 127 | ||
814 | #define BN_F_BN_BLINDING_CONVERT_EX 100 | ||
815 | #define BN_F_BN_BLINDING_CREATE_PARAM 128 | ||
816 | #define BN_F_BN_BLINDING_INVERT_EX 101 | ||
817 | #define BN_F_BN_BLINDING_NEW 102 | ||
818 | #define BN_F_BN_BLINDING_UPDATE 103 | ||
819 | #define BN_F_BN_BN2DEC 104 | ||
820 | #define BN_F_BN_BN2HEX 105 | ||
821 | #define BN_F_BN_CTX_GET 116 | ||
822 | #define BN_F_BN_CTX_NEW 106 | ||
823 | #define BN_F_BN_CTX_START 129 | ||
824 | #define BN_F_BN_DIV 107 | ||
825 | #define BN_F_BN_DIV_NO_BRANCH 138 | ||
826 | #define BN_F_BN_DIV_RECP 130 | ||
827 | #define BN_F_BN_EXP 123 | ||
828 | #define BN_F_BN_EXPAND2 108 | ||
829 | #define BN_F_BN_EXPAND_INTERNAL 120 | ||
830 | #define BN_F_BN_GF2M_MOD 131 | ||
831 | #define BN_F_BN_GF2M_MOD_EXP 132 | ||
832 | #define BN_F_BN_GF2M_MOD_MUL 133 | ||
833 | #define BN_F_BN_GF2M_MOD_SOLVE_QUAD 134 | ||
834 | #define BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR 135 | ||
835 | #define BN_F_BN_GF2M_MOD_SQR 136 | ||
836 | #define BN_F_BN_GF2M_MOD_SQRT 137 | ||
837 | #define BN_F_BN_MOD_EXP2_MONT 118 | ||
838 | #define BN_F_BN_MOD_EXP_MONT 109 | ||
839 | #define BN_F_BN_MOD_EXP_MONT_CONSTTIME 124 | ||
840 | #define BN_F_BN_MOD_EXP_MONT_WORD 117 | ||
841 | #define BN_F_BN_MOD_EXP_RECP 125 | ||
842 | #define BN_F_BN_MOD_EXP_SIMPLE 126 | ||
843 | #define BN_F_BN_MOD_INVERSE 110 | ||
844 | #define BN_F_BN_MOD_INVERSE_NO_BRANCH 139 | ||
845 | #define BN_F_BN_MOD_LSHIFT_QUICK 119 | ||
846 | #define BN_F_BN_MOD_MUL_RECIPROCAL 111 | ||
847 | #define BN_F_BN_MOD_SQRT 121 | ||
848 | #define BN_F_BN_MPI2BN 112 | ||
849 | #define BN_F_BN_NEW 113 | ||
850 | #define BN_F_BN_RAND 114 | ||
851 | #define BN_F_BN_RAND_RANGE 122 | ||
852 | #define BN_F_BN_USUB 115 | ||
853 | |||
854 | /* Reason codes. */ | ||
855 | #define BN_R_ARG2_LT_ARG3 100 | ||
856 | #define BN_R_BAD_RECIPROCAL 101 | ||
857 | #define BN_R_BIGNUM_TOO_LONG 114 | ||
858 | #define BN_R_CALLED_WITH_EVEN_MODULUS 102 | ||
859 | #define BN_R_DIV_BY_ZERO 103 | ||
860 | #define BN_R_ENCODING_ERROR 104 | ||
861 | #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 105 | ||
862 | #define BN_R_INPUT_NOT_REDUCED 110 | ||
863 | #define BN_R_INVALID_LENGTH 106 | ||
864 | #define BN_R_INVALID_RANGE 115 | ||
865 | #define BN_R_NOT_A_SQUARE 111 | ||
866 | #define BN_R_NOT_INITIALIZED 107 | ||
867 | #define BN_R_NO_INVERSE 108 | ||
868 | #define BN_R_NO_SOLUTION 116 | ||
869 | #define BN_R_P_IS_NOT_PRIME 112 | ||
870 | #define BN_R_TOO_MANY_ITERATIONS 113 | ||
871 | #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 109 | ||
872 | |||
873 | #ifdef __cplusplus | ||
874 | } | ||
875 | #endif | ||
876 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_add.c b/src/lib/libcrypto/bn/bn_add.c deleted file mode 100644 index 9405163706..0000000000 --- a/src/lib/libcrypto/bn/bn_add.c +++ /dev/null | |||
@@ -1,313 +0,0 @@ | |||
1 | /* crypto/bn/bn_add.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include "cryptlib.h" | ||
61 | #include "bn_lcl.h" | ||
62 | |||
63 | /* r can == a or b */ | ||
64 | int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
65 | { | ||
66 | const BIGNUM *tmp; | ||
67 | int a_neg = a->neg, ret; | ||
68 | |||
69 | bn_check_top(a); | ||
70 | bn_check_top(b); | ||
71 | |||
72 | /* a + b a+b | ||
73 | * a + -b a-b | ||
74 | * -a + b b-a | ||
75 | * -a + -b -(a+b) | ||
76 | */ | ||
77 | if (a_neg ^ b->neg) | ||
78 | { | ||
79 | /* only one is negative */ | ||
80 | if (a_neg) | ||
81 | { tmp=a; a=b; b=tmp; } | ||
82 | |||
83 | /* we are now a - b */ | ||
84 | |||
85 | if (BN_ucmp(a,b) < 0) | ||
86 | { | ||
87 | if (!BN_usub(r,b,a)) return(0); | ||
88 | r->neg=1; | ||
89 | } | ||
90 | else | ||
91 | { | ||
92 | if (!BN_usub(r,a,b)) return(0); | ||
93 | r->neg=0; | ||
94 | } | ||
95 | return(1); | ||
96 | } | ||
97 | |||
98 | ret = BN_uadd(r,a,b); | ||
99 | r->neg = a_neg; | ||
100 | bn_check_top(r); | ||
101 | return ret; | ||
102 | } | ||
103 | |||
104 | /* unsigned add of b to a */ | ||
105 | int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
106 | { | ||
107 | int max,min,dif; | ||
108 | BN_ULONG *ap,*bp,*rp,carry,t1,t2; | ||
109 | const BIGNUM *tmp; | ||
110 | |||
111 | bn_check_top(a); | ||
112 | bn_check_top(b); | ||
113 | |||
114 | if (a->top < b->top) | ||
115 | { tmp=a; a=b; b=tmp; } | ||
116 | max = a->top; | ||
117 | min = b->top; | ||
118 | dif = max - min; | ||
119 | |||
120 | if (bn_wexpand(r,max+1) == NULL) | ||
121 | return 0; | ||
122 | |||
123 | r->top=max; | ||
124 | |||
125 | |||
126 | ap=a->d; | ||
127 | bp=b->d; | ||
128 | rp=r->d; | ||
129 | |||
130 | carry=bn_add_words(rp,ap,bp,min); | ||
131 | rp+=min; | ||
132 | ap+=min; | ||
133 | bp+=min; | ||
134 | |||
135 | if (carry) | ||
136 | { | ||
137 | while (dif) | ||
138 | { | ||
139 | dif--; | ||
140 | t1 = *(ap++); | ||
141 | t2 = (t1+1) & BN_MASK2; | ||
142 | *(rp++) = t2; | ||
143 | if (t2) | ||
144 | { | ||
145 | carry=0; | ||
146 | break; | ||
147 | } | ||
148 | } | ||
149 | if (carry) | ||
150 | { | ||
151 | /* carry != 0 => dif == 0 */ | ||
152 | *rp = 1; | ||
153 | r->top++; | ||
154 | } | ||
155 | } | ||
156 | if (dif && rp != ap) | ||
157 | while (dif--) | ||
158 | /* copy remaining words if ap != rp */ | ||
159 | *(rp++) = *(ap++); | ||
160 | r->neg = 0; | ||
161 | bn_check_top(r); | ||
162 | return 1; | ||
163 | } | ||
164 | |||
165 | /* unsigned subtraction of b from a, a must be larger than b. */ | ||
166 | int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
167 | { | ||
168 | int max,min,dif; | ||
169 | register BN_ULONG t1,t2,*ap,*bp,*rp; | ||
170 | int i,carry; | ||
171 | #if defined(IRIX_CC_BUG) && !defined(LINT) | ||
172 | int dummy; | ||
173 | #endif | ||
174 | |||
175 | bn_check_top(a); | ||
176 | bn_check_top(b); | ||
177 | |||
178 | max = a->top; | ||
179 | min = b->top; | ||
180 | dif = max - min; | ||
181 | |||
182 | if (dif < 0) /* hmm... should not be happening */ | ||
183 | { | ||
184 | BNerr(BN_F_BN_USUB,BN_R_ARG2_LT_ARG3); | ||
185 | return(0); | ||
186 | } | ||
187 | |||
188 | if (bn_wexpand(r,max) == NULL) return(0); | ||
189 | |||
190 | ap=a->d; | ||
191 | bp=b->d; | ||
192 | rp=r->d; | ||
193 | |||
194 | #if 1 | ||
195 | carry=0; | ||
196 | for (i = min; i != 0; i--) | ||
197 | { | ||
198 | t1= *(ap++); | ||
199 | t2= *(bp++); | ||
200 | if (carry) | ||
201 | { | ||
202 | carry=(t1 <= t2); | ||
203 | t1=(t1-t2-1)&BN_MASK2; | ||
204 | } | ||
205 | else | ||
206 | { | ||
207 | carry=(t1 < t2); | ||
208 | t1=(t1-t2)&BN_MASK2; | ||
209 | } | ||
210 | #if defined(IRIX_CC_BUG) && !defined(LINT) | ||
211 | dummy=t1; | ||
212 | #endif | ||
213 | *(rp++)=t1&BN_MASK2; | ||
214 | } | ||
215 | #else | ||
216 | carry=bn_sub_words(rp,ap,bp,min); | ||
217 | ap+=min; | ||
218 | bp+=min; | ||
219 | rp+=min; | ||
220 | #endif | ||
221 | if (carry) /* subtracted */ | ||
222 | { | ||
223 | if (!dif) | ||
224 | /* error: a < b */ | ||
225 | return 0; | ||
226 | while (dif) | ||
227 | { | ||
228 | dif--; | ||
229 | t1 = *(ap++); | ||
230 | t2 = (t1-1)&BN_MASK2; | ||
231 | *(rp++) = t2; | ||
232 | if (t1) | ||
233 | break; | ||
234 | } | ||
235 | } | ||
236 | #if 0 | ||
237 | memcpy(rp,ap,sizeof(*rp)*(max-i)); | ||
238 | #else | ||
239 | if (rp != ap) | ||
240 | { | ||
241 | for (;;) | ||
242 | { | ||
243 | if (!dif--) break; | ||
244 | rp[0]=ap[0]; | ||
245 | if (!dif--) break; | ||
246 | rp[1]=ap[1]; | ||
247 | if (!dif--) break; | ||
248 | rp[2]=ap[2]; | ||
249 | if (!dif--) break; | ||
250 | rp[3]=ap[3]; | ||
251 | rp+=4; | ||
252 | ap+=4; | ||
253 | } | ||
254 | } | ||
255 | #endif | ||
256 | |||
257 | r->top=max; | ||
258 | r->neg=0; | ||
259 | bn_correct_top(r); | ||
260 | return(1); | ||
261 | } | ||
262 | |||
263 | int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
264 | { | ||
265 | int max; | ||
266 | int add=0,neg=0; | ||
267 | const BIGNUM *tmp; | ||
268 | |||
269 | bn_check_top(a); | ||
270 | bn_check_top(b); | ||
271 | |||
272 | /* a - b a-b | ||
273 | * a - -b a+b | ||
274 | * -a - b -(a+b) | ||
275 | * -a - -b b-a | ||
276 | */ | ||
277 | if (a->neg) | ||
278 | { | ||
279 | if (b->neg) | ||
280 | { tmp=a; a=b; b=tmp; } | ||
281 | else | ||
282 | { add=1; neg=1; } | ||
283 | } | ||
284 | else | ||
285 | { | ||
286 | if (b->neg) { add=1; neg=0; } | ||
287 | } | ||
288 | |||
289 | if (add) | ||
290 | { | ||
291 | if (!BN_uadd(r,a,b)) return(0); | ||
292 | r->neg=neg; | ||
293 | return(1); | ||
294 | } | ||
295 | |||
296 | /* We are actually doing a - b :-) */ | ||
297 | |||
298 | max=(a->top > b->top)?a->top:b->top; | ||
299 | if (bn_wexpand(r,max) == NULL) return(0); | ||
300 | if (BN_ucmp(a,b) < 0) | ||
301 | { | ||
302 | if (!BN_usub(r,b,a)) return(0); | ||
303 | r->neg=1; | ||
304 | } | ||
305 | else | ||
306 | { | ||
307 | if (!BN_usub(r,a,b)) return(0); | ||
308 | r->neg=0; | ||
309 | } | ||
310 | bn_check_top(r); | ||
311 | return(1); | ||
312 | } | ||
313 | |||
diff --git a/src/lib/libcrypto/bn/bn_asm.c b/src/lib/libcrypto/bn/bn_asm.c deleted file mode 100644 index c43c91cc09..0000000000 --- a/src/lib/libcrypto/bn/bn_asm.c +++ /dev/null | |||
@@ -1,1030 +0,0 @@ | |||
1 | /* crypto/bn/bn_asm.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #ifndef BN_DEBUG | ||
60 | # undef NDEBUG /* avoid conflicting definitions */ | ||
61 | # define NDEBUG | ||
62 | #endif | ||
63 | |||
64 | #include <stdio.h> | ||
65 | #include <assert.h> | ||
66 | #include "cryptlib.h" | ||
67 | #include "bn_lcl.h" | ||
68 | |||
69 | #if defined(BN_LLONG) || defined(BN_UMULT_HIGH) | ||
70 | |||
71 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
72 | { | ||
73 | BN_ULONG c1=0; | ||
74 | |||
75 | assert(num >= 0); | ||
76 | if (num <= 0) return(c1); | ||
77 | |||
78 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
79 | while (num&~3) | ||
80 | { | ||
81 | mul_add(rp[0],ap[0],w,c1); | ||
82 | mul_add(rp[1],ap[1],w,c1); | ||
83 | mul_add(rp[2],ap[2],w,c1); | ||
84 | mul_add(rp[3],ap[3],w,c1); | ||
85 | ap+=4; rp+=4; num-=4; | ||
86 | } | ||
87 | #endif | ||
88 | while (num) | ||
89 | { | ||
90 | mul_add(rp[0],ap[0],w,c1); | ||
91 | ap++; rp++; num--; | ||
92 | } | ||
93 | |||
94 | return(c1); | ||
95 | } | ||
96 | |||
97 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
98 | { | ||
99 | BN_ULONG c1=0; | ||
100 | |||
101 | assert(num >= 0); | ||
102 | if (num <= 0) return(c1); | ||
103 | |||
104 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
105 | while (num&~3) | ||
106 | { | ||
107 | mul(rp[0],ap[0],w,c1); | ||
108 | mul(rp[1],ap[1],w,c1); | ||
109 | mul(rp[2],ap[2],w,c1); | ||
110 | mul(rp[3],ap[3],w,c1); | ||
111 | ap+=4; rp+=4; num-=4; | ||
112 | } | ||
113 | #endif | ||
114 | while (num) | ||
115 | { | ||
116 | mul(rp[0],ap[0],w,c1); | ||
117 | ap++; rp++; num--; | ||
118 | } | ||
119 | return(c1); | ||
120 | } | ||
121 | |||
122 | void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) | ||
123 | { | ||
124 | assert(n >= 0); | ||
125 | if (n <= 0) return; | ||
126 | |||
127 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
128 | while (n&~3) | ||
129 | { | ||
130 | sqr(r[0],r[1],a[0]); | ||
131 | sqr(r[2],r[3],a[1]); | ||
132 | sqr(r[4],r[5],a[2]); | ||
133 | sqr(r[6],r[7],a[3]); | ||
134 | a+=4; r+=8; n-=4; | ||
135 | } | ||
136 | #endif | ||
137 | while (n) | ||
138 | { | ||
139 | sqr(r[0],r[1],a[0]); | ||
140 | a++; r+=2; n--; | ||
141 | } | ||
142 | } | ||
143 | |||
144 | #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ | ||
145 | |||
146 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
147 | { | ||
148 | BN_ULONG c=0; | ||
149 | BN_ULONG bl,bh; | ||
150 | |||
151 | assert(num >= 0); | ||
152 | if (num <= 0) return((BN_ULONG)0); | ||
153 | |||
154 | bl=LBITS(w); | ||
155 | bh=HBITS(w); | ||
156 | |||
157 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
158 | while (num&~3) | ||
159 | { | ||
160 | mul_add(rp[0],ap[0],bl,bh,c); | ||
161 | mul_add(rp[1],ap[1],bl,bh,c); | ||
162 | mul_add(rp[2],ap[2],bl,bh,c); | ||
163 | mul_add(rp[3],ap[3],bl,bh,c); | ||
164 | ap+=4; rp+=4; num-=4; | ||
165 | } | ||
166 | #endif | ||
167 | while (num) | ||
168 | { | ||
169 | mul_add(rp[0],ap[0],bl,bh,c); | ||
170 | ap++; rp++; num--; | ||
171 | } | ||
172 | return(c); | ||
173 | } | ||
174 | |||
175 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
176 | { | ||
177 | BN_ULONG carry=0; | ||
178 | BN_ULONG bl,bh; | ||
179 | |||
180 | assert(num >= 0); | ||
181 | if (num <= 0) return((BN_ULONG)0); | ||
182 | |||
183 | bl=LBITS(w); | ||
184 | bh=HBITS(w); | ||
185 | |||
186 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
187 | while (num&~3) | ||
188 | { | ||
189 | mul(rp[0],ap[0],bl,bh,carry); | ||
190 | mul(rp[1],ap[1],bl,bh,carry); | ||
191 | mul(rp[2],ap[2],bl,bh,carry); | ||
192 | mul(rp[3],ap[3],bl,bh,carry); | ||
193 | ap+=4; rp+=4; num-=4; | ||
194 | } | ||
195 | #endif | ||
196 | while (num) | ||
197 | { | ||
198 | mul(rp[0],ap[0],bl,bh,carry); | ||
199 | ap++; rp++; num--; | ||
200 | } | ||
201 | return(carry); | ||
202 | } | ||
203 | |||
204 | void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) | ||
205 | { | ||
206 | assert(n >= 0); | ||
207 | if (n <= 0) return; | ||
208 | |||
209 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
210 | while (n&~3) | ||
211 | { | ||
212 | sqr64(r[0],r[1],a[0]); | ||
213 | sqr64(r[2],r[3],a[1]); | ||
214 | sqr64(r[4],r[5],a[2]); | ||
215 | sqr64(r[6],r[7],a[3]); | ||
216 | a+=4; r+=8; n-=4; | ||
217 | } | ||
218 | #endif | ||
219 | while (n) | ||
220 | { | ||
221 | sqr64(r[0],r[1],a[0]); | ||
222 | a++; r+=2; n--; | ||
223 | } | ||
224 | } | ||
225 | |||
226 | #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ | ||
227 | |||
228 | #if defined(BN_LLONG) && defined(BN_DIV2W) | ||
229 | |||
230 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
231 | { | ||
232 | return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d)); | ||
233 | } | ||
234 | |||
235 | #else | ||
236 | |||
237 | /* Divide h,l by d and return the result. */ | ||
238 | /* I need to test this some more :-( */ | ||
239 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
240 | { | ||
241 | BN_ULONG dh,dl,q,ret=0,th,tl,t; | ||
242 | int i,count=2; | ||
243 | |||
244 | if (d == 0) return(BN_MASK2); | ||
245 | |||
246 | i=BN_num_bits_word(d); | ||
247 | assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i)); | ||
248 | |||
249 | i=BN_BITS2-i; | ||
250 | if (h >= d) h-=d; | ||
251 | |||
252 | if (i) | ||
253 | { | ||
254 | d<<=i; | ||
255 | h=(h<<i)|(l>>(BN_BITS2-i)); | ||
256 | l<<=i; | ||
257 | } | ||
258 | dh=(d&BN_MASK2h)>>BN_BITS4; | ||
259 | dl=(d&BN_MASK2l); | ||
260 | for (;;) | ||
261 | { | ||
262 | if ((h>>BN_BITS4) == dh) | ||
263 | q=BN_MASK2l; | ||
264 | else | ||
265 | q=h/dh; | ||
266 | |||
267 | th=q*dh; | ||
268 | tl=dl*q; | ||
269 | for (;;) | ||
270 | { | ||
271 | t=h-th; | ||
272 | if ((t&BN_MASK2h) || | ||
273 | ((tl) <= ( | ||
274 | (t<<BN_BITS4)| | ||
275 | ((l&BN_MASK2h)>>BN_BITS4)))) | ||
276 | break; | ||
277 | q--; | ||
278 | th-=dh; | ||
279 | tl-=dl; | ||
280 | } | ||
281 | t=(tl>>BN_BITS4); | ||
282 | tl=(tl<<BN_BITS4)&BN_MASK2h; | ||
283 | th+=t; | ||
284 | |||
285 | if (l < tl) th++; | ||
286 | l-=tl; | ||
287 | if (h < th) | ||
288 | { | ||
289 | h+=d; | ||
290 | q--; | ||
291 | } | ||
292 | h-=th; | ||
293 | |||
294 | if (--count == 0) break; | ||
295 | |||
296 | ret=q<<BN_BITS4; | ||
297 | h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2; | ||
298 | l=(l&BN_MASK2l)<<BN_BITS4; | ||
299 | } | ||
300 | ret|=q; | ||
301 | return(ret); | ||
302 | } | ||
303 | #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */ | ||
304 | |||
305 | #ifdef BN_LLONG | ||
306 | BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
307 | { | ||
308 | BN_ULLONG ll=0; | ||
309 | |||
310 | assert(n >= 0); | ||
311 | if (n <= 0) return((BN_ULONG)0); | ||
312 | |||
313 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
314 | while (n&~3) | ||
315 | { | ||
316 | ll+=(BN_ULLONG)a[0]+b[0]; | ||
317 | r[0]=(BN_ULONG)ll&BN_MASK2; | ||
318 | ll>>=BN_BITS2; | ||
319 | ll+=(BN_ULLONG)a[1]+b[1]; | ||
320 | r[1]=(BN_ULONG)ll&BN_MASK2; | ||
321 | ll>>=BN_BITS2; | ||
322 | ll+=(BN_ULLONG)a[2]+b[2]; | ||
323 | r[2]=(BN_ULONG)ll&BN_MASK2; | ||
324 | ll>>=BN_BITS2; | ||
325 | ll+=(BN_ULLONG)a[3]+b[3]; | ||
326 | r[3]=(BN_ULONG)ll&BN_MASK2; | ||
327 | ll>>=BN_BITS2; | ||
328 | a+=4; b+=4; r+=4; n-=4; | ||
329 | } | ||
330 | #endif | ||
331 | while (n) | ||
332 | { | ||
333 | ll+=(BN_ULLONG)a[0]+b[0]; | ||
334 | r[0]=(BN_ULONG)ll&BN_MASK2; | ||
335 | ll>>=BN_BITS2; | ||
336 | a++; b++; r++; n--; | ||
337 | } | ||
338 | return((BN_ULONG)ll); | ||
339 | } | ||
340 | #else /* !BN_LLONG */ | ||
341 | BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
342 | { | ||
343 | BN_ULONG c,l,t; | ||
344 | |||
345 | assert(n >= 0); | ||
346 | if (n <= 0) return((BN_ULONG)0); | ||
347 | |||
348 | c=0; | ||
349 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
350 | while (n&~3) | ||
351 | { | ||
352 | t=a[0]; | ||
353 | t=(t+c)&BN_MASK2; | ||
354 | c=(t < c); | ||
355 | l=(t+b[0])&BN_MASK2; | ||
356 | c+=(l < t); | ||
357 | r[0]=l; | ||
358 | t=a[1]; | ||
359 | t=(t+c)&BN_MASK2; | ||
360 | c=(t < c); | ||
361 | l=(t+b[1])&BN_MASK2; | ||
362 | c+=(l < t); | ||
363 | r[1]=l; | ||
364 | t=a[2]; | ||
365 | t=(t+c)&BN_MASK2; | ||
366 | c=(t < c); | ||
367 | l=(t+b[2])&BN_MASK2; | ||
368 | c+=(l < t); | ||
369 | r[2]=l; | ||
370 | t=a[3]; | ||
371 | t=(t+c)&BN_MASK2; | ||
372 | c=(t < c); | ||
373 | l=(t+b[3])&BN_MASK2; | ||
374 | c+=(l < t); | ||
375 | r[3]=l; | ||
376 | a+=4; b+=4; r+=4; n-=4; | ||
377 | } | ||
378 | #endif | ||
379 | while(n) | ||
380 | { | ||
381 | t=a[0]; | ||
382 | t=(t+c)&BN_MASK2; | ||
383 | c=(t < c); | ||
384 | l=(t+b[0])&BN_MASK2; | ||
385 | c+=(l < t); | ||
386 | r[0]=l; | ||
387 | a++; b++; r++; n--; | ||
388 | } | ||
389 | return((BN_ULONG)c); | ||
390 | } | ||
391 | #endif /* !BN_LLONG */ | ||
392 | |||
393 | BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
394 | { | ||
395 | BN_ULONG t1,t2; | ||
396 | int c=0; | ||
397 | |||
398 | assert(n >= 0); | ||
399 | if (n <= 0) return((BN_ULONG)0); | ||
400 | |||
401 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
402 | while (n&~3) | ||
403 | { | ||
404 | t1=a[0]; t2=b[0]; | ||
405 | r[0]=(t1-t2-c)&BN_MASK2; | ||
406 | if (t1 != t2) c=(t1 < t2); | ||
407 | t1=a[1]; t2=b[1]; | ||
408 | r[1]=(t1-t2-c)&BN_MASK2; | ||
409 | if (t1 != t2) c=(t1 < t2); | ||
410 | t1=a[2]; t2=b[2]; | ||
411 | r[2]=(t1-t2-c)&BN_MASK2; | ||
412 | if (t1 != t2) c=(t1 < t2); | ||
413 | t1=a[3]; t2=b[3]; | ||
414 | r[3]=(t1-t2-c)&BN_MASK2; | ||
415 | if (t1 != t2) c=(t1 < t2); | ||
416 | a+=4; b+=4; r+=4; n-=4; | ||
417 | } | ||
418 | #endif | ||
419 | while (n) | ||
420 | { | ||
421 | t1=a[0]; t2=b[0]; | ||
422 | r[0]=(t1-t2-c)&BN_MASK2; | ||
423 | if (t1 != t2) c=(t1 < t2); | ||
424 | a++; b++; r++; n--; | ||
425 | } | ||
426 | return(c); | ||
427 | } | ||
428 | |||
429 | #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT) | ||
430 | |||
431 | #undef bn_mul_comba8 | ||
432 | #undef bn_mul_comba4 | ||
433 | #undef bn_sqr_comba8 | ||
434 | #undef bn_sqr_comba4 | ||
435 | |||
436 | /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ | ||
437 | /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ | ||
438 | /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ | ||
439 | /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */ | ||
440 | |||
441 | #ifdef BN_LLONG | ||
442 | #define mul_add_c(a,b,c0,c1,c2) \ | ||
443 | t=(BN_ULLONG)a*b; \ | ||
444 | t1=(BN_ULONG)Lw(t); \ | ||
445 | t2=(BN_ULONG)Hw(t); \ | ||
446 | c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ | ||
447 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
448 | |||
449 | #define mul_add_c2(a,b,c0,c1,c2) \ | ||
450 | t=(BN_ULLONG)a*b; \ | ||
451 | tt=(t+t)&BN_MASK; \ | ||
452 | if (tt < t) c2++; \ | ||
453 | t1=(BN_ULONG)Lw(tt); \ | ||
454 | t2=(BN_ULONG)Hw(tt); \ | ||
455 | c0=(c0+t1)&BN_MASK2; \ | ||
456 | if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \ | ||
457 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
458 | |||
459 | #define sqr_add_c(a,i,c0,c1,c2) \ | ||
460 | t=(BN_ULLONG)a[i]*a[i]; \ | ||
461 | t1=(BN_ULONG)Lw(t); \ | ||
462 | t2=(BN_ULONG)Hw(t); \ | ||
463 | c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ | ||
464 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
465 | |||
466 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
467 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
468 | |||
469 | #elif defined(BN_UMULT_LOHI) | ||
470 | |||
471 | #define mul_add_c(a,b,c0,c1,c2) { \ | ||
472 | BN_ULONG ta=(a),tb=(b); \ | ||
473 | BN_UMULT_LOHI(t1,t2,ta,tb); \ | ||
474 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
475 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
476 | } | ||
477 | |||
478 | #define mul_add_c2(a,b,c0,c1,c2) { \ | ||
479 | BN_ULONG ta=(a),tb=(b),t0; \ | ||
480 | BN_UMULT_LOHI(t0,t1,ta,tb); \ | ||
481 | t2 = t1+t1; c2 += (t2<t1)?1:0; \ | ||
482 | t1 = t0+t0; t2 += (t1<t0)?1:0; \ | ||
483 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
484 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
485 | } | ||
486 | |||
487 | #define sqr_add_c(a,i,c0,c1,c2) { \ | ||
488 | BN_ULONG ta=(a)[i]; \ | ||
489 | BN_UMULT_LOHI(t1,t2,ta,ta); \ | ||
490 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
491 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
492 | } | ||
493 | |||
494 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
495 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
496 | |||
497 | #elif defined(BN_UMULT_HIGH) | ||
498 | |||
499 | #define mul_add_c(a,b,c0,c1,c2) { \ | ||
500 | BN_ULONG ta=(a),tb=(b); \ | ||
501 | t1 = ta * tb; \ | ||
502 | t2 = BN_UMULT_HIGH(ta,tb); \ | ||
503 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
504 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
505 | } | ||
506 | |||
507 | #define mul_add_c2(a,b,c0,c1,c2) { \ | ||
508 | BN_ULONG ta=(a),tb=(b),t0; \ | ||
509 | t1 = BN_UMULT_HIGH(ta,tb); \ | ||
510 | t0 = ta * tb; \ | ||
511 | t2 = t1+t1; c2 += (t2<t1)?1:0; \ | ||
512 | t1 = t0+t0; t2 += (t1<t0)?1:0; \ | ||
513 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
514 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
515 | } | ||
516 | |||
517 | #define sqr_add_c(a,i,c0,c1,c2) { \ | ||
518 | BN_ULONG ta=(a)[i]; \ | ||
519 | t1 = ta * ta; \ | ||
520 | t2 = BN_UMULT_HIGH(ta,ta); \ | ||
521 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
522 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
523 | } | ||
524 | |||
525 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
526 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
527 | |||
528 | #else /* !BN_LLONG */ | ||
529 | #define mul_add_c(a,b,c0,c1,c2) \ | ||
530 | t1=LBITS(a); t2=HBITS(a); \ | ||
531 | bl=LBITS(b); bh=HBITS(b); \ | ||
532 | mul64(t1,t2,bl,bh); \ | ||
533 | c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ | ||
534 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
535 | |||
536 | #define mul_add_c2(a,b,c0,c1,c2) \ | ||
537 | t1=LBITS(a); t2=HBITS(a); \ | ||
538 | bl=LBITS(b); bh=HBITS(b); \ | ||
539 | mul64(t1,t2,bl,bh); \ | ||
540 | if (t2 & BN_TBIT) c2++; \ | ||
541 | t2=(t2+t2)&BN_MASK2; \ | ||
542 | if (t1 & BN_TBIT) t2++; \ | ||
543 | t1=(t1+t1)&BN_MASK2; \ | ||
544 | c0=(c0+t1)&BN_MASK2; \ | ||
545 | if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \ | ||
546 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
547 | |||
548 | #define sqr_add_c(a,i,c0,c1,c2) \ | ||
549 | sqr64(t1,t2,(a)[i]); \ | ||
550 | c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ | ||
551 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
552 | |||
553 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
554 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
555 | #endif /* !BN_LLONG */ | ||
556 | |||
557 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
558 | { | ||
559 | #ifdef BN_LLONG | ||
560 | BN_ULLONG t; | ||
561 | #else | ||
562 | BN_ULONG bl,bh; | ||
563 | #endif | ||
564 | BN_ULONG t1,t2; | ||
565 | BN_ULONG c1,c2,c3; | ||
566 | |||
567 | c1=0; | ||
568 | c2=0; | ||
569 | c3=0; | ||
570 | mul_add_c(a[0],b[0],c1,c2,c3); | ||
571 | r[0]=c1; | ||
572 | c1=0; | ||
573 | mul_add_c(a[0],b[1],c2,c3,c1); | ||
574 | mul_add_c(a[1],b[0],c2,c3,c1); | ||
575 | r[1]=c2; | ||
576 | c2=0; | ||
577 | mul_add_c(a[2],b[0],c3,c1,c2); | ||
578 | mul_add_c(a[1],b[1],c3,c1,c2); | ||
579 | mul_add_c(a[0],b[2],c3,c1,c2); | ||
580 | r[2]=c3; | ||
581 | c3=0; | ||
582 | mul_add_c(a[0],b[3],c1,c2,c3); | ||
583 | mul_add_c(a[1],b[2],c1,c2,c3); | ||
584 | mul_add_c(a[2],b[1],c1,c2,c3); | ||
585 | mul_add_c(a[3],b[0],c1,c2,c3); | ||
586 | r[3]=c1; | ||
587 | c1=0; | ||
588 | mul_add_c(a[4],b[0],c2,c3,c1); | ||
589 | mul_add_c(a[3],b[1],c2,c3,c1); | ||
590 | mul_add_c(a[2],b[2],c2,c3,c1); | ||
591 | mul_add_c(a[1],b[3],c2,c3,c1); | ||
592 | mul_add_c(a[0],b[4],c2,c3,c1); | ||
593 | r[4]=c2; | ||
594 | c2=0; | ||
595 | mul_add_c(a[0],b[5],c3,c1,c2); | ||
596 | mul_add_c(a[1],b[4],c3,c1,c2); | ||
597 | mul_add_c(a[2],b[3],c3,c1,c2); | ||
598 | mul_add_c(a[3],b[2],c3,c1,c2); | ||
599 | mul_add_c(a[4],b[1],c3,c1,c2); | ||
600 | mul_add_c(a[5],b[0],c3,c1,c2); | ||
601 | r[5]=c3; | ||
602 | c3=0; | ||
603 | mul_add_c(a[6],b[0],c1,c2,c3); | ||
604 | mul_add_c(a[5],b[1],c1,c2,c3); | ||
605 | mul_add_c(a[4],b[2],c1,c2,c3); | ||
606 | mul_add_c(a[3],b[3],c1,c2,c3); | ||
607 | mul_add_c(a[2],b[4],c1,c2,c3); | ||
608 | mul_add_c(a[1],b[5],c1,c2,c3); | ||
609 | mul_add_c(a[0],b[6],c1,c2,c3); | ||
610 | r[6]=c1; | ||
611 | c1=0; | ||
612 | mul_add_c(a[0],b[7],c2,c3,c1); | ||
613 | mul_add_c(a[1],b[6],c2,c3,c1); | ||
614 | mul_add_c(a[2],b[5],c2,c3,c1); | ||
615 | mul_add_c(a[3],b[4],c2,c3,c1); | ||
616 | mul_add_c(a[4],b[3],c2,c3,c1); | ||
617 | mul_add_c(a[5],b[2],c2,c3,c1); | ||
618 | mul_add_c(a[6],b[1],c2,c3,c1); | ||
619 | mul_add_c(a[7],b[0],c2,c3,c1); | ||
620 | r[7]=c2; | ||
621 | c2=0; | ||
622 | mul_add_c(a[7],b[1],c3,c1,c2); | ||
623 | mul_add_c(a[6],b[2],c3,c1,c2); | ||
624 | mul_add_c(a[5],b[3],c3,c1,c2); | ||
625 | mul_add_c(a[4],b[4],c3,c1,c2); | ||
626 | mul_add_c(a[3],b[5],c3,c1,c2); | ||
627 | mul_add_c(a[2],b[6],c3,c1,c2); | ||
628 | mul_add_c(a[1],b[7],c3,c1,c2); | ||
629 | r[8]=c3; | ||
630 | c3=0; | ||
631 | mul_add_c(a[2],b[7],c1,c2,c3); | ||
632 | mul_add_c(a[3],b[6],c1,c2,c3); | ||
633 | mul_add_c(a[4],b[5],c1,c2,c3); | ||
634 | mul_add_c(a[5],b[4],c1,c2,c3); | ||
635 | mul_add_c(a[6],b[3],c1,c2,c3); | ||
636 | mul_add_c(a[7],b[2],c1,c2,c3); | ||
637 | r[9]=c1; | ||
638 | c1=0; | ||
639 | mul_add_c(a[7],b[3],c2,c3,c1); | ||
640 | mul_add_c(a[6],b[4],c2,c3,c1); | ||
641 | mul_add_c(a[5],b[5],c2,c3,c1); | ||
642 | mul_add_c(a[4],b[6],c2,c3,c1); | ||
643 | mul_add_c(a[3],b[7],c2,c3,c1); | ||
644 | r[10]=c2; | ||
645 | c2=0; | ||
646 | mul_add_c(a[4],b[7],c3,c1,c2); | ||
647 | mul_add_c(a[5],b[6],c3,c1,c2); | ||
648 | mul_add_c(a[6],b[5],c3,c1,c2); | ||
649 | mul_add_c(a[7],b[4],c3,c1,c2); | ||
650 | r[11]=c3; | ||
651 | c3=0; | ||
652 | mul_add_c(a[7],b[5],c1,c2,c3); | ||
653 | mul_add_c(a[6],b[6],c1,c2,c3); | ||
654 | mul_add_c(a[5],b[7],c1,c2,c3); | ||
655 | r[12]=c1; | ||
656 | c1=0; | ||
657 | mul_add_c(a[6],b[7],c2,c3,c1); | ||
658 | mul_add_c(a[7],b[6],c2,c3,c1); | ||
659 | r[13]=c2; | ||
660 | c2=0; | ||
661 | mul_add_c(a[7],b[7],c3,c1,c2); | ||
662 | r[14]=c3; | ||
663 | r[15]=c1; | ||
664 | } | ||
665 | |||
666 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
667 | { | ||
668 | #ifdef BN_LLONG | ||
669 | BN_ULLONG t; | ||
670 | #else | ||
671 | BN_ULONG bl,bh; | ||
672 | #endif | ||
673 | BN_ULONG t1,t2; | ||
674 | BN_ULONG c1,c2,c3; | ||
675 | |||
676 | c1=0; | ||
677 | c2=0; | ||
678 | c3=0; | ||
679 | mul_add_c(a[0],b[0],c1,c2,c3); | ||
680 | r[0]=c1; | ||
681 | c1=0; | ||
682 | mul_add_c(a[0],b[1],c2,c3,c1); | ||
683 | mul_add_c(a[1],b[0],c2,c3,c1); | ||
684 | r[1]=c2; | ||
685 | c2=0; | ||
686 | mul_add_c(a[2],b[0],c3,c1,c2); | ||
687 | mul_add_c(a[1],b[1],c3,c1,c2); | ||
688 | mul_add_c(a[0],b[2],c3,c1,c2); | ||
689 | r[2]=c3; | ||
690 | c3=0; | ||
691 | mul_add_c(a[0],b[3],c1,c2,c3); | ||
692 | mul_add_c(a[1],b[2],c1,c2,c3); | ||
693 | mul_add_c(a[2],b[1],c1,c2,c3); | ||
694 | mul_add_c(a[3],b[0],c1,c2,c3); | ||
695 | r[3]=c1; | ||
696 | c1=0; | ||
697 | mul_add_c(a[3],b[1],c2,c3,c1); | ||
698 | mul_add_c(a[2],b[2],c2,c3,c1); | ||
699 | mul_add_c(a[1],b[3],c2,c3,c1); | ||
700 | r[4]=c2; | ||
701 | c2=0; | ||
702 | mul_add_c(a[2],b[3],c3,c1,c2); | ||
703 | mul_add_c(a[3],b[2],c3,c1,c2); | ||
704 | r[5]=c3; | ||
705 | c3=0; | ||
706 | mul_add_c(a[3],b[3],c1,c2,c3); | ||
707 | r[6]=c1; | ||
708 | r[7]=c2; | ||
709 | } | ||
710 | |||
711 | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) | ||
712 | { | ||
713 | #ifdef BN_LLONG | ||
714 | BN_ULLONG t,tt; | ||
715 | #else | ||
716 | BN_ULONG bl,bh; | ||
717 | #endif | ||
718 | BN_ULONG t1,t2; | ||
719 | BN_ULONG c1,c2,c3; | ||
720 | |||
721 | c1=0; | ||
722 | c2=0; | ||
723 | c3=0; | ||
724 | sqr_add_c(a,0,c1,c2,c3); | ||
725 | r[0]=c1; | ||
726 | c1=0; | ||
727 | sqr_add_c2(a,1,0,c2,c3,c1); | ||
728 | r[1]=c2; | ||
729 | c2=0; | ||
730 | sqr_add_c(a,1,c3,c1,c2); | ||
731 | sqr_add_c2(a,2,0,c3,c1,c2); | ||
732 | r[2]=c3; | ||
733 | c3=0; | ||
734 | sqr_add_c2(a,3,0,c1,c2,c3); | ||
735 | sqr_add_c2(a,2,1,c1,c2,c3); | ||
736 | r[3]=c1; | ||
737 | c1=0; | ||
738 | sqr_add_c(a,2,c2,c3,c1); | ||
739 | sqr_add_c2(a,3,1,c2,c3,c1); | ||
740 | sqr_add_c2(a,4,0,c2,c3,c1); | ||
741 | r[4]=c2; | ||
742 | c2=0; | ||
743 | sqr_add_c2(a,5,0,c3,c1,c2); | ||
744 | sqr_add_c2(a,4,1,c3,c1,c2); | ||
745 | sqr_add_c2(a,3,2,c3,c1,c2); | ||
746 | r[5]=c3; | ||
747 | c3=0; | ||
748 | sqr_add_c(a,3,c1,c2,c3); | ||
749 | sqr_add_c2(a,4,2,c1,c2,c3); | ||
750 | sqr_add_c2(a,5,1,c1,c2,c3); | ||
751 | sqr_add_c2(a,6,0,c1,c2,c3); | ||
752 | r[6]=c1; | ||
753 | c1=0; | ||
754 | sqr_add_c2(a,7,0,c2,c3,c1); | ||
755 | sqr_add_c2(a,6,1,c2,c3,c1); | ||
756 | sqr_add_c2(a,5,2,c2,c3,c1); | ||
757 | sqr_add_c2(a,4,3,c2,c3,c1); | ||
758 | r[7]=c2; | ||
759 | c2=0; | ||
760 | sqr_add_c(a,4,c3,c1,c2); | ||
761 | sqr_add_c2(a,5,3,c3,c1,c2); | ||
762 | sqr_add_c2(a,6,2,c3,c1,c2); | ||
763 | sqr_add_c2(a,7,1,c3,c1,c2); | ||
764 | r[8]=c3; | ||
765 | c3=0; | ||
766 | sqr_add_c2(a,7,2,c1,c2,c3); | ||
767 | sqr_add_c2(a,6,3,c1,c2,c3); | ||
768 | sqr_add_c2(a,5,4,c1,c2,c3); | ||
769 | r[9]=c1; | ||
770 | c1=0; | ||
771 | sqr_add_c(a,5,c2,c3,c1); | ||
772 | sqr_add_c2(a,6,4,c2,c3,c1); | ||
773 | sqr_add_c2(a,7,3,c2,c3,c1); | ||
774 | r[10]=c2; | ||
775 | c2=0; | ||
776 | sqr_add_c2(a,7,4,c3,c1,c2); | ||
777 | sqr_add_c2(a,6,5,c3,c1,c2); | ||
778 | r[11]=c3; | ||
779 | c3=0; | ||
780 | sqr_add_c(a,6,c1,c2,c3); | ||
781 | sqr_add_c2(a,7,5,c1,c2,c3); | ||
782 | r[12]=c1; | ||
783 | c1=0; | ||
784 | sqr_add_c2(a,7,6,c2,c3,c1); | ||
785 | r[13]=c2; | ||
786 | c2=0; | ||
787 | sqr_add_c(a,7,c3,c1,c2); | ||
788 | r[14]=c3; | ||
789 | r[15]=c1; | ||
790 | } | ||
791 | |||
792 | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) | ||
793 | { | ||
794 | #ifdef BN_LLONG | ||
795 | BN_ULLONG t,tt; | ||
796 | #else | ||
797 | BN_ULONG bl,bh; | ||
798 | #endif | ||
799 | BN_ULONG t1,t2; | ||
800 | BN_ULONG c1,c2,c3; | ||
801 | |||
802 | c1=0; | ||
803 | c2=0; | ||
804 | c3=0; | ||
805 | sqr_add_c(a,0,c1,c2,c3); | ||
806 | r[0]=c1; | ||
807 | c1=0; | ||
808 | sqr_add_c2(a,1,0,c2,c3,c1); | ||
809 | r[1]=c2; | ||
810 | c2=0; | ||
811 | sqr_add_c(a,1,c3,c1,c2); | ||
812 | sqr_add_c2(a,2,0,c3,c1,c2); | ||
813 | r[2]=c3; | ||
814 | c3=0; | ||
815 | sqr_add_c2(a,3,0,c1,c2,c3); | ||
816 | sqr_add_c2(a,2,1,c1,c2,c3); | ||
817 | r[3]=c1; | ||
818 | c1=0; | ||
819 | sqr_add_c(a,2,c2,c3,c1); | ||
820 | sqr_add_c2(a,3,1,c2,c3,c1); | ||
821 | r[4]=c2; | ||
822 | c2=0; | ||
823 | sqr_add_c2(a,3,2,c3,c1,c2); | ||
824 | r[5]=c3; | ||
825 | c3=0; | ||
826 | sqr_add_c(a,3,c1,c2,c3); | ||
827 | r[6]=c1; | ||
828 | r[7]=c2; | ||
829 | } | ||
830 | |||
831 | #ifdef OPENSSL_NO_ASM | ||
832 | #ifdef OPENSSL_BN_ASM_MONT | ||
833 | #include <alloca.h> | ||
834 | /* | ||
835 | * This is essentially reference implementation, which may or may not | ||
836 | * result in performance improvement. E.g. on IA-32 this routine was | ||
837 | * observed to give 40% faster rsa1024 private key operations and 10% | ||
838 | * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only | ||
839 | * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a | ||
840 | * reference implementation, one to be used as starting point for | ||
841 | * platform-specific assembler. Mentioned numbers apply to compiler | ||
842 | * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and | ||
843 | * can vary not only from platform to platform, but even for compiler | ||
844 | * versions. Assembler vs. assembler improvement coefficients can | ||
845 | * [and are known to] differ and are to be documented elsewhere. | ||
846 | */ | ||
847 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num) | ||
848 | { | ||
849 | BN_ULONG c0,c1,ml,*tp,n0; | ||
850 | #ifdef mul64 | ||
851 | BN_ULONG mh; | ||
852 | #endif | ||
853 | volatile BN_ULONG *vp; | ||
854 | int i=0,j; | ||
855 | |||
856 | #if 0 /* template for platform-specific implementation */ | ||
857 | if (ap==bp) return bn_sqr_mont(rp,ap,np,n0p,num); | ||
858 | #endif | ||
859 | vp = tp = alloca((num+2)*sizeof(BN_ULONG)); | ||
860 | |||
861 | n0 = *n0p; | ||
862 | |||
863 | c0 = 0; | ||
864 | ml = bp[0]; | ||
865 | #ifdef mul64 | ||
866 | mh = HBITS(ml); | ||
867 | ml = LBITS(ml); | ||
868 | for (j=0;j<num;++j) | ||
869 | mul(tp[j],ap[j],ml,mh,c0); | ||
870 | #else | ||
871 | for (j=0;j<num;++j) | ||
872 | mul(tp[j],ap[j],ml,c0); | ||
873 | #endif | ||
874 | |||
875 | tp[num] = c0; | ||
876 | tp[num+1] = 0; | ||
877 | goto enter; | ||
878 | |||
879 | for(i=0;i<num;i++) | ||
880 | { | ||
881 | c0 = 0; | ||
882 | ml = bp[i]; | ||
883 | #ifdef mul64 | ||
884 | mh = HBITS(ml); | ||
885 | ml = LBITS(ml); | ||
886 | for (j=0;j<num;++j) | ||
887 | mul_add(tp[j],ap[j],ml,mh,c0); | ||
888 | #else | ||
889 | for (j=0;j<num;++j) | ||
890 | mul_add(tp[j],ap[j],ml,c0); | ||
891 | #endif | ||
892 | c1 = (tp[num] + c0)&BN_MASK2; | ||
893 | tp[num] = c1; | ||
894 | tp[num+1] = (c1<c0?1:0); | ||
895 | enter: | ||
896 | c1 = tp[0]; | ||
897 | ml = (c1*n0)&BN_MASK2; | ||
898 | c0 = 0; | ||
899 | #ifdef mul64 | ||
900 | mh = HBITS(ml); | ||
901 | ml = LBITS(ml); | ||
902 | mul_add(c1,np[0],ml,mh,c0); | ||
903 | #else | ||
904 | mul_add(c1,ml,np[0],c0); | ||
905 | #endif | ||
906 | for(j=1;j<num;j++) | ||
907 | { | ||
908 | c1 = tp[j]; | ||
909 | #ifdef mul64 | ||
910 | mul_add(c1,np[j],ml,mh,c0); | ||
911 | #else | ||
912 | mul_add(c1,ml,np[j],c0); | ||
913 | #endif | ||
914 | tp[j-1] = c1&BN_MASK2; | ||
915 | } | ||
916 | c1 = (tp[num] + c0)&BN_MASK2; | ||
917 | tp[num-1] = c1; | ||
918 | tp[num] = tp[num+1] + (c1<c0?1:0); | ||
919 | } | ||
920 | |||
921 | if (tp[num]!=0 || tp[num-1]>=np[num-1]) | ||
922 | { | ||
923 | c0 = bn_sub_words(rp,tp,np,num); | ||
924 | if (tp[num]!=0 || c0==0) | ||
925 | { | ||
926 | for(i=0;i<num+2;i++) vp[i] = 0; | ||
927 | return 1; | ||
928 | } | ||
929 | } | ||
930 | for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0; | ||
931 | vp[num] = 0; | ||
932 | vp[num+1] = 0; | ||
933 | return 1; | ||
934 | } | ||
935 | #else | ||
936 | /* | ||
937 | * Return value of 0 indicates that multiplication/convolution was not | ||
938 | * performed to signal the caller to fall down to alternative/original | ||
939 | * code-path. | ||
940 | */ | ||
941 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num) | ||
942 | { return 0; } | ||
943 | #endif /* OPENSSL_BN_ASM_MONT */ | ||
944 | #endif | ||
945 | |||
946 | #else /* !BN_MUL_COMBA */ | ||
947 | |||
948 | /* hmm... is it faster just to do a multiply? */ | ||
949 | #undef bn_sqr_comba4 | ||
950 | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) | ||
951 | { | ||
952 | BN_ULONG t[8]; | ||
953 | bn_sqr_normal(r,a,4,t); | ||
954 | } | ||
955 | |||
956 | #undef bn_sqr_comba8 | ||
957 | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) | ||
958 | { | ||
959 | BN_ULONG t[16]; | ||
960 | bn_sqr_normal(r,a,8,t); | ||
961 | } | ||
962 | |||
963 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
964 | { | ||
965 | r[4]=bn_mul_words( &(r[0]),a,4,b[0]); | ||
966 | r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]); | ||
967 | r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]); | ||
968 | r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]); | ||
969 | } | ||
970 | |||
971 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
972 | { | ||
973 | r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]); | ||
974 | r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]); | ||
975 | r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]); | ||
976 | r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]); | ||
977 | r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]); | ||
978 | r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]); | ||
979 | r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]); | ||
980 | r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]); | ||
981 | } | ||
982 | |||
983 | #ifdef OPENSSL_NO_ASM | ||
984 | #ifdef OPENSSL_BN_ASM_MONT | ||
985 | #include <alloca.h> | ||
986 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num) | ||
987 | { | ||
988 | BN_ULONG c0,c1,*tp,n0=*n0p; | ||
989 | volatile BN_ULONG *vp; | ||
990 | int i=0,j; | ||
991 | |||
992 | vp = tp = alloca((num+2)*sizeof(BN_ULONG)); | ||
993 | |||
994 | for(i=0;i<=num;i++) tp[i]=0; | ||
995 | |||
996 | for(i=0;i<num;i++) | ||
997 | { | ||
998 | c0 = bn_mul_add_words(tp,ap,num,bp[i]); | ||
999 | c1 = (tp[num] + c0)&BN_MASK2; | ||
1000 | tp[num] = c1; | ||
1001 | tp[num+1] = (c1<c0?1:0); | ||
1002 | |||
1003 | c0 = bn_mul_add_words(tp,np,num,tp[0]*n0); | ||
1004 | c1 = (tp[num] + c0)&BN_MASK2; | ||
1005 | tp[num] = c1; | ||
1006 | tp[num+1] += (c1<c0?1:0); | ||
1007 | for(j=0;j<=num;j++) tp[j]=tp[j+1]; | ||
1008 | } | ||
1009 | |||
1010 | if (tp[num]!=0 || tp[num-1]>=np[num-1]) | ||
1011 | { | ||
1012 | c0 = bn_sub_words(rp,tp,np,num); | ||
1013 | if (tp[num]!=0 || c0==0) | ||
1014 | { | ||
1015 | for(i=0;i<num+2;i++) vp[i] = 0; | ||
1016 | return 1; | ||
1017 | } | ||
1018 | } | ||
1019 | for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0; | ||
1020 | vp[num] = 0; | ||
1021 | vp[num+1] = 0; | ||
1022 | return 1; | ||
1023 | } | ||
1024 | #else | ||
1025 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num) | ||
1026 | { return 0; } | ||
1027 | #endif /* OPENSSL_BN_ASM_MONT */ | ||
1028 | #endif | ||
1029 | |||
1030 | #endif /* !BN_MUL_COMBA */ | ||
diff --git a/src/lib/libcrypto/bn/bn_blind.c b/src/lib/libcrypto/bn/bn_blind.c deleted file mode 100644 index 9ed8bc2b40..0000000000 --- a/src/lib/libcrypto/bn/bn_blind.c +++ /dev/null | |||
@@ -1,385 +0,0 @@ | |||
1 | /* crypto/bn/bn_blind.c */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@openssl.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
56 | * All rights reserved. | ||
57 | * | ||
58 | * This package is an SSL implementation written | ||
59 | * by Eric Young (eay@cryptsoft.com). | ||
60 | * The implementation was written so as to conform with Netscapes SSL. | ||
61 | * | ||
62 | * This library is free for commercial and non-commercial use as long as | ||
63 | * the following conditions are aheared to. The following conditions | ||
64 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
65 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
66 | * included with this distribution is covered by the same copyright terms | ||
67 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
68 | * | ||
69 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
70 | * the code are not to be removed. | ||
71 | * If this package is used in a product, Eric Young should be given attribution | ||
72 | * as the author of the parts of the library used. | ||
73 | * This can be in the form of a textual message at program startup or | ||
74 | * in documentation (online or textual) provided with the package. | ||
75 | * | ||
76 | * Redistribution and use in source and binary forms, with or without | ||
77 | * modification, are permitted provided that the following conditions | ||
78 | * are met: | ||
79 | * 1. Redistributions of source code must retain the copyright | ||
80 | * notice, this list of conditions and the following disclaimer. | ||
81 | * 2. Redistributions in binary form must reproduce the above copyright | ||
82 | * notice, this list of conditions and the following disclaimer in the | ||
83 | * documentation and/or other materials provided with the distribution. | ||
84 | * 3. All advertising materials mentioning features or use of this software | ||
85 | * must display the following acknowledgement: | ||
86 | * "This product includes cryptographic software written by | ||
87 | * Eric Young (eay@cryptsoft.com)" | ||
88 | * The word 'cryptographic' can be left out if the rouines from the library | ||
89 | * being used are not cryptographic related :-). | ||
90 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
91 | * the apps directory (application code) you must include an acknowledgement: | ||
92 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
93 | * | ||
94 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
95 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
96 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
97 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
98 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
99 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
100 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
101 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
102 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
103 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
104 | * SUCH DAMAGE. | ||
105 | * | ||
106 | * The licence and distribution terms for any publically available version or | ||
107 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
108 | * copied and put under another distribution licence | ||
109 | * [including the GNU Public Licence.] | ||
110 | */ | ||
111 | |||
112 | #include <stdio.h> | ||
113 | #include "cryptlib.h" | ||
114 | #include "bn_lcl.h" | ||
115 | |||
116 | #define BN_BLINDING_COUNTER 32 | ||
117 | |||
118 | struct bn_blinding_st | ||
119 | { | ||
120 | BIGNUM *A; | ||
121 | BIGNUM *Ai; | ||
122 | BIGNUM *e; | ||
123 | BIGNUM *mod; /* just a reference */ | ||
124 | #ifndef OPENSSL_NO_DEPRECATED | ||
125 | unsigned long thread_id; /* added in OpenSSL 0.9.6j and 0.9.7b; | ||
126 | * used only by crypto/rsa/rsa_eay.c, rsa_lib.c */ | ||
127 | #endif | ||
128 | CRYPTO_THREADID tid; | ||
129 | int counter; | ||
130 | unsigned long flags; | ||
131 | BN_MONT_CTX *m_ctx; | ||
132 | int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
133 | const BIGNUM *m, BN_CTX *ctx, | ||
134 | BN_MONT_CTX *m_ctx); | ||
135 | }; | ||
136 | |||
137 | BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod) | ||
138 | { | ||
139 | BN_BLINDING *ret=NULL; | ||
140 | |||
141 | bn_check_top(mod); | ||
142 | |||
143 | if ((ret=(BN_BLINDING *)OPENSSL_malloc(sizeof(BN_BLINDING))) == NULL) | ||
144 | { | ||
145 | BNerr(BN_F_BN_BLINDING_NEW,ERR_R_MALLOC_FAILURE); | ||
146 | return(NULL); | ||
147 | } | ||
148 | memset(ret,0,sizeof(BN_BLINDING)); | ||
149 | if (A != NULL) | ||
150 | { | ||
151 | if ((ret->A = BN_dup(A)) == NULL) goto err; | ||
152 | } | ||
153 | if (Ai != NULL) | ||
154 | { | ||
155 | if ((ret->Ai = BN_dup(Ai)) == NULL) goto err; | ||
156 | } | ||
157 | |||
158 | /* save a copy of mod in the BN_BLINDING structure */ | ||
159 | if ((ret->mod = BN_dup(mod)) == NULL) goto err; | ||
160 | if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0) | ||
161 | BN_set_flags(ret->mod, BN_FLG_CONSTTIME); | ||
162 | |||
163 | /* Set the counter to the special value -1 | ||
164 | * to indicate that this is never-used fresh blinding | ||
165 | * that does not need updating before first use. */ | ||
166 | ret->counter = -1; | ||
167 | CRYPTO_THREADID_current(&ret->tid); | ||
168 | return(ret); | ||
169 | err: | ||
170 | if (ret != NULL) BN_BLINDING_free(ret); | ||
171 | return(NULL); | ||
172 | } | ||
173 | |||
174 | void BN_BLINDING_free(BN_BLINDING *r) | ||
175 | { | ||
176 | if(r == NULL) | ||
177 | return; | ||
178 | |||
179 | if (r->A != NULL) BN_free(r->A ); | ||
180 | if (r->Ai != NULL) BN_free(r->Ai); | ||
181 | if (r->e != NULL) BN_free(r->e ); | ||
182 | if (r->mod != NULL) BN_free(r->mod); | ||
183 | OPENSSL_free(r); | ||
184 | } | ||
185 | |||
186 | int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx) | ||
187 | { | ||
188 | int ret=0; | ||
189 | |||
190 | if ((b->A == NULL) || (b->Ai == NULL)) | ||
191 | { | ||
192 | BNerr(BN_F_BN_BLINDING_UPDATE,BN_R_NOT_INITIALIZED); | ||
193 | goto err; | ||
194 | } | ||
195 | |||
196 | if (b->counter == -1) | ||
197 | b->counter = 0; | ||
198 | |||
199 | if (++b->counter == BN_BLINDING_COUNTER && b->e != NULL && | ||
200 | !(b->flags & BN_BLINDING_NO_RECREATE)) | ||
201 | { | ||
202 | /* re-create blinding parameters */ | ||
203 | if (!BN_BLINDING_create_param(b, NULL, NULL, ctx, NULL, NULL)) | ||
204 | goto err; | ||
205 | } | ||
206 | else if (!(b->flags & BN_BLINDING_NO_UPDATE)) | ||
207 | { | ||
208 | if (!BN_mod_mul(b->A,b->A,b->A,b->mod,ctx)) goto err; | ||
209 | if (!BN_mod_mul(b->Ai,b->Ai,b->Ai,b->mod,ctx)) goto err; | ||
210 | } | ||
211 | |||
212 | ret=1; | ||
213 | err: | ||
214 | if (b->counter == BN_BLINDING_COUNTER) | ||
215 | b->counter = 0; | ||
216 | return(ret); | ||
217 | } | ||
218 | |||
219 | int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx) | ||
220 | { | ||
221 | return BN_BLINDING_convert_ex(n, NULL, b, ctx); | ||
222 | } | ||
223 | |||
224 | int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *ctx) | ||
225 | { | ||
226 | int ret = 1; | ||
227 | |||
228 | bn_check_top(n); | ||
229 | |||
230 | if ((b->A == NULL) || (b->Ai == NULL)) | ||
231 | { | ||
232 | BNerr(BN_F_BN_BLINDING_CONVERT_EX,BN_R_NOT_INITIALIZED); | ||
233 | return(0); | ||
234 | } | ||
235 | |||
236 | if (b->counter == -1) | ||
237 | /* Fresh blinding, doesn't need updating. */ | ||
238 | b->counter = 0; | ||
239 | else if (!BN_BLINDING_update(b,ctx)) | ||
240 | return(0); | ||
241 | |||
242 | if (r != NULL) | ||
243 | { | ||
244 | if (!BN_copy(r, b->Ai)) ret=0; | ||
245 | } | ||
246 | |||
247 | if (!BN_mod_mul(n,n,b->A,b->mod,ctx)) ret=0; | ||
248 | |||
249 | return ret; | ||
250 | } | ||
251 | |||
252 | int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx) | ||
253 | { | ||
254 | return BN_BLINDING_invert_ex(n, NULL, b, ctx); | ||
255 | } | ||
256 | |||
257 | int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, BN_CTX *ctx) | ||
258 | { | ||
259 | int ret; | ||
260 | |||
261 | bn_check_top(n); | ||
262 | |||
263 | if (r != NULL) | ||
264 | ret = BN_mod_mul(n, n, r, b->mod, ctx); | ||
265 | else | ||
266 | { | ||
267 | if (b->Ai == NULL) | ||
268 | { | ||
269 | BNerr(BN_F_BN_BLINDING_INVERT_EX,BN_R_NOT_INITIALIZED); | ||
270 | return(0); | ||
271 | } | ||
272 | ret = BN_mod_mul(n, n, b->Ai, b->mod, ctx); | ||
273 | } | ||
274 | |||
275 | bn_check_top(n); | ||
276 | return(ret); | ||
277 | } | ||
278 | |||
279 | #ifndef OPENSSL_NO_DEPRECATED | ||
280 | unsigned long BN_BLINDING_get_thread_id(const BN_BLINDING *b) | ||
281 | { | ||
282 | return b->thread_id; | ||
283 | } | ||
284 | |||
285 | void BN_BLINDING_set_thread_id(BN_BLINDING *b, unsigned long n) | ||
286 | { | ||
287 | b->thread_id = n; | ||
288 | } | ||
289 | #endif | ||
290 | |||
291 | CRYPTO_THREADID *BN_BLINDING_thread_id(BN_BLINDING *b) | ||
292 | { | ||
293 | return &b->tid; | ||
294 | } | ||
295 | |||
296 | unsigned long BN_BLINDING_get_flags(const BN_BLINDING *b) | ||
297 | { | ||
298 | return b->flags; | ||
299 | } | ||
300 | |||
301 | void BN_BLINDING_set_flags(BN_BLINDING *b, unsigned long flags) | ||
302 | { | ||
303 | b->flags = flags; | ||
304 | } | ||
305 | |||
306 | BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b, | ||
307 | const BIGNUM *e, BIGNUM *m, BN_CTX *ctx, | ||
308 | int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
309 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx), | ||
310 | BN_MONT_CTX *m_ctx) | ||
311 | { | ||
312 | int retry_counter = 32; | ||
313 | BN_BLINDING *ret = NULL; | ||
314 | |||
315 | if (b == NULL) | ||
316 | ret = BN_BLINDING_new(NULL, NULL, m); | ||
317 | else | ||
318 | ret = b; | ||
319 | |||
320 | if (ret == NULL) | ||
321 | goto err; | ||
322 | |||
323 | if (ret->A == NULL && (ret->A = BN_new()) == NULL) | ||
324 | goto err; | ||
325 | if (ret->Ai == NULL && (ret->Ai = BN_new()) == NULL) | ||
326 | goto err; | ||
327 | |||
328 | if (e != NULL) | ||
329 | { | ||
330 | if (ret->e != NULL) | ||
331 | BN_free(ret->e); | ||
332 | ret->e = BN_dup(e); | ||
333 | } | ||
334 | if (ret->e == NULL) | ||
335 | goto err; | ||
336 | |||
337 | if (bn_mod_exp != NULL) | ||
338 | ret->bn_mod_exp = bn_mod_exp; | ||
339 | if (m_ctx != NULL) | ||
340 | ret->m_ctx = m_ctx; | ||
341 | |||
342 | do { | ||
343 | if (!BN_rand_range(ret->A, ret->mod)) goto err; | ||
344 | if (BN_mod_inverse(ret->Ai, ret->A, ret->mod, ctx) == NULL) | ||
345 | { | ||
346 | /* this should almost never happen for good RSA keys */ | ||
347 | unsigned long error = ERR_peek_last_error(); | ||
348 | if (ERR_GET_REASON(error) == BN_R_NO_INVERSE) | ||
349 | { | ||
350 | if (retry_counter-- == 0) | ||
351 | { | ||
352 | BNerr(BN_F_BN_BLINDING_CREATE_PARAM, | ||
353 | BN_R_TOO_MANY_ITERATIONS); | ||
354 | goto err; | ||
355 | } | ||
356 | ERR_clear_error(); | ||
357 | } | ||
358 | else | ||
359 | goto err; | ||
360 | } | ||
361 | else | ||
362 | break; | ||
363 | } while (1); | ||
364 | |||
365 | if (ret->bn_mod_exp != NULL && ret->m_ctx != NULL) | ||
366 | { | ||
367 | if (!ret->bn_mod_exp(ret->A, ret->A, ret->e, ret->mod, ctx, ret->m_ctx)) | ||
368 | goto err; | ||
369 | } | ||
370 | else | ||
371 | { | ||
372 | if (!BN_mod_exp(ret->A, ret->A, ret->e, ret->mod, ctx)) | ||
373 | goto err; | ||
374 | } | ||
375 | |||
376 | return ret; | ||
377 | err: | ||
378 | if (b == NULL && ret != NULL) | ||
379 | { | ||
380 | BN_BLINDING_free(ret); | ||
381 | ret = NULL; | ||
382 | } | ||
383 | |||
384 | return ret; | ||
385 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_const.c b/src/lib/libcrypto/bn/bn_const.c deleted file mode 100644 index eb60a25b3c..0000000000 --- a/src/lib/libcrypto/bn/bn_const.c +++ /dev/null | |||
@@ -1,402 +0,0 @@ | |||
1 | /* crypto/bn/knownprimes.c */ | ||
2 | /* Insert boilerplate */ | ||
3 | |||
4 | #include "bn.h" | ||
5 | |||
6 | /* "First Oakley Default Group" from RFC2409, section 6.1. | ||
7 | * | ||
8 | * The prime is: 2^768 - 2 ^704 - 1 + 2^64 * { [2^638 pi] + 149686 } | ||
9 | * | ||
10 | * RFC2409 specifies a generator of 2. | ||
11 | * RFC2412 specifies a generator of of 22. | ||
12 | */ | ||
13 | |||
14 | BIGNUM *get_rfc2409_prime_768(BIGNUM *bn) | ||
15 | { | ||
16 | static const unsigned char RFC2409_PRIME_768[]={ | ||
17 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
18 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
19 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
20 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
21 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
22 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
23 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
24 | 0xA6,0x3A,0x36,0x20,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
25 | }; | ||
26 | return BN_bin2bn(RFC2409_PRIME_768,sizeof(RFC2409_PRIME_768),bn); | ||
27 | } | ||
28 | |||
29 | /* "Second Oakley Default Group" from RFC2409, section 6.2. | ||
30 | * | ||
31 | * The prime is: 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }. | ||
32 | * | ||
33 | * RFC2409 specifies a generator of 2. | ||
34 | * RFC2412 specifies a generator of 22. | ||
35 | */ | ||
36 | |||
37 | BIGNUM *get_rfc2409_prime_1024(BIGNUM *bn) | ||
38 | { | ||
39 | static const unsigned char RFC2409_PRIME_1024[]={ | ||
40 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
41 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
42 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
43 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
44 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
45 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
46 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
47 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
48 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
49 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE6,0x53,0x81, | ||
50 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
51 | }; | ||
52 | return BN_bin2bn(RFC2409_PRIME_1024,sizeof(RFC2409_PRIME_1024),bn); | ||
53 | } | ||
54 | |||
55 | /* "1536-bit MODP Group" from RFC3526, Section 2. | ||
56 | * | ||
57 | * The prime is: 2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 } | ||
58 | * | ||
59 | * RFC3526 specifies a generator of 2. | ||
60 | * RFC2312 specifies a generator of 22. | ||
61 | */ | ||
62 | |||
63 | BIGNUM *get_rfc3526_prime_1536(BIGNUM *bn) | ||
64 | { | ||
65 | static const unsigned char RFC3526_PRIME_1536[]={ | ||
66 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
67 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
68 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
69 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
70 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
71 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
72 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
73 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
74 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
75 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
76 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
77 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
78 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
79 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
80 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
81 | 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
82 | }; | ||
83 | return BN_bin2bn(RFC3526_PRIME_1536,sizeof(RFC3526_PRIME_1536),bn); | ||
84 | } | ||
85 | |||
86 | /* "2048-bit MODP Group" from RFC3526, Section 3. | ||
87 | * | ||
88 | * The prime is: 2^2048 - 2^1984 - 1 + 2^64 * { [2^1918 pi] + 124476 } | ||
89 | * | ||
90 | * RFC3526 specifies a generator of 2. | ||
91 | */ | ||
92 | |||
93 | BIGNUM *get_rfc3526_prime_2048(BIGNUM *bn) | ||
94 | { | ||
95 | static const unsigned char RFC3526_PRIME_2048[]={ | ||
96 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
97 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
98 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
99 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
100 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
101 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
102 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
103 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
104 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
105 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
106 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
107 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
108 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
109 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
110 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
111 | 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B, | ||
112 | 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2, | ||
113 | 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9, | ||
114 | 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C, | ||
115 | 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10, | ||
116 | 0x15,0x72,0x8E,0x5A,0x8A,0xAC,0xAA,0x68,0xFF,0xFF,0xFF,0xFF, | ||
117 | 0xFF,0xFF,0xFF,0xFF, | ||
118 | }; | ||
119 | return BN_bin2bn(RFC3526_PRIME_2048,sizeof(RFC3526_PRIME_2048),bn); | ||
120 | } | ||
121 | |||
122 | /* "3072-bit MODP Group" from RFC3526, Section 4. | ||
123 | * | ||
124 | * The prime is: 2^3072 - 2^3008 - 1 + 2^64 * { [2^2942 pi] + 1690314 } | ||
125 | * | ||
126 | * RFC3526 specifies a generator of 2. | ||
127 | */ | ||
128 | |||
129 | BIGNUM *get_rfc3526_prime_3072(BIGNUM *bn) | ||
130 | { | ||
131 | static const unsigned char RFC3526_PRIME_3072[]={ | ||
132 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
133 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
134 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
135 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
136 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
137 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
138 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
139 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
140 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
141 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
142 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
143 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
144 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
145 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
146 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
147 | 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B, | ||
148 | 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2, | ||
149 | 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9, | ||
150 | 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C, | ||
151 | 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10, | ||
152 | 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D, | ||
153 | 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64, | ||
154 | 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57, | ||
155 | 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7, | ||
156 | 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0, | ||
157 | 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B, | ||
158 | 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73, | ||
159 | 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C, | ||
160 | 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0, | ||
161 | 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31, | ||
162 | 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20, | ||
163 | 0xA9,0x3A,0xD2,0xCA,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
164 | }; | ||
165 | return BN_bin2bn(RFC3526_PRIME_3072,sizeof(RFC3526_PRIME_3072),bn); | ||
166 | } | ||
167 | |||
168 | /* "4096-bit MODP Group" from RFC3526, Section 5. | ||
169 | * | ||
170 | * The prime is: 2^4096 - 2^4032 - 1 + 2^64 * { [2^3966 pi] + 240904 } | ||
171 | * | ||
172 | * RFC3526 specifies a generator of 2. | ||
173 | */ | ||
174 | |||
175 | BIGNUM *get_rfc3526_prime_4096(BIGNUM *bn) | ||
176 | { | ||
177 | static const unsigned char RFC3526_PRIME_4096[]={ | ||
178 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
179 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
180 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
181 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
182 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
183 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
184 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
185 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
186 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
187 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
188 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
189 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
190 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
191 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
192 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
193 | 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B, | ||
194 | 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2, | ||
195 | 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9, | ||
196 | 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C, | ||
197 | 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10, | ||
198 | 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D, | ||
199 | 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64, | ||
200 | 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57, | ||
201 | 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7, | ||
202 | 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0, | ||
203 | 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B, | ||
204 | 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73, | ||
205 | 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C, | ||
206 | 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0, | ||
207 | 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31, | ||
208 | 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20, | ||
209 | 0xA9,0x21,0x08,0x01,0x1A,0x72,0x3C,0x12,0xA7,0x87,0xE6,0xD7, | ||
210 | 0x88,0x71,0x9A,0x10,0xBD,0xBA,0x5B,0x26,0x99,0xC3,0x27,0x18, | ||
211 | 0x6A,0xF4,0xE2,0x3C,0x1A,0x94,0x68,0x34,0xB6,0x15,0x0B,0xDA, | ||
212 | 0x25,0x83,0xE9,0xCA,0x2A,0xD4,0x4C,0xE8,0xDB,0xBB,0xC2,0xDB, | ||
213 | 0x04,0xDE,0x8E,0xF9,0x2E,0x8E,0xFC,0x14,0x1F,0xBE,0xCA,0xA6, | ||
214 | 0x28,0x7C,0x59,0x47,0x4E,0x6B,0xC0,0x5D,0x99,0xB2,0x96,0x4F, | ||
215 | 0xA0,0x90,0xC3,0xA2,0x23,0x3B,0xA1,0x86,0x51,0x5B,0xE7,0xED, | ||
216 | 0x1F,0x61,0x29,0x70,0xCE,0xE2,0xD7,0xAF,0xB8,0x1B,0xDD,0x76, | ||
217 | 0x21,0x70,0x48,0x1C,0xD0,0x06,0x91,0x27,0xD5,0xB0,0x5A,0xA9, | ||
218 | 0x93,0xB4,0xEA,0x98,0x8D,0x8F,0xDD,0xC1,0x86,0xFF,0xB7,0xDC, | ||
219 | 0x90,0xA6,0xC0,0x8F,0x4D,0xF4,0x35,0xC9,0x34,0x06,0x31,0x99, | ||
220 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
221 | }; | ||
222 | return BN_bin2bn(RFC3526_PRIME_4096,sizeof(RFC3526_PRIME_4096),bn); | ||
223 | } | ||
224 | |||
225 | /* "6144-bit MODP Group" from RFC3526, Section 6. | ||
226 | * | ||
227 | * The prime is: 2^6144 - 2^6080 - 1 + 2^64 * { [2^6014 pi] + 929484 } | ||
228 | * | ||
229 | * RFC3526 specifies a generator of 2. | ||
230 | */ | ||
231 | |||
232 | BIGNUM *get_rfc3526_prime_6144(BIGNUM *bn) | ||
233 | { | ||
234 | static const unsigned char RFC3526_PRIME_6144[]={ | ||
235 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
236 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
237 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
238 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
239 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
240 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
241 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
242 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
243 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
244 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
245 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
246 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
247 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
248 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
249 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
250 | 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B, | ||
251 | 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2, | ||
252 | 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9, | ||
253 | 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C, | ||
254 | 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10, | ||
255 | 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D, | ||
256 | 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64, | ||
257 | 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57, | ||
258 | 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7, | ||
259 | 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0, | ||
260 | 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B, | ||
261 | 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73, | ||
262 | 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C, | ||
263 | 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0, | ||
264 | 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31, | ||
265 | 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20, | ||
266 | 0xA9,0x21,0x08,0x01,0x1A,0x72,0x3C,0x12,0xA7,0x87,0xE6,0xD7, | ||
267 | 0x88,0x71,0x9A,0x10,0xBD,0xBA,0x5B,0x26,0x99,0xC3,0x27,0x18, | ||
268 | 0x6A,0xF4,0xE2,0x3C,0x1A,0x94,0x68,0x34,0xB6,0x15,0x0B,0xDA, | ||
269 | 0x25,0x83,0xE9,0xCA,0x2A,0xD4,0x4C,0xE8,0xDB,0xBB,0xC2,0xDB, | ||
270 | 0x04,0xDE,0x8E,0xF9,0x2E,0x8E,0xFC,0x14,0x1F,0xBE,0xCA,0xA6, | ||
271 | 0x28,0x7C,0x59,0x47,0x4E,0x6B,0xC0,0x5D,0x99,0xB2,0x96,0x4F, | ||
272 | 0xA0,0x90,0xC3,0xA2,0x23,0x3B,0xA1,0x86,0x51,0x5B,0xE7,0xED, | ||
273 | 0x1F,0x61,0x29,0x70,0xCE,0xE2,0xD7,0xAF,0xB8,0x1B,0xDD,0x76, | ||
274 | 0x21,0x70,0x48,0x1C,0xD0,0x06,0x91,0x27,0xD5,0xB0,0x5A,0xA9, | ||
275 | 0x93,0xB4,0xEA,0x98,0x8D,0x8F,0xDD,0xC1,0x86,0xFF,0xB7,0xDC, | ||
276 | 0x90,0xA6,0xC0,0x8F,0x4D,0xF4,0x35,0xC9,0x34,0x02,0x84,0x92, | ||
277 | 0x36,0xC3,0xFA,0xB4,0xD2,0x7C,0x70,0x26,0xC1,0xD4,0xDC,0xB2, | ||
278 | 0x60,0x26,0x46,0xDE,0xC9,0x75,0x1E,0x76,0x3D,0xBA,0x37,0xBD, | ||
279 | 0xF8,0xFF,0x94,0x06,0xAD,0x9E,0x53,0x0E,0xE5,0xDB,0x38,0x2F, | ||
280 | 0x41,0x30,0x01,0xAE,0xB0,0x6A,0x53,0xED,0x90,0x27,0xD8,0x31, | ||
281 | 0x17,0x97,0x27,0xB0,0x86,0x5A,0x89,0x18,0xDA,0x3E,0xDB,0xEB, | ||
282 | 0xCF,0x9B,0x14,0xED,0x44,0xCE,0x6C,0xBA,0xCE,0xD4,0xBB,0x1B, | ||
283 | 0xDB,0x7F,0x14,0x47,0xE6,0xCC,0x25,0x4B,0x33,0x20,0x51,0x51, | ||
284 | 0x2B,0xD7,0xAF,0x42,0x6F,0xB8,0xF4,0x01,0x37,0x8C,0xD2,0xBF, | ||
285 | 0x59,0x83,0xCA,0x01,0xC6,0x4B,0x92,0xEC,0xF0,0x32,0xEA,0x15, | ||
286 | 0xD1,0x72,0x1D,0x03,0xF4,0x82,0xD7,0xCE,0x6E,0x74,0xFE,0xF6, | ||
287 | 0xD5,0x5E,0x70,0x2F,0x46,0x98,0x0C,0x82,0xB5,0xA8,0x40,0x31, | ||
288 | 0x90,0x0B,0x1C,0x9E,0x59,0xE7,0xC9,0x7F,0xBE,0xC7,0xE8,0xF3, | ||
289 | 0x23,0xA9,0x7A,0x7E,0x36,0xCC,0x88,0xBE,0x0F,0x1D,0x45,0xB7, | ||
290 | 0xFF,0x58,0x5A,0xC5,0x4B,0xD4,0x07,0xB2,0x2B,0x41,0x54,0xAA, | ||
291 | 0xCC,0x8F,0x6D,0x7E,0xBF,0x48,0xE1,0xD8,0x14,0xCC,0x5E,0xD2, | ||
292 | 0x0F,0x80,0x37,0xE0,0xA7,0x97,0x15,0xEE,0xF2,0x9B,0xE3,0x28, | ||
293 | 0x06,0xA1,0xD5,0x8B,0xB7,0xC5,0xDA,0x76,0xF5,0x50,0xAA,0x3D, | ||
294 | 0x8A,0x1F,0xBF,0xF0,0xEB,0x19,0xCC,0xB1,0xA3,0x13,0xD5,0x5C, | ||
295 | 0xDA,0x56,0xC9,0xEC,0x2E,0xF2,0x96,0x32,0x38,0x7F,0xE8,0xD7, | ||
296 | 0x6E,0x3C,0x04,0x68,0x04,0x3E,0x8F,0x66,0x3F,0x48,0x60,0xEE, | ||
297 | 0x12,0xBF,0x2D,0x5B,0x0B,0x74,0x74,0xD6,0xE6,0x94,0xF9,0x1E, | ||
298 | 0x6D,0xCC,0x40,0x24,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
299 | }; | ||
300 | return BN_bin2bn(RFC3526_PRIME_6144,sizeof(RFC3526_PRIME_6144),bn); | ||
301 | } | ||
302 | |||
303 | /* "8192-bit MODP Group" from RFC3526, Section 7. | ||
304 | * | ||
305 | * The prime is: 2^8192 - 2^8128 - 1 + 2^64 * { [2^8062 pi] + 4743158 } | ||
306 | * | ||
307 | * RFC3526 specifies a generator of 2. | ||
308 | */ | ||
309 | |||
310 | BIGNUM *get_rfc3526_prime_8192(BIGNUM *bn) | ||
311 | { | ||
312 | static const unsigned char RFC3526_PRIME_8192[]={ | ||
313 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
314 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
315 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
316 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
317 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
318 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
319 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
320 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
321 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
322 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
323 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
324 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
325 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
326 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
327 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
328 | 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B, | ||
329 | 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2, | ||
330 | 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9, | ||
331 | 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C, | ||
332 | 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10, | ||
333 | 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D, | ||
334 | 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64, | ||
335 | 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57, | ||
336 | 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7, | ||
337 | 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0, | ||
338 | 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B, | ||
339 | 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73, | ||
340 | 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C, | ||
341 | 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0, | ||
342 | 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31, | ||
343 | 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20, | ||
344 | 0xA9,0x21,0x08,0x01,0x1A,0x72,0x3C,0x12,0xA7,0x87,0xE6,0xD7, | ||
345 | 0x88,0x71,0x9A,0x10,0xBD,0xBA,0x5B,0x26,0x99,0xC3,0x27,0x18, | ||
346 | 0x6A,0xF4,0xE2,0x3C,0x1A,0x94,0x68,0x34,0xB6,0x15,0x0B,0xDA, | ||
347 | 0x25,0x83,0xE9,0xCA,0x2A,0xD4,0x4C,0xE8,0xDB,0xBB,0xC2,0xDB, | ||
348 | 0x04,0xDE,0x8E,0xF9,0x2E,0x8E,0xFC,0x14,0x1F,0xBE,0xCA,0xA6, | ||
349 | 0x28,0x7C,0x59,0x47,0x4E,0x6B,0xC0,0x5D,0x99,0xB2,0x96,0x4F, | ||
350 | 0xA0,0x90,0xC3,0xA2,0x23,0x3B,0xA1,0x86,0x51,0x5B,0xE7,0xED, | ||
351 | 0x1F,0x61,0x29,0x70,0xCE,0xE2,0xD7,0xAF,0xB8,0x1B,0xDD,0x76, | ||
352 | 0x21,0x70,0x48,0x1C,0xD0,0x06,0x91,0x27,0xD5,0xB0,0x5A,0xA9, | ||
353 | 0x93,0xB4,0xEA,0x98,0x8D,0x8F,0xDD,0xC1,0x86,0xFF,0xB7,0xDC, | ||
354 | 0x90,0xA6,0xC0,0x8F,0x4D,0xF4,0x35,0xC9,0x34,0x02,0x84,0x92, | ||
355 | 0x36,0xC3,0xFA,0xB4,0xD2,0x7C,0x70,0x26,0xC1,0xD4,0xDC,0xB2, | ||
356 | 0x60,0x26,0x46,0xDE,0xC9,0x75,0x1E,0x76,0x3D,0xBA,0x37,0xBD, | ||
357 | 0xF8,0xFF,0x94,0x06,0xAD,0x9E,0x53,0x0E,0xE5,0xDB,0x38,0x2F, | ||
358 | 0x41,0x30,0x01,0xAE,0xB0,0x6A,0x53,0xED,0x90,0x27,0xD8,0x31, | ||
359 | 0x17,0x97,0x27,0xB0,0x86,0x5A,0x89,0x18,0xDA,0x3E,0xDB,0xEB, | ||
360 | 0xCF,0x9B,0x14,0xED,0x44,0xCE,0x6C,0xBA,0xCE,0xD4,0xBB,0x1B, | ||
361 | 0xDB,0x7F,0x14,0x47,0xE6,0xCC,0x25,0x4B,0x33,0x20,0x51,0x51, | ||
362 | 0x2B,0xD7,0xAF,0x42,0x6F,0xB8,0xF4,0x01,0x37,0x8C,0xD2,0xBF, | ||
363 | 0x59,0x83,0xCA,0x01,0xC6,0x4B,0x92,0xEC,0xF0,0x32,0xEA,0x15, | ||
364 | 0xD1,0x72,0x1D,0x03,0xF4,0x82,0xD7,0xCE,0x6E,0x74,0xFE,0xF6, | ||
365 | 0xD5,0x5E,0x70,0x2F,0x46,0x98,0x0C,0x82,0xB5,0xA8,0x40,0x31, | ||
366 | 0x90,0x0B,0x1C,0x9E,0x59,0xE7,0xC9,0x7F,0xBE,0xC7,0xE8,0xF3, | ||
367 | 0x23,0xA9,0x7A,0x7E,0x36,0xCC,0x88,0xBE,0x0F,0x1D,0x45,0xB7, | ||
368 | 0xFF,0x58,0x5A,0xC5,0x4B,0xD4,0x07,0xB2,0x2B,0x41,0x54,0xAA, | ||
369 | 0xCC,0x8F,0x6D,0x7E,0xBF,0x48,0xE1,0xD8,0x14,0xCC,0x5E,0xD2, | ||
370 | 0x0F,0x80,0x37,0xE0,0xA7,0x97,0x15,0xEE,0xF2,0x9B,0xE3,0x28, | ||
371 | 0x06,0xA1,0xD5,0x8B,0xB7,0xC5,0xDA,0x76,0xF5,0x50,0xAA,0x3D, | ||
372 | 0x8A,0x1F,0xBF,0xF0,0xEB,0x19,0xCC,0xB1,0xA3,0x13,0xD5,0x5C, | ||
373 | 0xDA,0x56,0xC9,0xEC,0x2E,0xF2,0x96,0x32,0x38,0x7F,0xE8,0xD7, | ||
374 | 0x6E,0x3C,0x04,0x68,0x04,0x3E,0x8F,0x66,0x3F,0x48,0x60,0xEE, | ||
375 | 0x12,0xBF,0x2D,0x5B,0x0B,0x74,0x74,0xD6,0xE6,0x94,0xF9,0x1E, | ||
376 | 0x6D,0xBE,0x11,0x59,0x74,0xA3,0x92,0x6F,0x12,0xFE,0xE5,0xE4, | ||
377 | 0x38,0x77,0x7C,0xB6,0xA9,0x32,0xDF,0x8C,0xD8,0xBE,0xC4,0xD0, | ||
378 | 0x73,0xB9,0x31,0xBA,0x3B,0xC8,0x32,0xB6,0x8D,0x9D,0xD3,0x00, | ||
379 | 0x74,0x1F,0xA7,0xBF,0x8A,0xFC,0x47,0xED,0x25,0x76,0xF6,0x93, | ||
380 | 0x6B,0xA4,0x24,0x66,0x3A,0xAB,0x63,0x9C,0x5A,0xE4,0xF5,0x68, | ||
381 | 0x34,0x23,0xB4,0x74,0x2B,0xF1,0xC9,0x78,0x23,0x8F,0x16,0xCB, | ||
382 | 0xE3,0x9D,0x65,0x2D,0xE3,0xFD,0xB8,0xBE,0xFC,0x84,0x8A,0xD9, | ||
383 | 0x22,0x22,0x2E,0x04,0xA4,0x03,0x7C,0x07,0x13,0xEB,0x57,0xA8, | ||
384 | 0x1A,0x23,0xF0,0xC7,0x34,0x73,0xFC,0x64,0x6C,0xEA,0x30,0x6B, | ||
385 | 0x4B,0xCB,0xC8,0x86,0x2F,0x83,0x85,0xDD,0xFA,0x9D,0x4B,0x7F, | ||
386 | 0xA2,0xC0,0x87,0xE8,0x79,0x68,0x33,0x03,0xED,0x5B,0xDD,0x3A, | ||
387 | 0x06,0x2B,0x3C,0xF5,0xB3,0xA2,0x78,0xA6,0x6D,0x2A,0x13,0xF8, | ||
388 | 0x3F,0x44,0xF8,0x2D,0xDF,0x31,0x0E,0xE0,0x74,0xAB,0x6A,0x36, | ||
389 | 0x45,0x97,0xE8,0x99,0xA0,0x25,0x5D,0xC1,0x64,0xF3,0x1C,0xC5, | ||
390 | 0x08,0x46,0x85,0x1D,0xF9,0xAB,0x48,0x19,0x5D,0xED,0x7E,0xA1, | ||
391 | 0xB1,0xD5,0x10,0xBD,0x7E,0xE7,0x4D,0x73,0xFA,0xF3,0x6B,0xC3, | ||
392 | 0x1E,0xCF,0xA2,0x68,0x35,0x90,0x46,0xF4,0xEB,0x87,0x9F,0x92, | ||
393 | 0x40,0x09,0x43,0x8B,0x48,0x1C,0x6C,0xD7,0x88,0x9A,0x00,0x2E, | ||
394 | 0xD5,0xEE,0x38,0x2B,0xC9,0x19,0x0D,0xA6,0xFC,0x02,0x6E,0x47, | ||
395 | 0x95,0x58,0xE4,0x47,0x56,0x77,0xE9,0xAA,0x9E,0x30,0x50,0xE2, | ||
396 | 0x76,0x56,0x94,0xDF,0xC8,0x1F,0x56,0xE8,0x80,0xB9,0x6E,0x71, | ||
397 | 0x60,0xC9,0x80,0xDD,0x98,0xED,0xD3,0xDF,0xFF,0xFF,0xFF,0xFF, | ||
398 | 0xFF,0xFF,0xFF,0xFF, | ||
399 | }; | ||
400 | return BN_bin2bn(RFC3526_PRIME_8192,sizeof(RFC3526_PRIME_8192),bn); | ||
401 | } | ||
402 | |||
diff --git a/src/lib/libcrypto/bn/bn_ctx.c b/src/lib/libcrypto/bn/bn_ctx.c deleted file mode 100644 index 3f2256f675..0000000000 --- a/src/lib/libcrypto/bn/bn_ctx.c +++ /dev/null | |||
@@ -1,454 +0,0 @@ | |||
1 | /* crypto/bn/bn_ctx.c */ | ||
2 | /* Written by Ulf Moeller for the OpenSSL project. */ | ||
3 | /* ==================================================================== | ||
4 | * Copyright (c) 1998-2004 The OpenSSL Project. All rights reserved. | ||
5 | * | ||
6 | * Redistribution and use in source and binary forms, with or without | ||
7 | * modification, are permitted provided that the following conditions | ||
8 | * are met: | ||
9 | * | ||
10 | * 1. Redistributions of source code must retain the above copyright | ||
11 | * notice, this list of conditions and the following disclaimer. | ||
12 | * | ||
13 | * 2. Redistributions in binary form must reproduce the above copyright | ||
14 | * notice, this list of conditions and the following disclaimer in | ||
15 | * the documentation and/or other materials provided with the | ||
16 | * distribution. | ||
17 | * | ||
18 | * 3. All advertising materials mentioning features or use of this | ||
19 | * software must display the following acknowledgment: | ||
20 | * "This product includes software developed by the OpenSSL Project | ||
21 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
22 | * | ||
23 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
24 | * endorse or promote products derived from this software without | ||
25 | * prior written permission. For written permission, please contact | ||
26 | * openssl-core@openssl.org. | ||
27 | * | ||
28 | * 5. Products derived from this software may not be called "OpenSSL" | ||
29 | * nor may "OpenSSL" appear in their names without prior written | ||
30 | * permission of the OpenSSL Project. | ||
31 | * | ||
32 | * 6. Redistributions of any form whatsoever must retain the following | ||
33 | * acknowledgment: | ||
34 | * "This product includes software developed by the OpenSSL Project | ||
35 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
36 | * | ||
37 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
38 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
39 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
40 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
41 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
42 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
43 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
44 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
45 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
46 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
47 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
48 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
49 | * ==================================================================== | ||
50 | * | ||
51 | * This product includes cryptographic software written by Eric Young | ||
52 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
53 | * Hudson (tjh@cryptsoft.com). | ||
54 | * | ||
55 | */ | ||
56 | |||
57 | #if !defined(BN_CTX_DEBUG) && !defined(BN_DEBUG) | ||
58 | #ifndef NDEBUG | ||
59 | #define NDEBUG | ||
60 | #endif | ||
61 | #endif | ||
62 | |||
63 | #include <stdio.h> | ||
64 | #include <assert.h> | ||
65 | |||
66 | #include "cryptlib.h" | ||
67 | #include "bn_lcl.h" | ||
68 | |||
69 | /* TODO list | ||
70 | * | ||
71 | * 1. Check a bunch of "(words+1)" type hacks in various bignum functions and | ||
72 | * check they can be safely removed. | ||
73 | * - Check +1 and other ugliness in BN_from_montgomery() | ||
74 | * | ||
75 | * 2. Consider allowing a BN_new_ex() that, at least, lets you specify an | ||
76 | * appropriate 'block' size that will be honoured by bn_expand_internal() to | ||
77 | * prevent piddly little reallocations. OTOH, profiling bignum expansions in | ||
78 | * BN_CTX doesn't show this to be a big issue. | ||
79 | */ | ||
80 | |||
81 | /* How many bignums are in each "pool item"; */ | ||
82 | #define BN_CTX_POOL_SIZE 16 | ||
83 | /* The stack frame info is resizing, set a first-time expansion size; */ | ||
84 | #define BN_CTX_START_FRAMES 32 | ||
85 | |||
86 | /***********/ | ||
87 | /* BN_POOL */ | ||
88 | /***********/ | ||
89 | |||
90 | /* A bundle of bignums that can be linked with other bundles */ | ||
91 | typedef struct bignum_pool_item | ||
92 | { | ||
93 | /* The bignum values */ | ||
94 | BIGNUM vals[BN_CTX_POOL_SIZE]; | ||
95 | /* Linked-list admin */ | ||
96 | struct bignum_pool_item *prev, *next; | ||
97 | } BN_POOL_ITEM; | ||
98 | /* A linked-list of bignums grouped in bundles */ | ||
99 | typedef struct bignum_pool | ||
100 | { | ||
101 | /* Linked-list admin */ | ||
102 | BN_POOL_ITEM *head, *current, *tail; | ||
103 | /* Stack depth and allocation size */ | ||
104 | unsigned used, size; | ||
105 | } BN_POOL; | ||
106 | static void BN_POOL_init(BN_POOL *); | ||
107 | static void BN_POOL_finish(BN_POOL *); | ||
108 | #ifndef OPENSSL_NO_DEPRECATED | ||
109 | static void BN_POOL_reset(BN_POOL *); | ||
110 | #endif | ||
111 | static BIGNUM * BN_POOL_get(BN_POOL *); | ||
112 | static void BN_POOL_release(BN_POOL *, unsigned int); | ||
113 | |||
114 | /************/ | ||
115 | /* BN_STACK */ | ||
116 | /************/ | ||
117 | |||
118 | /* A wrapper to manage the "stack frames" */ | ||
119 | typedef struct bignum_ctx_stack | ||
120 | { | ||
121 | /* Array of indexes into the bignum stack */ | ||
122 | unsigned int *indexes; | ||
123 | /* Number of stack frames, and the size of the allocated array */ | ||
124 | unsigned int depth, size; | ||
125 | } BN_STACK; | ||
126 | static void BN_STACK_init(BN_STACK *); | ||
127 | static void BN_STACK_finish(BN_STACK *); | ||
128 | #ifndef OPENSSL_NO_DEPRECATED | ||
129 | static void BN_STACK_reset(BN_STACK *); | ||
130 | #endif | ||
131 | static int BN_STACK_push(BN_STACK *, unsigned int); | ||
132 | static unsigned int BN_STACK_pop(BN_STACK *); | ||
133 | |||
134 | /**********/ | ||
135 | /* BN_CTX */ | ||
136 | /**********/ | ||
137 | |||
138 | /* The opaque BN_CTX type */ | ||
139 | struct bignum_ctx | ||
140 | { | ||
141 | /* The bignum bundles */ | ||
142 | BN_POOL pool; | ||
143 | /* The "stack frames", if you will */ | ||
144 | BN_STACK stack; | ||
145 | /* The number of bignums currently assigned */ | ||
146 | unsigned int used; | ||
147 | /* Depth of stack overflow */ | ||
148 | int err_stack; | ||
149 | /* Block "gets" until an "end" (compatibility behaviour) */ | ||
150 | int too_many; | ||
151 | }; | ||
152 | |||
153 | /* Enable this to find BN_CTX bugs */ | ||
154 | #ifdef BN_CTX_DEBUG | ||
155 | static const char *ctxdbg_cur = NULL; | ||
156 | static void ctxdbg(BN_CTX *ctx) | ||
157 | { | ||
158 | unsigned int bnidx = 0, fpidx = 0; | ||
159 | BN_POOL_ITEM *item = ctx->pool.head; | ||
160 | BN_STACK *stack = &ctx->stack; | ||
161 | fprintf(stderr,"(%08x): ", (unsigned int)ctx); | ||
162 | while(bnidx < ctx->used) | ||
163 | { | ||
164 | fprintf(stderr,"%03x ", item->vals[bnidx++ % BN_CTX_POOL_SIZE].dmax); | ||
165 | if(!(bnidx % BN_CTX_POOL_SIZE)) | ||
166 | item = item->next; | ||
167 | } | ||
168 | fprintf(stderr,"\n"); | ||
169 | bnidx = 0; | ||
170 | fprintf(stderr," : "); | ||
171 | while(fpidx < stack->depth) | ||
172 | { | ||
173 | while(bnidx++ < stack->indexes[fpidx]) | ||
174 | fprintf(stderr," "); | ||
175 | fprintf(stderr,"^^^ "); | ||
176 | bnidx++; | ||
177 | fpidx++; | ||
178 | } | ||
179 | fprintf(stderr,"\n"); | ||
180 | } | ||
181 | #define CTXDBG_ENTRY(str, ctx) do { \ | ||
182 | ctxdbg_cur = (str); \ | ||
183 | fprintf(stderr,"Starting %s\n", ctxdbg_cur); \ | ||
184 | ctxdbg(ctx); \ | ||
185 | } while(0) | ||
186 | #define CTXDBG_EXIT(ctx) do { \ | ||
187 | fprintf(stderr,"Ending %s\n", ctxdbg_cur); \ | ||
188 | ctxdbg(ctx); \ | ||
189 | } while(0) | ||
190 | #define CTXDBG_RET(ctx,ret) | ||
191 | #else | ||
192 | #define CTXDBG_ENTRY(str, ctx) | ||
193 | #define CTXDBG_EXIT(ctx) | ||
194 | #define CTXDBG_RET(ctx,ret) | ||
195 | #endif | ||
196 | |||
197 | /* This function is an evil legacy and should not be used. This implementation | ||
198 | * is WYSIWYG, though I've done my best. */ | ||
199 | #ifndef OPENSSL_NO_DEPRECATED | ||
200 | void BN_CTX_init(BN_CTX *ctx) | ||
201 | { | ||
202 | /* Assume the caller obtained the context via BN_CTX_new() and so is | ||
203 | * trying to reset it for use. Nothing else makes sense, least of all | ||
204 | * binary compatibility from a time when they could declare a static | ||
205 | * variable. */ | ||
206 | BN_POOL_reset(&ctx->pool); | ||
207 | BN_STACK_reset(&ctx->stack); | ||
208 | ctx->used = 0; | ||
209 | ctx->err_stack = 0; | ||
210 | ctx->too_many = 0; | ||
211 | } | ||
212 | #endif | ||
213 | |||
214 | BN_CTX *BN_CTX_new(void) | ||
215 | { | ||
216 | BN_CTX *ret = OPENSSL_malloc(sizeof(BN_CTX)); | ||
217 | if(!ret) | ||
218 | { | ||
219 | BNerr(BN_F_BN_CTX_NEW,ERR_R_MALLOC_FAILURE); | ||
220 | return NULL; | ||
221 | } | ||
222 | /* Initialise the structure */ | ||
223 | BN_POOL_init(&ret->pool); | ||
224 | BN_STACK_init(&ret->stack); | ||
225 | ret->used = 0; | ||
226 | ret->err_stack = 0; | ||
227 | ret->too_many = 0; | ||
228 | return ret; | ||
229 | } | ||
230 | |||
231 | void BN_CTX_free(BN_CTX *ctx) | ||
232 | { | ||
233 | if (ctx == NULL) | ||
234 | return; | ||
235 | #ifdef BN_CTX_DEBUG | ||
236 | { | ||
237 | BN_POOL_ITEM *pool = ctx->pool.head; | ||
238 | fprintf(stderr,"BN_CTX_free, stack-size=%d, pool-bignums=%d\n", | ||
239 | ctx->stack.size, ctx->pool.size); | ||
240 | fprintf(stderr,"dmaxs: "); | ||
241 | while(pool) { | ||
242 | unsigned loop = 0; | ||
243 | while(loop < BN_CTX_POOL_SIZE) | ||
244 | fprintf(stderr,"%02x ", pool->vals[loop++].dmax); | ||
245 | pool = pool->next; | ||
246 | } | ||
247 | fprintf(stderr,"\n"); | ||
248 | } | ||
249 | #endif | ||
250 | BN_STACK_finish(&ctx->stack); | ||
251 | BN_POOL_finish(&ctx->pool); | ||
252 | OPENSSL_free(ctx); | ||
253 | } | ||
254 | |||
255 | void BN_CTX_start(BN_CTX *ctx) | ||
256 | { | ||
257 | CTXDBG_ENTRY("BN_CTX_start", ctx); | ||
258 | /* If we're already overflowing ... */ | ||
259 | if(ctx->err_stack || ctx->too_many) | ||
260 | ctx->err_stack++; | ||
261 | /* (Try to) get a new frame pointer */ | ||
262 | else if(!BN_STACK_push(&ctx->stack, ctx->used)) | ||
263 | { | ||
264 | BNerr(BN_F_BN_CTX_START,BN_R_TOO_MANY_TEMPORARY_VARIABLES); | ||
265 | ctx->err_stack++; | ||
266 | } | ||
267 | CTXDBG_EXIT(ctx); | ||
268 | } | ||
269 | |||
270 | void BN_CTX_end(BN_CTX *ctx) | ||
271 | { | ||
272 | CTXDBG_ENTRY("BN_CTX_end", ctx); | ||
273 | if(ctx->err_stack) | ||
274 | ctx->err_stack--; | ||
275 | else | ||
276 | { | ||
277 | unsigned int fp = BN_STACK_pop(&ctx->stack); | ||
278 | /* Does this stack frame have anything to release? */ | ||
279 | if(fp < ctx->used) | ||
280 | BN_POOL_release(&ctx->pool, ctx->used - fp); | ||
281 | ctx->used = fp; | ||
282 | /* Unjam "too_many" in case "get" had failed */ | ||
283 | ctx->too_many = 0; | ||
284 | } | ||
285 | CTXDBG_EXIT(ctx); | ||
286 | } | ||
287 | |||
288 | BIGNUM *BN_CTX_get(BN_CTX *ctx) | ||
289 | { | ||
290 | BIGNUM *ret; | ||
291 | CTXDBG_ENTRY("BN_CTX_get", ctx); | ||
292 | if(ctx->err_stack || ctx->too_many) return NULL; | ||
293 | if((ret = BN_POOL_get(&ctx->pool)) == NULL) | ||
294 | { | ||
295 | /* Setting too_many prevents repeated "get" attempts from | ||
296 | * cluttering the error stack. */ | ||
297 | ctx->too_many = 1; | ||
298 | BNerr(BN_F_BN_CTX_GET,BN_R_TOO_MANY_TEMPORARY_VARIABLES); | ||
299 | return NULL; | ||
300 | } | ||
301 | /* OK, make sure the returned bignum is "zero" */ | ||
302 | BN_zero(ret); | ||
303 | ctx->used++; | ||
304 | CTXDBG_RET(ctx, ret); | ||
305 | return ret; | ||
306 | } | ||
307 | |||
308 | /************/ | ||
309 | /* BN_STACK */ | ||
310 | /************/ | ||
311 | |||
312 | static void BN_STACK_init(BN_STACK *st) | ||
313 | { | ||
314 | st->indexes = NULL; | ||
315 | st->depth = st->size = 0; | ||
316 | } | ||
317 | |||
318 | static void BN_STACK_finish(BN_STACK *st) | ||
319 | { | ||
320 | if(st->size) OPENSSL_free(st->indexes); | ||
321 | } | ||
322 | |||
323 | #ifndef OPENSSL_NO_DEPRECATED | ||
324 | static void BN_STACK_reset(BN_STACK *st) | ||
325 | { | ||
326 | st->depth = 0; | ||
327 | } | ||
328 | #endif | ||
329 | |||
330 | static int BN_STACK_push(BN_STACK *st, unsigned int idx) | ||
331 | { | ||
332 | if(st->depth == st->size) | ||
333 | /* Need to expand */ | ||
334 | { | ||
335 | unsigned int newsize = (st->size ? | ||
336 | (st->size * 3 / 2) : BN_CTX_START_FRAMES); | ||
337 | unsigned int *newitems = OPENSSL_malloc(newsize * | ||
338 | sizeof(unsigned int)); | ||
339 | if(!newitems) return 0; | ||
340 | if(st->depth) | ||
341 | memcpy(newitems, st->indexes, st->depth * | ||
342 | sizeof(unsigned int)); | ||
343 | if(st->size) OPENSSL_free(st->indexes); | ||
344 | st->indexes = newitems; | ||
345 | st->size = newsize; | ||
346 | } | ||
347 | st->indexes[(st->depth)++] = idx; | ||
348 | return 1; | ||
349 | } | ||
350 | |||
351 | static unsigned int BN_STACK_pop(BN_STACK *st) | ||
352 | { | ||
353 | return st->indexes[--(st->depth)]; | ||
354 | } | ||
355 | |||
356 | /***********/ | ||
357 | /* BN_POOL */ | ||
358 | /***********/ | ||
359 | |||
360 | static void BN_POOL_init(BN_POOL *p) | ||
361 | { | ||
362 | p->head = p->current = p->tail = NULL; | ||
363 | p->used = p->size = 0; | ||
364 | } | ||
365 | |||
366 | static void BN_POOL_finish(BN_POOL *p) | ||
367 | { | ||
368 | while(p->head) | ||
369 | { | ||
370 | unsigned int loop = 0; | ||
371 | BIGNUM *bn = p->head->vals; | ||
372 | while(loop++ < BN_CTX_POOL_SIZE) | ||
373 | { | ||
374 | if(bn->d) BN_clear_free(bn); | ||
375 | bn++; | ||
376 | } | ||
377 | p->current = p->head->next; | ||
378 | OPENSSL_free(p->head); | ||
379 | p->head = p->current; | ||
380 | } | ||
381 | } | ||
382 | |||
383 | #ifndef OPENSSL_NO_DEPRECATED | ||
384 | static void BN_POOL_reset(BN_POOL *p) | ||
385 | { | ||
386 | BN_POOL_ITEM *item = p->head; | ||
387 | while(item) | ||
388 | { | ||
389 | unsigned int loop = 0; | ||
390 | BIGNUM *bn = item->vals; | ||
391 | while(loop++ < BN_CTX_POOL_SIZE) | ||
392 | { | ||
393 | if(bn->d) BN_clear(bn); | ||
394 | bn++; | ||
395 | } | ||
396 | item = item->next; | ||
397 | } | ||
398 | p->current = p->head; | ||
399 | p->used = 0; | ||
400 | } | ||
401 | #endif | ||
402 | |||
403 | static BIGNUM *BN_POOL_get(BN_POOL *p) | ||
404 | { | ||
405 | if(p->used == p->size) | ||
406 | { | ||
407 | BIGNUM *bn; | ||
408 | unsigned int loop = 0; | ||
409 | BN_POOL_ITEM *item = OPENSSL_malloc(sizeof(BN_POOL_ITEM)); | ||
410 | if(!item) return NULL; | ||
411 | /* Initialise the structure */ | ||
412 | bn = item->vals; | ||
413 | while(loop++ < BN_CTX_POOL_SIZE) | ||
414 | BN_init(bn++); | ||
415 | item->prev = p->tail; | ||
416 | item->next = NULL; | ||
417 | /* Link it in */ | ||
418 | if(!p->head) | ||
419 | p->head = p->current = p->tail = item; | ||
420 | else | ||
421 | { | ||
422 | p->tail->next = item; | ||
423 | p->tail = item; | ||
424 | p->current = item; | ||
425 | } | ||
426 | p->size += BN_CTX_POOL_SIZE; | ||
427 | p->used++; | ||
428 | /* Return the first bignum from the new pool */ | ||
429 | return item->vals; | ||
430 | } | ||
431 | if(!p->used) | ||
432 | p->current = p->head; | ||
433 | else if((p->used % BN_CTX_POOL_SIZE) == 0) | ||
434 | p->current = p->current->next; | ||
435 | return p->current->vals + ((p->used++) % BN_CTX_POOL_SIZE); | ||
436 | } | ||
437 | |||
438 | static void BN_POOL_release(BN_POOL *p, unsigned int num) | ||
439 | { | ||
440 | unsigned int offset = (p->used - 1) % BN_CTX_POOL_SIZE; | ||
441 | p->used -= num; | ||
442 | while(num--) | ||
443 | { | ||
444 | bn_check_top(p->current->vals + offset); | ||
445 | if(!offset) | ||
446 | { | ||
447 | offset = BN_CTX_POOL_SIZE - 1; | ||
448 | p->current = p->current->prev; | ||
449 | } | ||
450 | else | ||
451 | offset--; | ||
452 | } | ||
453 | } | ||
454 | |||
diff --git a/src/lib/libcrypto/bn/bn_depr.c b/src/lib/libcrypto/bn/bn_depr.c deleted file mode 100644 index 27535e4fca..0000000000 --- a/src/lib/libcrypto/bn/bn_depr.c +++ /dev/null | |||
@@ -1,112 +0,0 @@ | |||
1 | /* crypto/bn/bn_depr.c */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@openssl.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | /* Support for deprecated functions goes here - static linkage will only slurp | ||
57 | * this code if applications are using them directly. */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include <time.h> | ||
61 | #include "cryptlib.h" | ||
62 | #include "bn_lcl.h" | ||
63 | #include <openssl/rand.h> | ||
64 | |||
65 | static void *dummy=&dummy; | ||
66 | |||
67 | #ifndef OPENSSL_NO_DEPRECATED | ||
68 | BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, | ||
69 | const BIGNUM *add, const BIGNUM *rem, | ||
70 | void (*callback)(int,int,void *), void *cb_arg) | ||
71 | { | ||
72 | BN_GENCB cb; | ||
73 | BIGNUM *rnd=NULL; | ||
74 | int found = 0; | ||
75 | |||
76 | BN_GENCB_set_old(&cb, callback, cb_arg); | ||
77 | |||
78 | if (ret == NULL) | ||
79 | { | ||
80 | if ((rnd=BN_new()) == NULL) goto err; | ||
81 | } | ||
82 | else | ||
83 | rnd=ret; | ||
84 | if(!BN_generate_prime_ex(rnd, bits, safe, add, rem, &cb)) | ||
85 | goto err; | ||
86 | |||
87 | /* we have a prime :-) */ | ||
88 | found = 1; | ||
89 | err: | ||
90 | if (!found && (ret == NULL) && (rnd != NULL)) BN_free(rnd); | ||
91 | return(found ? rnd : NULL); | ||
92 | } | ||
93 | |||
94 | int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int,int,void *), | ||
95 | BN_CTX *ctx_passed, void *cb_arg) | ||
96 | { | ||
97 | BN_GENCB cb; | ||
98 | BN_GENCB_set_old(&cb, callback, cb_arg); | ||
99 | return BN_is_prime_ex(a, checks, ctx_passed, &cb); | ||
100 | } | ||
101 | |||
102 | int BN_is_prime_fasttest(const BIGNUM *a, int checks, | ||
103 | void (*callback)(int,int,void *), | ||
104 | BN_CTX *ctx_passed, void *cb_arg, | ||
105 | int do_trial_division) | ||
106 | { | ||
107 | BN_GENCB cb; | ||
108 | BN_GENCB_set_old(&cb, callback, cb_arg); | ||
109 | return BN_is_prime_fasttest_ex(a, checks, ctx_passed, | ||
110 | do_trial_division, &cb); | ||
111 | } | ||
112 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_div.c b/src/lib/libcrypto/bn/bn_div.c deleted file mode 100644 index 802a43d642..0000000000 --- a/src/lib/libcrypto/bn/bn_div.c +++ /dev/null | |||
@@ -1,650 +0,0 @@ | |||
1 | /* crypto/bn/bn_div.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include <openssl/bn.h> | ||
61 | #include "cryptlib.h" | ||
62 | #include "bn_lcl.h" | ||
63 | |||
64 | |||
65 | /* The old slow way */ | ||
66 | #if 0 | ||
67 | int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, | ||
68 | BN_CTX *ctx) | ||
69 | { | ||
70 | int i,nm,nd; | ||
71 | int ret = 0; | ||
72 | BIGNUM *D; | ||
73 | |||
74 | bn_check_top(m); | ||
75 | bn_check_top(d); | ||
76 | if (BN_is_zero(d)) | ||
77 | { | ||
78 | BNerr(BN_F_BN_DIV,BN_R_DIV_BY_ZERO); | ||
79 | return(0); | ||
80 | } | ||
81 | |||
82 | if (BN_ucmp(m,d) < 0) | ||
83 | { | ||
84 | if (rem != NULL) | ||
85 | { if (BN_copy(rem,m) == NULL) return(0); } | ||
86 | if (dv != NULL) BN_zero(dv); | ||
87 | return(1); | ||
88 | } | ||
89 | |||
90 | BN_CTX_start(ctx); | ||
91 | D = BN_CTX_get(ctx); | ||
92 | if (dv == NULL) dv = BN_CTX_get(ctx); | ||
93 | if (rem == NULL) rem = BN_CTX_get(ctx); | ||
94 | if (D == NULL || dv == NULL || rem == NULL) | ||
95 | goto end; | ||
96 | |||
97 | nd=BN_num_bits(d); | ||
98 | nm=BN_num_bits(m); | ||
99 | if (BN_copy(D,d) == NULL) goto end; | ||
100 | if (BN_copy(rem,m) == NULL) goto end; | ||
101 | |||
102 | /* The next 2 are needed so we can do a dv->d[0]|=1 later | ||
103 | * since BN_lshift1 will only work once there is a value :-) */ | ||
104 | BN_zero(dv); | ||
105 | if(bn_wexpand(dv,1) == NULL) goto end; | ||
106 | dv->top=1; | ||
107 | |||
108 | if (!BN_lshift(D,D,nm-nd)) goto end; | ||
109 | for (i=nm-nd; i>=0; i--) | ||
110 | { | ||
111 | if (!BN_lshift1(dv,dv)) goto end; | ||
112 | if (BN_ucmp(rem,D) >= 0) | ||
113 | { | ||
114 | dv->d[0]|=1; | ||
115 | if (!BN_usub(rem,rem,D)) goto end; | ||
116 | } | ||
117 | /* CAN IMPROVE (and have now :=) */ | ||
118 | if (!BN_rshift1(D,D)) goto end; | ||
119 | } | ||
120 | rem->neg=BN_is_zero(rem)?0:m->neg; | ||
121 | dv->neg=m->neg^d->neg; | ||
122 | ret = 1; | ||
123 | end: | ||
124 | BN_CTX_end(ctx); | ||
125 | return(ret); | ||
126 | } | ||
127 | |||
128 | #else | ||
129 | |||
130 | #if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \ | ||
131 | && !defined(PEDANTIC) && !defined(BN_DIV3W) | ||
132 | # if defined(__GNUC__) && __GNUC__>=2 | ||
133 | # if defined(__i386) || defined (__i386__) | ||
134 | /* | ||
135 | * There were two reasons for implementing this template: | ||
136 | * - GNU C generates a call to a function (__udivdi3 to be exact) | ||
137 | * in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to | ||
138 | * understand why...); | ||
139 | * - divl doesn't only calculate quotient, but also leaves | ||
140 | * remainder in %edx which we can definitely use here:-) | ||
141 | * | ||
142 | * <appro@fy.chalmers.se> | ||
143 | */ | ||
144 | # define bn_div_words(n0,n1,d0) \ | ||
145 | ({ asm volatile ( \ | ||
146 | "divl %4" \ | ||
147 | : "=a"(q), "=d"(rem) \ | ||
148 | : "a"(n1), "d"(n0), "g"(d0) \ | ||
149 | : "cc"); \ | ||
150 | q; \ | ||
151 | }) | ||
152 | # define REMAINDER_IS_ALREADY_CALCULATED | ||
153 | # elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG) | ||
154 | /* | ||
155 | * Same story here, but it's 128-bit by 64-bit division. Wow! | ||
156 | * <appro@fy.chalmers.se> | ||
157 | */ | ||
158 | # define bn_div_words(n0,n1,d0) \ | ||
159 | ({ asm volatile ( \ | ||
160 | "divq %4" \ | ||
161 | : "=a"(q), "=d"(rem) \ | ||
162 | : "a"(n1), "d"(n0), "g"(d0) \ | ||
163 | : "cc"); \ | ||
164 | q; \ | ||
165 | }) | ||
166 | # define REMAINDER_IS_ALREADY_CALCULATED | ||
167 | # endif /* __<cpu> */ | ||
168 | # endif /* __GNUC__ */ | ||
169 | #endif /* OPENSSL_NO_ASM */ | ||
170 | |||
171 | |||
172 | /* BN_div[_no_branch] computes dv := num / divisor, rounding towards | ||
173 | * zero, and sets up rm such that dv*divisor + rm = num holds. | ||
174 | * Thus: | ||
175 | * dv->neg == num->neg ^ divisor->neg (unless the result is zero) | ||
176 | * rm->neg == num->neg (unless the remainder is zero) | ||
177 | * If 'dv' or 'rm' is NULL, the respective value is not returned. | ||
178 | */ | ||
179 | static int BN_div_no_branch(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, | ||
180 | const BIGNUM *divisor, BN_CTX *ctx); | ||
181 | int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, | ||
182 | BN_CTX *ctx) | ||
183 | { | ||
184 | int norm_shift,i,loop; | ||
185 | BIGNUM *tmp,wnum,*snum,*sdiv,*res; | ||
186 | BN_ULONG *resp,*wnump; | ||
187 | BN_ULONG d0,d1; | ||
188 | int num_n,div_n; | ||
189 | |||
190 | /* Invalid zero-padding would have particularly bad consequences | ||
191 | * in the case of 'num', so don't just rely on bn_check_top() for this one | ||
192 | * (bn_check_top() works only for BN_DEBUG builds) */ | ||
193 | if (num->top > 0 && num->d[num->top - 1] == 0) | ||
194 | { | ||
195 | BNerr(BN_F_BN_DIV,BN_R_NOT_INITIALIZED); | ||
196 | return 0; | ||
197 | } | ||
198 | |||
199 | bn_check_top(num); | ||
200 | |||
201 | if ((BN_get_flags(num, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(divisor, BN_FLG_CONSTTIME) != 0)) | ||
202 | { | ||
203 | return BN_div_no_branch(dv, rm, num, divisor, ctx); | ||
204 | } | ||
205 | |||
206 | bn_check_top(dv); | ||
207 | bn_check_top(rm); | ||
208 | /* bn_check_top(num); */ /* 'num' has been checked already */ | ||
209 | bn_check_top(divisor); | ||
210 | |||
211 | if (BN_is_zero(divisor)) | ||
212 | { | ||
213 | BNerr(BN_F_BN_DIV,BN_R_DIV_BY_ZERO); | ||
214 | return(0); | ||
215 | } | ||
216 | |||
217 | if (BN_ucmp(num,divisor) < 0) | ||
218 | { | ||
219 | if (rm != NULL) | ||
220 | { if (BN_copy(rm,num) == NULL) return(0); } | ||
221 | if (dv != NULL) BN_zero(dv); | ||
222 | return(1); | ||
223 | } | ||
224 | |||
225 | BN_CTX_start(ctx); | ||
226 | tmp=BN_CTX_get(ctx); | ||
227 | snum=BN_CTX_get(ctx); | ||
228 | sdiv=BN_CTX_get(ctx); | ||
229 | if (dv == NULL) | ||
230 | res=BN_CTX_get(ctx); | ||
231 | else res=dv; | ||
232 | if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) | ||
233 | goto err; | ||
234 | |||
235 | /* First we normalise the numbers */ | ||
236 | norm_shift=BN_BITS2-((BN_num_bits(divisor))%BN_BITS2); | ||
237 | if (!(BN_lshift(sdiv,divisor,norm_shift))) goto err; | ||
238 | sdiv->neg=0; | ||
239 | norm_shift+=BN_BITS2; | ||
240 | if (!(BN_lshift(snum,num,norm_shift))) goto err; | ||
241 | snum->neg=0; | ||
242 | div_n=sdiv->top; | ||
243 | num_n=snum->top; | ||
244 | loop=num_n-div_n; | ||
245 | /* Lets setup a 'window' into snum | ||
246 | * This is the part that corresponds to the current | ||
247 | * 'area' being divided */ | ||
248 | wnum.neg = 0; | ||
249 | wnum.d = &(snum->d[loop]); | ||
250 | wnum.top = div_n; | ||
251 | /* only needed when BN_ucmp messes up the values between top and max */ | ||
252 | wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */ | ||
253 | |||
254 | /* Get the top 2 words of sdiv */ | ||
255 | /* div_n=sdiv->top; */ | ||
256 | d0=sdiv->d[div_n-1]; | ||
257 | d1=(div_n == 1)?0:sdiv->d[div_n-2]; | ||
258 | |||
259 | /* pointer to the 'top' of snum */ | ||
260 | wnump= &(snum->d[num_n-1]); | ||
261 | |||
262 | /* Setup to 'res' */ | ||
263 | res->neg= (num->neg^divisor->neg); | ||
264 | if (!bn_wexpand(res,(loop+1))) goto err; | ||
265 | res->top=loop; | ||
266 | resp= &(res->d[loop-1]); | ||
267 | |||
268 | /* space for temp */ | ||
269 | if (!bn_wexpand(tmp,(div_n+1))) goto err; | ||
270 | |||
271 | if (BN_ucmp(&wnum,sdiv) >= 0) | ||
272 | { | ||
273 | /* If BN_DEBUG_RAND is defined BN_ucmp changes (via | ||
274 | * bn_pollute) the const bignum arguments => | ||
275 | * clean the values between top and max again */ | ||
276 | bn_clear_top2max(&wnum); | ||
277 | bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n); | ||
278 | *resp=1; | ||
279 | } | ||
280 | else | ||
281 | res->top--; | ||
282 | /* if res->top == 0 then clear the neg value otherwise decrease | ||
283 | * the resp pointer */ | ||
284 | if (res->top == 0) | ||
285 | res->neg = 0; | ||
286 | else | ||
287 | resp--; | ||
288 | |||
289 | for (i=0; i<loop-1; i++, wnump--, resp--) | ||
290 | { | ||
291 | BN_ULONG q,l0; | ||
292 | /* the first part of the loop uses the top two words of | ||
293 | * snum and sdiv to calculate a BN_ULONG q such that | ||
294 | * | wnum - sdiv * q | < sdiv */ | ||
295 | #if defined(BN_DIV3W) && !defined(OPENSSL_NO_ASM) | ||
296 | BN_ULONG bn_div_3_words(BN_ULONG*,BN_ULONG,BN_ULONG); | ||
297 | q=bn_div_3_words(wnump,d1,d0); | ||
298 | #else | ||
299 | BN_ULONG n0,n1,rem=0; | ||
300 | |||
301 | n0=wnump[0]; | ||
302 | n1=wnump[-1]; | ||
303 | if (n0 == d0) | ||
304 | q=BN_MASK2; | ||
305 | else /* n0 < d0 */ | ||
306 | { | ||
307 | #ifdef BN_LLONG | ||
308 | BN_ULLONG t2; | ||
309 | |||
310 | #if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words) | ||
311 | q=(BN_ULONG)(((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0); | ||
312 | #else | ||
313 | q=bn_div_words(n0,n1,d0); | ||
314 | #ifdef BN_DEBUG_LEVITTE | ||
315 | fprintf(stderr,"DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\ | ||
316 | X) -> 0x%08X\n", | ||
317 | n0, n1, d0, q); | ||
318 | #endif | ||
319 | #endif | ||
320 | |||
321 | #ifndef REMAINDER_IS_ALREADY_CALCULATED | ||
322 | /* | ||
323 | * rem doesn't have to be BN_ULLONG. The least we | ||
324 | * know it's less that d0, isn't it? | ||
325 | */ | ||
326 | rem=(n1-q*d0)&BN_MASK2; | ||
327 | #endif | ||
328 | t2=(BN_ULLONG)d1*q; | ||
329 | |||
330 | for (;;) | ||
331 | { | ||
332 | if (t2 <= ((((BN_ULLONG)rem)<<BN_BITS2)|wnump[-2])) | ||
333 | break; | ||
334 | q--; | ||
335 | rem += d0; | ||
336 | if (rem < d0) break; /* don't let rem overflow */ | ||
337 | t2 -= d1; | ||
338 | } | ||
339 | #else /* !BN_LLONG */ | ||
340 | BN_ULONG t2l,t2h; | ||
341 | |||
342 | q=bn_div_words(n0,n1,d0); | ||
343 | #ifdef BN_DEBUG_LEVITTE | ||
344 | fprintf(stderr,"DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\ | ||
345 | X) -> 0x%08X\n", | ||
346 | n0, n1, d0, q); | ||
347 | #endif | ||
348 | #ifndef REMAINDER_IS_ALREADY_CALCULATED | ||
349 | rem=(n1-q*d0)&BN_MASK2; | ||
350 | #endif | ||
351 | |||
352 | #if defined(BN_UMULT_LOHI) | ||
353 | BN_UMULT_LOHI(t2l,t2h,d1,q); | ||
354 | #elif defined(BN_UMULT_HIGH) | ||
355 | t2l = d1 * q; | ||
356 | t2h = BN_UMULT_HIGH(d1,q); | ||
357 | #else | ||
358 | { | ||
359 | BN_ULONG ql, qh; | ||
360 | t2l=LBITS(d1); t2h=HBITS(d1); | ||
361 | ql =LBITS(q); qh =HBITS(q); | ||
362 | mul64(t2l,t2h,ql,qh); /* t2=(BN_ULLONG)d1*q; */ | ||
363 | } | ||
364 | #endif | ||
365 | |||
366 | for (;;) | ||
367 | { | ||
368 | if ((t2h < rem) || | ||
369 | ((t2h == rem) && (t2l <= wnump[-2]))) | ||
370 | break; | ||
371 | q--; | ||
372 | rem += d0; | ||
373 | if (rem < d0) break; /* don't let rem overflow */ | ||
374 | if (t2l < d1) t2h--; t2l -= d1; | ||
375 | } | ||
376 | #endif /* !BN_LLONG */ | ||
377 | } | ||
378 | #endif /* !BN_DIV3W */ | ||
379 | |||
380 | l0=bn_mul_words(tmp->d,sdiv->d,div_n,q); | ||
381 | tmp->d[div_n]=l0; | ||
382 | wnum.d--; | ||
383 | /* ingore top values of the bignums just sub the two | ||
384 | * BN_ULONG arrays with bn_sub_words */ | ||
385 | if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n+1)) | ||
386 | { | ||
387 | /* Note: As we have considered only the leading | ||
388 | * two BN_ULONGs in the calculation of q, sdiv * q | ||
389 | * might be greater than wnum (but then (q-1) * sdiv | ||
390 | * is less or equal than wnum) | ||
391 | */ | ||
392 | q--; | ||
393 | if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) | ||
394 | /* we can't have an overflow here (assuming | ||
395 | * that q != 0, but if q == 0 then tmp is | ||
396 | * zero anyway) */ | ||
397 | (*wnump)++; | ||
398 | } | ||
399 | /* store part of the result */ | ||
400 | *resp = q; | ||
401 | } | ||
402 | bn_correct_top(snum); | ||
403 | if (rm != NULL) | ||
404 | { | ||
405 | /* Keep a copy of the neg flag in num because if rm==num | ||
406 | * BN_rshift() will overwrite it. | ||
407 | */ | ||
408 | int neg = num->neg; | ||
409 | BN_rshift(rm,snum,norm_shift); | ||
410 | if (!BN_is_zero(rm)) | ||
411 | rm->neg = neg; | ||
412 | bn_check_top(rm); | ||
413 | } | ||
414 | BN_CTX_end(ctx); | ||
415 | return(1); | ||
416 | err: | ||
417 | bn_check_top(rm); | ||
418 | BN_CTX_end(ctx); | ||
419 | return(0); | ||
420 | } | ||
421 | |||
422 | |||
423 | /* BN_div_no_branch is a special version of BN_div. It does not contain | ||
424 | * branches that may leak sensitive information. | ||
425 | */ | ||
426 | static int BN_div_no_branch(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, | ||
427 | const BIGNUM *divisor, BN_CTX *ctx) | ||
428 | { | ||
429 | int norm_shift,i,loop; | ||
430 | BIGNUM *tmp,wnum,*snum,*sdiv,*res; | ||
431 | BN_ULONG *resp,*wnump; | ||
432 | BN_ULONG d0,d1; | ||
433 | int num_n,div_n; | ||
434 | |||
435 | bn_check_top(dv); | ||
436 | bn_check_top(rm); | ||
437 | /* bn_check_top(num); */ /* 'num' has been checked in BN_div() */ | ||
438 | bn_check_top(divisor); | ||
439 | |||
440 | if (BN_is_zero(divisor)) | ||
441 | { | ||
442 | BNerr(BN_F_BN_DIV_NO_BRANCH,BN_R_DIV_BY_ZERO); | ||
443 | return(0); | ||
444 | } | ||
445 | |||
446 | BN_CTX_start(ctx); | ||
447 | tmp=BN_CTX_get(ctx); | ||
448 | snum=BN_CTX_get(ctx); | ||
449 | sdiv=BN_CTX_get(ctx); | ||
450 | if (dv == NULL) | ||
451 | res=BN_CTX_get(ctx); | ||
452 | else res=dv; | ||
453 | if (sdiv == NULL || res == NULL) goto err; | ||
454 | |||
455 | /* First we normalise the numbers */ | ||
456 | norm_shift=BN_BITS2-((BN_num_bits(divisor))%BN_BITS2); | ||
457 | if (!(BN_lshift(sdiv,divisor,norm_shift))) goto err; | ||
458 | sdiv->neg=0; | ||
459 | norm_shift+=BN_BITS2; | ||
460 | if (!(BN_lshift(snum,num,norm_shift))) goto err; | ||
461 | snum->neg=0; | ||
462 | |||
463 | /* Since we don't know whether snum is larger than sdiv, | ||
464 | * we pad snum with enough zeroes without changing its | ||
465 | * value. | ||
466 | */ | ||
467 | if (snum->top <= sdiv->top+1) | ||
468 | { | ||
469 | if (bn_wexpand(snum, sdiv->top + 2) == NULL) goto err; | ||
470 | for (i = snum->top; i < sdiv->top + 2; i++) snum->d[i] = 0; | ||
471 | snum->top = sdiv->top + 2; | ||
472 | } | ||
473 | else | ||
474 | { | ||
475 | if (bn_wexpand(snum, snum->top + 1) == NULL) goto err; | ||
476 | snum->d[snum->top] = 0; | ||
477 | snum->top ++; | ||
478 | } | ||
479 | |||
480 | div_n=sdiv->top; | ||
481 | num_n=snum->top; | ||
482 | loop=num_n-div_n; | ||
483 | /* Lets setup a 'window' into snum | ||
484 | * This is the part that corresponds to the current | ||
485 | * 'area' being divided */ | ||
486 | wnum.neg = 0; | ||
487 | wnum.d = &(snum->d[loop]); | ||
488 | wnum.top = div_n; | ||
489 | /* only needed when BN_ucmp messes up the values between top and max */ | ||
490 | wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */ | ||
491 | |||
492 | /* Get the top 2 words of sdiv */ | ||
493 | /* div_n=sdiv->top; */ | ||
494 | d0=sdiv->d[div_n-1]; | ||
495 | d1=(div_n == 1)?0:sdiv->d[div_n-2]; | ||
496 | |||
497 | /* pointer to the 'top' of snum */ | ||
498 | wnump= &(snum->d[num_n-1]); | ||
499 | |||
500 | /* Setup to 'res' */ | ||
501 | res->neg= (num->neg^divisor->neg); | ||
502 | if (!bn_wexpand(res,(loop+1))) goto err; | ||
503 | res->top=loop-1; | ||
504 | resp= &(res->d[loop-1]); | ||
505 | |||
506 | /* space for temp */ | ||
507 | if (!bn_wexpand(tmp,(div_n+1))) goto err; | ||
508 | |||
509 | /* if res->top == 0 then clear the neg value otherwise decrease | ||
510 | * the resp pointer */ | ||
511 | if (res->top == 0) | ||
512 | res->neg = 0; | ||
513 | else | ||
514 | resp--; | ||
515 | |||
516 | for (i=0; i<loop-1; i++, wnump--, resp--) | ||
517 | { | ||
518 | BN_ULONG q,l0; | ||
519 | /* the first part of the loop uses the top two words of | ||
520 | * snum and sdiv to calculate a BN_ULONG q such that | ||
521 | * | wnum - sdiv * q | < sdiv */ | ||
522 | #if defined(BN_DIV3W) && !defined(OPENSSL_NO_ASM) | ||
523 | BN_ULONG bn_div_3_words(BN_ULONG*,BN_ULONG,BN_ULONG); | ||
524 | q=bn_div_3_words(wnump,d1,d0); | ||
525 | #else | ||
526 | BN_ULONG n0,n1,rem=0; | ||
527 | |||
528 | n0=wnump[0]; | ||
529 | n1=wnump[-1]; | ||
530 | if (n0 == d0) | ||
531 | q=BN_MASK2; | ||
532 | else /* n0 < d0 */ | ||
533 | { | ||
534 | #ifdef BN_LLONG | ||
535 | BN_ULLONG t2; | ||
536 | |||
537 | #if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words) | ||
538 | q=(BN_ULONG)(((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0); | ||
539 | #else | ||
540 | q=bn_div_words(n0,n1,d0); | ||
541 | #ifdef BN_DEBUG_LEVITTE | ||
542 | fprintf(stderr,"DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\ | ||
543 | X) -> 0x%08X\n", | ||
544 | n0, n1, d0, q); | ||
545 | #endif | ||
546 | #endif | ||
547 | |||
548 | #ifndef REMAINDER_IS_ALREADY_CALCULATED | ||
549 | /* | ||
550 | * rem doesn't have to be BN_ULLONG. The least we | ||
551 | * know it's less that d0, isn't it? | ||
552 | */ | ||
553 | rem=(n1-q*d0)&BN_MASK2; | ||
554 | #endif | ||
555 | t2=(BN_ULLONG)d1*q; | ||
556 | |||
557 | for (;;) | ||
558 | { | ||
559 | if (t2 <= ((((BN_ULLONG)rem)<<BN_BITS2)|wnump[-2])) | ||
560 | break; | ||
561 | q--; | ||
562 | rem += d0; | ||
563 | if (rem < d0) break; /* don't let rem overflow */ | ||
564 | t2 -= d1; | ||
565 | } | ||
566 | #else /* !BN_LLONG */ | ||
567 | BN_ULONG t2l,t2h; | ||
568 | |||
569 | q=bn_div_words(n0,n1,d0); | ||
570 | #ifdef BN_DEBUG_LEVITTE | ||
571 | fprintf(stderr,"DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\ | ||
572 | X) -> 0x%08X\n", | ||
573 | n0, n1, d0, q); | ||
574 | #endif | ||
575 | #ifndef REMAINDER_IS_ALREADY_CALCULATED | ||
576 | rem=(n1-q*d0)&BN_MASK2; | ||
577 | #endif | ||
578 | |||
579 | #if defined(BN_UMULT_LOHI) | ||
580 | BN_UMULT_LOHI(t2l,t2h,d1,q); | ||
581 | #elif defined(BN_UMULT_HIGH) | ||
582 | t2l = d1 * q; | ||
583 | t2h = BN_UMULT_HIGH(d1,q); | ||
584 | #else | ||
585 | { | ||
586 | BN_ULONG ql, qh; | ||
587 | t2l=LBITS(d1); t2h=HBITS(d1); | ||
588 | ql =LBITS(q); qh =HBITS(q); | ||
589 | mul64(t2l,t2h,ql,qh); /* t2=(BN_ULLONG)d1*q; */ | ||
590 | } | ||
591 | #endif | ||
592 | |||
593 | for (;;) | ||
594 | { | ||
595 | if ((t2h < rem) || | ||
596 | ((t2h == rem) && (t2l <= wnump[-2]))) | ||
597 | break; | ||
598 | q--; | ||
599 | rem += d0; | ||
600 | if (rem < d0) break; /* don't let rem overflow */ | ||
601 | if (t2l < d1) t2h--; t2l -= d1; | ||
602 | } | ||
603 | #endif /* !BN_LLONG */ | ||
604 | } | ||
605 | #endif /* !BN_DIV3W */ | ||
606 | |||
607 | l0=bn_mul_words(tmp->d,sdiv->d,div_n,q); | ||
608 | tmp->d[div_n]=l0; | ||
609 | wnum.d--; | ||
610 | /* ingore top values of the bignums just sub the two | ||
611 | * BN_ULONG arrays with bn_sub_words */ | ||
612 | if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n+1)) | ||
613 | { | ||
614 | /* Note: As we have considered only the leading | ||
615 | * two BN_ULONGs in the calculation of q, sdiv * q | ||
616 | * might be greater than wnum (but then (q-1) * sdiv | ||
617 | * is less or equal than wnum) | ||
618 | */ | ||
619 | q--; | ||
620 | if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) | ||
621 | /* we can't have an overflow here (assuming | ||
622 | * that q != 0, but if q == 0 then tmp is | ||
623 | * zero anyway) */ | ||
624 | (*wnump)++; | ||
625 | } | ||
626 | /* store part of the result */ | ||
627 | *resp = q; | ||
628 | } | ||
629 | bn_correct_top(snum); | ||
630 | if (rm != NULL) | ||
631 | { | ||
632 | /* Keep a copy of the neg flag in num because if rm==num | ||
633 | * BN_rshift() will overwrite it. | ||
634 | */ | ||
635 | int neg = num->neg; | ||
636 | BN_rshift(rm,snum,norm_shift); | ||
637 | if (!BN_is_zero(rm)) | ||
638 | rm->neg = neg; | ||
639 | bn_check_top(rm); | ||
640 | } | ||
641 | bn_correct_top(res); | ||
642 | BN_CTX_end(ctx); | ||
643 | return(1); | ||
644 | err: | ||
645 | bn_check_top(rm); | ||
646 | BN_CTX_end(ctx); | ||
647 | return(0); | ||
648 | } | ||
649 | |||
650 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_err.c b/src/lib/libcrypto/bn/bn_err.c deleted file mode 100644 index cfe2eb94a0..0000000000 --- a/src/lib/libcrypto/bn/bn_err.c +++ /dev/null | |||
@@ -1,150 +0,0 @@ | |||
1 | /* crypto/bn/bn_err.c */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1999-2007 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@OpenSSL.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | /* NOTE: this file was auto generated by the mkerr.pl script: any changes | ||
57 | * made to it will be overwritten when the script next updates this file, | ||
58 | * only reason strings will be preserved. | ||
59 | */ | ||
60 | |||
61 | #include <stdio.h> | ||
62 | #include <openssl/err.h> | ||
63 | #include <openssl/bn.h> | ||
64 | |||
65 | /* BEGIN ERROR CODES */ | ||
66 | #ifndef OPENSSL_NO_ERR | ||
67 | |||
68 | #define ERR_FUNC(func) ERR_PACK(ERR_LIB_BN,func,0) | ||
69 | #define ERR_REASON(reason) ERR_PACK(ERR_LIB_BN,0,reason) | ||
70 | |||
71 | static ERR_STRING_DATA BN_str_functs[]= | ||
72 | { | ||
73 | {ERR_FUNC(BN_F_BNRAND), "BNRAND"}, | ||
74 | {ERR_FUNC(BN_F_BN_BLINDING_CONVERT_EX), "BN_BLINDING_convert_ex"}, | ||
75 | {ERR_FUNC(BN_F_BN_BLINDING_CREATE_PARAM), "BN_BLINDING_create_param"}, | ||
76 | {ERR_FUNC(BN_F_BN_BLINDING_INVERT_EX), "BN_BLINDING_invert_ex"}, | ||
77 | {ERR_FUNC(BN_F_BN_BLINDING_NEW), "BN_BLINDING_new"}, | ||
78 | {ERR_FUNC(BN_F_BN_BLINDING_UPDATE), "BN_BLINDING_update"}, | ||
79 | {ERR_FUNC(BN_F_BN_BN2DEC), "BN_bn2dec"}, | ||
80 | {ERR_FUNC(BN_F_BN_BN2HEX), "BN_bn2hex"}, | ||
81 | {ERR_FUNC(BN_F_BN_CTX_GET), "BN_CTX_get"}, | ||
82 | {ERR_FUNC(BN_F_BN_CTX_NEW), "BN_CTX_new"}, | ||
83 | {ERR_FUNC(BN_F_BN_CTX_START), "BN_CTX_start"}, | ||
84 | {ERR_FUNC(BN_F_BN_DIV), "BN_div"}, | ||
85 | {ERR_FUNC(BN_F_BN_DIV_NO_BRANCH), "BN_div_no_branch"}, | ||
86 | {ERR_FUNC(BN_F_BN_DIV_RECP), "BN_div_recp"}, | ||
87 | {ERR_FUNC(BN_F_BN_EXP), "BN_exp"}, | ||
88 | {ERR_FUNC(BN_F_BN_EXPAND2), "bn_expand2"}, | ||
89 | {ERR_FUNC(BN_F_BN_EXPAND_INTERNAL), "BN_EXPAND_INTERNAL"}, | ||
90 | {ERR_FUNC(BN_F_BN_GF2M_MOD), "BN_GF2m_mod"}, | ||
91 | {ERR_FUNC(BN_F_BN_GF2M_MOD_EXP), "BN_GF2m_mod_exp"}, | ||
92 | {ERR_FUNC(BN_F_BN_GF2M_MOD_MUL), "BN_GF2m_mod_mul"}, | ||
93 | {ERR_FUNC(BN_F_BN_GF2M_MOD_SOLVE_QUAD), "BN_GF2m_mod_solve_quad"}, | ||
94 | {ERR_FUNC(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR), "BN_GF2m_mod_solve_quad_arr"}, | ||
95 | {ERR_FUNC(BN_F_BN_GF2M_MOD_SQR), "BN_GF2m_mod_sqr"}, | ||
96 | {ERR_FUNC(BN_F_BN_GF2M_MOD_SQRT), "BN_GF2m_mod_sqrt"}, | ||
97 | {ERR_FUNC(BN_F_BN_MOD_EXP2_MONT), "BN_mod_exp2_mont"}, | ||
98 | {ERR_FUNC(BN_F_BN_MOD_EXP_MONT), "BN_mod_exp_mont"}, | ||
99 | {ERR_FUNC(BN_F_BN_MOD_EXP_MONT_CONSTTIME), "BN_mod_exp_mont_consttime"}, | ||
100 | {ERR_FUNC(BN_F_BN_MOD_EXP_MONT_WORD), "BN_mod_exp_mont_word"}, | ||
101 | {ERR_FUNC(BN_F_BN_MOD_EXP_RECP), "BN_mod_exp_recp"}, | ||
102 | {ERR_FUNC(BN_F_BN_MOD_EXP_SIMPLE), "BN_mod_exp_simple"}, | ||
103 | {ERR_FUNC(BN_F_BN_MOD_INVERSE), "BN_mod_inverse"}, | ||
104 | {ERR_FUNC(BN_F_BN_MOD_INVERSE_NO_BRANCH), "BN_mod_inverse_no_branch"}, | ||
105 | {ERR_FUNC(BN_F_BN_MOD_LSHIFT_QUICK), "BN_mod_lshift_quick"}, | ||
106 | {ERR_FUNC(BN_F_BN_MOD_MUL_RECIPROCAL), "BN_mod_mul_reciprocal"}, | ||
107 | {ERR_FUNC(BN_F_BN_MOD_SQRT), "BN_mod_sqrt"}, | ||
108 | {ERR_FUNC(BN_F_BN_MPI2BN), "BN_mpi2bn"}, | ||
109 | {ERR_FUNC(BN_F_BN_NEW), "BN_new"}, | ||
110 | {ERR_FUNC(BN_F_BN_RAND), "BN_rand"}, | ||
111 | {ERR_FUNC(BN_F_BN_RAND_RANGE), "BN_rand_range"}, | ||
112 | {ERR_FUNC(BN_F_BN_USUB), "BN_usub"}, | ||
113 | {0,NULL} | ||
114 | }; | ||
115 | |||
116 | static ERR_STRING_DATA BN_str_reasons[]= | ||
117 | { | ||
118 | {ERR_REASON(BN_R_ARG2_LT_ARG3) ,"arg2 lt arg3"}, | ||
119 | {ERR_REASON(BN_R_BAD_RECIPROCAL) ,"bad reciprocal"}, | ||
120 | {ERR_REASON(BN_R_BIGNUM_TOO_LONG) ,"bignum too long"}, | ||
121 | {ERR_REASON(BN_R_CALLED_WITH_EVEN_MODULUS),"called with even modulus"}, | ||
122 | {ERR_REASON(BN_R_DIV_BY_ZERO) ,"div by zero"}, | ||
123 | {ERR_REASON(BN_R_ENCODING_ERROR) ,"encoding error"}, | ||
124 | {ERR_REASON(BN_R_EXPAND_ON_STATIC_BIGNUM_DATA),"expand on static bignum data"}, | ||
125 | {ERR_REASON(BN_R_INPUT_NOT_REDUCED) ,"input not reduced"}, | ||
126 | {ERR_REASON(BN_R_INVALID_LENGTH) ,"invalid length"}, | ||
127 | {ERR_REASON(BN_R_INVALID_RANGE) ,"invalid range"}, | ||
128 | {ERR_REASON(BN_R_NOT_A_SQUARE) ,"not a square"}, | ||
129 | {ERR_REASON(BN_R_NOT_INITIALIZED) ,"not initialized"}, | ||
130 | {ERR_REASON(BN_R_NO_INVERSE) ,"no inverse"}, | ||
131 | {ERR_REASON(BN_R_NO_SOLUTION) ,"no solution"}, | ||
132 | {ERR_REASON(BN_R_P_IS_NOT_PRIME) ,"p is not prime"}, | ||
133 | {ERR_REASON(BN_R_TOO_MANY_ITERATIONS) ,"too many iterations"}, | ||
134 | {ERR_REASON(BN_R_TOO_MANY_TEMPORARY_VARIABLES),"too many temporary variables"}, | ||
135 | {0,NULL} | ||
136 | }; | ||
137 | |||
138 | #endif | ||
139 | |||
140 | void ERR_load_BN_strings(void) | ||
141 | { | ||
142 | #ifndef OPENSSL_NO_ERR | ||
143 | |||
144 | if (ERR_func_error_string(BN_str_functs[0].error) == NULL) | ||
145 | { | ||
146 | ERR_load_strings(0,BN_str_functs); | ||
147 | ERR_load_strings(0,BN_str_reasons); | ||
148 | } | ||
149 | #endif | ||
150 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_exp.c b/src/lib/libcrypto/bn/bn_exp.c deleted file mode 100644 index d9b6c737fc..0000000000 --- a/src/lib/libcrypto/bn/bn_exp.c +++ /dev/null | |||
@@ -1,991 +0,0 @@ | |||
1 | /* crypto/bn/bn_exp.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | |||
113 | #include "cryptlib.h" | ||
114 | #include "bn_lcl.h" | ||
115 | |||
116 | /* maximum precomputation table size for *variable* sliding windows */ | ||
117 | #define TABLE_SIZE 32 | ||
118 | |||
119 | /* this one works - simple but works */ | ||
120 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
121 | { | ||
122 | int i,bits,ret=0; | ||
123 | BIGNUM *v,*rr; | ||
124 | |||
125 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
126 | { | ||
127 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
128 | BNerr(BN_F_BN_EXP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
129 | return -1; | ||
130 | } | ||
131 | |||
132 | BN_CTX_start(ctx); | ||
133 | if ((r == a) || (r == p)) | ||
134 | rr = BN_CTX_get(ctx); | ||
135 | else | ||
136 | rr = r; | ||
137 | v = BN_CTX_get(ctx); | ||
138 | if (rr == NULL || v == NULL) goto err; | ||
139 | |||
140 | if (BN_copy(v,a) == NULL) goto err; | ||
141 | bits=BN_num_bits(p); | ||
142 | |||
143 | if (BN_is_odd(p)) | ||
144 | { if (BN_copy(rr,a) == NULL) goto err; } | ||
145 | else { if (!BN_one(rr)) goto err; } | ||
146 | |||
147 | for (i=1; i<bits; i++) | ||
148 | { | ||
149 | if (!BN_sqr(v,v,ctx)) goto err; | ||
150 | if (BN_is_bit_set(p,i)) | ||
151 | { | ||
152 | if (!BN_mul(rr,rr,v,ctx)) goto err; | ||
153 | } | ||
154 | } | ||
155 | ret=1; | ||
156 | err: | ||
157 | if (r != rr) BN_copy(r,rr); | ||
158 | BN_CTX_end(ctx); | ||
159 | bn_check_top(r); | ||
160 | return(ret); | ||
161 | } | ||
162 | |||
163 | |||
164 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
165 | BN_CTX *ctx) | ||
166 | { | ||
167 | int ret; | ||
168 | |||
169 | bn_check_top(a); | ||
170 | bn_check_top(p); | ||
171 | bn_check_top(m); | ||
172 | |||
173 | /* For even modulus m = 2^k*m_odd, it might make sense to compute | ||
174 | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery | ||
175 | * exponentiation for the odd part), using appropriate exponent | ||
176 | * reductions, and combine the results using the CRT. | ||
177 | * | ||
178 | * For now, we use Montgomery only if the modulus is odd; otherwise, | ||
179 | * exponentiation using the reciprocal-based quick remaindering | ||
180 | * algorithm is used. | ||
181 | * | ||
182 | * (Timing obtained with expspeed.c [computations a^p mod m | ||
183 | * where a, p, m are of the same length: 256, 512, 1024, 2048, | ||
184 | * 4096, 8192 bits], compared to the running time of the | ||
185 | * standard algorithm: | ||
186 | * | ||
187 | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] | ||
188 | * 55 .. 77 % [UltraSparc processor, but | ||
189 | * debug-solaris-sparcv8-gcc conf.] | ||
190 | * | ||
191 | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] | ||
192 | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] | ||
193 | * | ||
194 | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont | ||
195 | * at 2048 and more bits, but at 512 and 1024 bits, it was | ||
196 | * slower even than the standard algorithm! | ||
197 | * | ||
198 | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] | ||
199 | * should be obtained when the new Montgomery reduction code | ||
200 | * has been integrated into OpenSSL.) | ||
201 | */ | ||
202 | |||
203 | #define MONT_MUL_MOD | ||
204 | #define MONT_EXP_WORD | ||
205 | #define RECP_MUL_MOD | ||
206 | |||
207 | #ifdef MONT_MUL_MOD | ||
208 | /* I have finally been able to take out this pre-condition of | ||
209 | * the top bit being set. It was caused by an error in BN_div | ||
210 | * with negatives. There was also another problem when for a^b%m | ||
211 | * a >= m. eay 07-May-97 */ | ||
212 | /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ | ||
213 | |||
214 | if (BN_is_odd(m)) | ||
215 | { | ||
216 | # ifdef MONT_EXP_WORD | ||
217 | if (a->top == 1 && !a->neg && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)) | ||
218 | { | ||
219 | BN_ULONG A = a->d[0]; | ||
220 | ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL); | ||
221 | } | ||
222 | else | ||
223 | # endif | ||
224 | ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL); | ||
225 | } | ||
226 | else | ||
227 | #endif | ||
228 | #ifdef RECP_MUL_MOD | ||
229 | { ret=BN_mod_exp_recp(r,a,p,m,ctx); } | ||
230 | #else | ||
231 | { ret=BN_mod_exp_simple(r,a,p,m,ctx); } | ||
232 | #endif | ||
233 | |||
234 | bn_check_top(r); | ||
235 | return(ret); | ||
236 | } | ||
237 | |||
238 | |||
239 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
240 | const BIGNUM *m, BN_CTX *ctx) | ||
241 | { | ||
242 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
243 | int start=1; | ||
244 | BIGNUM *aa; | ||
245 | /* Table of variables obtained from 'ctx' */ | ||
246 | BIGNUM *val[TABLE_SIZE]; | ||
247 | BN_RECP_CTX recp; | ||
248 | |||
249 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
250 | { | ||
251 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
252 | BNerr(BN_F_BN_MOD_EXP_RECP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
253 | return -1; | ||
254 | } | ||
255 | |||
256 | bits=BN_num_bits(p); | ||
257 | |||
258 | if (bits == 0) | ||
259 | { | ||
260 | ret = BN_one(r); | ||
261 | return ret; | ||
262 | } | ||
263 | |||
264 | BN_CTX_start(ctx); | ||
265 | aa = BN_CTX_get(ctx); | ||
266 | val[0] = BN_CTX_get(ctx); | ||
267 | if(!aa || !val[0]) goto err; | ||
268 | |||
269 | BN_RECP_CTX_init(&recp); | ||
270 | if (m->neg) | ||
271 | { | ||
272 | /* ignore sign of 'm' */ | ||
273 | if (!BN_copy(aa, m)) goto err; | ||
274 | aa->neg = 0; | ||
275 | if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err; | ||
276 | } | ||
277 | else | ||
278 | { | ||
279 | if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err; | ||
280 | } | ||
281 | |||
282 | if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */ | ||
283 | if (BN_is_zero(val[0])) | ||
284 | { | ||
285 | BN_zero(r); | ||
286 | ret = 1; | ||
287 | goto err; | ||
288 | } | ||
289 | |||
290 | window = BN_window_bits_for_exponent_size(bits); | ||
291 | if (window > 1) | ||
292 | { | ||
293 | if (!BN_mod_mul_reciprocal(aa,val[0],val[0],&recp,ctx)) | ||
294 | goto err; /* 2 */ | ||
295 | j=1<<(window-1); | ||
296 | for (i=1; i<j; i++) | ||
297 | { | ||
298 | if(((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
299 | !BN_mod_mul_reciprocal(val[i],val[i-1], | ||
300 | aa,&recp,ctx)) | ||
301 | goto err; | ||
302 | } | ||
303 | } | ||
304 | |||
305 | start=1; /* This is used to avoid multiplication etc | ||
306 | * when there is only the value '1' in the | ||
307 | * buffer. */ | ||
308 | wvalue=0; /* The 'value' of the window */ | ||
309 | wstart=bits-1; /* The top bit of the window */ | ||
310 | wend=0; /* The bottom bit of the window */ | ||
311 | |||
312 | if (!BN_one(r)) goto err; | ||
313 | |||
314 | for (;;) | ||
315 | { | ||
316 | if (BN_is_bit_set(p,wstart) == 0) | ||
317 | { | ||
318 | if (!start) | ||
319 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
320 | goto err; | ||
321 | if (wstart == 0) break; | ||
322 | wstart--; | ||
323 | continue; | ||
324 | } | ||
325 | /* We now have wstart on a 'set' bit, we now need to work out | ||
326 | * how bit a window to do. To do this we need to scan | ||
327 | * forward until the last set bit before the end of the | ||
328 | * window */ | ||
329 | j=wstart; | ||
330 | wvalue=1; | ||
331 | wend=0; | ||
332 | for (i=1; i<window; i++) | ||
333 | { | ||
334 | if (wstart-i < 0) break; | ||
335 | if (BN_is_bit_set(p,wstart-i)) | ||
336 | { | ||
337 | wvalue<<=(i-wend); | ||
338 | wvalue|=1; | ||
339 | wend=i; | ||
340 | } | ||
341 | } | ||
342 | |||
343 | /* wend is the size of the current window */ | ||
344 | j=wend+1; | ||
345 | /* add the 'bytes above' */ | ||
346 | if (!start) | ||
347 | for (i=0; i<j; i++) | ||
348 | { | ||
349 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
350 | goto err; | ||
351 | } | ||
352 | |||
353 | /* wvalue will be an odd number < 2^window */ | ||
354 | if (!BN_mod_mul_reciprocal(r,r,val[wvalue>>1],&recp,ctx)) | ||
355 | goto err; | ||
356 | |||
357 | /* move the 'window' down further */ | ||
358 | wstart-=wend+1; | ||
359 | wvalue=0; | ||
360 | start=0; | ||
361 | if (wstart < 0) break; | ||
362 | } | ||
363 | ret=1; | ||
364 | err: | ||
365 | BN_CTX_end(ctx); | ||
366 | BN_RECP_CTX_free(&recp); | ||
367 | bn_check_top(r); | ||
368 | return(ret); | ||
369 | } | ||
370 | |||
371 | |||
372 | int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
373 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
374 | { | ||
375 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
376 | int start=1; | ||
377 | BIGNUM *d,*r; | ||
378 | const BIGNUM *aa; | ||
379 | /* Table of variables obtained from 'ctx' */ | ||
380 | BIGNUM *val[TABLE_SIZE]; | ||
381 | BN_MONT_CTX *mont=NULL; | ||
382 | |||
383 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
384 | { | ||
385 | return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); | ||
386 | } | ||
387 | |||
388 | bn_check_top(a); | ||
389 | bn_check_top(p); | ||
390 | bn_check_top(m); | ||
391 | |||
392 | if (!BN_is_odd(m)) | ||
393 | { | ||
394 | BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
395 | return(0); | ||
396 | } | ||
397 | bits=BN_num_bits(p); | ||
398 | if (bits == 0) | ||
399 | { | ||
400 | ret = BN_one(rr); | ||
401 | return ret; | ||
402 | } | ||
403 | |||
404 | BN_CTX_start(ctx); | ||
405 | d = BN_CTX_get(ctx); | ||
406 | r = BN_CTX_get(ctx); | ||
407 | val[0] = BN_CTX_get(ctx); | ||
408 | if (!d || !r || !val[0]) goto err; | ||
409 | |||
410 | /* If this is not done, things will break in the montgomery | ||
411 | * part */ | ||
412 | |||
413 | if (in_mont != NULL) | ||
414 | mont=in_mont; | ||
415 | else | ||
416 | { | ||
417 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
418 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
419 | } | ||
420 | |||
421 | if (a->neg || BN_ucmp(a,m) >= 0) | ||
422 | { | ||
423 | if (!BN_nnmod(val[0],a,m,ctx)) | ||
424 | goto err; | ||
425 | aa= val[0]; | ||
426 | } | ||
427 | else | ||
428 | aa=a; | ||
429 | if (BN_is_zero(aa)) | ||
430 | { | ||
431 | BN_zero(rr); | ||
432 | ret = 1; | ||
433 | goto err; | ||
434 | } | ||
435 | if (!BN_to_montgomery(val[0],aa,mont,ctx)) goto err; /* 1 */ | ||
436 | |||
437 | window = BN_window_bits_for_exponent_size(bits); | ||
438 | if (window > 1) | ||
439 | { | ||
440 | if (!BN_mod_mul_montgomery(d,val[0],val[0],mont,ctx)) goto err; /* 2 */ | ||
441 | j=1<<(window-1); | ||
442 | for (i=1; i<j; i++) | ||
443 | { | ||
444 | if(((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
445 | !BN_mod_mul_montgomery(val[i],val[i-1], | ||
446 | d,mont,ctx)) | ||
447 | goto err; | ||
448 | } | ||
449 | } | ||
450 | |||
451 | start=1; /* This is used to avoid multiplication etc | ||
452 | * when there is only the value '1' in the | ||
453 | * buffer. */ | ||
454 | wvalue=0; /* The 'value' of the window */ | ||
455 | wstart=bits-1; /* The top bit of the window */ | ||
456 | wend=0; /* The bottom bit of the window */ | ||
457 | |||
458 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | ||
459 | for (;;) | ||
460 | { | ||
461 | if (BN_is_bit_set(p,wstart) == 0) | ||
462 | { | ||
463 | if (!start) | ||
464 | { | ||
465 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
466 | goto err; | ||
467 | } | ||
468 | if (wstart == 0) break; | ||
469 | wstart--; | ||
470 | continue; | ||
471 | } | ||
472 | /* We now have wstart on a 'set' bit, we now need to work out | ||
473 | * how bit a window to do. To do this we need to scan | ||
474 | * forward until the last set bit before the end of the | ||
475 | * window */ | ||
476 | j=wstart; | ||
477 | wvalue=1; | ||
478 | wend=0; | ||
479 | for (i=1; i<window; i++) | ||
480 | { | ||
481 | if (wstart-i < 0) break; | ||
482 | if (BN_is_bit_set(p,wstart-i)) | ||
483 | { | ||
484 | wvalue<<=(i-wend); | ||
485 | wvalue|=1; | ||
486 | wend=i; | ||
487 | } | ||
488 | } | ||
489 | |||
490 | /* wend is the size of the current window */ | ||
491 | j=wend+1; | ||
492 | /* add the 'bytes above' */ | ||
493 | if (!start) | ||
494 | for (i=0; i<j; i++) | ||
495 | { | ||
496 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
497 | goto err; | ||
498 | } | ||
499 | |||
500 | /* wvalue will be an odd number < 2^window */ | ||
501 | if (!BN_mod_mul_montgomery(r,r,val[wvalue>>1],mont,ctx)) | ||
502 | goto err; | ||
503 | |||
504 | /* move the 'window' down further */ | ||
505 | wstart-=wend+1; | ||
506 | wvalue=0; | ||
507 | start=0; | ||
508 | if (wstart < 0) break; | ||
509 | } | ||
510 | if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; | ||
511 | ret=1; | ||
512 | err: | ||
513 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
514 | BN_CTX_end(ctx); | ||
515 | bn_check_top(rr); | ||
516 | return(ret); | ||
517 | } | ||
518 | |||
519 | |||
520 | /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout | ||
521 | * so that accessing any of these table values shows the same access pattern as far | ||
522 | * as cache lines are concerned. The following functions are used to transfer a BIGNUM | ||
523 | * from/to that table. */ | ||
524 | |||
525 | static int MOD_EXP_CTIME_COPY_TO_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width) | ||
526 | { | ||
527 | size_t i, j; | ||
528 | |||
529 | if (bn_wexpand(b, top) == NULL) | ||
530 | return 0; | ||
531 | while (b->top < top) | ||
532 | { | ||
533 | b->d[b->top++] = 0; | ||
534 | } | ||
535 | |||
536 | for (i = 0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) | ||
537 | { | ||
538 | buf[j] = ((unsigned char*)b->d)[i]; | ||
539 | } | ||
540 | |||
541 | bn_correct_top(b); | ||
542 | return 1; | ||
543 | } | ||
544 | |||
545 | static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width) | ||
546 | { | ||
547 | size_t i, j; | ||
548 | |||
549 | if (bn_wexpand(b, top) == NULL) | ||
550 | return 0; | ||
551 | |||
552 | for (i=0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) | ||
553 | { | ||
554 | ((unsigned char*)b->d)[i] = buf[j]; | ||
555 | } | ||
556 | |||
557 | b->top = top; | ||
558 | bn_correct_top(b); | ||
559 | return 1; | ||
560 | } | ||
561 | |||
562 | /* Given a pointer value, compute the next address that is a cache line multiple. */ | ||
563 | #define MOD_EXP_CTIME_ALIGN(x_) \ | ||
564 | ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((BN_ULONG)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) | ||
565 | |||
566 | /* This variant of BN_mod_exp_mont() uses fixed windows and the special | ||
567 | * precomputation memory layout to limit data-dependency to a minimum | ||
568 | * to protect secret exponents (cf. the hyper-threading timing attacks | ||
569 | * pointed out by Colin Percival, | ||
570 | * http://www.daemonology.net/hyperthreading-considered-harmful/) | ||
571 | */ | ||
572 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
573 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
574 | { | ||
575 | int i,bits,ret=0,idx,window,wvalue; | ||
576 | int top; | ||
577 | BIGNUM *r; | ||
578 | const BIGNUM *aa; | ||
579 | BN_MONT_CTX *mont=NULL; | ||
580 | |||
581 | int numPowers; | ||
582 | unsigned char *powerbufFree=NULL; | ||
583 | int powerbufLen = 0; | ||
584 | unsigned char *powerbuf=NULL; | ||
585 | BIGNUM *computeTemp=NULL, *am=NULL; | ||
586 | |||
587 | bn_check_top(a); | ||
588 | bn_check_top(p); | ||
589 | bn_check_top(m); | ||
590 | |||
591 | top = m->top; | ||
592 | |||
593 | if (!(m->d[0] & 1)) | ||
594 | { | ||
595 | BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
596 | return(0); | ||
597 | } | ||
598 | bits=BN_num_bits(p); | ||
599 | if (bits == 0) | ||
600 | { | ||
601 | ret = BN_one(rr); | ||
602 | return ret; | ||
603 | } | ||
604 | |||
605 | /* Initialize BIGNUM context and allocate intermediate result */ | ||
606 | BN_CTX_start(ctx); | ||
607 | r = BN_CTX_get(ctx); | ||
608 | if (r == NULL) goto err; | ||
609 | |||
610 | /* Allocate a montgomery context if it was not supplied by the caller. | ||
611 | * If this is not done, things will break in the montgomery part. | ||
612 | */ | ||
613 | if (in_mont != NULL) | ||
614 | mont=in_mont; | ||
615 | else | ||
616 | { | ||
617 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
618 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
619 | } | ||
620 | |||
621 | /* Get the window size to use with size of p. */ | ||
622 | window = BN_window_bits_for_ctime_exponent_size(bits); | ||
623 | |||
624 | /* Allocate a buffer large enough to hold all of the pre-computed | ||
625 | * powers of a. | ||
626 | */ | ||
627 | numPowers = 1 << window; | ||
628 | powerbufLen = sizeof(m->d[0])*top*numPowers; | ||
629 | if ((powerbufFree=(unsigned char*)OPENSSL_malloc(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) | ||
630 | goto err; | ||
631 | |||
632 | powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); | ||
633 | memset(powerbuf, 0, powerbufLen); | ||
634 | |||
635 | /* Initialize the intermediate result. Do this early to save double conversion, | ||
636 | * once each for a^0 and intermediate result. | ||
637 | */ | ||
638 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | ||
639 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(r, top, powerbuf, 0, numPowers)) goto err; | ||
640 | |||
641 | /* Initialize computeTemp as a^1 with montgomery precalcs */ | ||
642 | computeTemp = BN_CTX_get(ctx); | ||
643 | am = BN_CTX_get(ctx); | ||
644 | if (computeTemp==NULL || am==NULL) goto err; | ||
645 | |||
646 | if (a->neg || BN_ucmp(a,m) >= 0) | ||
647 | { | ||
648 | if (!BN_mod(am,a,m,ctx)) | ||
649 | goto err; | ||
650 | aa= am; | ||
651 | } | ||
652 | else | ||
653 | aa=a; | ||
654 | if (!BN_to_montgomery(am,aa,mont,ctx)) goto err; | ||
655 | if (!BN_copy(computeTemp, am)) goto err; | ||
656 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(am, top, powerbuf, 1, numPowers)) goto err; | ||
657 | |||
658 | /* If the window size is greater than 1, then calculate | ||
659 | * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) | ||
660 | * (even powers could instead be computed as (a^(i/2))^2 | ||
661 | * to use the slight performance advantage of sqr over mul). | ||
662 | */ | ||
663 | if (window > 1) | ||
664 | { | ||
665 | for (i=2; i<numPowers; i++) | ||
666 | { | ||
667 | /* Calculate a^i = a^(i-1) * a */ | ||
668 | if (!BN_mod_mul_montgomery(computeTemp,am,computeTemp,mont,ctx)) | ||
669 | goto err; | ||
670 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(computeTemp, top, powerbuf, i, numPowers)) goto err; | ||
671 | } | ||
672 | } | ||
673 | |||
674 | /* Adjust the number of bits up to a multiple of the window size. | ||
675 | * If the exponent length is not a multiple of the window size, then | ||
676 | * this pads the most significant bits with zeros to normalize the | ||
677 | * scanning loop to there's no special cases. | ||
678 | * | ||
679 | * * NOTE: Making the window size a power of two less than the native | ||
680 | * * word size ensures that the padded bits won't go past the last | ||
681 | * * word in the internal BIGNUM structure. Going past the end will | ||
682 | * * still produce the correct result, but causes a different branch | ||
683 | * * to be taken in the BN_is_bit_set function. | ||
684 | */ | ||
685 | bits = ((bits+window-1)/window)*window; | ||
686 | idx=bits-1; /* The top bit of the window */ | ||
687 | |||
688 | /* Scan the exponent one window at a time starting from the most | ||
689 | * significant bits. | ||
690 | */ | ||
691 | while (idx >= 0) | ||
692 | { | ||
693 | wvalue=0; /* The 'value' of the window */ | ||
694 | |||
695 | /* Scan the window, squaring the result as we go */ | ||
696 | for (i=0; i<window; i++,idx--) | ||
697 | { | ||
698 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) goto err; | ||
699 | wvalue = (wvalue<<1)+BN_is_bit_set(p,idx); | ||
700 | } | ||
701 | |||
702 | /* Fetch the appropriate pre-computed value from the pre-buf */ | ||
703 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(computeTemp, top, powerbuf, wvalue, numPowers)) goto err; | ||
704 | |||
705 | /* Multiply the result into the intermediate result */ | ||
706 | if (!BN_mod_mul_montgomery(r,r,computeTemp,mont,ctx)) goto err; | ||
707 | } | ||
708 | |||
709 | /* Convert the final result from montgomery to standard format */ | ||
710 | if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; | ||
711 | ret=1; | ||
712 | err: | ||
713 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
714 | if (powerbuf!=NULL) | ||
715 | { | ||
716 | OPENSSL_cleanse(powerbuf,powerbufLen); | ||
717 | OPENSSL_free(powerbufFree); | ||
718 | } | ||
719 | if (am!=NULL) BN_clear(am); | ||
720 | if (computeTemp!=NULL) BN_clear(computeTemp); | ||
721 | BN_CTX_end(ctx); | ||
722 | return(ret); | ||
723 | } | ||
724 | |||
725 | int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, | ||
726 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
727 | { | ||
728 | BN_MONT_CTX *mont = NULL; | ||
729 | int b, bits, ret=0; | ||
730 | int r_is_one; | ||
731 | BN_ULONG w, next_w; | ||
732 | BIGNUM *d, *r, *t; | ||
733 | BIGNUM *swap_tmp; | ||
734 | #define BN_MOD_MUL_WORD(r, w, m) \ | ||
735 | (BN_mul_word(r, (w)) && \ | ||
736 | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ | ||
737 | (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) | ||
738 | /* BN_MOD_MUL_WORD is only used with 'w' large, | ||
739 | * so the BN_ucmp test is probably more overhead | ||
740 | * than always using BN_mod (which uses BN_copy if | ||
741 | * a similar test returns true). */ | ||
742 | /* We can use BN_mod and do not need BN_nnmod because our | ||
743 | * accumulator is never negative (the result of BN_mod does | ||
744 | * not depend on the sign of the modulus). | ||
745 | */ | ||
746 | #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ | ||
747 | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) | ||
748 | |||
749 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
750 | { | ||
751 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
752 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
753 | return -1; | ||
754 | } | ||
755 | |||
756 | bn_check_top(p); | ||
757 | bn_check_top(m); | ||
758 | |||
759 | if (!BN_is_odd(m)) | ||
760 | { | ||
761 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
762 | return(0); | ||
763 | } | ||
764 | if (m->top == 1) | ||
765 | a %= m->d[0]; /* make sure that 'a' is reduced */ | ||
766 | |||
767 | bits = BN_num_bits(p); | ||
768 | if (bits == 0) | ||
769 | { | ||
770 | ret = BN_one(rr); | ||
771 | return ret; | ||
772 | } | ||
773 | if (a == 0) | ||
774 | { | ||
775 | BN_zero(rr); | ||
776 | ret = 1; | ||
777 | return ret; | ||
778 | } | ||
779 | |||
780 | BN_CTX_start(ctx); | ||
781 | d = BN_CTX_get(ctx); | ||
782 | r = BN_CTX_get(ctx); | ||
783 | t = BN_CTX_get(ctx); | ||
784 | if (d == NULL || r == NULL || t == NULL) goto err; | ||
785 | |||
786 | if (in_mont != NULL) | ||
787 | mont=in_mont; | ||
788 | else | ||
789 | { | ||
790 | if ((mont = BN_MONT_CTX_new()) == NULL) goto err; | ||
791 | if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; | ||
792 | } | ||
793 | |||
794 | r_is_one = 1; /* except for Montgomery factor */ | ||
795 | |||
796 | /* bits-1 >= 0 */ | ||
797 | |||
798 | /* The result is accumulated in the product r*w. */ | ||
799 | w = a; /* bit 'bits-1' of 'p' is always set */ | ||
800 | for (b = bits-2; b >= 0; b--) | ||
801 | { | ||
802 | /* First, square r*w. */ | ||
803 | next_w = w*w; | ||
804 | if ((next_w/w) != w) /* overflow */ | ||
805 | { | ||
806 | if (r_is_one) | ||
807 | { | ||
808 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
809 | r_is_one = 0; | ||
810 | } | ||
811 | else | ||
812 | { | ||
813 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
814 | } | ||
815 | next_w = 1; | ||
816 | } | ||
817 | w = next_w; | ||
818 | if (!r_is_one) | ||
819 | { | ||
820 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err; | ||
821 | } | ||
822 | |||
823 | /* Second, multiply r*w by 'a' if exponent bit is set. */ | ||
824 | if (BN_is_bit_set(p, b)) | ||
825 | { | ||
826 | next_w = w*a; | ||
827 | if ((next_w/a) != w) /* overflow */ | ||
828 | { | ||
829 | if (r_is_one) | ||
830 | { | ||
831 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
832 | r_is_one = 0; | ||
833 | } | ||
834 | else | ||
835 | { | ||
836 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
837 | } | ||
838 | next_w = a; | ||
839 | } | ||
840 | w = next_w; | ||
841 | } | ||
842 | } | ||
843 | |||
844 | /* Finally, set r:=r*w. */ | ||
845 | if (w != 1) | ||
846 | { | ||
847 | if (r_is_one) | ||
848 | { | ||
849 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
850 | r_is_one = 0; | ||
851 | } | ||
852 | else | ||
853 | { | ||
854 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
855 | } | ||
856 | } | ||
857 | |||
858 | if (r_is_one) /* can happen only if a == 1*/ | ||
859 | { | ||
860 | if (!BN_one(rr)) goto err; | ||
861 | } | ||
862 | else | ||
863 | { | ||
864 | if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; | ||
865 | } | ||
866 | ret = 1; | ||
867 | err: | ||
868 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
869 | BN_CTX_end(ctx); | ||
870 | bn_check_top(rr); | ||
871 | return(ret); | ||
872 | } | ||
873 | |||
874 | |||
875 | /* The old fallback, simple version :-) */ | ||
876 | int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
877 | const BIGNUM *m, BN_CTX *ctx) | ||
878 | { | ||
879 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
880 | int start=1; | ||
881 | BIGNUM *d; | ||
882 | /* Table of variables obtained from 'ctx' */ | ||
883 | BIGNUM *val[TABLE_SIZE]; | ||
884 | |||
885 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
886 | { | ||
887 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
888 | BNerr(BN_F_BN_MOD_EXP_SIMPLE,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
889 | return -1; | ||
890 | } | ||
891 | |||
892 | bits=BN_num_bits(p); | ||
893 | |||
894 | if (bits == 0) | ||
895 | { | ||
896 | ret = BN_one(r); | ||
897 | return ret; | ||
898 | } | ||
899 | |||
900 | BN_CTX_start(ctx); | ||
901 | d = BN_CTX_get(ctx); | ||
902 | val[0] = BN_CTX_get(ctx); | ||
903 | if(!d || !val[0]) goto err; | ||
904 | |||
905 | if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */ | ||
906 | if (BN_is_zero(val[0])) | ||
907 | { | ||
908 | BN_zero(r); | ||
909 | ret = 1; | ||
910 | goto err; | ||
911 | } | ||
912 | |||
913 | window = BN_window_bits_for_exponent_size(bits); | ||
914 | if (window > 1) | ||
915 | { | ||
916 | if (!BN_mod_mul(d,val[0],val[0],m,ctx)) | ||
917 | goto err; /* 2 */ | ||
918 | j=1<<(window-1); | ||
919 | for (i=1; i<j; i++) | ||
920 | { | ||
921 | if(((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
922 | !BN_mod_mul(val[i],val[i-1],d,m,ctx)) | ||
923 | goto err; | ||
924 | } | ||
925 | } | ||
926 | |||
927 | start=1; /* This is used to avoid multiplication etc | ||
928 | * when there is only the value '1' in the | ||
929 | * buffer. */ | ||
930 | wvalue=0; /* The 'value' of the window */ | ||
931 | wstart=bits-1; /* The top bit of the window */ | ||
932 | wend=0; /* The bottom bit of the window */ | ||
933 | |||
934 | if (!BN_one(r)) goto err; | ||
935 | |||
936 | for (;;) | ||
937 | { | ||
938 | if (BN_is_bit_set(p,wstart) == 0) | ||
939 | { | ||
940 | if (!start) | ||
941 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
942 | goto err; | ||
943 | if (wstart == 0) break; | ||
944 | wstart--; | ||
945 | continue; | ||
946 | } | ||
947 | /* We now have wstart on a 'set' bit, we now need to work out | ||
948 | * how bit a window to do. To do this we need to scan | ||
949 | * forward until the last set bit before the end of the | ||
950 | * window */ | ||
951 | j=wstart; | ||
952 | wvalue=1; | ||
953 | wend=0; | ||
954 | for (i=1; i<window; i++) | ||
955 | { | ||
956 | if (wstart-i < 0) break; | ||
957 | if (BN_is_bit_set(p,wstart-i)) | ||
958 | { | ||
959 | wvalue<<=(i-wend); | ||
960 | wvalue|=1; | ||
961 | wend=i; | ||
962 | } | ||
963 | } | ||
964 | |||
965 | /* wend is the size of the current window */ | ||
966 | j=wend+1; | ||
967 | /* add the 'bytes above' */ | ||
968 | if (!start) | ||
969 | for (i=0; i<j; i++) | ||
970 | { | ||
971 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
972 | goto err; | ||
973 | } | ||
974 | |||
975 | /* wvalue will be an odd number < 2^window */ | ||
976 | if (!BN_mod_mul(r,r,val[wvalue>>1],m,ctx)) | ||
977 | goto err; | ||
978 | |||
979 | /* move the 'window' down further */ | ||
980 | wstart-=wend+1; | ||
981 | wvalue=0; | ||
982 | start=0; | ||
983 | if (wstart < 0) break; | ||
984 | } | ||
985 | ret=1; | ||
986 | err: | ||
987 | BN_CTX_end(ctx); | ||
988 | bn_check_top(r); | ||
989 | return(ret); | ||
990 | } | ||
991 | |||
diff --git a/src/lib/libcrypto/bn/bn_exp2.c b/src/lib/libcrypto/bn/bn_exp2.c deleted file mode 100644 index bd0c34b91b..0000000000 --- a/src/lib/libcrypto/bn/bn_exp2.c +++ /dev/null | |||
@@ -1,312 +0,0 @@ | |||
1 | /* crypto/bn/bn_exp2.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include <stdio.h> | ||
113 | #include "cryptlib.h" | ||
114 | #include "bn_lcl.h" | ||
115 | |||
116 | #define TABLE_SIZE 32 | ||
117 | |||
118 | int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1, | ||
119 | const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, | ||
120 | BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
121 | { | ||
122 | int i,j,bits,b,bits1,bits2,ret=0,wpos1,wpos2,window1,window2,wvalue1,wvalue2; | ||
123 | int r_is_one=1; | ||
124 | BIGNUM *d,*r; | ||
125 | const BIGNUM *a_mod_m; | ||
126 | /* Tables of variables obtained from 'ctx' */ | ||
127 | BIGNUM *val1[TABLE_SIZE], *val2[TABLE_SIZE]; | ||
128 | BN_MONT_CTX *mont=NULL; | ||
129 | |||
130 | bn_check_top(a1); | ||
131 | bn_check_top(p1); | ||
132 | bn_check_top(a2); | ||
133 | bn_check_top(p2); | ||
134 | bn_check_top(m); | ||
135 | |||
136 | if (!(m->d[0] & 1)) | ||
137 | { | ||
138 | BNerr(BN_F_BN_MOD_EXP2_MONT,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
139 | return(0); | ||
140 | } | ||
141 | bits1=BN_num_bits(p1); | ||
142 | bits2=BN_num_bits(p2); | ||
143 | if ((bits1 == 0) && (bits2 == 0)) | ||
144 | { | ||
145 | ret = BN_one(rr); | ||
146 | return ret; | ||
147 | } | ||
148 | |||
149 | bits=(bits1 > bits2)?bits1:bits2; | ||
150 | |||
151 | BN_CTX_start(ctx); | ||
152 | d = BN_CTX_get(ctx); | ||
153 | r = BN_CTX_get(ctx); | ||
154 | val1[0] = BN_CTX_get(ctx); | ||
155 | val2[0] = BN_CTX_get(ctx); | ||
156 | if(!d || !r || !val1[0] || !val2[0]) goto err; | ||
157 | |||
158 | if (in_mont != NULL) | ||
159 | mont=in_mont; | ||
160 | else | ||
161 | { | ||
162 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
163 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
164 | } | ||
165 | |||
166 | window1 = BN_window_bits_for_exponent_size(bits1); | ||
167 | window2 = BN_window_bits_for_exponent_size(bits2); | ||
168 | |||
169 | /* | ||
170 | * Build table for a1: val1[i] := a1^(2*i + 1) mod m for i = 0 .. 2^(window1-1) | ||
171 | */ | ||
172 | if (a1->neg || BN_ucmp(a1,m) >= 0) | ||
173 | { | ||
174 | if (!BN_mod(val1[0],a1,m,ctx)) | ||
175 | goto err; | ||
176 | a_mod_m = val1[0]; | ||
177 | } | ||
178 | else | ||
179 | a_mod_m = a1; | ||
180 | if (BN_is_zero(a_mod_m)) | ||
181 | { | ||
182 | BN_zero(rr); | ||
183 | ret = 1; | ||
184 | goto err; | ||
185 | } | ||
186 | |||
187 | if (!BN_to_montgomery(val1[0],a_mod_m,mont,ctx)) goto err; | ||
188 | if (window1 > 1) | ||
189 | { | ||
190 | if (!BN_mod_mul_montgomery(d,val1[0],val1[0],mont,ctx)) goto err; | ||
191 | |||
192 | j=1<<(window1-1); | ||
193 | for (i=1; i<j; i++) | ||
194 | { | ||
195 | if(((val1[i] = BN_CTX_get(ctx)) == NULL) || | ||
196 | !BN_mod_mul_montgomery(val1[i],val1[i-1], | ||
197 | d,mont,ctx)) | ||
198 | goto err; | ||
199 | } | ||
200 | } | ||
201 | |||
202 | |||
203 | /* | ||
204 | * Build table for a2: val2[i] := a2^(2*i + 1) mod m for i = 0 .. 2^(window2-1) | ||
205 | */ | ||
206 | if (a2->neg || BN_ucmp(a2,m) >= 0) | ||
207 | { | ||
208 | if (!BN_mod(val2[0],a2,m,ctx)) | ||
209 | goto err; | ||
210 | a_mod_m = val2[0]; | ||
211 | } | ||
212 | else | ||
213 | a_mod_m = a2; | ||
214 | if (BN_is_zero(a_mod_m)) | ||
215 | { | ||
216 | BN_zero(rr); | ||
217 | ret = 1; | ||
218 | goto err; | ||
219 | } | ||
220 | if (!BN_to_montgomery(val2[0],a_mod_m,mont,ctx)) goto err; | ||
221 | if (window2 > 1) | ||
222 | { | ||
223 | if (!BN_mod_mul_montgomery(d,val2[0],val2[0],mont,ctx)) goto err; | ||
224 | |||
225 | j=1<<(window2-1); | ||
226 | for (i=1; i<j; i++) | ||
227 | { | ||
228 | if(((val2[i] = BN_CTX_get(ctx)) == NULL) || | ||
229 | !BN_mod_mul_montgomery(val2[i],val2[i-1], | ||
230 | d,mont,ctx)) | ||
231 | goto err; | ||
232 | } | ||
233 | } | ||
234 | |||
235 | |||
236 | /* Now compute the power product, using independent windows. */ | ||
237 | r_is_one=1; | ||
238 | wvalue1=0; /* The 'value' of the first window */ | ||
239 | wvalue2=0; /* The 'value' of the second window */ | ||
240 | wpos1=0; /* If wvalue1 > 0, the bottom bit of the first window */ | ||
241 | wpos2=0; /* If wvalue2 > 0, the bottom bit of the second window */ | ||
242 | |||
243 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | ||
244 | for (b=bits-1; b>=0; b--) | ||
245 | { | ||
246 | if (!r_is_one) | ||
247 | { | ||
248 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
249 | goto err; | ||
250 | } | ||
251 | |||
252 | if (!wvalue1) | ||
253 | if (BN_is_bit_set(p1, b)) | ||
254 | { | ||
255 | /* consider bits b-window1+1 .. b for this window */ | ||
256 | i = b-window1+1; | ||
257 | while (!BN_is_bit_set(p1, i)) /* works for i<0 */ | ||
258 | i++; | ||
259 | wpos1 = i; | ||
260 | wvalue1 = 1; | ||
261 | for (i = b-1; i >= wpos1; i--) | ||
262 | { | ||
263 | wvalue1 <<= 1; | ||
264 | if (BN_is_bit_set(p1, i)) | ||
265 | wvalue1++; | ||
266 | } | ||
267 | } | ||
268 | |||
269 | if (!wvalue2) | ||
270 | if (BN_is_bit_set(p2, b)) | ||
271 | { | ||
272 | /* consider bits b-window2+1 .. b for this window */ | ||
273 | i = b-window2+1; | ||
274 | while (!BN_is_bit_set(p2, i)) | ||
275 | i++; | ||
276 | wpos2 = i; | ||
277 | wvalue2 = 1; | ||
278 | for (i = b-1; i >= wpos2; i--) | ||
279 | { | ||
280 | wvalue2 <<= 1; | ||
281 | if (BN_is_bit_set(p2, i)) | ||
282 | wvalue2++; | ||
283 | } | ||
284 | } | ||
285 | |||
286 | if (wvalue1 && b == wpos1) | ||
287 | { | ||
288 | /* wvalue1 is odd and < 2^window1 */ | ||
289 | if (!BN_mod_mul_montgomery(r,r,val1[wvalue1>>1],mont,ctx)) | ||
290 | goto err; | ||
291 | wvalue1 = 0; | ||
292 | r_is_one = 0; | ||
293 | } | ||
294 | |||
295 | if (wvalue2 && b == wpos2) | ||
296 | { | ||
297 | /* wvalue2 is odd and < 2^window2 */ | ||
298 | if (!BN_mod_mul_montgomery(r,r,val2[wvalue2>>1],mont,ctx)) | ||
299 | goto err; | ||
300 | wvalue2 = 0; | ||
301 | r_is_one = 0; | ||
302 | } | ||
303 | } | ||
304 | if (!BN_from_montgomery(rr,r,mont,ctx)) | ||
305 | goto err; | ||
306 | ret=1; | ||
307 | err: | ||
308 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
309 | BN_CTX_end(ctx); | ||
310 | bn_check_top(rr); | ||
311 | return(ret); | ||
312 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_gcd.c b/src/lib/libcrypto/bn/bn_gcd.c deleted file mode 100644 index 4a352119ba..0000000000 --- a/src/lib/libcrypto/bn/bn_gcd.c +++ /dev/null | |||
@@ -1,654 +0,0 @@ | |||
1 | /* crypto/bn/bn_gcd.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include "cryptlib.h" | ||
113 | #include "bn_lcl.h" | ||
114 | |||
115 | static BIGNUM *euclid(BIGNUM *a, BIGNUM *b); | ||
116 | |||
117 | int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) | ||
118 | { | ||
119 | BIGNUM *a,*b,*t; | ||
120 | int ret=0; | ||
121 | |||
122 | bn_check_top(in_a); | ||
123 | bn_check_top(in_b); | ||
124 | |||
125 | BN_CTX_start(ctx); | ||
126 | a = BN_CTX_get(ctx); | ||
127 | b = BN_CTX_get(ctx); | ||
128 | if (a == NULL || b == NULL) goto err; | ||
129 | |||
130 | if (BN_copy(a,in_a) == NULL) goto err; | ||
131 | if (BN_copy(b,in_b) == NULL) goto err; | ||
132 | a->neg = 0; | ||
133 | b->neg = 0; | ||
134 | |||
135 | if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; } | ||
136 | t=euclid(a,b); | ||
137 | if (t == NULL) goto err; | ||
138 | |||
139 | if (BN_copy(r,t) == NULL) goto err; | ||
140 | ret=1; | ||
141 | err: | ||
142 | BN_CTX_end(ctx); | ||
143 | bn_check_top(r); | ||
144 | return(ret); | ||
145 | } | ||
146 | |||
147 | static BIGNUM *euclid(BIGNUM *a, BIGNUM *b) | ||
148 | { | ||
149 | BIGNUM *t; | ||
150 | int shifts=0; | ||
151 | |||
152 | bn_check_top(a); | ||
153 | bn_check_top(b); | ||
154 | |||
155 | /* 0 <= b <= a */ | ||
156 | while (!BN_is_zero(b)) | ||
157 | { | ||
158 | /* 0 < b <= a */ | ||
159 | |||
160 | if (BN_is_odd(a)) | ||
161 | { | ||
162 | if (BN_is_odd(b)) | ||
163 | { | ||
164 | if (!BN_sub(a,a,b)) goto err; | ||
165 | if (!BN_rshift1(a,a)) goto err; | ||
166 | if (BN_cmp(a,b) < 0) | ||
167 | { t=a; a=b; b=t; } | ||
168 | } | ||
169 | else /* a odd - b even */ | ||
170 | { | ||
171 | if (!BN_rshift1(b,b)) goto err; | ||
172 | if (BN_cmp(a,b) < 0) | ||
173 | { t=a; a=b; b=t; } | ||
174 | } | ||
175 | } | ||
176 | else /* a is even */ | ||
177 | { | ||
178 | if (BN_is_odd(b)) | ||
179 | { | ||
180 | if (!BN_rshift1(a,a)) goto err; | ||
181 | if (BN_cmp(a,b) < 0) | ||
182 | { t=a; a=b; b=t; } | ||
183 | } | ||
184 | else /* a even - b even */ | ||
185 | { | ||
186 | if (!BN_rshift1(a,a)) goto err; | ||
187 | if (!BN_rshift1(b,b)) goto err; | ||
188 | shifts++; | ||
189 | } | ||
190 | } | ||
191 | /* 0 <= b <= a */ | ||
192 | } | ||
193 | |||
194 | if (shifts) | ||
195 | { | ||
196 | if (!BN_lshift(a,a,shifts)) goto err; | ||
197 | } | ||
198 | bn_check_top(a); | ||
199 | return(a); | ||
200 | err: | ||
201 | return(NULL); | ||
202 | } | ||
203 | |||
204 | |||
205 | /* solves ax == 1 (mod n) */ | ||
206 | static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, | ||
207 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); | ||
208 | BIGNUM *BN_mod_inverse(BIGNUM *in, | ||
209 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
210 | { | ||
211 | BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL; | ||
212 | BIGNUM *ret=NULL; | ||
213 | int sign; | ||
214 | |||
215 | if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) | ||
216 | { | ||
217 | return BN_mod_inverse_no_branch(in, a, n, ctx); | ||
218 | } | ||
219 | |||
220 | bn_check_top(a); | ||
221 | bn_check_top(n); | ||
222 | |||
223 | BN_CTX_start(ctx); | ||
224 | A = BN_CTX_get(ctx); | ||
225 | B = BN_CTX_get(ctx); | ||
226 | X = BN_CTX_get(ctx); | ||
227 | D = BN_CTX_get(ctx); | ||
228 | M = BN_CTX_get(ctx); | ||
229 | Y = BN_CTX_get(ctx); | ||
230 | T = BN_CTX_get(ctx); | ||
231 | if (T == NULL) goto err; | ||
232 | |||
233 | if (in == NULL) | ||
234 | R=BN_new(); | ||
235 | else | ||
236 | R=in; | ||
237 | if (R == NULL) goto err; | ||
238 | |||
239 | BN_one(X); | ||
240 | BN_zero(Y); | ||
241 | if (BN_copy(B,a) == NULL) goto err; | ||
242 | if (BN_copy(A,n) == NULL) goto err; | ||
243 | A->neg = 0; | ||
244 | if (B->neg || (BN_ucmp(B, A) >= 0)) | ||
245 | { | ||
246 | if (!BN_nnmod(B, B, A, ctx)) goto err; | ||
247 | } | ||
248 | sign = -1; | ||
249 | /* From B = a mod |n|, A = |n| it follows that | ||
250 | * | ||
251 | * 0 <= B < A, | ||
252 | * -sign*X*a == B (mod |n|), | ||
253 | * sign*Y*a == A (mod |n|). | ||
254 | */ | ||
255 | |||
256 | if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) | ||
257 | { | ||
258 | /* Binary inversion algorithm; requires odd modulus. | ||
259 | * This is faster than the general algorithm if the modulus | ||
260 | * is sufficiently small (about 400 .. 500 bits on 32-bit | ||
261 | * sytems, but much more on 64-bit systems) */ | ||
262 | int shift; | ||
263 | |||
264 | while (!BN_is_zero(B)) | ||
265 | { | ||
266 | /* | ||
267 | * 0 < B < |n|, | ||
268 | * 0 < A <= |n|, | ||
269 | * (1) -sign*X*a == B (mod |n|), | ||
270 | * (2) sign*Y*a == A (mod |n|) | ||
271 | */ | ||
272 | |||
273 | /* Now divide B by the maximum possible power of two in the integers, | ||
274 | * and divide X by the same value mod |n|. | ||
275 | * When we're done, (1) still holds. */ | ||
276 | shift = 0; | ||
277 | while (!BN_is_bit_set(B, shift)) /* note that 0 < B */ | ||
278 | { | ||
279 | shift++; | ||
280 | |||
281 | if (BN_is_odd(X)) | ||
282 | { | ||
283 | if (!BN_uadd(X, X, n)) goto err; | ||
284 | } | ||
285 | /* now X is even, so we can easily divide it by two */ | ||
286 | if (!BN_rshift1(X, X)) goto err; | ||
287 | } | ||
288 | if (shift > 0) | ||
289 | { | ||
290 | if (!BN_rshift(B, B, shift)) goto err; | ||
291 | } | ||
292 | |||
293 | |||
294 | /* Same for A and Y. Afterwards, (2) still holds. */ | ||
295 | shift = 0; | ||
296 | while (!BN_is_bit_set(A, shift)) /* note that 0 < A */ | ||
297 | { | ||
298 | shift++; | ||
299 | |||
300 | if (BN_is_odd(Y)) | ||
301 | { | ||
302 | if (!BN_uadd(Y, Y, n)) goto err; | ||
303 | } | ||
304 | /* now Y is even */ | ||
305 | if (!BN_rshift1(Y, Y)) goto err; | ||
306 | } | ||
307 | if (shift > 0) | ||
308 | { | ||
309 | if (!BN_rshift(A, A, shift)) goto err; | ||
310 | } | ||
311 | |||
312 | |||
313 | /* We still have (1) and (2). | ||
314 | * Both A and B are odd. | ||
315 | * The following computations ensure that | ||
316 | * | ||
317 | * 0 <= B < |n|, | ||
318 | * 0 < A < |n|, | ||
319 | * (1) -sign*X*a == B (mod |n|), | ||
320 | * (2) sign*Y*a == A (mod |n|), | ||
321 | * | ||
322 | * and that either A or B is even in the next iteration. | ||
323 | */ | ||
324 | if (BN_ucmp(B, A) >= 0) | ||
325 | { | ||
326 | /* -sign*(X + Y)*a == B - A (mod |n|) */ | ||
327 | if (!BN_uadd(X, X, Y)) goto err; | ||
328 | /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that | ||
329 | * actually makes the algorithm slower */ | ||
330 | if (!BN_usub(B, B, A)) goto err; | ||
331 | } | ||
332 | else | ||
333 | { | ||
334 | /* sign*(X + Y)*a == A - B (mod |n|) */ | ||
335 | if (!BN_uadd(Y, Y, X)) goto err; | ||
336 | /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */ | ||
337 | if (!BN_usub(A, A, B)) goto err; | ||
338 | } | ||
339 | } | ||
340 | } | ||
341 | else | ||
342 | { | ||
343 | /* general inversion algorithm */ | ||
344 | |||
345 | while (!BN_is_zero(B)) | ||
346 | { | ||
347 | BIGNUM *tmp; | ||
348 | |||
349 | /* | ||
350 | * 0 < B < A, | ||
351 | * (*) -sign*X*a == B (mod |n|), | ||
352 | * sign*Y*a == A (mod |n|) | ||
353 | */ | ||
354 | |||
355 | /* (D, M) := (A/B, A%B) ... */ | ||
356 | if (BN_num_bits(A) == BN_num_bits(B)) | ||
357 | { | ||
358 | if (!BN_one(D)) goto err; | ||
359 | if (!BN_sub(M,A,B)) goto err; | ||
360 | } | ||
361 | else if (BN_num_bits(A) == BN_num_bits(B) + 1) | ||
362 | { | ||
363 | /* A/B is 1, 2, or 3 */ | ||
364 | if (!BN_lshift1(T,B)) goto err; | ||
365 | if (BN_ucmp(A,T) < 0) | ||
366 | { | ||
367 | /* A < 2*B, so D=1 */ | ||
368 | if (!BN_one(D)) goto err; | ||
369 | if (!BN_sub(M,A,B)) goto err; | ||
370 | } | ||
371 | else | ||
372 | { | ||
373 | /* A >= 2*B, so D=2 or D=3 */ | ||
374 | if (!BN_sub(M,A,T)) goto err; | ||
375 | if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */ | ||
376 | if (BN_ucmp(A,D) < 0) | ||
377 | { | ||
378 | /* A < 3*B, so D=2 */ | ||
379 | if (!BN_set_word(D,2)) goto err; | ||
380 | /* M (= A - 2*B) already has the correct value */ | ||
381 | } | ||
382 | else | ||
383 | { | ||
384 | /* only D=3 remains */ | ||
385 | if (!BN_set_word(D,3)) goto err; | ||
386 | /* currently M = A - 2*B, but we need M = A - 3*B */ | ||
387 | if (!BN_sub(M,M,B)) goto err; | ||
388 | } | ||
389 | } | ||
390 | } | ||
391 | else | ||
392 | { | ||
393 | if (!BN_div(D,M,A,B,ctx)) goto err; | ||
394 | } | ||
395 | |||
396 | /* Now | ||
397 | * A = D*B + M; | ||
398 | * thus we have | ||
399 | * (**) sign*Y*a == D*B + M (mod |n|). | ||
400 | */ | ||
401 | |||
402 | tmp=A; /* keep the BIGNUM object, the value does not matter */ | ||
403 | |||
404 | /* (A, B) := (B, A mod B) ... */ | ||
405 | A=B; | ||
406 | B=M; | ||
407 | /* ... so we have 0 <= B < A again */ | ||
408 | |||
409 | /* Since the former M is now B and the former B is now A, | ||
410 | * (**) translates into | ||
411 | * sign*Y*a == D*A + B (mod |n|), | ||
412 | * i.e. | ||
413 | * sign*Y*a - D*A == B (mod |n|). | ||
414 | * Similarly, (*) translates into | ||
415 | * -sign*X*a == A (mod |n|). | ||
416 | * | ||
417 | * Thus, | ||
418 | * sign*Y*a + D*sign*X*a == B (mod |n|), | ||
419 | * i.e. | ||
420 | * sign*(Y + D*X)*a == B (mod |n|). | ||
421 | * | ||
422 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | ||
423 | * -sign*X*a == B (mod |n|), | ||
424 | * sign*Y*a == A (mod |n|). | ||
425 | * Note that X and Y stay non-negative all the time. | ||
426 | */ | ||
427 | |||
428 | /* most of the time D is very small, so we can optimize tmp := D*X+Y */ | ||
429 | if (BN_is_one(D)) | ||
430 | { | ||
431 | if (!BN_add(tmp,X,Y)) goto err; | ||
432 | } | ||
433 | else | ||
434 | { | ||
435 | if (BN_is_word(D,2)) | ||
436 | { | ||
437 | if (!BN_lshift1(tmp,X)) goto err; | ||
438 | } | ||
439 | else if (BN_is_word(D,4)) | ||
440 | { | ||
441 | if (!BN_lshift(tmp,X,2)) goto err; | ||
442 | } | ||
443 | else if (D->top == 1) | ||
444 | { | ||
445 | if (!BN_copy(tmp,X)) goto err; | ||
446 | if (!BN_mul_word(tmp,D->d[0])) goto err; | ||
447 | } | ||
448 | else | ||
449 | { | ||
450 | if (!BN_mul(tmp,D,X,ctx)) goto err; | ||
451 | } | ||
452 | if (!BN_add(tmp,tmp,Y)) goto err; | ||
453 | } | ||
454 | |||
455 | M=Y; /* keep the BIGNUM object, the value does not matter */ | ||
456 | Y=X; | ||
457 | X=tmp; | ||
458 | sign = -sign; | ||
459 | } | ||
460 | } | ||
461 | |||
462 | /* | ||
463 | * The while loop (Euclid's algorithm) ends when | ||
464 | * A == gcd(a,n); | ||
465 | * we have | ||
466 | * sign*Y*a == A (mod |n|), | ||
467 | * where Y is non-negative. | ||
468 | */ | ||
469 | |||
470 | if (sign < 0) | ||
471 | { | ||
472 | if (!BN_sub(Y,n,Y)) goto err; | ||
473 | } | ||
474 | /* Now Y*a == A (mod |n|). */ | ||
475 | |||
476 | |||
477 | if (BN_is_one(A)) | ||
478 | { | ||
479 | /* Y*a == 1 (mod |n|) */ | ||
480 | if (!Y->neg && BN_ucmp(Y,n) < 0) | ||
481 | { | ||
482 | if (!BN_copy(R,Y)) goto err; | ||
483 | } | ||
484 | else | ||
485 | { | ||
486 | if (!BN_nnmod(R,Y,n,ctx)) goto err; | ||
487 | } | ||
488 | } | ||
489 | else | ||
490 | { | ||
491 | BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE); | ||
492 | goto err; | ||
493 | } | ||
494 | ret=R; | ||
495 | err: | ||
496 | if ((ret == NULL) && (in == NULL)) BN_free(R); | ||
497 | BN_CTX_end(ctx); | ||
498 | bn_check_top(ret); | ||
499 | return(ret); | ||
500 | } | ||
501 | |||
502 | |||
503 | /* BN_mod_inverse_no_branch is a special version of BN_mod_inverse. | ||
504 | * It does not contain branches that may leak sensitive information. | ||
505 | */ | ||
506 | static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, | ||
507 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
508 | { | ||
509 | BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL; | ||
510 | BIGNUM local_A, local_B; | ||
511 | BIGNUM *pA, *pB; | ||
512 | BIGNUM *ret=NULL; | ||
513 | int sign; | ||
514 | |||
515 | bn_check_top(a); | ||
516 | bn_check_top(n); | ||
517 | |||
518 | BN_CTX_start(ctx); | ||
519 | A = BN_CTX_get(ctx); | ||
520 | B = BN_CTX_get(ctx); | ||
521 | X = BN_CTX_get(ctx); | ||
522 | D = BN_CTX_get(ctx); | ||
523 | M = BN_CTX_get(ctx); | ||
524 | Y = BN_CTX_get(ctx); | ||
525 | T = BN_CTX_get(ctx); | ||
526 | if (T == NULL) goto err; | ||
527 | |||
528 | if (in == NULL) | ||
529 | R=BN_new(); | ||
530 | else | ||
531 | R=in; | ||
532 | if (R == NULL) goto err; | ||
533 | |||
534 | BN_one(X); | ||
535 | BN_zero(Y); | ||
536 | if (BN_copy(B,a) == NULL) goto err; | ||
537 | if (BN_copy(A,n) == NULL) goto err; | ||
538 | A->neg = 0; | ||
539 | |||
540 | if (B->neg || (BN_ucmp(B, A) >= 0)) | ||
541 | { | ||
542 | /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
543 | * BN_div_no_branch will be called eventually. | ||
544 | */ | ||
545 | pB = &local_B; | ||
546 | BN_with_flags(pB, B, BN_FLG_CONSTTIME); | ||
547 | if (!BN_nnmod(B, pB, A, ctx)) goto err; | ||
548 | } | ||
549 | sign = -1; | ||
550 | /* From B = a mod |n|, A = |n| it follows that | ||
551 | * | ||
552 | * 0 <= B < A, | ||
553 | * -sign*X*a == B (mod |n|), | ||
554 | * sign*Y*a == A (mod |n|). | ||
555 | */ | ||
556 | |||
557 | while (!BN_is_zero(B)) | ||
558 | { | ||
559 | BIGNUM *tmp; | ||
560 | |||
561 | /* | ||
562 | * 0 < B < A, | ||
563 | * (*) -sign*X*a == B (mod |n|), | ||
564 | * sign*Y*a == A (mod |n|) | ||
565 | */ | ||
566 | |||
567 | /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
568 | * BN_div_no_branch will be called eventually. | ||
569 | */ | ||
570 | pA = &local_A; | ||
571 | BN_with_flags(pA, A, BN_FLG_CONSTTIME); | ||
572 | |||
573 | /* (D, M) := (A/B, A%B) ... */ | ||
574 | if (!BN_div(D,M,pA,B,ctx)) goto err; | ||
575 | |||
576 | /* Now | ||
577 | * A = D*B + M; | ||
578 | * thus we have | ||
579 | * (**) sign*Y*a == D*B + M (mod |n|). | ||
580 | */ | ||
581 | |||
582 | tmp=A; /* keep the BIGNUM object, the value does not matter */ | ||
583 | |||
584 | /* (A, B) := (B, A mod B) ... */ | ||
585 | A=B; | ||
586 | B=M; | ||
587 | /* ... so we have 0 <= B < A again */ | ||
588 | |||
589 | /* Since the former M is now B and the former B is now A, | ||
590 | * (**) translates into | ||
591 | * sign*Y*a == D*A + B (mod |n|), | ||
592 | * i.e. | ||
593 | * sign*Y*a - D*A == B (mod |n|). | ||
594 | * Similarly, (*) translates into | ||
595 | * -sign*X*a == A (mod |n|). | ||
596 | * | ||
597 | * Thus, | ||
598 | * sign*Y*a + D*sign*X*a == B (mod |n|), | ||
599 | * i.e. | ||
600 | * sign*(Y + D*X)*a == B (mod |n|). | ||
601 | * | ||
602 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | ||
603 | * -sign*X*a == B (mod |n|), | ||
604 | * sign*Y*a == A (mod |n|). | ||
605 | * Note that X and Y stay non-negative all the time. | ||
606 | */ | ||
607 | |||
608 | if (!BN_mul(tmp,D,X,ctx)) goto err; | ||
609 | if (!BN_add(tmp,tmp,Y)) goto err; | ||
610 | |||
611 | M=Y; /* keep the BIGNUM object, the value does not matter */ | ||
612 | Y=X; | ||
613 | X=tmp; | ||
614 | sign = -sign; | ||
615 | } | ||
616 | |||
617 | /* | ||
618 | * The while loop (Euclid's algorithm) ends when | ||
619 | * A == gcd(a,n); | ||
620 | * we have | ||
621 | * sign*Y*a == A (mod |n|), | ||
622 | * where Y is non-negative. | ||
623 | */ | ||
624 | |||
625 | if (sign < 0) | ||
626 | { | ||
627 | if (!BN_sub(Y,n,Y)) goto err; | ||
628 | } | ||
629 | /* Now Y*a == A (mod |n|). */ | ||
630 | |||
631 | if (BN_is_one(A)) | ||
632 | { | ||
633 | /* Y*a == 1 (mod |n|) */ | ||
634 | if (!Y->neg && BN_ucmp(Y,n) < 0) | ||
635 | { | ||
636 | if (!BN_copy(R,Y)) goto err; | ||
637 | } | ||
638 | else | ||
639 | { | ||
640 | if (!BN_nnmod(R,Y,n,ctx)) goto err; | ||
641 | } | ||
642 | } | ||
643 | else | ||
644 | { | ||
645 | BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH,BN_R_NO_INVERSE); | ||
646 | goto err; | ||
647 | } | ||
648 | ret=R; | ||
649 | err: | ||
650 | if ((ret == NULL) && (in == NULL)) BN_free(R); | ||
651 | BN_CTX_end(ctx); | ||
652 | bn_check_top(ret); | ||
653 | return(ret); | ||
654 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_gf2m.c b/src/lib/libcrypto/bn/bn_gf2m.c deleted file mode 100644 index 432a3aa338..0000000000 --- a/src/lib/libcrypto/bn/bn_gf2m.c +++ /dev/null | |||
@@ -1,1035 +0,0 @@ | |||
1 | /* crypto/bn/bn_gf2m.c */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * In addition, Sun covenants to all licensees who provide a reciprocal | ||
13 | * covenant with respect to their own patents if any, not to sue under | ||
14 | * current and future patent claims necessarily infringed by the making, | ||
15 | * using, practicing, selling, offering for sale and/or otherwise | ||
16 | * disposing of the ECC Code as delivered hereunder (or portions thereof), | ||
17 | * provided that such covenant shall not apply: | ||
18 | * 1) for code that a licensee deletes from the ECC Code; | ||
19 | * 2) separates from the ECC Code; or | ||
20 | * 3) for infringements caused by: | ||
21 | * i) the modification of the ECC Code or | ||
22 | * ii) the combination of the ECC Code with other software or | ||
23 | * devices where such combination causes the infringement. | ||
24 | * | ||
25 | * The software is originally written by Sheueling Chang Shantz and | ||
26 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
27 | * | ||
28 | */ | ||
29 | |||
30 | /* NOTE: This file is licensed pursuant to the OpenSSL license below | ||
31 | * and may be modified; but after modifications, the above covenant | ||
32 | * may no longer apply! In such cases, the corresponding paragraph | ||
33 | * ["In addition, Sun covenants ... causes the infringement."] and | ||
34 | * this note can be edited out; but please keep the Sun copyright | ||
35 | * notice and attribution. */ | ||
36 | |||
37 | /* ==================================================================== | ||
38 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
39 | * | ||
40 | * Redistribution and use in source and binary forms, with or without | ||
41 | * modification, are permitted provided that the following conditions | ||
42 | * are met: | ||
43 | * | ||
44 | * 1. Redistributions of source code must retain the above copyright | ||
45 | * notice, this list of conditions and the following disclaimer. | ||
46 | * | ||
47 | * 2. Redistributions in binary form must reproduce the above copyright | ||
48 | * notice, this list of conditions and the following disclaimer in | ||
49 | * the documentation and/or other materials provided with the | ||
50 | * distribution. | ||
51 | * | ||
52 | * 3. All advertising materials mentioning features or use of this | ||
53 | * software must display the following acknowledgment: | ||
54 | * "This product includes software developed by the OpenSSL Project | ||
55 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
56 | * | ||
57 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
58 | * endorse or promote products derived from this software without | ||
59 | * prior written permission. For written permission, please contact | ||
60 | * openssl-core@openssl.org. | ||
61 | * | ||
62 | * 5. Products derived from this software may not be called "OpenSSL" | ||
63 | * nor may "OpenSSL" appear in their names without prior written | ||
64 | * permission of the OpenSSL Project. | ||
65 | * | ||
66 | * 6. Redistributions of any form whatsoever must retain the following | ||
67 | * acknowledgment: | ||
68 | * "This product includes software developed by the OpenSSL Project | ||
69 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
70 | * | ||
71 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
72 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
73 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
74 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
75 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
76 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
77 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
78 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
79 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
80 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
81 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
82 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
83 | * ==================================================================== | ||
84 | * | ||
85 | * This product includes cryptographic software written by Eric Young | ||
86 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
87 | * Hudson (tjh@cryptsoft.com). | ||
88 | * | ||
89 | */ | ||
90 | |||
91 | #include <assert.h> | ||
92 | #include <limits.h> | ||
93 | #include <stdio.h> | ||
94 | #include "cryptlib.h" | ||
95 | #include "bn_lcl.h" | ||
96 | |||
97 | /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */ | ||
98 | #define MAX_ITERATIONS 50 | ||
99 | |||
100 | static const BN_ULONG SQR_tb[16] = | ||
101 | { 0, 1, 4, 5, 16, 17, 20, 21, | ||
102 | 64, 65, 68, 69, 80, 81, 84, 85 }; | ||
103 | /* Platform-specific macros to accelerate squaring. */ | ||
104 | #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) | ||
105 | #define SQR1(w) \ | ||
106 | SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \ | ||
107 | SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \ | ||
108 | SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \ | ||
109 | SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF] | ||
110 | #define SQR0(w) \ | ||
111 | SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \ | ||
112 | SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \ | ||
113 | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ | ||
114 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] | ||
115 | #endif | ||
116 | #ifdef THIRTY_TWO_BIT | ||
117 | #define SQR1(w) \ | ||
118 | SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \ | ||
119 | SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF] | ||
120 | #define SQR0(w) \ | ||
121 | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ | ||
122 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] | ||
123 | #endif | ||
124 | |||
125 | /* Product of two polynomials a, b each with degree < BN_BITS2 - 1, | ||
126 | * result is a polynomial r with degree < 2 * BN_BITS - 1 | ||
127 | * The caller MUST ensure that the variables have the right amount | ||
128 | * of space allocated. | ||
129 | */ | ||
130 | #ifdef THIRTY_TWO_BIT | ||
131 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
132 | { | ||
133 | register BN_ULONG h, l, s; | ||
134 | BN_ULONG tab[8], top2b = a >> 30; | ||
135 | register BN_ULONG a1, a2, a4; | ||
136 | |||
137 | a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1; | ||
138 | |||
139 | tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; | ||
140 | tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4; | ||
141 | |||
142 | s = tab[b & 0x7]; l = s; | ||
143 | s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29; | ||
144 | s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26; | ||
145 | s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23; | ||
146 | s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20; | ||
147 | s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17; | ||
148 | s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14; | ||
149 | s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11; | ||
150 | s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8; | ||
151 | s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5; | ||
152 | s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2; | ||
153 | |||
154 | /* compensate for the top two bits of a */ | ||
155 | |||
156 | if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } | ||
157 | if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } | ||
158 | |||
159 | *r1 = h; *r0 = l; | ||
160 | } | ||
161 | #endif | ||
162 | #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) | ||
163 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
164 | { | ||
165 | register BN_ULONG h, l, s; | ||
166 | BN_ULONG tab[16], top3b = a >> 61; | ||
167 | register BN_ULONG a1, a2, a4, a8; | ||
168 | |||
169 | a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1; | ||
170 | |||
171 | tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2; | ||
172 | tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4; | ||
173 | tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8; | ||
174 | tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8; | ||
175 | |||
176 | s = tab[b & 0xF]; l = s; | ||
177 | s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60; | ||
178 | s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56; | ||
179 | s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52; | ||
180 | s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48; | ||
181 | s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44; | ||
182 | s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40; | ||
183 | s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36; | ||
184 | s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32; | ||
185 | s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28; | ||
186 | s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24; | ||
187 | s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20; | ||
188 | s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16; | ||
189 | s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12; | ||
190 | s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8; | ||
191 | s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4; | ||
192 | |||
193 | /* compensate for the top three bits of a */ | ||
194 | |||
195 | if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } | ||
196 | if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } | ||
197 | if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } | ||
198 | |||
199 | *r1 = h; *r0 = l; | ||
200 | } | ||
201 | #endif | ||
202 | |||
203 | /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, | ||
204 | * result is a polynomial r with degree < 4 * BN_BITS2 - 1 | ||
205 | * The caller MUST ensure that the variables have the right amount | ||
206 | * of space allocated. | ||
207 | */ | ||
208 | static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0) | ||
209 | { | ||
210 | BN_ULONG m1, m0; | ||
211 | /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ | ||
212 | bn_GF2m_mul_1x1(r+3, r+2, a1, b1); | ||
213 | bn_GF2m_mul_1x1(r+1, r, a0, b0); | ||
214 | bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); | ||
215 | /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ | ||
216 | r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ | ||
217 | r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ | ||
218 | } | ||
219 | |||
220 | |||
221 | /* Add polynomials a and b and store result in r; r could be a or b, a and b | ||
222 | * could be equal; r is the bitwise XOR of a and b. | ||
223 | */ | ||
224 | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
225 | { | ||
226 | int i; | ||
227 | const BIGNUM *at, *bt; | ||
228 | |||
229 | bn_check_top(a); | ||
230 | bn_check_top(b); | ||
231 | |||
232 | if (a->top < b->top) { at = b; bt = a; } | ||
233 | else { at = a; bt = b; } | ||
234 | |||
235 | if(bn_wexpand(r, at->top) == NULL) | ||
236 | return 0; | ||
237 | |||
238 | for (i = 0; i < bt->top; i++) | ||
239 | { | ||
240 | r->d[i] = at->d[i] ^ bt->d[i]; | ||
241 | } | ||
242 | for (; i < at->top; i++) | ||
243 | { | ||
244 | r->d[i] = at->d[i]; | ||
245 | } | ||
246 | |||
247 | r->top = at->top; | ||
248 | bn_correct_top(r); | ||
249 | |||
250 | return 1; | ||
251 | } | ||
252 | |||
253 | |||
254 | /* Some functions allow for representation of the irreducible polynomials | ||
255 | * as an int[], say p. The irreducible f(t) is then of the form: | ||
256 | * t^p[0] + t^p[1] + ... + t^p[k] | ||
257 | * where m = p[0] > p[1] > ... > p[k] = 0. | ||
258 | */ | ||
259 | |||
260 | |||
261 | /* Performs modular reduction of a and store result in r. r could be a. */ | ||
262 | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) | ||
263 | { | ||
264 | int j, k; | ||
265 | int n, dN, d0, d1; | ||
266 | BN_ULONG zz, *z; | ||
267 | |||
268 | bn_check_top(a); | ||
269 | |||
270 | if (!p[0]) | ||
271 | { | ||
272 | /* reduction mod 1 => return 0 */ | ||
273 | BN_zero(r); | ||
274 | return 1; | ||
275 | } | ||
276 | |||
277 | /* Since the algorithm does reduction in the r value, if a != r, copy | ||
278 | * the contents of a into r so we can do reduction in r. | ||
279 | */ | ||
280 | if (a != r) | ||
281 | { | ||
282 | if (!bn_wexpand(r, a->top)) return 0; | ||
283 | for (j = 0; j < a->top; j++) | ||
284 | { | ||
285 | r->d[j] = a->d[j]; | ||
286 | } | ||
287 | r->top = a->top; | ||
288 | } | ||
289 | z = r->d; | ||
290 | |||
291 | /* start reduction */ | ||
292 | dN = p[0] / BN_BITS2; | ||
293 | for (j = r->top - 1; j > dN;) | ||
294 | { | ||
295 | zz = z[j]; | ||
296 | if (z[j] == 0) { j--; continue; } | ||
297 | z[j] = 0; | ||
298 | |||
299 | for (k = 1; p[k] != 0; k++) | ||
300 | { | ||
301 | /* reducing component t^p[k] */ | ||
302 | n = p[0] - p[k]; | ||
303 | d0 = n % BN_BITS2; d1 = BN_BITS2 - d0; | ||
304 | n /= BN_BITS2; | ||
305 | z[j-n] ^= (zz>>d0); | ||
306 | if (d0) z[j-n-1] ^= (zz<<d1); | ||
307 | } | ||
308 | |||
309 | /* reducing component t^0 */ | ||
310 | n = dN; | ||
311 | d0 = p[0] % BN_BITS2; | ||
312 | d1 = BN_BITS2 - d0; | ||
313 | z[j-n] ^= (zz >> d0); | ||
314 | if (d0) z[j-n-1] ^= (zz << d1); | ||
315 | } | ||
316 | |||
317 | /* final round of reduction */ | ||
318 | while (j == dN) | ||
319 | { | ||
320 | |||
321 | d0 = p[0] % BN_BITS2; | ||
322 | zz = z[dN] >> d0; | ||
323 | if (zz == 0) break; | ||
324 | d1 = BN_BITS2 - d0; | ||
325 | |||
326 | /* clear up the top d1 bits */ | ||
327 | if (d0) | ||
328 | z[dN] = (z[dN] << d1) >> d1; | ||
329 | else | ||
330 | z[dN] = 0; | ||
331 | z[0] ^= zz; /* reduction t^0 component */ | ||
332 | |||
333 | for (k = 1; p[k] != 0; k++) | ||
334 | { | ||
335 | BN_ULONG tmp_ulong; | ||
336 | |||
337 | /* reducing component t^p[k]*/ | ||
338 | n = p[k] / BN_BITS2; | ||
339 | d0 = p[k] % BN_BITS2; | ||
340 | d1 = BN_BITS2 - d0; | ||
341 | z[n] ^= (zz << d0); | ||
342 | tmp_ulong = zz >> d1; | ||
343 | if (d0 && tmp_ulong) | ||
344 | z[n+1] ^= tmp_ulong; | ||
345 | } | ||
346 | |||
347 | |||
348 | } | ||
349 | |||
350 | bn_correct_top(r); | ||
351 | return 1; | ||
352 | } | ||
353 | |||
354 | /* Performs modular reduction of a by p and store result in r. r could be a. | ||
355 | * | ||
356 | * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper | ||
357 | * function is only provided for convenience; for best performance, use the | ||
358 | * BN_GF2m_mod_arr function. | ||
359 | */ | ||
360 | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) | ||
361 | { | ||
362 | int ret = 0; | ||
363 | const int max = BN_num_bits(p) + 1; | ||
364 | int *arr=NULL; | ||
365 | bn_check_top(a); | ||
366 | bn_check_top(p); | ||
367 | if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; | ||
368 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
369 | if (!ret || ret > max) | ||
370 | { | ||
371 | BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH); | ||
372 | goto err; | ||
373 | } | ||
374 | ret = BN_GF2m_mod_arr(r, a, arr); | ||
375 | bn_check_top(r); | ||
376 | err: | ||
377 | if (arr) OPENSSL_free(arr); | ||
378 | return ret; | ||
379 | } | ||
380 | |||
381 | |||
382 | /* Compute the product of two polynomials a and b, reduce modulo p, and store | ||
383 | * the result in r. r could be a or b; a could be b. | ||
384 | */ | ||
385 | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx) | ||
386 | { | ||
387 | int zlen, i, j, k, ret = 0; | ||
388 | BIGNUM *s; | ||
389 | BN_ULONG x1, x0, y1, y0, zz[4]; | ||
390 | |||
391 | bn_check_top(a); | ||
392 | bn_check_top(b); | ||
393 | |||
394 | if (a == b) | ||
395 | { | ||
396 | return BN_GF2m_mod_sqr_arr(r, a, p, ctx); | ||
397 | } | ||
398 | |||
399 | BN_CTX_start(ctx); | ||
400 | if ((s = BN_CTX_get(ctx)) == NULL) goto err; | ||
401 | |||
402 | zlen = a->top + b->top + 4; | ||
403 | if (!bn_wexpand(s, zlen)) goto err; | ||
404 | s->top = zlen; | ||
405 | |||
406 | for (i = 0; i < zlen; i++) s->d[i] = 0; | ||
407 | |||
408 | for (j = 0; j < b->top; j += 2) | ||
409 | { | ||
410 | y0 = b->d[j]; | ||
411 | y1 = ((j+1) == b->top) ? 0 : b->d[j+1]; | ||
412 | for (i = 0; i < a->top; i += 2) | ||
413 | { | ||
414 | x0 = a->d[i]; | ||
415 | x1 = ((i+1) == a->top) ? 0 : a->d[i+1]; | ||
416 | bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); | ||
417 | for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k]; | ||
418 | } | ||
419 | } | ||
420 | |||
421 | bn_correct_top(s); | ||
422 | if (BN_GF2m_mod_arr(r, s, p)) | ||
423 | ret = 1; | ||
424 | bn_check_top(r); | ||
425 | |||
426 | err: | ||
427 | BN_CTX_end(ctx); | ||
428 | return ret; | ||
429 | } | ||
430 | |||
431 | /* Compute the product of two polynomials a and b, reduce modulo p, and store | ||
432 | * the result in r. r could be a or b; a could equal b. | ||
433 | * | ||
434 | * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper | ||
435 | * function is only provided for convenience; for best performance, use the | ||
436 | * BN_GF2m_mod_mul_arr function. | ||
437 | */ | ||
438 | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) | ||
439 | { | ||
440 | int ret = 0; | ||
441 | const int max = BN_num_bits(p) + 1; | ||
442 | int *arr=NULL; | ||
443 | bn_check_top(a); | ||
444 | bn_check_top(b); | ||
445 | bn_check_top(p); | ||
446 | if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; | ||
447 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
448 | if (!ret || ret > max) | ||
449 | { | ||
450 | BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH); | ||
451 | goto err; | ||
452 | } | ||
453 | ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); | ||
454 | bn_check_top(r); | ||
455 | err: | ||
456 | if (arr) OPENSSL_free(arr); | ||
457 | return ret; | ||
458 | } | ||
459 | |||
460 | |||
461 | /* Square a, reduce the result mod p, and store it in a. r could be a. */ | ||
462 | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) | ||
463 | { | ||
464 | int i, ret = 0; | ||
465 | BIGNUM *s; | ||
466 | |||
467 | bn_check_top(a); | ||
468 | BN_CTX_start(ctx); | ||
469 | if ((s = BN_CTX_get(ctx)) == NULL) return 0; | ||
470 | if (!bn_wexpand(s, 2 * a->top)) goto err; | ||
471 | |||
472 | for (i = a->top - 1; i >= 0; i--) | ||
473 | { | ||
474 | s->d[2*i+1] = SQR1(a->d[i]); | ||
475 | s->d[2*i ] = SQR0(a->d[i]); | ||
476 | } | ||
477 | |||
478 | s->top = 2 * a->top; | ||
479 | bn_correct_top(s); | ||
480 | if (!BN_GF2m_mod_arr(r, s, p)) goto err; | ||
481 | bn_check_top(r); | ||
482 | ret = 1; | ||
483 | err: | ||
484 | BN_CTX_end(ctx); | ||
485 | return ret; | ||
486 | } | ||
487 | |||
488 | /* Square a, reduce the result mod p, and store it in a. r could be a. | ||
489 | * | ||
490 | * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper | ||
491 | * function is only provided for convenience; for best performance, use the | ||
492 | * BN_GF2m_mod_sqr_arr function. | ||
493 | */ | ||
494 | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
495 | { | ||
496 | int ret = 0; | ||
497 | const int max = BN_num_bits(p) + 1; | ||
498 | int *arr=NULL; | ||
499 | |||
500 | bn_check_top(a); | ||
501 | bn_check_top(p); | ||
502 | if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; | ||
503 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
504 | if (!ret || ret > max) | ||
505 | { | ||
506 | BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH); | ||
507 | goto err; | ||
508 | } | ||
509 | ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); | ||
510 | bn_check_top(r); | ||
511 | err: | ||
512 | if (arr) OPENSSL_free(arr); | ||
513 | return ret; | ||
514 | } | ||
515 | |||
516 | |||
517 | /* Invert a, reduce modulo p, and store the result in r. r could be a. | ||
518 | * Uses Modified Almost Inverse Algorithm (Algorithm 10) from | ||
519 | * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation | ||
520 | * of Elliptic Curve Cryptography Over Binary Fields". | ||
521 | */ | ||
522 | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
523 | { | ||
524 | BIGNUM *b, *c, *u, *v, *tmp; | ||
525 | int ret = 0; | ||
526 | |||
527 | bn_check_top(a); | ||
528 | bn_check_top(p); | ||
529 | |||
530 | BN_CTX_start(ctx); | ||
531 | |||
532 | b = BN_CTX_get(ctx); | ||
533 | c = BN_CTX_get(ctx); | ||
534 | u = BN_CTX_get(ctx); | ||
535 | v = BN_CTX_get(ctx); | ||
536 | if (v == NULL) goto err; | ||
537 | |||
538 | if (!BN_one(b)) goto err; | ||
539 | if (!BN_GF2m_mod(u, a, p)) goto err; | ||
540 | if (!BN_copy(v, p)) goto err; | ||
541 | |||
542 | if (BN_is_zero(u)) goto err; | ||
543 | |||
544 | while (1) | ||
545 | { | ||
546 | while (!BN_is_odd(u)) | ||
547 | { | ||
548 | if (BN_is_zero(u)) goto err; | ||
549 | if (!BN_rshift1(u, u)) goto err; | ||
550 | if (BN_is_odd(b)) | ||
551 | { | ||
552 | if (!BN_GF2m_add(b, b, p)) goto err; | ||
553 | } | ||
554 | if (!BN_rshift1(b, b)) goto err; | ||
555 | } | ||
556 | |||
557 | if (BN_abs_is_word(u, 1)) break; | ||
558 | |||
559 | if (BN_num_bits(u) < BN_num_bits(v)) | ||
560 | { | ||
561 | tmp = u; u = v; v = tmp; | ||
562 | tmp = b; b = c; c = tmp; | ||
563 | } | ||
564 | |||
565 | if (!BN_GF2m_add(u, u, v)) goto err; | ||
566 | if (!BN_GF2m_add(b, b, c)) goto err; | ||
567 | } | ||
568 | |||
569 | |||
570 | if (!BN_copy(r, b)) goto err; | ||
571 | bn_check_top(r); | ||
572 | ret = 1; | ||
573 | |||
574 | err: | ||
575 | BN_CTX_end(ctx); | ||
576 | return ret; | ||
577 | } | ||
578 | |||
579 | /* Invert xx, reduce modulo p, and store the result in r. r could be xx. | ||
580 | * | ||
581 | * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper | ||
582 | * function is only provided for convenience; for best performance, use the | ||
583 | * BN_GF2m_mod_inv function. | ||
584 | */ | ||
585 | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx) | ||
586 | { | ||
587 | BIGNUM *field; | ||
588 | int ret = 0; | ||
589 | |||
590 | bn_check_top(xx); | ||
591 | BN_CTX_start(ctx); | ||
592 | if ((field = BN_CTX_get(ctx)) == NULL) goto err; | ||
593 | if (!BN_GF2m_arr2poly(p, field)) goto err; | ||
594 | |||
595 | ret = BN_GF2m_mod_inv(r, xx, field, ctx); | ||
596 | bn_check_top(r); | ||
597 | |||
598 | err: | ||
599 | BN_CTX_end(ctx); | ||
600 | return ret; | ||
601 | } | ||
602 | |||
603 | |||
604 | #ifndef OPENSSL_SUN_GF2M_DIV | ||
605 | /* Divide y by x, reduce modulo p, and store the result in r. r could be x | ||
606 | * or y, x could equal y. | ||
607 | */ | ||
608 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx) | ||
609 | { | ||
610 | BIGNUM *xinv = NULL; | ||
611 | int ret = 0; | ||
612 | |||
613 | bn_check_top(y); | ||
614 | bn_check_top(x); | ||
615 | bn_check_top(p); | ||
616 | |||
617 | BN_CTX_start(ctx); | ||
618 | xinv = BN_CTX_get(ctx); | ||
619 | if (xinv == NULL) goto err; | ||
620 | |||
621 | if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err; | ||
622 | if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err; | ||
623 | bn_check_top(r); | ||
624 | ret = 1; | ||
625 | |||
626 | err: | ||
627 | BN_CTX_end(ctx); | ||
628 | return ret; | ||
629 | } | ||
630 | #else | ||
631 | /* Divide y by x, reduce modulo p, and store the result in r. r could be x | ||
632 | * or y, x could equal y. | ||
633 | * Uses algorithm Modular_Division_GF(2^m) from | ||
634 | * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to | ||
635 | * the Great Divide". | ||
636 | */ | ||
637 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx) | ||
638 | { | ||
639 | BIGNUM *a, *b, *u, *v; | ||
640 | int ret = 0; | ||
641 | |||
642 | bn_check_top(y); | ||
643 | bn_check_top(x); | ||
644 | bn_check_top(p); | ||
645 | |||
646 | BN_CTX_start(ctx); | ||
647 | |||
648 | a = BN_CTX_get(ctx); | ||
649 | b = BN_CTX_get(ctx); | ||
650 | u = BN_CTX_get(ctx); | ||
651 | v = BN_CTX_get(ctx); | ||
652 | if (v == NULL) goto err; | ||
653 | |||
654 | /* reduce x and y mod p */ | ||
655 | if (!BN_GF2m_mod(u, y, p)) goto err; | ||
656 | if (!BN_GF2m_mod(a, x, p)) goto err; | ||
657 | if (!BN_copy(b, p)) goto err; | ||
658 | |||
659 | while (!BN_is_odd(a)) | ||
660 | { | ||
661 | if (!BN_rshift1(a, a)) goto err; | ||
662 | if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err; | ||
663 | if (!BN_rshift1(u, u)) goto err; | ||
664 | } | ||
665 | |||
666 | do | ||
667 | { | ||
668 | if (BN_GF2m_cmp(b, a) > 0) | ||
669 | { | ||
670 | if (!BN_GF2m_add(b, b, a)) goto err; | ||
671 | if (!BN_GF2m_add(v, v, u)) goto err; | ||
672 | do | ||
673 | { | ||
674 | if (!BN_rshift1(b, b)) goto err; | ||
675 | if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err; | ||
676 | if (!BN_rshift1(v, v)) goto err; | ||
677 | } while (!BN_is_odd(b)); | ||
678 | } | ||
679 | else if (BN_abs_is_word(a, 1)) | ||
680 | break; | ||
681 | else | ||
682 | { | ||
683 | if (!BN_GF2m_add(a, a, b)) goto err; | ||
684 | if (!BN_GF2m_add(u, u, v)) goto err; | ||
685 | do | ||
686 | { | ||
687 | if (!BN_rshift1(a, a)) goto err; | ||
688 | if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err; | ||
689 | if (!BN_rshift1(u, u)) goto err; | ||
690 | } while (!BN_is_odd(a)); | ||
691 | } | ||
692 | } while (1); | ||
693 | |||
694 | if (!BN_copy(r, u)) goto err; | ||
695 | bn_check_top(r); | ||
696 | ret = 1; | ||
697 | |||
698 | err: | ||
699 | BN_CTX_end(ctx); | ||
700 | return ret; | ||
701 | } | ||
702 | #endif | ||
703 | |||
704 | /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx | ||
705 | * or yy, xx could equal yy. | ||
706 | * | ||
707 | * This function calls down to the BN_GF2m_mod_div implementation; this wrapper | ||
708 | * function is only provided for convenience; for best performance, use the | ||
709 | * BN_GF2m_mod_div function. | ||
710 | */ | ||
711 | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx) | ||
712 | { | ||
713 | BIGNUM *field; | ||
714 | int ret = 0; | ||
715 | |||
716 | bn_check_top(yy); | ||
717 | bn_check_top(xx); | ||
718 | |||
719 | BN_CTX_start(ctx); | ||
720 | if ((field = BN_CTX_get(ctx)) == NULL) goto err; | ||
721 | if (!BN_GF2m_arr2poly(p, field)) goto err; | ||
722 | |||
723 | ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); | ||
724 | bn_check_top(r); | ||
725 | |||
726 | err: | ||
727 | BN_CTX_end(ctx); | ||
728 | return ret; | ||
729 | } | ||
730 | |||
731 | |||
732 | /* Compute the bth power of a, reduce modulo p, and store | ||
733 | * the result in r. r could be a. | ||
734 | * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363. | ||
735 | */ | ||
736 | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx) | ||
737 | { | ||
738 | int ret = 0, i, n; | ||
739 | BIGNUM *u; | ||
740 | |||
741 | bn_check_top(a); | ||
742 | bn_check_top(b); | ||
743 | |||
744 | if (BN_is_zero(b)) | ||
745 | return(BN_one(r)); | ||
746 | |||
747 | if (BN_abs_is_word(b, 1)) | ||
748 | return (BN_copy(r, a) != NULL); | ||
749 | |||
750 | BN_CTX_start(ctx); | ||
751 | if ((u = BN_CTX_get(ctx)) == NULL) goto err; | ||
752 | |||
753 | if (!BN_GF2m_mod_arr(u, a, p)) goto err; | ||
754 | |||
755 | n = BN_num_bits(b) - 1; | ||
756 | for (i = n - 1; i >= 0; i--) | ||
757 | { | ||
758 | if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err; | ||
759 | if (BN_is_bit_set(b, i)) | ||
760 | { | ||
761 | if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err; | ||
762 | } | ||
763 | } | ||
764 | if (!BN_copy(r, u)) goto err; | ||
765 | bn_check_top(r); | ||
766 | ret = 1; | ||
767 | err: | ||
768 | BN_CTX_end(ctx); | ||
769 | return ret; | ||
770 | } | ||
771 | |||
772 | /* Compute the bth power of a, reduce modulo p, and store | ||
773 | * the result in r. r could be a. | ||
774 | * | ||
775 | * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper | ||
776 | * function is only provided for convenience; for best performance, use the | ||
777 | * BN_GF2m_mod_exp_arr function. | ||
778 | */ | ||
779 | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) | ||
780 | { | ||
781 | int ret = 0; | ||
782 | const int max = BN_num_bits(p) + 1; | ||
783 | int *arr=NULL; | ||
784 | bn_check_top(a); | ||
785 | bn_check_top(b); | ||
786 | bn_check_top(p); | ||
787 | if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; | ||
788 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
789 | if (!ret || ret > max) | ||
790 | { | ||
791 | BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH); | ||
792 | goto err; | ||
793 | } | ||
794 | ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); | ||
795 | bn_check_top(r); | ||
796 | err: | ||
797 | if (arr) OPENSSL_free(arr); | ||
798 | return ret; | ||
799 | } | ||
800 | |||
801 | /* Compute the square root of a, reduce modulo p, and store | ||
802 | * the result in r. r could be a. | ||
803 | * Uses exponentiation as in algorithm A.4.1 from IEEE P1363. | ||
804 | */ | ||
805 | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) | ||
806 | { | ||
807 | int ret = 0; | ||
808 | BIGNUM *u; | ||
809 | |||
810 | bn_check_top(a); | ||
811 | |||
812 | if (!p[0]) | ||
813 | { | ||
814 | /* reduction mod 1 => return 0 */ | ||
815 | BN_zero(r); | ||
816 | return 1; | ||
817 | } | ||
818 | |||
819 | BN_CTX_start(ctx); | ||
820 | if ((u = BN_CTX_get(ctx)) == NULL) goto err; | ||
821 | |||
822 | if (!BN_set_bit(u, p[0] - 1)) goto err; | ||
823 | ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); | ||
824 | bn_check_top(r); | ||
825 | |||
826 | err: | ||
827 | BN_CTX_end(ctx); | ||
828 | return ret; | ||
829 | } | ||
830 | |||
831 | /* Compute the square root of a, reduce modulo p, and store | ||
832 | * the result in r. r could be a. | ||
833 | * | ||
834 | * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper | ||
835 | * function is only provided for convenience; for best performance, use the | ||
836 | * BN_GF2m_mod_sqrt_arr function. | ||
837 | */ | ||
838 | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
839 | { | ||
840 | int ret = 0; | ||
841 | const int max = BN_num_bits(p) + 1; | ||
842 | int *arr=NULL; | ||
843 | bn_check_top(a); | ||
844 | bn_check_top(p); | ||
845 | if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; | ||
846 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
847 | if (!ret || ret > max) | ||
848 | { | ||
849 | BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH); | ||
850 | goto err; | ||
851 | } | ||
852 | ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); | ||
853 | bn_check_top(r); | ||
854 | err: | ||
855 | if (arr) OPENSSL_free(arr); | ||
856 | return ret; | ||
857 | } | ||
858 | |||
859 | /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. | ||
860 | * Uses algorithms A.4.7 and A.4.6 from IEEE P1363. | ||
861 | */ | ||
862 | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx) | ||
863 | { | ||
864 | int ret = 0, count = 0, j; | ||
865 | BIGNUM *a, *z, *rho, *w, *w2, *tmp; | ||
866 | |||
867 | bn_check_top(a_); | ||
868 | |||
869 | if (!p[0]) | ||
870 | { | ||
871 | /* reduction mod 1 => return 0 */ | ||
872 | BN_zero(r); | ||
873 | return 1; | ||
874 | } | ||
875 | |||
876 | BN_CTX_start(ctx); | ||
877 | a = BN_CTX_get(ctx); | ||
878 | z = BN_CTX_get(ctx); | ||
879 | w = BN_CTX_get(ctx); | ||
880 | if (w == NULL) goto err; | ||
881 | |||
882 | if (!BN_GF2m_mod_arr(a, a_, p)) goto err; | ||
883 | |||
884 | if (BN_is_zero(a)) | ||
885 | { | ||
886 | BN_zero(r); | ||
887 | ret = 1; | ||
888 | goto err; | ||
889 | } | ||
890 | |||
891 | if (p[0] & 0x1) /* m is odd */ | ||
892 | { | ||
893 | /* compute half-trace of a */ | ||
894 | if (!BN_copy(z, a)) goto err; | ||
895 | for (j = 1; j <= (p[0] - 1) / 2; j++) | ||
896 | { | ||
897 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; | ||
898 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; | ||
899 | if (!BN_GF2m_add(z, z, a)) goto err; | ||
900 | } | ||
901 | |||
902 | } | ||
903 | else /* m is even */ | ||
904 | { | ||
905 | rho = BN_CTX_get(ctx); | ||
906 | w2 = BN_CTX_get(ctx); | ||
907 | tmp = BN_CTX_get(ctx); | ||
908 | if (tmp == NULL) goto err; | ||
909 | do | ||
910 | { | ||
911 | if (!BN_rand(rho, p[0], 0, 0)) goto err; | ||
912 | if (!BN_GF2m_mod_arr(rho, rho, p)) goto err; | ||
913 | BN_zero(z); | ||
914 | if (!BN_copy(w, rho)) goto err; | ||
915 | for (j = 1; j <= p[0] - 1; j++) | ||
916 | { | ||
917 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; | ||
918 | if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err; | ||
919 | if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err; | ||
920 | if (!BN_GF2m_add(z, z, tmp)) goto err; | ||
921 | if (!BN_GF2m_add(w, w2, rho)) goto err; | ||
922 | } | ||
923 | count++; | ||
924 | } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); | ||
925 | if (BN_is_zero(w)) | ||
926 | { | ||
927 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS); | ||
928 | goto err; | ||
929 | } | ||
930 | } | ||
931 | |||
932 | if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err; | ||
933 | if (!BN_GF2m_add(w, z, w)) goto err; | ||
934 | if (BN_GF2m_cmp(w, a)) | ||
935 | { | ||
936 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION); | ||
937 | goto err; | ||
938 | } | ||
939 | |||
940 | if (!BN_copy(r, z)) goto err; | ||
941 | bn_check_top(r); | ||
942 | |||
943 | ret = 1; | ||
944 | |||
945 | err: | ||
946 | BN_CTX_end(ctx); | ||
947 | return ret; | ||
948 | } | ||
949 | |||
950 | /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. | ||
951 | * | ||
952 | * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper | ||
953 | * function is only provided for convenience; for best performance, use the | ||
954 | * BN_GF2m_mod_solve_quad_arr function. | ||
955 | */ | ||
956 | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
957 | { | ||
958 | int ret = 0; | ||
959 | const int max = BN_num_bits(p) + 1; | ||
960 | int *arr=NULL; | ||
961 | bn_check_top(a); | ||
962 | bn_check_top(p); | ||
963 | if ((arr = (int *)OPENSSL_malloc(sizeof(int) * | ||
964 | max)) == NULL) goto err; | ||
965 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
966 | if (!ret || ret > max) | ||
967 | { | ||
968 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH); | ||
969 | goto err; | ||
970 | } | ||
971 | ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); | ||
972 | bn_check_top(r); | ||
973 | err: | ||
974 | if (arr) OPENSSL_free(arr); | ||
975 | return ret; | ||
976 | } | ||
977 | |||
978 | /* Convert the bit-string representation of a polynomial | ||
979 | * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding | ||
980 | * to the bits with non-zero coefficient. Array is terminated with -1. | ||
981 | * Up to max elements of the array will be filled. Return value is total | ||
982 | * number of array elements that would be filled if array was large enough. | ||
983 | */ | ||
984 | int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) | ||
985 | { | ||
986 | int i, j, k = 0; | ||
987 | BN_ULONG mask; | ||
988 | |||
989 | if (BN_is_zero(a)) | ||
990 | return 0; | ||
991 | |||
992 | for (i = a->top - 1; i >= 0; i--) | ||
993 | { | ||
994 | if (!a->d[i]) | ||
995 | /* skip word if a->d[i] == 0 */ | ||
996 | continue; | ||
997 | mask = BN_TBIT; | ||
998 | for (j = BN_BITS2 - 1; j >= 0; j--) | ||
999 | { | ||
1000 | if (a->d[i] & mask) | ||
1001 | { | ||
1002 | if (k < max) p[k] = BN_BITS2 * i + j; | ||
1003 | k++; | ||
1004 | } | ||
1005 | mask >>= 1; | ||
1006 | } | ||
1007 | } | ||
1008 | |||
1009 | if (k < max) { | ||
1010 | p[k] = -1; | ||
1011 | k++; | ||
1012 | } | ||
1013 | |||
1014 | return k; | ||
1015 | } | ||
1016 | |||
1017 | /* Convert the coefficient array representation of a polynomial to a | ||
1018 | * bit-string. The array must be terminated by -1. | ||
1019 | */ | ||
1020 | int BN_GF2m_arr2poly(const int p[], BIGNUM *a) | ||
1021 | { | ||
1022 | int i; | ||
1023 | |||
1024 | bn_check_top(a); | ||
1025 | BN_zero(a); | ||
1026 | for (i = 0; p[i] != -1; i++) | ||
1027 | { | ||
1028 | if (BN_set_bit(a, p[i]) == 0) | ||
1029 | return 0; | ||
1030 | } | ||
1031 | bn_check_top(a); | ||
1032 | |||
1033 | return 1; | ||
1034 | } | ||
1035 | |||
diff --git a/src/lib/libcrypto/bn/bn_kron.c b/src/lib/libcrypto/bn/bn_kron.c deleted file mode 100644 index 740359b752..0000000000 --- a/src/lib/libcrypto/bn/bn_kron.c +++ /dev/null | |||
@@ -1,184 +0,0 @@ | |||
1 | /* crypto/bn/bn_kron.c */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@openssl.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | #include "cryptlib.h" | ||
57 | #include "bn_lcl.h" | ||
58 | |||
59 | /* least significant word */ | ||
60 | #define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0]) | ||
61 | |||
62 | /* Returns -2 for errors because both -1 and 0 are valid results. */ | ||
63 | int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
64 | { | ||
65 | int i; | ||
66 | int ret = -2; /* avoid 'uninitialized' warning */ | ||
67 | int err = 0; | ||
68 | BIGNUM *A, *B, *tmp; | ||
69 | /* In 'tab', only odd-indexed entries are relevant: | ||
70 | * For any odd BIGNUM n, | ||
71 | * tab[BN_lsw(n) & 7] | ||
72 | * is $(-1)^{(n^2-1)/8}$ (using TeX notation). | ||
73 | * Note that the sign of n does not matter. | ||
74 | */ | ||
75 | static const int tab[8] = {0, 1, 0, -1, 0, -1, 0, 1}; | ||
76 | |||
77 | bn_check_top(a); | ||
78 | bn_check_top(b); | ||
79 | |||
80 | BN_CTX_start(ctx); | ||
81 | A = BN_CTX_get(ctx); | ||
82 | B = BN_CTX_get(ctx); | ||
83 | if (B == NULL) goto end; | ||
84 | |||
85 | err = !BN_copy(A, a); | ||
86 | if (err) goto end; | ||
87 | err = !BN_copy(B, b); | ||
88 | if (err) goto end; | ||
89 | |||
90 | /* | ||
91 | * Kronecker symbol, imlemented according to Henri Cohen, | ||
92 | * "A Course in Computational Algebraic Number Theory" | ||
93 | * (algorithm 1.4.10). | ||
94 | */ | ||
95 | |||
96 | /* Cohen's step 1: */ | ||
97 | |||
98 | if (BN_is_zero(B)) | ||
99 | { | ||
100 | ret = BN_abs_is_word(A, 1); | ||
101 | goto end; | ||
102 | } | ||
103 | |||
104 | /* Cohen's step 2: */ | ||
105 | |||
106 | if (!BN_is_odd(A) && !BN_is_odd(B)) | ||
107 | { | ||
108 | ret = 0; | ||
109 | goto end; | ||
110 | } | ||
111 | |||
112 | /* now B is non-zero */ | ||
113 | i = 0; | ||
114 | while (!BN_is_bit_set(B, i)) | ||
115 | i++; | ||
116 | err = !BN_rshift(B, B, i); | ||
117 | if (err) goto end; | ||
118 | if (i & 1) | ||
119 | { | ||
120 | /* i is odd */ | ||
121 | /* (thus B was even, thus A must be odd!) */ | ||
122 | |||
123 | /* set 'ret' to $(-1)^{(A^2-1)/8}$ */ | ||
124 | ret = tab[BN_lsw(A) & 7]; | ||
125 | } | ||
126 | else | ||
127 | { | ||
128 | /* i is even */ | ||
129 | ret = 1; | ||
130 | } | ||
131 | |||
132 | if (B->neg) | ||
133 | { | ||
134 | B->neg = 0; | ||
135 | if (A->neg) | ||
136 | ret = -ret; | ||
137 | } | ||
138 | |||
139 | /* now B is positive and odd, so what remains to be done is | ||
140 | * to compute the Jacobi symbol (A/B) and multiply it by 'ret' */ | ||
141 | |||
142 | while (1) | ||
143 | { | ||
144 | /* Cohen's step 3: */ | ||
145 | |||
146 | /* B is positive and odd */ | ||
147 | |||
148 | if (BN_is_zero(A)) | ||
149 | { | ||
150 | ret = BN_is_one(B) ? ret : 0; | ||
151 | goto end; | ||
152 | } | ||
153 | |||
154 | /* now A is non-zero */ | ||
155 | i = 0; | ||
156 | while (!BN_is_bit_set(A, i)) | ||
157 | i++; | ||
158 | err = !BN_rshift(A, A, i); | ||
159 | if (err) goto end; | ||
160 | if (i & 1) | ||
161 | { | ||
162 | /* i is odd */ | ||
163 | /* multiply 'ret' by $(-1)^{(B^2-1)/8}$ */ | ||
164 | ret = ret * tab[BN_lsw(B) & 7]; | ||
165 | } | ||
166 | |||
167 | /* Cohen's step 4: */ | ||
168 | /* multiply 'ret' by $(-1)^{(A-1)(B-1)/4}$ */ | ||
169 | if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2) | ||
170 | ret = -ret; | ||
171 | |||
172 | /* (A, B) := (B mod |A|, |A|) */ | ||
173 | err = !BN_nnmod(B, B, A, ctx); | ||
174 | if (err) goto end; | ||
175 | tmp = A; A = B; B = tmp; | ||
176 | tmp->neg = 0; | ||
177 | } | ||
178 | end: | ||
179 | BN_CTX_end(ctx); | ||
180 | if (err) | ||
181 | return -2; | ||
182 | else | ||
183 | return ret; | ||
184 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_lcl.h b/src/lib/libcrypto/bn/bn_lcl.h deleted file mode 100644 index 8e5e98e3f2..0000000000 --- a/src/lib/libcrypto/bn/bn_lcl.h +++ /dev/null | |||
@@ -1,491 +0,0 @@ | |||
1 | /* crypto/bn/bn_lcl.h */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #ifndef HEADER_BN_LCL_H | ||
113 | #define HEADER_BN_LCL_H | ||
114 | |||
115 | #include <openssl/bn.h> | ||
116 | |||
117 | #ifdef __cplusplus | ||
118 | extern "C" { | ||
119 | #endif | ||
120 | |||
121 | |||
122 | /* | ||
123 | * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions | ||
124 | * | ||
125 | * | ||
126 | * For window size 'w' (w >= 2) and a random 'b' bits exponent, | ||
127 | * the number of multiplications is a constant plus on average | ||
128 | * | ||
129 | * 2^(w-1) + (b-w)/(w+1); | ||
130 | * | ||
131 | * here 2^(w-1) is for precomputing the table (we actually need | ||
132 | * entries only for windows that have the lowest bit set), and | ||
133 | * (b-w)/(w+1) is an approximation for the expected number of | ||
134 | * w-bit windows, not counting the first one. | ||
135 | * | ||
136 | * Thus we should use | ||
137 | * | ||
138 | * w >= 6 if b > 671 | ||
139 | * w = 5 if 671 > b > 239 | ||
140 | * w = 4 if 239 > b > 79 | ||
141 | * w = 3 if 79 > b > 23 | ||
142 | * w <= 2 if 23 > b | ||
143 | * | ||
144 | * (with draws in between). Very small exponents are often selected | ||
145 | * with low Hamming weight, so we use w = 1 for b <= 23. | ||
146 | */ | ||
147 | #if 1 | ||
148 | #define BN_window_bits_for_exponent_size(b) \ | ||
149 | ((b) > 671 ? 6 : \ | ||
150 | (b) > 239 ? 5 : \ | ||
151 | (b) > 79 ? 4 : \ | ||
152 | (b) > 23 ? 3 : 1) | ||
153 | #else | ||
154 | /* Old SSLeay/OpenSSL table. | ||
155 | * Maximum window size was 5, so this table differs for b==1024; | ||
156 | * but it coincides for other interesting values (b==160, b==512). | ||
157 | */ | ||
158 | #define BN_window_bits_for_exponent_size(b) \ | ||
159 | ((b) > 255 ? 5 : \ | ||
160 | (b) > 127 ? 4 : \ | ||
161 | (b) > 17 ? 3 : 1) | ||
162 | #endif | ||
163 | |||
164 | |||
165 | |||
166 | /* BN_mod_exp_mont_conttime is based on the assumption that the | ||
167 | * L1 data cache line width of the target processor is at least | ||
168 | * the following value. | ||
169 | */ | ||
170 | #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 ) | ||
171 | #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1) | ||
172 | |||
173 | /* Window sizes optimized for fixed window size modular exponentiation | ||
174 | * algorithm (BN_mod_exp_mont_consttime). | ||
175 | * | ||
176 | * To achieve the security goals of BN_mode_exp_mont_consttime, the | ||
177 | * maximum size of the window must not exceed | ||
178 | * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). | ||
179 | * | ||
180 | * Window size thresholds are defined for cache line sizes of 32 and 64, | ||
181 | * cache line sizes where log_2(32)=5 and log_2(64)=6 respectively. A | ||
182 | * window size of 7 should only be used on processors that have a 128 | ||
183 | * byte or greater cache line size. | ||
184 | */ | ||
185 | #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64 | ||
186 | |||
187 | # define BN_window_bits_for_ctime_exponent_size(b) \ | ||
188 | ((b) > 937 ? 6 : \ | ||
189 | (b) > 306 ? 5 : \ | ||
190 | (b) > 89 ? 4 : \ | ||
191 | (b) > 22 ? 3 : 1) | ||
192 | # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6) | ||
193 | |||
194 | #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32 | ||
195 | |||
196 | # define BN_window_bits_for_ctime_exponent_size(b) \ | ||
197 | ((b) > 306 ? 5 : \ | ||
198 | (b) > 89 ? 4 : \ | ||
199 | (b) > 22 ? 3 : 1) | ||
200 | # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5) | ||
201 | |||
202 | #endif | ||
203 | |||
204 | |||
205 | /* Pentium pro 16,16,16,32,64 */ | ||
206 | /* Alpha 16,16,16,16.64 */ | ||
207 | #define BN_MULL_SIZE_NORMAL (16) /* 32 */ | ||
208 | #define BN_MUL_RECURSIVE_SIZE_NORMAL (16) /* 32 less than */ | ||
209 | #define BN_SQR_RECURSIVE_SIZE_NORMAL (16) /* 32 */ | ||
210 | #define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32) /* 32 */ | ||
211 | #define BN_MONT_CTX_SET_SIZE_WORD (64) /* 32 */ | ||
212 | |||
213 | #if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC) | ||
214 | /* | ||
215 | * BN_UMULT_HIGH section. | ||
216 | * | ||
217 | * No, I'm not trying to overwhelm you when stating that the | ||
218 | * product of N-bit numbers is 2*N bits wide:-) No, I don't expect | ||
219 | * you to be impressed when I say that if the compiler doesn't | ||
220 | * support 2*N integer type, then you have to replace every N*N | ||
221 | * multiplication with 4 (N/2)*(N/2) accompanied by some shifts | ||
222 | * and additions which unavoidably results in severe performance | ||
223 | * penalties. Of course provided that the hardware is capable of | ||
224 | * producing 2*N result... That's when you normally start | ||
225 | * considering assembler implementation. However! It should be | ||
226 | * pointed out that some CPUs (most notably Alpha, PowerPC and | ||
227 | * upcoming IA-64 family:-) provide *separate* instruction | ||
228 | * calculating the upper half of the product placing the result | ||
229 | * into a general purpose register. Now *if* the compiler supports | ||
230 | * inline assembler, then it's not impossible to implement the | ||
231 | * "bignum" routines (and have the compiler optimize 'em) | ||
232 | * exhibiting "native" performance in C. That's what BN_UMULT_HIGH | ||
233 | * macro is about:-) | ||
234 | * | ||
235 | * <appro@fy.chalmers.se> | ||
236 | */ | ||
237 | # if defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) | ||
238 | # if defined(__DECC) | ||
239 | # include <c_asm.h> | ||
240 | # define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b)) | ||
241 | # elif defined(__GNUC__) | ||
242 | # define BN_UMULT_HIGH(a,b) ({ \ | ||
243 | register BN_ULONG ret; \ | ||
244 | asm ("umulh %1,%2,%0" \ | ||
245 | : "=r"(ret) \ | ||
246 | : "r"(a), "r"(b)); \ | ||
247 | ret; }) | ||
248 | # endif /* compiler */ | ||
249 | # elif defined(_ARCH_PPC) && defined(__64BIT__) && defined(SIXTY_FOUR_BIT_LONG) | ||
250 | # if defined(__GNUC__) | ||
251 | # define BN_UMULT_HIGH(a,b) ({ \ | ||
252 | register BN_ULONG ret; \ | ||
253 | asm ("mulhdu %0,%1,%2" \ | ||
254 | : "=r"(ret) \ | ||
255 | : "r"(a), "r"(b)); \ | ||
256 | ret; }) | ||
257 | # endif /* compiler */ | ||
258 | # elif (defined(__x86_64) || defined(__x86_64__)) && \ | ||
259 | (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) | ||
260 | # if defined(__GNUC__) | ||
261 | # define BN_UMULT_HIGH(a,b) ({ \ | ||
262 | register BN_ULONG ret,discard; \ | ||
263 | asm ("mulq %3" \ | ||
264 | : "=a"(discard),"=d"(ret) \ | ||
265 | : "a"(a), "g"(b) \ | ||
266 | : "cc"); \ | ||
267 | ret; }) | ||
268 | # define BN_UMULT_LOHI(low,high,a,b) \ | ||
269 | asm ("mulq %3" \ | ||
270 | : "=a"(low),"=d"(high) \ | ||
271 | : "a"(a),"g"(b) \ | ||
272 | : "cc"); | ||
273 | # endif | ||
274 | # elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT) | ||
275 | # if defined(_MSC_VER) && _MSC_VER>=1400 | ||
276 | unsigned __int64 __umulh (unsigned __int64 a,unsigned __int64 b); | ||
277 | unsigned __int64 _umul128 (unsigned __int64 a,unsigned __int64 b, | ||
278 | unsigned __int64 *h); | ||
279 | # pragma intrinsic(__umulh,_umul128) | ||
280 | # define BN_UMULT_HIGH(a,b) __umulh((a),(b)) | ||
281 | # define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high))) | ||
282 | # endif | ||
283 | # endif /* cpu */ | ||
284 | #endif /* OPENSSL_NO_ASM */ | ||
285 | |||
286 | /************************************************************* | ||
287 | * Using the long long type | ||
288 | */ | ||
289 | #define Lw(t) (((BN_ULONG)(t))&BN_MASK2) | ||
290 | #define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2) | ||
291 | |||
292 | #ifdef BN_DEBUG_RAND | ||
293 | #define bn_clear_top2max(a) \ | ||
294 | { \ | ||
295 | int ind = (a)->dmax - (a)->top; \ | ||
296 | BN_ULONG *ftl = &(a)->d[(a)->top-1]; \ | ||
297 | for (; ind != 0; ind--) \ | ||
298 | *(++ftl) = 0x0; \ | ||
299 | } | ||
300 | #else | ||
301 | #define bn_clear_top2max(a) | ||
302 | #endif | ||
303 | |||
304 | #ifdef BN_LLONG | ||
305 | #define mul_add(r,a,w,c) { \ | ||
306 | BN_ULLONG t; \ | ||
307 | t=(BN_ULLONG)w * (a) + (r) + (c); \ | ||
308 | (r)= Lw(t); \ | ||
309 | (c)= Hw(t); \ | ||
310 | } | ||
311 | |||
312 | #define mul(r,a,w,c) { \ | ||
313 | BN_ULLONG t; \ | ||
314 | t=(BN_ULLONG)w * (a) + (c); \ | ||
315 | (r)= Lw(t); \ | ||
316 | (c)= Hw(t); \ | ||
317 | } | ||
318 | |||
319 | #define sqr(r0,r1,a) { \ | ||
320 | BN_ULLONG t; \ | ||
321 | t=(BN_ULLONG)(a)*(a); \ | ||
322 | (r0)=Lw(t); \ | ||
323 | (r1)=Hw(t); \ | ||
324 | } | ||
325 | |||
326 | #elif defined(BN_UMULT_LOHI) | ||
327 | #define mul_add(r,a,w,c) { \ | ||
328 | BN_ULONG high,low,ret,tmp=(a); \ | ||
329 | ret = (r); \ | ||
330 | BN_UMULT_LOHI(low,high,w,tmp); \ | ||
331 | ret += (c); \ | ||
332 | (c) = (ret<(c))?1:0; \ | ||
333 | (c) += high; \ | ||
334 | ret += low; \ | ||
335 | (c) += (ret<low)?1:0; \ | ||
336 | (r) = ret; \ | ||
337 | } | ||
338 | |||
339 | #define mul(r,a,w,c) { \ | ||
340 | BN_ULONG high,low,ret,ta=(a); \ | ||
341 | BN_UMULT_LOHI(low,high,w,ta); \ | ||
342 | ret = low + (c); \ | ||
343 | (c) = high; \ | ||
344 | (c) += (ret<low)?1:0; \ | ||
345 | (r) = ret; \ | ||
346 | } | ||
347 | |||
348 | #define sqr(r0,r1,a) { \ | ||
349 | BN_ULONG tmp=(a); \ | ||
350 | BN_UMULT_LOHI(r0,r1,tmp,tmp); \ | ||
351 | } | ||
352 | |||
353 | #elif defined(BN_UMULT_HIGH) | ||
354 | #define mul_add(r,a,w,c) { \ | ||
355 | BN_ULONG high,low,ret,tmp=(a); \ | ||
356 | ret = (r); \ | ||
357 | high= BN_UMULT_HIGH(w,tmp); \ | ||
358 | ret += (c); \ | ||
359 | low = (w) * tmp; \ | ||
360 | (c) = (ret<(c))?1:0; \ | ||
361 | (c) += high; \ | ||
362 | ret += low; \ | ||
363 | (c) += (ret<low)?1:0; \ | ||
364 | (r) = ret; \ | ||
365 | } | ||
366 | |||
367 | #define mul(r,a,w,c) { \ | ||
368 | BN_ULONG high,low,ret,ta=(a); \ | ||
369 | low = (w) * ta; \ | ||
370 | high= BN_UMULT_HIGH(w,ta); \ | ||
371 | ret = low + (c); \ | ||
372 | (c) = high; \ | ||
373 | (c) += (ret<low)?1:0; \ | ||
374 | (r) = ret; \ | ||
375 | } | ||
376 | |||
377 | #define sqr(r0,r1,a) { \ | ||
378 | BN_ULONG tmp=(a); \ | ||
379 | (r0) = tmp * tmp; \ | ||
380 | (r1) = BN_UMULT_HIGH(tmp,tmp); \ | ||
381 | } | ||
382 | |||
383 | #else | ||
384 | /************************************************************* | ||
385 | * No long long type | ||
386 | */ | ||
387 | |||
388 | #define LBITS(a) ((a)&BN_MASK2l) | ||
389 | #define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l) | ||
390 | #define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2) | ||
391 | |||
392 | #define LLBITS(a) ((a)&BN_MASKl) | ||
393 | #define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl) | ||
394 | #define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2) | ||
395 | |||
396 | #define mul64(l,h,bl,bh) \ | ||
397 | { \ | ||
398 | BN_ULONG m,m1,lt,ht; \ | ||
399 | \ | ||
400 | lt=l; \ | ||
401 | ht=h; \ | ||
402 | m =(bh)*(lt); \ | ||
403 | lt=(bl)*(lt); \ | ||
404 | m1=(bl)*(ht); \ | ||
405 | ht =(bh)*(ht); \ | ||
406 | m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \ | ||
407 | ht+=HBITS(m); \ | ||
408 | m1=L2HBITS(m); \ | ||
409 | lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \ | ||
410 | (l)=lt; \ | ||
411 | (h)=ht; \ | ||
412 | } | ||
413 | |||
414 | #define sqr64(lo,ho,in) \ | ||
415 | { \ | ||
416 | BN_ULONG l,h,m; \ | ||
417 | \ | ||
418 | h=(in); \ | ||
419 | l=LBITS(h); \ | ||
420 | h=HBITS(h); \ | ||
421 | m =(l)*(h); \ | ||
422 | l*=l; \ | ||
423 | h*=h; \ | ||
424 | h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \ | ||
425 | m =(m&BN_MASK2l)<<(BN_BITS4+1); \ | ||
426 | l=(l+m)&BN_MASK2; if (l < m) h++; \ | ||
427 | (lo)=l; \ | ||
428 | (ho)=h; \ | ||
429 | } | ||
430 | |||
431 | #define mul_add(r,a,bl,bh,c) { \ | ||
432 | BN_ULONG l,h; \ | ||
433 | \ | ||
434 | h= (a); \ | ||
435 | l=LBITS(h); \ | ||
436 | h=HBITS(h); \ | ||
437 | mul64(l,h,(bl),(bh)); \ | ||
438 | \ | ||
439 | /* non-multiply part */ \ | ||
440 | l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ | ||
441 | (c)=(r); \ | ||
442 | l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ | ||
443 | (c)=h&BN_MASK2; \ | ||
444 | (r)=l; \ | ||
445 | } | ||
446 | |||
447 | #define mul(r,a,bl,bh,c) { \ | ||
448 | BN_ULONG l,h; \ | ||
449 | \ | ||
450 | h= (a); \ | ||
451 | l=LBITS(h); \ | ||
452 | h=HBITS(h); \ | ||
453 | mul64(l,h,(bl),(bh)); \ | ||
454 | \ | ||
455 | /* non-multiply part */ \ | ||
456 | l+=(c); if ((l&BN_MASK2) < (c)) h++; \ | ||
457 | (c)=h&BN_MASK2; \ | ||
458 | (r)=l&BN_MASK2; \ | ||
459 | } | ||
460 | #endif /* !BN_LLONG */ | ||
461 | |||
462 | void bn_mul_normal(BN_ULONG *r,BN_ULONG *a,int na,BN_ULONG *b,int nb); | ||
463 | void bn_mul_comba8(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b); | ||
464 | void bn_mul_comba4(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b); | ||
465 | void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp); | ||
466 | void bn_sqr_comba8(BN_ULONG *r,const BN_ULONG *a); | ||
467 | void bn_sqr_comba4(BN_ULONG *r,const BN_ULONG *a); | ||
468 | int bn_cmp_words(const BN_ULONG *a,const BN_ULONG *b,int n); | ||
469 | int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, | ||
470 | int cl, int dl); | ||
471 | void bn_mul_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2, | ||
472 | int dna,int dnb,BN_ULONG *t); | ||
473 | void bn_mul_part_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b, | ||
474 | int n,int tna,int tnb,BN_ULONG *t); | ||
475 | void bn_sqr_recursive(BN_ULONG *r,const BN_ULONG *a, int n2, BN_ULONG *t); | ||
476 | void bn_mul_low_normal(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b, int n); | ||
477 | void bn_mul_low_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2, | ||
478 | BN_ULONG *t); | ||
479 | void bn_mul_high(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,BN_ULONG *l,int n2, | ||
480 | BN_ULONG *t); | ||
481 | BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, | ||
482 | int cl, int dl); | ||
483 | BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, | ||
484 | int cl, int dl); | ||
485 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num); | ||
486 | |||
487 | #ifdef __cplusplus | ||
488 | } | ||
489 | #endif | ||
490 | |||
491 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_lib.c b/src/lib/libcrypto/bn/bn_lib.c deleted file mode 100644 index 5470fbe6ef..0000000000 --- a/src/lib/libcrypto/bn/bn_lib.c +++ /dev/null | |||
@@ -1,845 +0,0 @@ | |||
1 | /* crypto/bn/bn_lib.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #ifndef BN_DEBUG | ||
60 | # undef NDEBUG /* avoid conflicting definitions */ | ||
61 | # define NDEBUG | ||
62 | #endif | ||
63 | |||
64 | #include <assert.h> | ||
65 | #include <limits.h> | ||
66 | #include <stdio.h> | ||
67 | #include "cryptlib.h" | ||
68 | #include "bn_lcl.h" | ||
69 | |||
70 | const char BN_version[]="Big Number" OPENSSL_VERSION_PTEXT; | ||
71 | |||
72 | /* This stuff appears to be completely unused, so is deprecated */ | ||
73 | #ifndef OPENSSL_NO_DEPRECATED | ||
74 | /* For a 32 bit machine | ||
75 | * 2 - 4 == 128 | ||
76 | * 3 - 8 == 256 | ||
77 | * 4 - 16 == 512 | ||
78 | * 5 - 32 == 1024 | ||
79 | * 6 - 64 == 2048 | ||
80 | * 7 - 128 == 4096 | ||
81 | * 8 - 256 == 8192 | ||
82 | */ | ||
83 | static int bn_limit_bits=0; | ||
84 | static int bn_limit_num=8; /* (1<<bn_limit_bits) */ | ||
85 | static int bn_limit_bits_low=0; | ||
86 | static int bn_limit_num_low=8; /* (1<<bn_limit_bits_low) */ | ||
87 | static int bn_limit_bits_high=0; | ||
88 | static int bn_limit_num_high=8; /* (1<<bn_limit_bits_high) */ | ||
89 | static int bn_limit_bits_mont=0; | ||
90 | static int bn_limit_num_mont=8; /* (1<<bn_limit_bits_mont) */ | ||
91 | |||
92 | void BN_set_params(int mult, int high, int low, int mont) | ||
93 | { | ||
94 | if (mult >= 0) | ||
95 | { | ||
96 | if (mult > (int)(sizeof(int)*8)-1) | ||
97 | mult=sizeof(int)*8-1; | ||
98 | bn_limit_bits=mult; | ||
99 | bn_limit_num=1<<mult; | ||
100 | } | ||
101 | if (high >= 0) | ||
102 | { | ||
103 | if (high > (int)(sizeof(int)*8)-1) | ||
104 | high=sizeof(int)*8-1; | ||
105 | bn_limit_bits_high=high; | ||
106 | bn_limit_num_high=1<<high; | ||
107 | } | ||
108 | if (low >= 0) | ||
109 | { | ||
110 | if (low > (int)(sizeof(int)*8)-1) | ||
111 | low=sizeof(int)*8-1; | ||
112 | bn_limit_bits_low=low; | ||
113 | bn_limit_num_low=1<<low; | ||
114 | } | ||
115 | if (mont >= 0) | ||
116 | { | ||
117 | if (mont > (int)(sizeof(int)*8)-1) | ||
118 | mont=sizeof(int)*8-1; | ||
119 | bn_limit_bits_mont=mont; | ||
120 | bn_limit_num_mont=1<<mont; | ||
121 | } | ||
122 | } | ||
123 | |||
124 | int BN_get_params(int which) | ||
125 | { | ||
126 | if (which == 0) return(bn_limit_bits); | ||
127 | else if (which == 1) return(bn_limit_bits_high); | ||
128 | else if (which == 2) return(bn_limit_bits_low); | ||
129 | else if (which == 3) return(bn_limit_bits_mont); | ||
130 | else return(0); | ||
131 | } | ||
132 | #endif | ||
133 | |||
134 | const BIGNUM *BN_value_one(void) | ||
135 | { | ||
136 | static const BN_ULONG data_one=1L; | ||
137 | static const BIGNUM const_one={(BN_ULONG *)&data_one,1,1,0,BN_FLG_STATIC_DATA}; | ||
138 | |||
139 | return(&const_one); | ||
140 | } | ||
141 | |||
142 | char *BN_options(void) | ||
143 | { | ||
144 | static int init=0; | ||
145 | static char data[16]; | ||
146 | |||
147 | if (!init) | ||
148 | { | ||
149 | init++; | ||
150 | #ifdef BN_LLONG | ||
151 | BIO_snprintf(data,sizeof data,"bn(%d,%d)", | ||
152 | (int)sizeof(BN_ULLONG)*8,(int)sizeof(BN_ULONG)*8); | ||
153 | #else | ||
154 | BIO_snprintf(data,sizeof data,"bn(%d,%d)", | ||
155 | (int)sizeof(BN_ULONG)*8,(int)sizeof(BN_ULONG)*8); | ||
156 | #endif | ||
157 | } | ||
158 | return(data); | ||
159 | } | ||
160 | |||
161 | int BN_num_bits_word(BN_ULONG l) | ||
162 | { | ||
163 | static const unsigned char bits[256]={ | ||
164 | 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4, | ||
165 | 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, | ||
166 | 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, | ||
167 | 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, | ||
168 | 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, | ||
169 | 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, | ||
170 | 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, | ||
171 | 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, | ||
172 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | ||
173 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | ||
174 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | ||
175 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | ||
176 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | ||
177 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | ||
178 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | ||
179 | 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | ||
180 | }; | ||
181 | |||
182 | #if defined(SIXTY_FOUR_BIT_LONG) | ||
183 | if (l & 0xffffffff00000000L) | ||
184 | { | ||
185 | if (l & 0xffff000000000000L) | ||
186 | { | ||
187 | if (l & 0xff00000000000000L) | ||
188 | { | ||
189 | return(bits[(int)(l>>56)]+56); | ||
190 | } | ||
191 | else return(bits[(int)(l>>48)]+48); | ||
192 | } | ||
193 | else | ||
194 | { | ||
195 | if (l & 0x0000ff0000000000L) | ||
196 | { | ||
197 | return(bits[(int)(l>>40)]+40); | ||
198 | } | ||
199 | else return(bits[(int)(l>>32)]+32); | ||
200 | } | ||
201 | } | ||
202 | else | ||
203 | #else | ||
204 | #ifdef SIXTY_FOUR_BIT | ||
205 | if (l & 0xffffffff00000000LL) | ||
206 | { | ||
207 | if (l & 0xffff000000000000LL) | ||
208 | { | ||
209 | if (l & 0xff00000000000000LL) | ||
210 | { | ||
211 | return(bits[(int)(l>>56)]+56); | ||
212 | } | ||
213 | else return(bits[(int)(l>>48)]+48); | ||
214 | } | ||
215 | else | ||
216 | { | ||
217 | if (l & 0x0000ff0000000000LL) | ||
218 | { | ||
219 | return(bits[(int)(l>>40)]+40); | ||
220 | } | ||
221 | else return(bits[(int)(l>>32)]+32); | ||
222 | } | ||
223 | } | ||
224 | else | ||
225 | #endif | ||
226 | #endif | ||
227 | { | ||
228 | #if defined(THIRTY_TWO_BIT) || defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) | ||
229 | if (l & 0xffff0000L) | ||
230 | { | ||
231 | if (l & 0xff000000L) | ||
232 | return(bits[(int)(l>>24L)]+24); | ||
233 | else return(bits[(int)(l>>16L)]+16); | ||
234 | } | ||
235 | else | ||
236 | #endif | ||
237 | { | ||
238 | #if defined(THIRTY_TWO_BIT) || defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) | ||
239 | if (l & 0xff00L) | ||
240 | return(bits[(int)(l>>8)]+8); | ||
241 | else | ||
242 | #endif | ||
243 | return(bits[(int)(l )] ); | ||
244 | } | ||
245 | } | ||
246 | } | ||
247 | |||
248 | int BN_num_bits(const BIGNUM *a) | ||
249 | { | ||
250 | int i = a->top - 1; | ||
251 | bn_check_top(a); | ||
252 | |||
253 | if (BN_is_zero(a)) return 0; | ||
254 | return ((i*BN_BITS2) + BN_num_bits_word(a->d[i])); | ||
255 | } | ||
256 | |||
257 | void BN_clear_free(BIGNUM *a) | ||
258 | { | ||
259 | int i; | ||
260 | |||
261 | if (a == NULL) return; | ||
262 | bn_check_top(a); | ||
263 | if (a->d != NULL) | ||
264 | { | ||
265 | OPENSSL_cleanse(a->d,a->dmax*sizeof(a->d[0])); | ||
266 | if (!(BN_get_flags(a,BN_FLG_STATIC_DATA))) | ||
267 | OPENSSL_free(a->d); | ||
268 | } | ||
269 | i=BN_get_flags(a,BN_FLG_MALLOCED); | ||
270 | OPENSSL_cleanse(a,sizeof(BIGNUM)); | ||
271 | if (i) | ||
272 | OPENSSL_free(a); | ||
273 | } | ||
274 | |||
275 | void BN_free(BIGNUM *a) | ||
276 | { | ||
277 | if (a == NULL) return; | ||
278 | bn_check_top(a); | ||
279 | if ((a->d != NULL) && !(BN_get_flags(a,BN_FLG_STATIC_DATA))) | ||
280 | OPENSSL_free(a->d); | ||
281 | if (a->flags & BN_FLG_MALLOCED) | ||
282 | OPENSSL_free(a); | ||
283 | else | ||
284 | { | ||
285 | #ifndef OPENSSL_NO_DEPRECATED | ||
286 | a->flags|=BN_FLG_FREE; | ||
287 | #endif | ||
288 | a->d = NULL; | ||
289 | } | ||
290 | } | ||
291 | |||
292 | void BN_init(BIGNUM *a) | ||
293 | { | ||
294 | memset(a,0,sizeof(BIGNUM)); | ||
295 | bn_check_top(a); | ||
296 | } | ||
297 | |||
298 | BIGNUM *BN_new(void) | ||
299 | { | ||
300 | BIGNUM *ret; | ||
301 | |||
302 | if ((ret=(BIGNUM *)OPENSSL_malloc(sizeof(BIGNUM))) == NULL) | ||
303 | { | ||
304 | BNerr(BN_F_BN_NEW,ERR_R_MALLOC_FAILURE); | ||
305 | return(NULL); | ||
306 | } | ||
307 | ret->flags=BN_FLG_MALLOCED; | ||
308 | ret->top=0; | ||
309 | ret->neg=0; | ||
310 | ret->dmax=0; | ||
311 | ret->d=NULL; | ||
312 | bn_check_top(ret); | ||
313 | return(ret); | ||
314 | } | ||
315 | |||
316 | /* This is used both by bn_expand2() and bn_dup_expand() */ | ||
317 | /* The caller MUST check that words > b->dmax before calling this */ | ||
318 | static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words) | ||
319 | { | ||
320 | BN_ULONG *A,*a = NULL; | ||
321 | const BN_ULONG *B; | ||
322 | int i; | ||
323 | |||
324 | bn_check_top(b); | ||
325 | |||
326 | if (words > (INT_MAX/(4*BN_BITS2))) | ||
327 | { | ||
328 | BNerr(BN_F_BN_EXPAND_INTERNAL,BN_R_BIGNUM_TOO_LONG); | ||
329 | return NULL; | ||
330 | } | ||
331 | if (BN_get_flags(b,BN_FLG_STATIC_DATA)) | ||
332 | { | ||
333 | BNerr(BN_F_BN_EXPAND_INTERNAL,BN_R_EXPAND_ON_STATIC_BIGNUM_DATA); | ||
334 | return(NULL); | ||
335 | } | ||
336 | a=A=(BN_ULONG *)OPENSSL_malloc(sizeof(BN_ULONG)*words); | ||
337 | if (A == NULL) | ||
338 | { | ||
339 | BNerr(BN_F_BN_EXPAND_INTERNAL,ERR_R_MALLOC_FAILURE); | ||
340 | return(NULL); | ||
341 | } | ||
342 | #if 1 | ||
343 | B=b->d; | ||
344 | /* Check if the previous number needs to be copied */ | ||
345 | if (B != NULL) | ||
346 | { | ||
347 | for (i=b->top>>2; i>0; i--,A+=4,B+=4) | ||
348 | { | ||
349 | /* | ||
350 | * The fact that the loop is unrolled | ||
351 | * 4-wise is a tribute to Intel. It's | ||
352 | * the one that doesn't have enough | ||
353 | * registers to accomodate more data. | ||
354 | * I'd unroll it 8-wise otherwise:-) | ||
355 | * | ||
356 | * <appro@fy.chalmers.se> | ||
357 | */ | ||
358 | BN_ULONG a0,a1,a2,a3; | ||
359 | a0=B[0]; a1=B[1]; a2=B[2]; a3=B[3]; | ||
360 | A[0]=a0; A[1]=a1; A[2]=a2; A[3]=a3; | ||
361 | } | ||
362 | switch (b->top&3) | ||
363 | { | ||
364 | case 3: A[2]=B[2]; | ||
365 | case 2: A[1]=B[1]; | ||
366 | case 1: A[0]=B[0]; | ||
367 | case 0: /* workaround for ultrix cc: without 'case 0', the optimizer does | ||
368 | * the switch table by doing a=top&3; a--; goto jump_table[a]; | ||
369 | * which fails for top== 0 */ | ||
370 | ; | ||
371 | } | ||
372 | } | ||
373 | |||
374 | #else | ||
375 | memset(A,0,sizeof(BN_ULONG)*words); | ||
376 | memcpy(A,b->d,sizeof(b->d[0])*b->top); | ||
377 | #endif | ||
378 | |||
379 | return(a); | ||
380 | } | ||
381 | |||
382 | /* This is an internal function that can be used instead of bn_expand2() | ||
383 | * when there is a need to copy BIGNUMs instead of only expanding the | ||
384 | * data part, while still expanding them. | ||
385 | * Especially useful when needing to expand BIGNUMs that are declared | ||
386 | * 'const' and should therefore not be changed. | ||
387 | * The reason to use this instead of a BN_dup() followed by a bn_expand2() | ||
388 | * is memory allocation overhead. A BN_dup() followed by a bn_expand2() | ||
389 | * will allocate new memory for the BIGNUM data twice, and free it once, | ||
390 | * while bn_dup_expand() makes sure allocation is made only once. | ||
391 | */ | ||
392 | |||
393 | #ifndef OPENSSL_NO_DEPRECATED | ||
394 | BIGNUM *bn_dup_expand(const BIGNUM *b, int words) | ||
395 | { | ||
396 | BIGNUM *r = NULL; | ||
397 | |||
398 | bn_check_top(b); | ||
399 | |||
400 | /* This function does not work if | ||
401 | * words <= b->dmax && top < words | ||
402 | * because BN_dup() does not preserve 'dmax'! | ||
403 | * (But bn_dup_expand() is not used anywhere yet.) | ||
404 | */ | ||
405 | |||
406 | if (words > b->dmax) | ||
407 | { | ||
408 | BN_ULONG *a = bn_expand_internal(b, words); | ||
409 | |||
410 | if (a) | ||
411 | { | ||
412 | r = BN_new(); | ||
413 | if (r) | ||
414 | { | ||
415 | r->top = b->top; | ||
416 | r->dmax = words; | ||
417 | r->neg = b->neg; | ||
418 | r->d = a; | ||
419 | } | ||
420 | else | ||
421 | { | ||
422 | /* r == NULL, BN_new failure */ | ||
423 | OPENSSL_free(a); | ||
424 | } | ||
425 | } | ||
426 | /* If a == NULL, there was an error in allocation in | ||
427 | bn_expand_internal(), and NULL should be returned */ | ||
428 | } | ||
429 | else | ||
430 | { | ||
431 | r = BN_dup(b); | ||
432 | } | ||
433 | |||
434 | bn_check_top(r); | ||
435 | return r; | ||
436 | } | ||
437 | #endif | ||
438 | |||
439 | /* This is an internal function that should not be used in applications. | ||
440 | * It ensures that 'b' has enough room for a 'words' word number | ||
441 | * and initialises any unused part of b->d with leading zeros. | ||
442 | * It is mostly used by the various BIGNUM routines. If there is an error, | ||
443 | * NULL is returned. If not, 'b' is returned. */ | ||
444 | |||
445 | BIGNUM *bn_expand2(BIGNUM *b, int words) | ||
446 | { | ||
447 | bn_check_top(b); | ||
448 | |||
449 | if (words > b->dmax) | ||
450 | { | ||
451 | BN_ULONG *a = bn_expand_internal(b, words); | ||
452 | if(!a) return NULL; | ||
453 | if(b->d) OPENSSL_free(b->d); | ||
454 | b->d=a; | ||
455 | b->dmax=words; | ||
456 | } | ||
457 | |||
458 | /* None of this should be necessary because of what b->top means! */ | ||
459 | #if 0 | ||
460 | /* NB: bn_wexpand() calls this only if the BIGNUM really has to grow */ | ||
461 | if (b->top < b->dmax) | ||
462 | { | ||
463 | int i; | ||
464 | BN_ULONG *A = &(b->d[b->top]); | ||
465 | for (i=(b->dmax - b->top)>>3; i>0; i--,A+=8) | ||
466 | { | ||
467 | A[0]=0; A[1]=0; A[2]=0; A[3]=0; | ||
468 | A[4]=0; A[5]=0; A[6]=0; A[7]=0; | ||
469 | } | ||
470 | for (i=(b->dmax - b->top)&7; i>0; i--,A++) | ||
471 | A[0]=0; | ||
472 | assert(A == &(b->d[b->dmax])); | ||
473 | } | ||
474 | #endif | ||
475 | bn_check_top(b); | ||
476 | return b; | ||
477 | } | ||
478 | |||
479 | BIGNUM *BN_dup(const BIGNUM *a) | ||
480 | { | ||
481 | BIGNUM *t; | ||
482 | |||
483 | if (a == NULL) return NULL; | ||
484 | bn_check_top(a); | ||
485 | |||
486 | t = BN_new(); | ||
487 | if (t == NULL) return NULL; | ||
488 | if(!BN_copy(t, a)) | ||
489 | { | ||
490 | BN_free(t); | ||
491 | return NULL; | ||
492 | } | ||
493 | bn_check_top(t); | ||
494 | return t; | ||
495 | } | ||
496 | |||
497 | BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b) | ||
498 | { | ||
499 | int i; | ||
500 | BN_ULONG *A; | ||
501 | const BN_ULONG *B; | ||
502 | |||
503 | bn_check_top(b); | ||
504 | |||
505 | if (a == b) return(a); | ||
506 | if (bn_wexpand(a,b->top) == NULL) return(NULL); | ||
507 | |||
508 | #if 1 | ||
509 | A=a->d; | ||
510 | B=b->d; | ||
511 | for (i=b->top>>2; i>0; i--,A+=4,B+=4) | ||
512 | { | ||
513 | BN_ULONG a0,a1,a2,a3; | ||
514 | a0=B[0]; a1=B[1]; a2=B[2]; a3=B[3]; | ||
515 | A[0]=a0; A[1]=a1; A[2]=a2; A[3]=a3; | ||
516 | } | ||
517 | switch (b->top&3) | ||
518 | { | ||
519 | case 3: A[2]=B[2]; | ||
520 | case 2: A[1]=B[1]; | ||
521 | case 1: A[0]=B[0]; | ||
522 | case 0: ; /* ultrix cc workaround, see comments in bn_expand_internal */ | ||
523 | } | ||
524 | #else | ||
525 | memcpy(a->d,b->d,sizeof(b->d[0])*b->top); | ||
526 | #endif | ||
527 | |||
528 | a->top=b->top; | ||
529 | a->neg=b->neg; | ||
530 | bn_check_top(a); | ||
531 | return(a); | ||
532 | } | ||
533 | |||
534 | void BN_swap(BIGNUM *a, BIGNUM *b) | ||
535 | { | ||
536 | int flags_old_a, flags_old_b; | ||
537 | BN_ULONG *tmp_d; | ||
538 | int tmp_top, tmp_dmax, tmp_neg; | ||
539 | |||
540 | bn_check_top(a); | ||
541 | bn_check_top(b); | ||
542 | |||
543 | flags_old_a = a->flags; | ||
544 | flags_old_b = b->flags; | ||
545 | |||
546 | tmp_d = a->d; | ||
547 | tmp_top = a->top; | ||
548 | tmp_dmax = a->dmax; | ||
549 | tmp_neg = a->neg; | ||
550 | |||
551 | a->d = b->d; | ||
552 | a->top = b->top; | ||
553 | a->dmax = b->dmax; | ||
554 | a->neg = b->neg; | ||
555 | |||
556 | b->d = tmp_d; | ||
557 | b->top = tmp_top; | ||
558 | b->dmax = tmp_dmax; | ||
559 | b->neg = tmp_neg; | ||
560 | |||
561 | a->flags = (flags_old_a & BN_FLG_MALLOCED) | (flags_old_b & BN_FLG_STATIC_DATA); | ||
562 | b->flags = (flags_old_b & BN_FLG_MALLOCED) | (flags_old_a & BN_FLG_STATIC_DATA); | ||
563 | bn_check_top(a); | ||
564 | bn_check_top(b); | ||
565 | } | ||
566 | |||
567 | void BN_clear(BIGNUM *a) | ||
568 | { | ||
569 | bn_check_top(a); | ||
570 | if (a->d != NULL) | ||
571 | memset(a->d,0,a->dmax*sizeof(a->d[0])); | ||
572 | a->top=0; | ||
573 | a->neg=0; | ||
574 | } | ||
575 | |||
576 | BN_ULONG BN_get_word(const BIGNUM *a) | ||
577 | { | ||
578 | if (a->top > 1) | ||
579 | return BN_MASK2; | ||
580 | else if (a->top == 1) | ||
581 | return a->d[0]; | ||
582 | /* a->top == 0 */ | ||
583 | return 0; | ||
584 | } | ||
585 | |||
586 | int BN_set_word(BIGNUM *a, BN_ULONG w) | ||
587 | { | ||
588 | bn_check_top(a); | ||
589 | if (bn_expand(a,(int)sizeof(BN_ULONG)*8) == NULL) return(0); | ||
590 | a->neg = 0; | ||
591 | a->d[0] = w; | ||
592 | a->top = (w ? 1 : 0); | ||
593 | bn_check_top(a); | ||
594 | return(1); | ||
595 | } | ||
596 | |||
597 | BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret) | ||
598 | { | ||
599 | unsigned int i,m; | ||
600 | unsigned int n; | ||
601 | BN_ULONG l; | ||
602 | BIGNUM *bn = NULL; | ||
603 | |||
604 | if (ret == NULL) | ||
605 | ret = bn = BN_new(); | ||
606 | if (ret == NULL) return(NULL); | ||
607 | bn_check_top(ret); | ||
608 | l=0; | ||
609 | n=len; | ||
610 | if (n == 0) | ||
611 | { | ||
612 | ret->top=0; | ||
613 | return(ret); | ||
614 | } | ||
615 | i=((n-1)/BN_BYTES)+1; | ||
616 | m=((n-1)%(BN_BYTES)); | ||
617 | if (bn_wexpand(ret, (int)i) == NULL) | ||
618 | { | ||
619 | if (bn) BN_free(bn); | ||
620 | return NULL; | ||
621 | } | ||
622 | ret->top=i; | ||
623 | ret->neg=0; | ||
624 | while (n--) | ||
625 | { | ||
626 | l=(l<<8L)| *(s++); | ||
627 | if (m-- == 0) | ||
628 | { | ||
629 | ret->d[--i]=l; | ||
630 | l=0; | ||
631 | m=BN_BYTES-1; | ||
632 | } | ||
633 | } | ||
634 | /* need to call this due to clear byte at top if avoiding | ||
635 | * having the top bit set (-ve number) */ | ||
636 | bn_correct_top(ret); | ||
637 | return(ret); | ||
638 | } | ||
639 | |||
640 | /* ignore negative */ | ||
641 | int BN_bn2bin(const BIGNUM *a, unsigned char *to) | ||
642 | { | ||
643 | int n,i; | ||
644 | BN_ULONG l; | ||
645 | |||
646 | bn_check_top(a); | ||
647 | n=i=BN_num_bytes(a); | ||
648 | while (i--) | ||
649 | { | ||
650 | l=a->d[i/BN_BYTES]; | ||
651 | *(to++)=(unsigned char)(l>>(8*(i%BN_BYTES)))&0xff; | ||
652 | } | ||
653 | return(n); | ||
654 | } | ||
655 | |||
656 | int BN_ucmp(const BIGNUM *a, const BIGNUM *b) | ||
657 | { | ||
658 | int i; | ||
659 | BN_ULONG t1,t2,*ap,*bp; | ||
660 | |||
661 | bn_check_top(a); | ||
662 | bn_check_top(b); | ||
663 | |||
664 | i=a->top-b->top; | ||
665 | if (i != 0) return(i); | ||
666 | ap=a->d; | ||
667 | bp=b->d; | ||
668 | for (i=a->top-1; i>=0; i--) | ||
669 | { | ||
670 | t1= ap[i]; | ||
671 | t2= bp[i]; | ||
672 | if (t1 != t2) | ||
673 | return((t1 > t2) ? 1 : -1); | ||
674 | } | ||
675 | return(0); | ||
676 | } | ||
677 | |||
678 | int BN_cmp(const BIGNUM *a, const BIGNUM *b) | ||
679 | { | ||
680 | int i; | ||
681 | int gt,lt; | ||
682 | BN_ULONG t1,t2; | ||
683 | |||
684 | if ((a == NULL) || (b == NULL)) | ||
685 | { | ||
686 | if (a != NULL) | ||
687 | return(-1); | ||
688 | else if (b != NULL) | ||
689 | return(1); | ||
690 | else | ||
691 | return(0); | ||
692 | } | ||
693 | |||
694 | bn_check_top(a); | ||
695 | bn_check_top(b); | ||
696 | |||
697 | if (a->neg != b->neg) | ||
698 | { | ||
699 | if (a->neg) | ||
700 | return(-1); | ||
701 | else return(1); | ||
702 | } | ||
703 | if (a->neg == 0) | ||
704 | { gt=1; lt= -1; } | ||
705 | else { gt= -1; lt=1; } | ||
706 | |||
707 | if (a->top > b->top) return(gt); | ||
708 | if (a->top < b->top) return(lt); | ||
709 | for (i=a->top-1; i>=0; i--) | ||
710 | { | ||
711 | t1=a->d[i]; | ||
712 | t2=b->d[i]; | ||
713 | if (t1 > t2) return(gt); | ||
714 | if (t1 < t2) return(lt); | ||
715 | } | ||
716 | return(0); | ||
717 | } | ||
718 | |||
719 | int BN_set_bit(BIGNUM *a, int n) | ||
720 | { | ||
721 | int i,j,k; | ||
722 | |||
723 | if (n < 0) | ||
724 | return 0; | ||
725 | |||
726 | i=n/BN_BITS2; | ||
727 | j=n%BN_BITS2; | ||
728 | if (a->top <= i) | ||
729 | { | ||
730 | if (bn_wexpand(a,i+1) == NULL) return(0); | ||
731 | for(k=a->top; k<i+1; k++) | ||
732 | a->d[k]=0; | ||
733 | a->top=i+1; | ||
734 | } | ||
735 | |||
736 | a->d[i]|=(((BN_ULONG)1)<<j); | ||
737 | bn_check_top(a); | ||
738 | return(1); | ||
739 | } | ||
740 | |||
741 | int BN_clear_bit(BIGNUM *a, int n) | ||
742 | { | ||
743 | int i,j; | ||
744 | |||
745 | bn_check_top(a); | ||
746 | if (n < 0) return 0; | ||
747 | |||
748 | i=n/BN_BITS2; | ||
749 | j=n%BN_BITS2; | ||
750 | if (a->top <= i) return(0); | ||
751 | |||
752 | a->d[i]&=(~(((BN_ULONG)1)<<j)); | ||
753 | bn_correct_top(a); | ||
754 | return(1); | ||
755 | } | ||
756 | |||
757 | int BN_is_bit_set(const BIGNUM *a, int n) | ||
758 | { | ||
759 | int i,j; | ||
760 | |||
761 | bn_check_top(a); | ||
762 | if (n < 0) return 0; | ||
763 | i=n/BN_BITS2; | ||
764 | j=n%BN_BITS2; | ||
765 | if (a->top <= i) return 0; | ||
766 | return (int)(((a->d[i])>>j)&((BN_ULONG)1)); | ||
767 | } | ||
768 | |||
769 | int BN_mask_bits(BIGNUM *a, int n) | ||
770 | { | ||
771 | int b,w; | ||
772 | |||
773 | bn_check_top(a); | ||
774 | if (n < 0) return 0; | ||
775 | |||
776 | w=n/BN_BITS2; | ||
777 | b=n%BN_BITS2; | ||
778 | if (w >= a->top) return 0; | ||
779 | if (b == 0) | ||
780 | a->top=w; | ||
781 | else | ||
782 | { | ||
783 | a->top=w+1; | ||
784 | a->d[w]&= ~(BN_MASK2<<b); | ||
785 | } | ||
786 | bn_correct_top(a); | ||
787 | return(1); | ||
788 | } | ||
789 | |||
790 | void BN_set_negative(BIGNUM *a, int b) | ||
791 | { | ||
792 | if (b && !BN_is_zero(a)) | ||
793 | a->neg = 1; | ||
794 | else | ||
795 | a->neg = 0; | ||
796 | } | ||
797 | |||
798 | int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n) | ||
799 | { | ||
800 | int i; | ||
801 | BN_ULONG aa,bb; | ||
802 | |||
803 | aa=a[n-1]; | ||
804 | bb=b[n-1]; | ||
805 | if (aa != bb) return((aa > bb)?1:-1); | ||
806 | for (i=n-2; i>=0; i--) | ||
807 | { | ||
808 | aa=a[i]; | ||
809 | bb=b[i]; | ||
810 | if (aa != bb) return((aa > bb)?1:-1); | ||
811 | } | ||
812 | return(0); | ||
813 | } | ||
814 | |||
815 | /* Here follows a specialised variants of bn_cmp_words(). It has the | ||
816 | property of performing the operation on arrays of different sizes. | ||
817 | The sizes of those arrays is expressed through cl, which is the | ||
818 | common length ( basicall, min(len(a),len(b)) ), and dl, which is the | ||
819 | delta between the two lengths, calculated as len(a)-len(b). | ||
820 | All lengths are the number of BN_ULONGs... */ | ||
821 | |||
822 | int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, | ||
823 | int cl, int dl) | ||
824 | { | ||
825 | int n,i; | ||
826 | n = cl-1; | ||
827 | |||
828 | if (dl < 0) | ||
829 | { | ||
830 | for (i=dl; i<0; i++) | ||
831 | { | ||
832 | if (b[n-i] != 0) | ||
833 | return -1; /* a < b */ | ||
834 | } | ||
835 | } | ||
836 | if (dl > 0) | ||
837 | { | ||
838 | for (i=dl; i>0; i--) | ||
839 | { | ||
840 | if (a[n+i] != 0) | ||
841 | return 1; /* a > b */ | ||
842 | } | ||
843 | } | ||
844 | return bn_cmp_words(a,b,cl); | ||
845 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_mod.c b/src/lib/libcrypto/bn/bn_mod.c deleted file mode 100644 index 77d6ddb91a..0000000000 --- a/src/lib/libcrypto/bn/bn_mod.c +++ /dev/null | |||
@@ -1,301 +0,0 @@ | |||
1 | /* crypto/bn/bn_mod.c */ | ||
2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | ||
3 | * for the OpenSSL project. */ | ||
4 | /* ==================================================================== | ||
5 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
6 | * | ||
7 | * Redistribution and use in source and binary forms, with or without | ||
8 | * modification, are permitted provided that the following conditions | ||
9 | * are met: | ||
10 | * | ||
11 | * 1. Redistributions of source code must retain the above copyright | ||
12 | * notice, this list of conditions and the following disclaimer. | ||
13 | * | ||
14 | * 2. Redistributions in binary form must reproduce the above copyright | ||
15 | * notice, this list of conditions and the following disclaimer in | ||
16 | * the documentation and/or other materials provided with the | ||
17 | * distribution. | ||
18 | * | ||
19 | * 3. All advertising materials mentioning features or use of this | ||
20 | * software must display the following acknowledgment: | ||
21 | * "This product includes software developed by the OpenSSL Project | ||
22 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
23 | * | ||
24 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
25 | * endorse or promote products derived from this software without | ||
26 | * prior written permission. For written permission, please contact | ||
27 | * openssl-core@openssl.org. | ||
28 | * | ||
29 | * 5. Products derived from this software may not be called "OpenSSL" | ||
30 | * nor may "OpenSSL" appear in their names without prior written | ||
31 | * permission of the OpenSSL Project. | ||
32 | * | ||
33 | * 6. Redistributions of any form whatsoever must retain the following | ||
34 | * acknowledgment: | ||
35 | * "This product includes software developed by the OpenSSL Project | ||
36 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
37 | * | ||
38 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
39 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
40 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
41 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
42 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
43 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
44 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
45 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
46 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
47 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
48 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
49 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
50 | * ==================================================================== | ||
51 | * | ||
52 | * This product includes cryptographic software written by Eric Young | ||
53 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
54 | * Hudson (tjh@cryptsoft.com). | ||
55 | * | ||
56 | */ | ||
57 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
58 | * All rights reserved. | ||
59 | * | ||
60 | * This package is an SSL implementation written | ||
61 | * by Eric Young (eay@cryptsoft.com). | ||
62 | * The implementation was written so as to conform with Netscapes SSL. | ||
63 | * | ||
64 | * This library is free for commercial and non-commercial use as long as | ||
65 | * the following conditions are aheared to. The following conditions | ||
66 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
67 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
68 | * included with this distribution is covered by the same copyright terms | ||
69 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
70 | * | ||
71 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
72 | * the code are not to be removed. | ||
73 | * If this package is used in a product, Eric Young should be given attribution | ||
74 | * as the author of the parts of the library used. | ||
75 | * This can be in the form of a textual message at program startup or | ||
76 | * in documentation (online or textual) provided with the package. | ||
77 | * | ||
78 | * Redistribution and use in source and binary forms, with or without | ||
79 | * modification, are permitted provided that the following conditions | ||
80 | * are met: | ||
81 | * 1. Redistributions of source code must retain the copyright | ||
82 | * notice, this list of conditions and the following disclaimer. | ||
83 | * 2. Redistributions in binary form must reproduce the above copyright | ||
84 | * notice, this list of conditions and the following disclaimer in the | ||
85 | * documentation and/or other materials provided with the distribution. | ||
86 | * 3. All advertising materials mentioning features or use of this software | ||
87 | * must display the following acknowledgement: | ||
88 | * "This product includes cryptographic software written by | ||
89 | * Eric Young (eay@cryptsoft.com)" | ||
90 | * The word 'cryptographic' can be left out if the rouines from the library | ||
91 | * being used are not cryptographic related :-). | ||
92 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
93 | * the apps directory (application code) you must include an acknowledgement: | ||
94 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
95 | * | ||
96 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
97 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
98 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
99 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
100 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
101 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
102 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
103 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
104 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
105 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
106 | * SUCH DAMAGE. | ||
107 | * | ||
108 | * The licence and distribution terms for any publically available version or | ||
109 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
110 | * copied and put under another distribution licence | ||
111 | * [including the GNU Public Licence.] | ||
112 | */ | ||
113 | |||
114 | #include "cryptlib.h" | ||
115 | #include "bn_lcl.h" | ||
116 | |||
117 | |||
118 | #if 0 /* now just a #define */ | ||
119 | int BN_mod(BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) | ||
120 | { | ||
121 | return(BN_div(NULL,rem,m,d,ctx)); | ||
122 | /* note that rem->neg == m->neg (unless the remainder is zero) */ | ||
123 | } | ||
124 | #endif | ||
125 | |||
126 | |||
127 | int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) | ||
128 | { | ||
129 | /* like BN_mod, but returns non-negative remainder | ||
130 | * (i.e., 0 <= r < |d| always holds) */ | ||
131 | |||
132 | if (!(BN_mod(r,m,d,ctx))) | ||
133 | return 0; | ||
134 | if (!r->neg) | ||
135 | return 1; | ||
136 | /* now -|d| < r < 0, so we have to set r := r + |d| */ | ||
137 | return (d->neg ? BN_sub : BN_add)(r, r, d); | ||
138 | } | ||
139 | |||
140 | |||
141 | int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx) | ||
142 | { | ||
143 | if (!BN_add(r, a, b)) return 0; | ||
144 | return BN_nnmod(r, r, m, ctx); | ||
145 | } | ||
146 | |||
147 | |||
148 | /* BN_mod_add variant that may be used if both a and b are non-negative | ||
149 | * and less than m */ | ||
150 | int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m) | ||
151 | { | ||
152 | if (!BN_uadd(r, a, b)) return 0; | ||
153 | if (BN_ucmp(r, m) >= 0) | ||
154 | return BN_usub(r, r, m); | ||
155 | return 1; | ||
156 | } | ||
157 | |||
158 | |||
159 | int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx) | ||
160 | { | ||
161 | if (!BN_sub(r, a, b)) return 0; | ||
162 | return BN_nnmod(r, r, m, ctx); | ||
163 | } | ||
164 | |||
165 | |||
166 | /* BN_mod_sub variant that may be used if both a and b are non-negative | ||
167 | * and less than m */ | ||
168 | int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m) | ||
169 | { | ||
170 | if (!BN_sub(r, a, b)) return 0; | ||
171 | if (r->neg) | ||
172 | return BN_add(r, r, m); | ||
173 | return 1; | ||
174 | } | ||
175 | |||
176 | |||
177 | /* slow but works */ | ||
178 | int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | ||
179 | BN_CTX *ctx) | ||
180 | { | ||
181 | BIGNUM *t; | ||
182 | int ret=0; | ||
183 | |||
184 | bn_check_top(a); | ||
185 | bn_check_top(b); | ||
186 | bn_check_top(m); | ||
187 | |||
188 | BN_CTX_start(ctx); | ||
189 | if ((t = BN_CTX_get(ctx)) == NULL) goto err; | ||
190 | if (a == b) | ||
191 | { if (!BN_sqr(t,a,ctx)) goto err; } | ||
192 | else | ||
193 | { if (!BN_mul(t,a,b,ctx)) goto err; } | ||
194 | if (!BN_nnmod(r,t,m,ctx)) goto err; | ||
195 | bn_check_top(r); | ||
196 | ret=1; | ||
197 | err: | ||
198 | BN_CTX_end(ctx); | ||
199 | return(ret); | ||
200 | } | ||
201 | |||
202 | |||
203 | int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) | ||
204 | { | ||
205 | if (!BN_sqr(r, a, ctx)) return 0; | ||
206 | /* r->neg == 0, thus we don't need BN_nnmod */ | ||
207 | return BN_mod(r, r, m, ctx); | ||
208 | } | ||
209 | |||
210 | |||
211 | int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) | ||
212 | { | ||
213 | if (!BN_lshift1(r, a)) return 0; | ||
214 | bn_check_top(r); | ||
215 | return BN_nnmod(r, r, m, ctx); | ||
216 | } | ||
217 | |||
218 | |||
219 | /* BN_mod_lshift1 variant that may be used if a is non-negative | ||
220 | * and less than m */ | ||
221 | int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) | ||
222 | { | ||
223 | if (!BN_lshift1(r, a)) return 0; | ||
224 | bn_check_top(r); | ||
225 | if (BN_cmp(r, m) >= 0) | ||
226 | return BN_sub(r, r, m); | ||
227 | return 1; | ||
228 | } | ||
229 | |||
230 | |||
231 | int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx) | ||
232 | { | ||
233 | BIGNUM *abs_m = NULL; | ||
234 | int ret; | ||
235 | |||
236 | if (!BN_nnmod(r, a, m, ctx)) return 0; | ||
237 | |||
238 | if (m->neg) | ||
239 | { | ||
240 | abs_m = BN_dup(m); | ||
241 | if (abs_m == NULL) return 0; | ||
242 | abs_m->neg = 0; | ||
243 | } | ||
244 | |||
245 | ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m)); | ||
246 | bn_check_top(r); | ||
247 | |||
248 | if (abs_m) | ||
249 | BN_free(abs_m); | ||
250 | return ret; | ||
251 | } | ||
252 | |||
253 | |||
254 | /* BN_mod_lshift variant that may be used if a is non-negative | ||
255 | * and less than m */ | ||
256 | int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) | ||
257 | { | ||
258 | if (r != a) | ||
259 | { | ||
260 | if (BN_copy(r, a) == NULL) return 0; | ||
261 | } | ||
262 | |||
263 | while (n > 0) | ||
264 | { | ||
265 | int max_shift; | ||
266 | |||
267 | /* 0 < r < m */ | ||
268 | max_shift = BN_num_bits(m) - BN_num_bits(r); | ||
269 | /* max_shift >= 0 */ | ||
270 | |||
271 | if (max_shift < 0) | ||
272 | { | ||
273 | BNerr(BN_F_BN_MOD_LSHIFT_QUICK, BN_R_INPUT_NOT_REDUCED); | ||
274 | return 0; | ||
275 | } | ||
276 | |||
277 | if (max_shift > n) | ||
278 | max_shift = n; | ||
279 | |||
280 | if (max_shift) | ||
281 | { | ||
282 | if (!BN_lshift(r, r, max_shift)) return 0; | ||
283 | n -= max_shift; | ||
284 | } | ||
285 | else | ||
286 | { | ||
287 | if (!BN_lshift1(r, r)) return 0; | ||
288 | --n; | ||
289 | } | ||
290 | |||
291 | /* BN_num_bits(r) <= BN_num_bits(m) */ | ||
292 | |||
293 | if (BN_cmp(r, m) >= 0) | ||
294 | { | ||
295 | if (!BN_sub(r, r, m)) return 0; | ||
296 | } | ||
297 | } | ||
298 | bn_check_top(r); | ||
299 | |||
300 | return 1; | ||
301 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_mont.c b/src/lib/libcrypto/bn/bn_mont.c deleted file mode 100644 index 1a866880f5..0000000000 --- a/src/lib/libcrypto/bn/bn_mont.c +++ /dev/null | |||
@@ -1,567 +0,0 @@ | |||
1 | /* crypto/bn/bn_mont.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | /* | ||
113 | * Details about Montgomery multiplication algorithms can be found at | ||
114 | * http://security.ece.orst.edu/publications.html, e.g. | ||
115 | * http://security.ece.orst.edu/koc/papers/j37acmon.pdf and | ||
116 | * sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf | ||
117 | */ | ||
118 | |||
119 | #include <stdio.h> | ||
120 | #include "cryptlib.h" | ||
121 | #include "bn_lcl.h" | ||
122 | |||
123 | #define MONT_WORD /* use the faster word-based algorithm */ | ||
124 | |||
125 | #ifdef MONT_WORD | ||
126 | static int BN_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont); | ||
127 | #endif | ||
128 | |||
129 | int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
130 | BN_MONT_CTX *mont, BN_CTX *ctx) | ||
131 | { | ||
132 | BIGNUM *tmp; | ||
133 | int ret=0; | ||
134 | #if defined(OPENSSL_BN_ASM_MONT) && defined(MONT_WORD) | ||
135 | int num = mont->N.top; | ||
136 | |||
137 | if (num>1 && a->top==num && b->top==num) | ||
138 | { | ||
139 | if (bn_wexpand(r,num) == NULL) return(0); | ||
140 | if (bn_mul_mont(r->d,a->d,b->d,mont->N.d,mont->n0,num)) | ||
141 | { | ||
142 | r->neg = a->neg^b->neg; | ||
143 | r->top = num; | ||
144 | bn_correct_top(r); | ||
145 | return(1); | ||
146 | } | ||
147 | } | ||
148 | #endif | ||
149 | |||
150 | BN_CTX_start(ctx); | ||
151 | tmp = BN_CTX_get(ctx); | ||
152 | if (tmp == NULL) goto err; | ||
153 | |||
154 | bn_check_top(tmp); | ||
155 | if (a == b) | ||
156 | { | ||
157 | if (!BN_sqr(tmp,a,ctx)) goto err; | ||
158 | } | ||
159 | else | ||
160 | { | ||
161 | if (!BN_mul(tmp,a,b,ctx)) goto err; | ||
162 | } | ||
163 | /* reduce from aRR to aR */ | ||
164 | #ifdef MONT_WORD | ||
165 | if (!BN_from_montgomery_word(r,tmp,mont)) goto err; | ||
166 | #else | ||
167 | if (!BN_from_montgomery(r,tmp,mont,ctx)) goto err; | ||
168 | #endif | ||
169 | bn_check_top(r); | ||
170 | ret=1; | ||
171 | err: | ||
172 | BN_CTX_end(ctx); | ||
173 | return(ret); | ||
174 | } | ||
175 | |||
176 | #ifdef MONT_WORD | ||
177 | static int BN_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont) | ||
178 | { | ||
179 | BIGNUM *n; | ||
180 | BN_ULONG *ap,*np,*rp,n0,v,*nrp; | ||
181 | int al,nl,max,i,x,ri; | ||
182 | |||
183 | n= &(mont->N); | ||
184 | /* mont->ri is the size of mont->N in bits (rounded up | ||
185 | to the word size) */ | ||
186 | al=ri=mont->ri/BN_BITS2; | ||
187 | |||
188 | nl=n->top; | ||
189 | if ((al == 0) || (nl == 0)) { ret->top=0; return(1); } | ||
190 | |||
191 | max=(nl+al+1); /* allow for overflow (no?) XXX */ | ||
192 | if (bn_wexpand(r,max) == NULL) return(0); | ||
193 | |||
194 | r->neg^=n->neg; | ||
195 | np=n->d; | ||
196 | rp=r->d; | ||
197 | nrp= &(r->d[nl]); | ||
198 | |||
199 | /* clear the top words of T */ | ||
200 | #if 1 | ||
201 | for (i=r->top; i<max; i++) /* memset? XXX */ | ||
202 | r->d[i]=0; | ||
203 | #else | ||
204 | memset(&(r->d[r->top]),0,(max-r->top)*sizeof(BN_ULONG)); | ||
205 | #endif | ||
206 | |||
207 | r->top=max; | ||
208 | n0=mont->n0[0]; | ||
209 | |||
210 | #ifdef BN_COUNT | ||
211 | fprintf(stderr,"word BN_from_montgomery_word %d * %d\n",nl,nl); | ||
212 | #endif | ||
213 | for (i=0; i<nl; i++) | ||
214 | { | ||
215 | #ifdef __TANDEM | ||
216 | { | ||
217 | long long t1; | ||
218 | long long t2; | ||
219 | long long t3; | ||
220 | t1 = rp[0] * (n0 & 0177777); | ||
221 | t2 = 037777600000l; | ||
222 | t2 = n0 & t2; | ||
223 | t3 = rp[0] & 0177777; | ||
224 | t2 = (t3 * t2) & BN_MASK2; | ||
225 | t1 = t1 + t2; | ||
226 | v=bn_mul_add_words(rp,np,nl,(BN_ULONG) t1); | ||
227 | } | ||
228 | #else | ||
229 | v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2); | ||
230 | #endif | ||
231 | nrp++; | ||
232 | rp++; | ||
233 | if (((nrp[-1]+=v)&BN_MASK2) >= v) | ||
234 | continue; | ||
235 | else | ||
236 | { | ||
237 | if (((++nrp[0])&BN_MASK2) != 0) continue; | ||
238 | if (((++nrp[1])&BN_MASK2) != 0) continue; | ||
239 | for (x=2; (((++nrp[x])&BN_MASK2) == 0); x++) ; | ||
240 | } | ||
241 | } | ||
242 | bn_correct_top(r); | ||
243 | |||
244 | /* mont->ri will be a multiple of the word size and below code | ||
245 | * is kind of BN_rshift(ret,r,mont->ri) equivalent */ | ||
246 | if (r->top <= ri) | ||
247 | { | ||
248 | ret->top=0; | ||
249 | return(1); | ||
250 | } | ||
251 | al=r->top-ri; | ||
252 | |||
253 | #define BRANCH_FREE 1 | ||
254 | #if BRANCH_FREE | ||
255 | if (bn_wexpand(ret,ri) == NULL) return(0); | ||
256 | x=0-(((al-ri)>>(sizeof(al)*8-1))&1); | ||
257 | ret->top=x=(ri&~x)|(al&x); /* min(ri,al) */ | ||
258 | ret->neg=r->neg; | ||
259 | |||
260 | rp=ret->d; | ||
261 | ap=&(r->d[ri]); | ||
262 | |||
263 | { | ||
264 | size_t m1,m2; | ||
265 | |||
266 | v=bn_sub_words(rp,ap,np,ri); | ||
267 | /* this ----------------^^ works even in al<ri case | ||
268 | * thanks to zealous zeroing of top of the vector in the | ||
269 | * beginning. */ | ||
270 | |||
271 | /* if (al==ri && !v) || al>ri) nrp=rp; else nrp=ap; */ | ||
272 | /* in other words if subtraction result is real, then | ||
273 | * trick unconditional memcpy below to perform in-place | ||
274 | * "refresh" instead of actual copy. */ | ||
275 | m1=0-(size_t)(((al-ri)>>(sizeof(al)*8-1))&1); /* al<ri */ | ||
276 | m2=0-(size_t)(((ri-al)>>(sizeof(al)*8-1))&1); /* al>ri */ | ||
277 | m1|=m2; /* (al!=ri) */ | ||
278 | m1|=(0-(size_t)v); /* (al!=ri || v) */ | ||
279 | m1&=~m2; /* (al!=ri || v) && !al>ri */ | ||
280 | nrp=(BN_ULONG *)(((PTR_SIZE_INT)rp&~m1)|((PTR_SIZE_INT)ap&m1)); | ||
281 | } | ||
282 | |||
283 | /* 'i<ri' is chosen to eliminate dependency on input data, even | ||
284 | * though it results in redundant copy in al<ri case. */ | ||
285 | for (i=0,ri-=4; i<ri; i+=4) | ||
286 | { | ||
287 | BN_ULONG t1,t2,t3,t4; | ||
288 | |||
289 | t1=nrp[i+0]; | ||
290 | t2=nrp[i+1]; | ||
291 | t3=nrp[i+2]; ap[i+0]=0; | ||
292 | t4=nrp[i+3]; ap[i+1]=0; | ||
293 | rp[i+0]=t1; ap[i+2]=0; | ||
294 | rp[i+1]=t2; ap[i+3]=0; | ||
295 | rp[i+2]=t3; | ||
296 | rp[i+3]=t4; | ||
297 | } | ||
298 | for (ri+=4; i<ri; i++) | ||
299 | rp[i]=nrp[i], ap[i]=0; | ||
300 | bn_correct_top(r); | ||
301 | bn_correct_top(ret); | ||
302 | #else | ||
303 | if (bn_wexpand(ret,al) == NULL) return(0); | ||
304 | ret->top=al; | ||
305 | ret->neg=r->neg; | ||
306 | |||
307 | rp=ret->d; | ||
308 | ap=&(r->d[ri]); | ||
309 | al-=4; | ||
310 | for (i=0; i<al; i+=4) | ||
311 | { | ||
312 | BN_ULONG t1,t2,t3,t4; | ||
313 | |||
314 | t1=ap[i+0]; | ||
315 | t2=ap[i+1]; | ||
316 | t3=ap[i+2]; | ||
317 | t4=ap[i+3]; | ||
318 | rp[i+0]=t1; | ||
319 | rp[i+1]=t2; | ||
320 | rp[i+2]=t3; | ||
321 | rp[i+3]=t4; | ||
322 | } | ||
323 | al+=4; | ||
324 | for (; i<al; i++) | ||
325 | rp[i]=ap[i]; | ||
326 | |||
327 | if (BN_ucmp(ret, &(mont->N)) >= 0) | ||
328 | { | ||
329 | if (!BN_usub(ret,ret,&(mont->N))) return(0); | ||
330 | } | ||
331 | #endif | ||
332 | bn_check_top(ret); | ||
333 | |||
334 | return(1); | ||
335 | } | ||
336 | #endif /* MONT_WORD */ | ||
337 | |||
338 | int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont, | ||
339 | BN_CTX *ctx) | ||
340 | { | ||
341 | int retn=0; | ||
342 | #ifdef MONT_WORD | ||
343 | BIGNUM *t; | ||
344 | |||
345 | BN_CTX_start(ctx); | ||
346 | if ((t = BN_CTX_get(ctx)) && BN_copy(t,a)) | ||
347 | retn = BN_from_montgomery_word(ret,t,mont); | ||
348 | BN_CTX_end(ctx); | ||
349 | #else /* !MONT_WORD */ | ||
350 | BIGNUM *t1,*t2; | ||
351 | |||
352 | BN_CTX_start(ctx); | ||
353 | t1 = BN_CTX_get(ctx); | ||
354 | t2 = BN_CTX_get(ctx); | ||
355 | if (t1 == NULL || t2 == NULL) goto err; | ||
356 | |||
357 | if (!BN_copy(t1,a)) goto err; | ||
358 | BN_mask_bits(t1,mont->ri); | ||
359 | |||
360 | if (!BN_mul(t2,t1,&mont->Ni,ctx)) goto err; | ||
361 | BN_mask_bits(t2,mont->ri); | ||
362 | |||
363 | if (!BN_mul(t1,t2,&mont->N,ctx)) goto err; | ||
364 | if (!BN_add(t2,a,t1)) goto err; | ||
365 | if (!BN_rshift(ret,t2,mont->ri)) goto err; | ||
366 | |||
367 | if (BN_ucmp(ret, &(mont->N)) >= 0) | ||
368 | { | ||
369 | if (!BN_usub(ret,ret,&(mont->N))) goto err; | ||
370 | } | ||
371 | retn=1; | ||
372 | bn_check_top(ret); | ||
373 | err: | ||
374 | BN_CTX_end(ctx); | ||
375 | #endif /* MONT_WORD */ | ||
376 | return(retn); | ||
377 | } | ||
378 | |||
379 | BN_MONT_CTX *BN_MONT_CTX_new(void) | ||
380 | { | ||
381 | BN_MONT_CTX *ret; | ||
382 | |||
383 | if ((ret=(BN_MONT_CTX *)OPENSSL_malloc(sizeof(BN_MONT_CTX))) == NULL) | ||
384 | return(NULL); | ||
385 | |||
386 | BN_MONT_CTX_init(ret); | ||
387 | ret->flags=BN_FLG_MALLOCED; | ||
388 | return(ret); | ||
389 | } | ||
390 | |||
391 | void BN_MONT_CTX_init(BN_MONT_CTX *ctx) | ||
392 | { | ||
393 | ctx->ri=0; | ||
394 | BN_init(&(ctx->RR)); | ||
395 | BN_init(&(ctx->N)); | ||
396 | BN_init(&(ctx->Ni)); | ||
397 | ctx->n0[0] = ctx->n0[1] = 0; | ||
398 | ctx->flags=0; | ||
399 | } | ||
400 | |||
401 | void BN_MONT_CTX_free(BN_MONT_CTX *mont) | ||
402 | { | ||
403 | if(mont == NULL) | ||
404 | return; | ||
405 | |||
406 | BN_free(&(mont->RR)); | ||
407 | BN_free(&(mont->N)); | ||
408 | BN_free(&(mont->Ni)); | ||
409 | if (mont->flags & BN_FLG_MALLOCED) | ||
410 | OPENSSL_free(mont); | ||
411 | } | ||
412 | |||
413 | int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) | ||
414 | { | ||
415 | int ret = 0; | ||
416 | BIGNUM *Ri,*R; | ||
417 | |||
418 | BN_CTX_start(ctx); | ||
419 | if((Ri = BN_CTX_get(ctx)) == NULL) goto err; | ||
420 | R= &(mont->RR); /* grab RR as a temp */ | ||
421 | if (!BN_copy(&(mont->N),mod)) goto err; /* Set N */ | ||
422 | mont->N.neg = 0; | ||
423 | |||
424 | #ifdef MONT_WORD | ||
425 | { | ||
426 | BIGNUM tmod; | ||
427 | BN_ULONG buf[2]; | ||
428 | |||
429 | BN_init(&tmod); | ||
430 | tmod.d=buf; | ||
431 | tmod.dmax=2; | ||
432 | tmod.neg=0; | ||
433 | |||
434 | mont->ri=(BN_num_bits(mod)+(BN_BITS2-1))/BN_BITS2*BN_BITS2; | ||
435 | |||
436 | #if defined(OPENSSL_BN_ASM_MONT) && (BN_BITS2<=32) | ||
437 | /* Only certain BN_BITS2<=32 platforms actually make use of | ||
438 | * n0[1], and we could use the #else case (with a shorter R | ||
439 | * value) for the others. However, currently only the assembler | ||
440 | * files do know which is which. */ | ||
441 | |||
442 | BN_zero(R); | ||
443 | if (!(BN_set_bit(R,2*BN_BITS2))) goto err; | ||
444 | |||
445 | tmod.top=0; | ||
446 | if ((buf[0] = mod->d[0])) tmod.top=1; | ||
447 | if ((buf[1] = mod->top>1 ? mod->d[1] : 0)) tmod.top=2; | ||
448 | |||
449 | if ((BN_mod_inverse(Ri,R,&tmod,ctx)) == NULL) | ||
450 | goto err; | ||
451 | if (!BN_lshift(Ri,Ri,2*BN_BITS2)) goto err; /* R*Ri */ | ||
452 | if (!BN_is_zero(Ri)) | ||
453 | { | ||
454 | if (!BN_sub_word(Ri,1)) goto err; | ||
455 | } | ||
456 | else /* if N mod word size == 1 */ | ||
457 | { | ||
458 | if (bn_expand(Ri,(int)sizeof(BN_ULONG)*2) == NULL) | ||
459 | goto err; | ||
460 | /* Ri-- (mod double word size) */ | ||
461 | Ri->neg=0; | ||
462 | Ri->d[0]=BN_MASK2; | ||
463 | Ri->d[1]=BN_MASK2; | ||
464 | Ri->top=2; | ||
465 | } | ||
466 | if (!BN_div(Ri,NULL,Ri,&tmod,ctx)) goto err; | ||
467 | /* Ni = (R*Ri-1)/N, | ||
468 | * keep only couple of least significant words: */ | ||
469 | mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; | ||
470 | mont->n0[1] = (Ri->top > 1) ? Ri->d[1] : 0; | ||
471 | #else | ||
472 | BN_zero(R); | ||
473 | if (!(BN_set_bit(R,BN_BITS2))) goto err; /* R */ | ||
474 | |||
475 | buf[0]=mod->d[0]; /* tmod = N mod word size */ | ||
476 | buf[1]=0; | ||
477 | tmod.top = buf[0] != 0 ? 1 : 0; | ||
478 | /* Ri = R^-1 mod N*/ | ||
479 | if ((BN_mod_inverse(Ri,R,&tmod,ctx)) == NULL) | ||
480 | goto err; | ||
481 | if (!BN_lshift(Ri,Ri,BN_BITS2)) goto err; /* R*Ri */ | ||
482 | if (!BN_is_zero(Ri)) | ||
483 | { | ||
484 | if (!BN_sub_word(Ri,1)) goto err; | ||
485 | } | ||
486 | else /* if N mod word size == 1 */ | ||
487 | { | ||
488 | if (!BN_set_word(Ri,BN_MASK2)) goto err; /* Ri-- (mod word size) */ | ||
489 | } | ||
490 | if (!BN_div(Ri,NULL,Ri,&tmod,ctx)) goto err; | ||
491 | /* Ni = (R*Ri-1)/N, | ||
492 | * keep only least significant word: */ | ||
493 | mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; | ||
494 | mont->n0[1] = 0; | ||
495 | #endif | ||
496 | } | ||
497 | #else /* !MONT_WORD */ | ||
498 | { /* bignum version */ | ||
499 | mont->ri=BN_num_bits(&mont->N); | ||
500 | BN_zero(R); | ||
501 | if (!BN_set_bit(R,mont->ri)) goto err; /* R = 2^ri */ | ||
502 | /* Ri = R^-1 mod N*/ | ||
503 | if ((BN_mod_inverse(Ri,R,&mont->N,ctx)) == NULL) | ||
504 | goto err; | ||
505 | if (!BN_lshift(Ri,Ri,mont->ri)) goto err; /* R*Ri */ | ||
506 | if (!BN_sub_word(Ri,1)) goto err; | ||
507 | /* Ni = (R*Ri-1) / N */ | ||
508 | if (!BN_div(&(mont->Ni),NULL,Ri,&mont->N,ctx)) goto err; | ||
509 | } | ||
510 | #endif | ||
511 | |||
512 | /* setup RR for conversions */ | ||
513 | BN_zero(&(mont->RR)); | ||
514 | if (!BN_set_bit(&(mont->RR),mont->ri*2)) goto err; | ||
515 | if (!BN_mod(&(mont->RR),&(mont->RR),&(mont->N),ctx)) goto err; | ||
516 | |||
517 | ret = 1; | ||
518 | err: | ||
519 | BN_CTX_end(ctx); | ||
520 | return ret; | ||
521 | } | ||
522 | |||
523 | BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from) | ||
524 | { | ||
525 | if (to == from) return(to); | ||
526 | |||
527 | if (!BN_copy(&(to->RR),&(from->RR))) return NULL; | ||
528 | if (!BN_copy(&(to->N),&(from->N))) return NULL; | ||
529 | if (!BN_copy(&(to->Ni),&(from->Ni))) return NULL; | ||
530 | to->ri=from->ri; | ||
531 | to->n0[0]=from->n0[0]; | ||
532 | to->n0[1]=from->n0[1]; | ||
533 | return(to); | ||
534 | } | ||
535 | |||
536 | BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, int lock, | ||
537 | const BIGNUM *mod, BN_CTX *ctx) | ||
538 | { | ||
539 | int got_write_lock = 0; | ||
540 | BN_MONT_CTX *ret; | ||
541 | |||
542 | CRYPTO_r_lock(lock); | ||
543 | if (!*pmont) | ||
544 | { | ||
545 | CRYPTO_r_unlock(lock); | ||
546 | CRYPTO_w_lock(lock); | ||
547 | got_write_lock = 1; | ||
548 | |||
549 | if (!*pmont) | ||
550 | { | ||
551 | ret = BN_MONT_CTX_new(); | ||
552 | if (ret && !BN_MONT_CTX_set(ret, mod, ctx)) | ||
553 | BN_MONT_CTX_free(ret); | ||
554 | else | ||
555 | *pmont = ret; | ||
556 | } | ||
557 | } | ||
558 | |||
559 | ret = *pmont; | ||
560 | |||
561 | if (got_write_lock) | ||
562 | CRYPTO_w_unlock(lock); | ||
563 | else | ||
564 | CRYPTO_r_unlock(lock); | ||
565 | |||
566 | return ret; | ||
567 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_mpi.c b/src/lib/libcrypto/bn/bn_mpi.c deleted file mode 100644 index a054d21aed..0000000000 --- a/src/lib/libcrypto/bn/bn_mpi.c +++ /dev/null | |||
@@ -1,130 +0,0 @@ | |||
1 | /* crypto/bn/bn_mpi.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include "cryptlib.h" | ||
61 | #include "bn_lcl.h" | ||
62 | |||
63 | int BN_bn2mpi(const BIGNUM *a, unsigned char *d) | ||
64 | { | ||
65 | int bits; | ||
66 | int num=0; | ||
67 | int ext=0; | ||
68 | long l; | ||
69 | |||
70 | bits=BN_num_bits(a); | ||
71 | num=(bits+7)/8; | ||
72 | if (bits > 0) | ||
73 | { | ||
74 | ext=((bits & 0x07) == 0); | ||
75 | } | ||
76 | if (d == NULL) | ||
77 | return(num+4+ext); | ||
78 | |||
79 | l=num+ext; | ||
80 | d[0]=(unsigned char)(l>>24)&0xff; | ||
81 | d[1]=(unsigned char)(l>>16)&0xff; | ||
82 | d[2]=(unsigned char)(l>> 8)&0xff; | ||
83 | d[3]=(unsigned char)(l )&0xff; | ||
84 | if (ext) d[4]=0; | ||
85 | num=BN_bn2bin(a,&(d[4+ext])); | ||
86 | if (a->neg) | ||
87 | d[4]|=0x80; | ||
88 | return(num+4+ext); | ||
89 | } | ||
90 | |||
91 | BIGNUM *BN_mpi2bn(const unsigned char *d, int n, BIGNUM *a) | ||
92 | { | ||
93 | long len; | ||
94 | int neg=0; | ||
95 | |||
96 | if (n < 4) | ||
97 | { | ||
98 | BNerr(BN_F_BN_MPI2BN,BN_R_INVALID_LENGTH); | ||
99 | return(NULL); | ||
100 | } | ||
101 | len=((long)d[0]<<24)|((long)d[1]<<16)|((int)d[2]<<8)|(int)d[3]; | ||
102 | if ((len+4) != n) | ||
103 | { | ||
104 | BNerr(BN_F_BN_MPI2BN,BN_R_ENCODING_ERROR); | ||
105 | return(NULL); | ||
106 | } | ||
107 | |||
108 | if (a == NULL) a=BN_new(); | ||
109 | if (a == NULL) return(NULL); | ||
110 | |||
111 | if (len == 0) | ||
112 | { | ||
113 | a->neg=0; | ||
114 | a->top=0; | ||
115 | return(a); | ||
116 | } | ||
117 | d+=4; | ||
118 | if ((*d) & 0x80) | ||
119 | neg=1; | ||
120 | if (BN_bin2bn(d,(int)len,a) == NULL) | ||
121 | return(NULL); | ||
122 | a->neg=neg; | ||
123 | if (neg) | ||
124 | { | ||
125 | BN_clear_bit(a,BN_num_bits(a)-1); | ||
126 | } | ||
127 | bn_check_top(a); | ||
128 | return(a); | ||
129 | } | ||
130 | |||
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c deleted file mode 100644 index 12e5be80eb..0000000000 --- a/src/lib/libcrypto/bn/bn_mul.c +++ /dev/null | |||
@@ -1,1166 +0,0 @@ | |||
1 | /* crypto/bn/bn_mul.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #ifndef BN_DEBUG | ||
60 | # undef NDEBUG /* avoid conflicting definitions */ | ||
61 | # define NDEBUG | ||
62 | #endif | ||
63 | |||
64 | #include <stdio.h> | ||
65 | #include <assert.h> | ||
66 | #include "cryptlib.h" | ||
67 | #include "bn_lcl.h" | ||
68 | |||
69 | #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) | ||
70 | /* Here follows specialised variants of bn_add_words() and | ||
71 | bn_sub_words(). They have the property performing operations on | ||
72 | arrays of different sizes. The sizes of those arrays is expressed through | ||
73 | cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl, | ||
74 | which is the delta between the two lengths, calculated as len(a)-len(b). | ||
75 | All lengths are the number of BN_ULONGs... For the operations that require | ||
76 | a result array as parameter, it must have the length cl+abs(dl). | ||
77 | These functions should probably end up in bn_asm.c as soon as there are | ||
78 | assembler counterparts for the systems that use assembler files. */ | ||
79 | |||
80 | BN_ULONG bn_sub_part_words(BN_ULONG *r, | ||
81 | const BN_ULONG *a, const BN_ULONG *b, | ||
82 | int cl, int dl) | ||
83 | { | ||
84 | BN_ULONG c, t; | ||
85 | |||
86 | assert(cl >= 0); | ||
87 | c = bn_sub_words(r, a, b, cl); | ||
88 | |||
89 | if (dl == 0) | ||
90 | return c; | ||
91 | |||
92 | r += cl; | ||
93 | a += cl; | ||
94 | b += cl; | ||
95 | |||
96 | if (dl < 0) | ||
97 | { | ||
98 | #ifdef BN_COUNT | ||
99 | fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c); | ||
100 | #endif | ||
101 | for (;;) | ||
102 | { | ||
103 | t = b[0]; | ||
104 | r[0] = (0-t-c)&BN_MASK2; | ||
105 | if (t != 0) c=1; | ||
106 | if (++dl >= 0) break; | ||
107 | |||
108 | t = b[1]; | ||
109 | r[1] = (0-t-c)&BN_MASK2; | ||
110 | if (t != 0) c=1; | ||
111 | if (++dl >= 0) break; | ||
112 | |||
113 | t = b[2]; | ||
114 | r[2] = (0-t-c)&BN_MASK2; | ||
115 | if (t != 0) c=1; | ||
116 | if (++dl >= 0) break; | ||
117 | |||
118 | t = b[3]; | ||
119 | r[3] = (0-t-c)&BN_MASK2; | ||
120 | if (t != 0) c=1; | ||
121 | if (++dl >= 0) break; | ||
122 | |||
123 | b += 4; | ||
124 | r += 4; | ||
125 | } | ||
126 | } | ||
127 | else | ||
128 | { | ||
129 | int save_dl = dl; | ||
130 | #ifdef BN_COUNT | ||
131 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c); | ||
132 | #endif | ||
133 | while(c) | ||
134 | { | ||
135 | t = a[0]; | ||
136 | r[0] = (t-c)&BN_MASK2; | ||
137 | if (t != 0) c=0; | ||
138 | if (--dl <= 0) break; | ||
139 | |||
140 | t = a[1]; | ||
141 | r[1] = (t-c)&BN_MASK2; | ||
142 | if (t != 0) c=0; | ||
143 | if (--dl <= 0) break; | ||
144 | |||
145 | t = a[2]; | ||
146 | r[2] = (t-c)&BN_MASK2; | ||
147 | if (t != 0) c=0; | ||
148 | if (--dl <= 0) break; | ||
149 | |||
150 | t = a[3]; | ||
151 | r[3] = (t-c)&BN_MASK2; | ||
152 | if (t != 0) c=0; | ||
153 | if (--dl <= 0) break; | ||
154 | |||
155 | save_dl = dl; | ||
156 | a += 4; | ||
157 | r += 4; | ||
158 | } | ||
159 | if (dl > 0) | ||
160 | { | ||
161 | #ifdef BN_COUNT | ||
162 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); | ||
163 | #endif | ||
164 | if (save_dl > dl) | ||
165 | { | ||
166 | switch (save_dl - dl) | ||
167 | { | ||
168 | case 1: | ||
169 | r[1] = a[1]; | ||
170 | if (--dl <= 0) break; | ||
171 | case 2: | ||
172 | r[2] = a[2]; | ||
173 | if (--dl <= 0) break; | ||
174 | case 3: | ||
175 | r[3] = a[3]; | ||
176 | if (--dl <= 0) break; | ||
177 | } | ||
178 | a += 4; | ||
179 | r += 4; | ||
180 | } | ||
181 | } | ||
182 | if (dl > 0) | ||
183 | { | ||
184 | #ifdef BN_COUNT | ||
185 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl); | ||
186 | #endif | ||
187 | for(;;) | ||
188 | { | ||
189 | r[0] = a[0]; | ||
190 | if (--dl <= 0) break; | ||
191 | r[1] = a[1]; | ||
192 | if (--dl <= 0) break; | ||
193 | r[2] = a[2]; | ||
194 | if (--dl <= 0) break; | ||
195 | r[3] = a[3]; | ||
196 | if (--dl <= 0) break; | ||
197 | |||
198 | a += 4; | ||
199 | r += 4; | ||
200 | } | ||
201 | } | ||
202 | } | ||
203 | return c; | ||
204 | } | ||
205 | #endif | ||
206 | |||
207 | BN_ULONG bn_add_part_words(BN_ULONG *r, | ||
208 | const BN_ULONG *a, const BN_ULONG *b, | ||
209 | int cl, int dl) | ||
210 | { | ||
211 | BN_ULONG c, l, t; | ||
212 | |||
213 | assert(cl >= 0); | ||
214 | c = bn_add_words(r, a, b, cl); | ||
215 | |||
216 | if (dl == 0) | ||
217 | return c; | ||
218 | |||
219 | r += cl; | ||
220 | a += cl; | ||
221 | b += cl; | ||
222 | |||
223 | if (dl < 0) | ||
224 | { | ||
225 | int save_dl = dl; | ||
226 | #ifdef BN_COUNT | ||
227 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c); | ||
228 | #endif | ||
229 | while (c) | ||
230 | { | ||
231 | l=(c+b[0])&BN_MASK2; | ||
232 | c=(l < c); | ||
233 | r[0]=l; | ||
234 | if (++dl >= 0) break; | ||
235 | |||
236 | l=(c+b[1])&BN_MASK2; | ||
237 | c=(l < c); | ||
238 | r[1]=l; | ||
239 | if (++dl >= 0) break; | ||
240 | |||
241 | l=(c+b[2])&BN_MASK2; | ||
242 | c=(l < c); | ||
243 | r[2]=l; | ||
244 | if (++dl >= 0) break; | ||
245 | |||
246 | l=(c+b[3])&BN_MASK2; | ||
247 | c=(l < c); | ||
248 | r[3]=l; | ||
249 | if (++dl >= 0) break; | ||
250 | |||
251 | save_dl = dl; | ||
252 | b+=4; | ||
253 | r+=4; | ||
254 | } | ||
255 | if (dl < 0) | ||
256 | { | ||
257 | #ifdef BN_COUNT | ||
258 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl); | ||
259 | #endif | ||
260 | if (save_dl < dl) | ||
261 | { | ||
262 | switch (dl - save_dl) | ||
263 | { | ||
264 | case 1: | ||
265 | r[1] = b[1]; | ||
266 | if (++dl >= 0) break; | ||
267 | case 2: | ||
268 | r[2] = b[2]; | ||
269 | if (++dl >= 0) break; | ||
270 | case 3: | ||
271 | r[3] = b[3]; | ||
272 | if (++dl >= 0) break; | ||
273 | } | ||
274 | b += 4; | ||
275 | r += 4; | ||
276 | } | ||
277 | } | ||
278 | if (dl < 0) | ||
279 | { | ||
280 | #ifdef BN_COUNT | ||
281 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl); | ||
282 | #endif | ||
283 | for(;;) | ||
284 | { | ||
285 | r[0] = b[0]; | ||
286 | if (++dl >= 0) break; | ||
287 | r[1] = b[1]; | ||
288 | if (++dl >= 0) break; | ||
289 | r[2] = b[2]; | ||
290 | if (++dl >= 0) break; | ||
291 | r[3] = b[3]; | ||
292 | if (++dl >= 0) break; | ||
293 | |||
294 | b += 4; | ||
295 | r += 4; | ||
296 | } | ||
297 | } | ||
298 | } | ||
299 | else | ||
300 | { | ||
301 | int save_dl = dl; | ||
302 | #ifdef BN_COUNT | ||
303 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl); | ||
304 | #endif | ||
305 | while (c) | ||
306 | { | ||
307 | t=(a[0]+c)&BN_MASK2; | ||
308 | c=(t < c); | ||
309 | r[0]=t; | ||
310 | if (--dl <= 0) break; | ||
311 | |||
312 | t=(a[1]+c)&BN_MASK2; | ||
313 | c=(t < c); | ||
314 | r[1]=t; | ||
315 | if (--dl <= 0) break; | ||
316 | |||
317 | t=(a[2]+c)&BN_MASK2; | ||
318 | c=(t < c); | ||
319 | r[2]=t; | ||
320 | if (--dl <= 0) break; | ||
321 | |||
322 | t=(a[3]+c)&BN_MASK2; | ||
323 | c=(t < c); | ||
324 | r[3]=t; | ||
325 | if (--dl <= 0) break; | ||
326 | |||
327 | save_dl = dl; | ||
328 | a+=4; | ||
329 | r+=4; | ||
330 | } | ||
331 | #ifdef BN_COUNT | ||
332 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); | ||
333 | #endif | ||
334 | if (dl > 0) | ||
335 | { | ||
336 | if (save_dl > dl) | ||
337 | { | ||
338 | switch (save_dl - dl) | ||
339 | { | ||
340 | case 1: | ||
341 | r[1] = a[1]; | ||
342 | if (--dl <= 0) break; | ||
343 | case 2: | ||
344 | r[2] = a[2]; | ||
345 | if (--dl <= 0) break; | ||
346 | case 3: | ||
347 | r[3] = a[3]; | ||
348 | if (--dl <= 0) break; | ||
349 | } | ||
350 | a += 4; | ||
351 | r += 4; | ||
352 | } | ||
353 | } | ||
354 | if (dl > 0) | ||
355 | { | ||
356 | #ifdef BN_COUNT | ||
357 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl); | ||
358 | #endif | ||
359 | for(;;) | ||
360 | { | ||
361 | r[0] = a[0]; | ||
362 | if (--dl <= 0) break; | ||
363 | r[1] = a[1]; | ||
364 | if (--dl <= 0) break; | ||
365 | r[2] = a[2]; | ||
366 | if (--dl <= 0) break; | ||
367 | r[3] = a[3]; | ||
368 | if (--dl <= 0) break; | ||
369 | |||
370 | a += 4; | ||
371 | r += 4; | ||
372 | } | ||
373 | } | ||
374 | } | ||
375 | return c; | ||
376 | } | ||
377 | |||
378 | #ifdef BN_RECURSION | ||
379 | /* Karatsuba recursive multiplication algorithm | ||
380 | * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ | ||
381 | |||
382 | /* r is 2*n2 words in size, | ||
383 | * a and b are both n2 words in size. | ||
384 | * n2 must be a power of 2. | ||
385 | * We multiply and return the result. | ||
386 | * t must be 2*n2 words in size | ||
387 | * We calculate | ||
388 | * a[0]*b[0] | ||
389 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | ||
390 | * a[1]*b[1] | ||
391 | */ | ||
392 | /* dnX may not be positive, but n2/2+dnX has to be */ | ||
393 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
394 | int dna, int dnb, BN_ULONG *t) | ||
395 | { | ||
396 | int n=n2/2,c1,c2; | ||
397 | int tna=n+dna, tnb=n+dnb; | ||
398 | unsigned int neg,zero; | ||
399 | BN_ULONG ln,lo,*p; | ||
400 | |||
401 | # ifdef BN_COUNT | ||
402 | fprintf(stderr," bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb); | ||
403 | # endif | ||
404 | # ifdef BN_MUL_COMBA | ||
405 | # if 0 | ||
406 | if (n2 == 4) | ||
407 | { | ||
408 | bn_mul_comba4(r,a,b); | ||
409 | return; | ||
410 | } | ||
411 | # endif | ||
412 | /* Only call bn_mul_comba 8 if n2 == 8 and the | ||
413 | * two arrays are complete [steve] | ||
414 | */ | ||
415 | if (n2 == 8 && dna == 0 && dnb == 0) | ||
416 | { | ||
417 | bn_mul_comba8(r,a,b); | ||
418 | return; | ||
419 | } | ||
420 | # endif /* BN_MUL_COMBA */ | ||
421 | /* Else do normal multiply */ | ||
422 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
423 | { | ||
424 | bn_mul_normal(r,a,n2+dna,b,n2+dnb); | ||
425 | if ((dna + dnb) < 0) | ||
426 | memset(&r[2*n2 + dna + dnb], 0, | ||
427 | sizeof(BN_ULONG) * -(dna + dnb)); | ||
428 | return; | ||
429 | } | ||
430 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
431 | c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); | ||
432 | c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); | ||
433 | zero=neg=0; | ||
434 | switch (c1*3+c2) | ||
435 | { | ||
436 | case -4: | ||
437 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
438 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
439 | break; | ||
440 | case -3: | ||
441 | zero=1; | ||
442 | break; | ||
443 | case -2: | ||
444 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
445 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ | ||
446 | neg=1; | ||
447 | break; | ||
448 | case -1: | ||
449 | case 0: | ||
450 | case 1: | ||
451 | zero=1; | ||
452 | break; | ||
453 | case 2: | ||
454 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ | ||
455 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
456 | neg=1; | ||
457 | break; | ||
458 | case 3: | ||
459 | zero=1; | ||
460 | break; | ||
461 | case 4: | ||
462 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); | ||
463 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); | ||
464 | break; | ||
465 | } | ||
466 | |||
467 | # ifdef BN_MUL_COMBA | ||
468 | if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take | ||
469 | extra args to do this well */ | ||
470 | { | ||
471 | if (!zero) | ||
472 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | ||
473 | else | ||
474 | memset(&(t[n2]),0,8*sizeof(BN_ULONG)); | ||
475 | |||
476 | bn_mul_comba4(r,a,b); | ||
477 | bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); | ||
478 | } | ||
479 | else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could | ||
480 | take extra args to do this | ||
481 | well */ | ||
482 | { | ||
483 | if (!zero) | ||
484 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | ||
485 | else | ||
486 | memset(&(t[n2]),0,16*sizeof(BN_ULONG)); | ||
487 | |||
488 | bn_mul_comba8(r,a,b); | ||
489 | bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n])); | ||
490 | } | ||
491 | else | ||
492 | # endif /* BN_MUL_COMBA */ | ||
493 | { | ||
494 | p= &(t[n2*2]); | ||
495 | if (!zero) | ||
496 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); | ||
497 | else | ||
498 | memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); | ||
499 | bn_mul_recursive(r,a,b,n,0,0,p); | ||
500 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p); | ||
501 | } | ||
502 | |||
503 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
504 | * r[10] holds (a[0]*b[0]) | ||
505 | * r[32] holds (b[1]*b[1]) | ||
506 | */ | ||
507 | |||
508 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
509 | |||
510 | if (neg) /* if t[32] is negative */ | ||
511 | { | ||
512 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
513 | } | ||
514 | else | ||
515 | { | ||
516 | /* Might have a carry */ | ||
517 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | ||
518 | } | ||
519 | |||
520 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
521 | * r[10] holds (a[0]*b[0]) | ||
522 | * r[32] holds (b[1]*b[1]) | ||
523 | * c1 holds the carry bits | ||
524 | */ | ||
525 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
526 | if (c1) | ||
527 | { | ||
528 | p= &(r[n+n2]); | ||
529 | lo= *p; | ||
530 | ln=(lo+c1)&BN_MASK2; | ||
531 | *p=ln; | ||
532 | |||
533 | /* The overflow will stop before we over write | ||
534 | * words we should not overwrite */ | ||
535 | if (ln < (BN_ULONG)c1) | ||
536 | { | ||
537 | do { | ||
538 | p++; | ||
539 | lo= *p; | ||
540 | ln=(lo+1)&BN_MASK2; | ||
541 | *p=ln; | ||
542 | } while (ln == 0); | ||
543 | } | ||
544 | } | ||
545 | } | ||
546 | |||
547 | /* n+tn is the word length | ||
548 | * t needs to be n*4 is size, as does r */ | ||
549 | /* tnX may not be negative but less than n */ | ||
550 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, | ||
551 | int tna, int tnb, BN_ULONG *t) | ||
552 | { | ||
553 | int i,j,n2=n*2; | ||
554 | int c1,c2,neg; | ||
555 | BN_ULONG ln,lo,*p; | ||
556 | |||
557 | # ifdef BN_COUNT | ||
558 | fprintf(stderr," bn_mul_part_recursive (%d%+d) * (%d%+d)\n", | ||
559 | n, tna, n, tnb); | ||
560 | # endif | ||
561 | if (n < 8) | ||
562 | { | ||
563 | bn_mul_normal(r,a,n+tna,b,n+tnb); | ||
564 | return; | ||
565 | } | ||
566 | |||
567 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
568 | c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); | ||
569 | c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); | ||
570 | neg=0; | ||
571 | switch (c1*3+c2) | ||
572 | { | ||
573 | case -4: | ||
574 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
575 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
576 | break; | ||
577 | case -3: | ||
578 | /* break; */ | ||
579 | case -2: | ||
580 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
581 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ | ||
582 | neg=1; | ||
583 | break; | ||
584 | case -1: | ||
585 | case 0: | ||
586 | case 1: | ||
587 | /* break; */ | ||
588 | case 2: | ||
589 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ | ||
590 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
591 | neg=1; | ||
592 | break; | ||
593 | case 3: | ||
594 | /* break; */ | ||
595 | case 4: | ||
596 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); | ||
597 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); | ||
598 | break; | ||
599 | } | ||
600 | /* The zero case isn't yet implemented here. The speedup | ||
601 | would probably be negligible. */ | ||
602 | # if 0 | ||
603 | if (n == 4) | ||
604 | { | ||
605 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | ||
606 | bn_mul_comba4(r,a,b); | ||
607 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | ||
608 | memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); | ||
609 | } | ||
610 | else | ||
611 | # endif | ||
612 | if (n == 8) | ||
613 | { | ||
614 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | ||
615 | bn_mul_comba8(r,a,b); | ||
616 | bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); | ||
617 | memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb)); | ||
618 | } | ||
619 | else | ||
620 | { | ||
621 | p= &(t[n2*2]); | ||
622 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); | ||
623 | bn_mul_recursive(r,a,b,n,0,0,p); | ||
624 | i=n/2; | ||
625 | /* If there is only a bottom half to the number, | ||
626 | * just do it */ | ||
627 | if (tna > tnb) | ||
628 | j = tna - i; | ||
629 | else | ||
630 | j = tnb - i; | ||
631 | if (j == 0) | ||
632 | { | ||
633 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]), | ||
634 | i,tna-i,tnb-i,p); | ||
635 | memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); | ||
636 | } | ||
637 | else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ | ||
638 | { | ||
639 | bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), | ||
640 | i,tna-i,tnb-i,p); | ||
641 | memset(&(r[n2+tna+tnb]),0, | ||
642 | sizeof(BN_ULONG)*(n2-tna-tnb)); | ||
643 | } | ||
644 | else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | ||
645 | { | ||
646 | memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); | ||
647 | if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL | ||
648 | && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
649 | { | ||
650 | bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); | ||
651 | } | ||
652 | else | ||
653 | { | ||
654 | for (;;) | ||
655 | { | ||
656 | i/=2; | ||
657 | /* these simplified conditions work | ||
658 | * exclusively because difference | ||
659 | * between tna and tnb is 1 or 0 */ | ||
660 | if (i < tna || i < tnb) | ||
661 | { | ||
662 | bn_mul_part_recursive(&(r[n2]), | ||
663 | &(a[n]),&(b[n]), | ||
664 | i,tna-i,tnb-i,p); | ||
665 | break; | ||
666 | } | ||
667 | else if (i == tna || i == tnb) | ||
668 | { | ||
669 | bn_mul_recursive(&(r[n2]), | ||
670 | &(a[n]),&(b[n]), | ||
671 | i,tna-i,tnb-i,p); | ||
672 | break; | ||
673 | } | ||
674 | } | ||
675 | } | ||
676 | } | ||
677 | } | ||
678 | |||
679 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
680 | * r[10] holds (a[0]*b[0]) | ||
681 | * r[32] holds (b[1]*b[1]) | ||
682 | */ | ||
683 | |||
684 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
685 | |||
686 | if (neg) /* if t[32] is negative */ | ||
687 | { | ||
688 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
689 | } | ||
690 | else | ||
691 | { | ||
692 | /* Might have a carry */ | ||
693 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | ||
694 | } | ||
695 | |||
696 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
697 | * r[10] holds (a[0]*b[0]) | ||
698 | * r[32] holds (b[1]*b[1]) | ||
699 | * c1 holds the carry bits | ||
700 | */ | ||
701 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
702 | if (c1) | ||
703 | { | ||
704 | p= &(r[n+n2]); | ||
705 | lo= *p; | ||
706 | ln=(lo+c1)&BN_MASK2; | ||
707 | *p=ln; | ||
708 | |||
709 | /* The overflow will stop before we over write | ||
710 | * words we should not overwrite */ | ||
711 | if (ln < (BN_ULONG)c1) | ||
712 | { | ||
713 | do { | ||
714 | p++; | ||
715 | lo= *p; | ||
716 | ln=(lo+1)&BN_MASK2; | ||
717 | *p=ln; | ||
718 | } while (ln == 0); | ||
719 | } | ||
720 | } | ||
721 | } | ||
722 | |||
723 | /* a and b must be the same size, which is n2. | ||
724 | * r needs to be n2 words and t needs to be n2*2 | ||
725 | */ | ||
726 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
727 | BN_ULONG *t) | ||
728 | { | ||
729 | int n=n2/2; | ||
730 | |||
731 | # ifdef BN_COUNT | ||
732 | fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2); | ||
733 | # endif | ||
734 | |||
735 | bn_mul_recursive(r,a,b,n,0,0,&(t[0])); | ||
736 | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) | ||
737 | { | ||
738 | bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); | ||
739 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
740 | bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2])); | ||
741 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
742 | } | ||
743 | else | ||
744 | { | ||
745 | bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n); | ||
746 | bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n); | ||
747 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
748 | bn_add_words(&(r[n]),&(r[n]),&(t[n]),n); | ||
749 | } | ||
750 | } | ||
751 | |||
752 | /* a and b must be the same size, which is n2. | ||
753 | * r needs to be n2 words and t needs to be n2*2 | ||
754 | * l is the low words of the output. | ||
755 | * t needs to be n2*3 | ||
756 | */ | ||
757 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, | ||
758 | BN_ULONG *t) | ||
759 | { | ||
760 | int i,n; | ||
761 | int c1,c2; | ||
762 | int neg,oneg,zero; | ||
763 | BN_ULONG ll,lc,*lp,*mp; | ||
764 | |||
765 | # ifdef BN_COUNT | ||
766 | fprintf(stderr," bn_mul_high %d * %d\n",n2,n2); | ||
767 | # endif | ||
768 | n=n2/2; | ||
769 | |||
770 | /* Calculate (al-ah)*(bh-bl) */ | ||
771 | neg=zero=0; | ||
772 | c1=bn_cmp_words(&(a[0]),&(a[n]),n); | ||
773 | c2=bn_cmp_words(&(b[n]),&(b[0]),n); | ||
774 | switch (c1*3+c2) | ||
775 | { | ||
776 | case -4: | ||
777 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
778 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
779 | break; | ||
780 | case -3: | ||
781 | zero=1; | ||
782 | break; | ||
783 | case -2: | ||
784 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
785 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
786 | neg=1; | ||
787 | break; | ||
788 | case -1: | ||
789 | case 0: | ||
790 | case 1: | ||
791 | zero=1; | ||
792 | break; | ||
793 | case 2: | ||
794 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
795 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
796 | neg=1; | ||
797 | break; | ||
798 | case 3: | ||
799 | zero=1; | ||
800 | break; | ||
801 | case 4: | ||
802 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
803 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
804 | break; | ||
805 | } | ||
806 | |||
807 | oneg=neg; | ||
808 | /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ | ||
809 | /* r[10] = (a[1]*b[1]) */ | ||
810 | # ifdef BN_MUL_COMBA | ||
811 | if (n == 8) | ||
812 | { | ||
813 | bn_mul_comba8(&(t[0]),&(r[0]),&(r[n])); | ||
814 | bn_mul_comba8(r,&(a[n]),&(b[n])); | ||
815 | } | ||
816 | else | ||
817 | # endif | ||
818 | { | ||
819 | bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2])); | ||
820 | bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2])); | ||
821 | } | ||
822 | |||
823 | /* s0 == low(al*bl) | ||
824 | * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) | ||
825 | * We know s0 and s1 so the only unknown is high(al*bl) | ||
826 | * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) | ||
827 | * high(al*bl) == s1 - (r[0]+l[0]+t[0]) | ||
828 | */ | ||
829 | if (l != NULL) | ||
830 | { | ||
831 | lp= &(t[n2+n]); | ||
832 | c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n)); | ||
833 | } | ||
834 | else | ||
835 | { | ||
836 | c1=0; | ||
837 | lp= &(r[0]); | ||
838 | } | ||
839 | |||
840 | if (neg) | ||
841 | neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n)); | ||
842 | else | ||
843 | { | ||
844 | bn_add_words(&(t[n2]),lp,&(t[0]),n); | ||
845 | neg=0; | ||
846 | } | ||
847 | |||
848 | if (l != NULL) | ||
849 | { | ||
850 | bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n); | ||
851 | } | ||
852 | else | ||
853 | { | ||
854 | lp= &(t[n2+n]); | ||
855 | mp= &(t[n2]); | ||
856 | for (i=0; i<n; i++) | ||
857 | lp[i]=((~mp[i])+1)&BN_MASK2; | ||
858 | } | ||
859 | |||
860 | /* s[0] = low(al*bl) | ||
861 | * t[3] = high(al*bl) | ||
862 | * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign | ||
863 | * r[10] = (a[1]*b[1]) | ||
864 | */ | ||
865 | /* R[10] = al*bl | ||
866 | * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) | ||
867 | * R[32] = ah*bh | ||
868 | */ | ||
869 | /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) | ||
870 | * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) | ||
871 | * R[3]=r[1]+(carry/borrow) | ||
872 | */ | ||
873 | if (l != NULL) | ||
874 | { | ||
875 | lp= &(t[n2]); | ||
876 | c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n)); | ||
877 | } | ||
878 | else | ||
879 | { | ||
880 | lp= &(t[n2+n]); | ||
881 | c1=0; | ||
882 | } | ||
883 | c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n)); | ||
884 | if (oneg) | ||
885 | c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
886 | else | ||
887 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
888 | |||
889 | c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n)); | ||
890 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n)); | ||
891 | if (oneg) | ||
892 | c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
893 | else | ||
894 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
895 | |||
896 | if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */ | ||
897 | { | ||
898 | i=0; | ||
899 | if (c1 > 0) | ||
900 | { | ||
901 | lc=c1; | ||
902 | do { | ||
903 | ll=(r[i]+lc)&BN_MASK2; | ||
904 | r[i++]=ll; | ||
905 | lc=(lc > ll); | ||
906 | } while (lc); | ||
907 | } | ||
908 | else | ||
909 | { | ||
910 | lc= -c1; | ||
911 | do { | ||
912 | ll=r[i]; | ||
913 | r[i++]=(ll-lc)&BN_MASK2; | ||
914 | lc=(lc > ll); | ||
915 | } while (lc); | ||
916 | } | ||
917 | } | ||
918 | if (c2 != 0) /* Add starting at r[1] */ | ||
919 | { | ||
920 | i=n; | ||
921 | if (c2 > 0) | ||
922 | { | ||
923 | lc=c2; | ||
924 | do { | ||
925 | ll=(r[i]+lc)&BN_MASK2; | ||
926 | r[i++]=ll; | ||
927 | lc=(lc > ll); | ||
928 | } while (lc); | ||
929 | } | ||
930 | else | ||
931 | { | ||
932 | lc= -c2; | ||
933 | do { | ||
934 | ll=r[i]; | ||
935 | r[i++]=(ll-lc)&BN_MASK2; | ||
936 | lc=(lc > ll); | ||
937 | } while (lc); | ||
938 | } | ||
939 | } | ||
940 | } | ||
941 | #endif /* BN_RECURSION */ | ||
942 | |||
943 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
944 | { | ||
945 | int ret=0; | ||
946 | int top,al,bl; | ||
947 | BIGNUM *rr; | ||
948 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
949 | int i; | ||
950 | #endif | ||
951 | #ifdef BN_RECURSION | ||
952 | BIGNUM *t=NULL; | ||
953 | int j=0,k; | ||
954 | #endif | ||
955 | |||
956 | #ifdef BN_COUNT | ||
957 | fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top); | ||
958 | #endif | ||
959 | |||
960 | bn_check_top(a); | ||
961 | bn_check_top(b); | ||
962 | bn_check_top(r); | ||
963 | |||
964 | al=a->top; | ||
965 | bl=b->top; | ||
966 | |||
967 | if ((al == 0) || (bl == 0)) | ||
968 | { | ||
969 | BN_zero(r); | ||
970 | return(1); | ||
971 | } | ||
972 | top=al+bl; | ||
973 | |||
974 | BN_CTX_start(ctx); | ||
975 | if ((r == a) || (r == b)) | ||
976 | { | ||
977 | if ((rr = BN_CTX_get(ctx)) == NULL) goto err; | ||
978 | } | ||
979 | else | ||
980 | rr = r; | ||
981 | rr->neg=a->neg^b->neg; | ||
982 | |||
983 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
984 | i = al-bl; | ||
985 | #endif | ||
986 | #ifdef BN_MUL_COMBA | ||
987 | if (i == 0) | ||
988 | { | ||
989 | # if 0 | ||
990 | if (al == 4) | ||
991 | { | ||
992 | if (bn_wexpand(rr,8) == NULL) goto err; | ||
993 | rr->top=8; | ||
994 | bn_mul_comba4(rr->d,a->d,b->d); | ||
995 | goto end; | ||
996 | } | ||
997 | # endif | ||
998 | if (al == 8) | ||
999 | { | ||
1000 | if (bn_wexpand(rr,16) == NULL) goto err; | ||
1001 | rr->top=16; | ||
1002 | bn_mul_comba8(rr->d,a->d,b->d); | ||
1003 | goto end; | ||
1004 | } | ||
1005 | } | ||
1006 | #endif /* BN_MUL_COMBA */ | ||
1007 | #ifdef BN_RECURSION | ||
1008 | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) | ||
1009 | { | ||
1010 | if (i >= -1 && i <= 1) | ||
1011 | { | ||
1012 | /* Find out the power of two lower or equal | ||
1013 | to the longest of the two numbers */ | ||
1014 | if (i >= 0) | ||
1015 | { | ||
1016 | j = BN_num_bits_word((BN_ULONG)al); | ||
1017 | } | ||
1018 | if (i == -1) | ||
1019 | { | ||
1020 | j = BN_num_bits_word((BN_ULONG)bl); | ||
1021 | } | ||
1022 | j = 1<<(j-1); | ||
1023 | assert(j <= al || j <= bl); | ||
1024 | k = j+j; | ||
1025 | t = BN_CTX_get(ctx); | ||
1026 | if (t == NULL) | ||
1027 | goto err; | ||
1028 | if (al > j || bl > j) | ||
1029 | { | ||
1030 | if (bn_wexpand(t,k*4) == NULL) goto err; | ||
1031 | if (bn_wexpand(rr,k*4) == NULL) goto err; | ||
1032 | bn_mul_part_recursive(rr->d,a->d,b->d, | ||
1033 | j,al-j,bl-j,t->d); | ||
1034 | } | ||
1035 | else /* al <= j || bl <= j */ | ||
1036 | { | ||
1037 | if (bn_wexpand(t,k*2) == NULL) goto err; | ||
1038 | if (bn_wexpand(rr,k*2) == NULL) goto err; | ||
1039 | bn_mul_recursive(rr->d,a->d,b->d, | ||
1040 | j,al-j,bl-j,t->d); | ||
1041 | } | ||
1042 | rr->top=top; | ||
1043 | goto end; | ||
1044 | } | ||
1045 | #if 0 | ||
1046 | if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA)) | ||
1047 | { | ||
1048 | BIGNUM *tmp_bn = (BIGNUM *)b; | ||
1049 | if (bn_wexpand(tmp_bn,al) == NULL) goto err; | ||
1050 | tmp_bn->d[bl]=0; | ||
1051 | bl++; | ||
1052 | i--; | ||
1053 | } | ||
1054 | else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA)) | ||
1055 | { | ||
1056 | BIGNUM *tmp_bn = (BIGNUM *)a; | ||
1057 | if (bn_wexpand(tmp_bn,bl) == NULL) goto err; | ||
1058 | tmp_bn->d[al]=0; | ||
1059 | al++; | ||
1060 | i++; | ||
1061 | } | ||
1062 | if (i == 0) | ||
1063 | { | ||
1064 | /* symmetric and > 4 */ | ||
1065 | /* 16 or larger */ | ||
1066 | j=BN_num_bits_word((BN_ULONG)al); | ||
1067 | j=1<<(j-1); | ||
1068 | k=j+j; | ||
1069 | t = BN_CTX_get(ctx); | ||
1070 | if (al == j) /* exact multiple */ | ||
1071 | { | ||
1072 | if (bn_wexpand(t,k*2) == NULL) goto err; | ||
1073 | if (bn_wexpand(rr,k*2) == NULL) goto err; | ||
1074 | bn_mul_recursive(rr->d,a->d,b->d,al,t->d); | ||
1075 | } | ||
1076 | else | ||
1077 | { | ||
1078 | if (bn_wexpand(t,k*4) == NULL) goto err; | ||
1079 | if (bn_wexpand(rr,k*4) == NULL) goto err; | ||
1080 | bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); | ||
1081 | } | ||
1082 | rr->top=top; | ||
1083 | goto end; | ||
1084 | } | ||
1085 | #endif | ||
1086 | } | ||
1087 | #endif /* BN_RECURSION */ | ||
1088 | if (bn_wexpand(rr,top) == NULL) goto err; | ||
1089 | rr->top=top; | ||
1090 | bn_mul_normal(rr->d,a->d,al,b->d,bl); | ||
1091 | |||
1092 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
1093 | end: | ||
1094 | #endif | ||
1095 | bn_correct_top(rr); | ||
1096 | if (r != rr) BN_copy(r,rr); | ||
1097 | ret=1; | ||
1098 | err: | ||
1099 | bn_check_top(r); | ||
1100 | BN_CTX_end(ctx); | ||
1101 | return(ret); | ||
1102 | } | ||
1103 | |||
1104 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | ||
1105 | { | ||
1106 | BN_ULONG *rr; | ||
1107 | |||
1108 | #ifdef BN_COUNT | ||
1109 | fprintf(stderr," bn_mul_normal %d * %d\n",na,nb); | ||
1110 | #endif | ||
1111 | |||
1112 | if (na < nb) | ||
1113 | { | ||
1114 | int itmp; | ||
1115 | BN_ULONG *ltmp; | ||
1116 | |||
1117 | itmp=na; na=nb; nb=itmp; | ||
1118 | ltmp=a; a=b; b=ltmp; | ||
1119 | |||
1120 | } | ||
1121 | rr= &(r[na]); | ||
1122 | if (nb <= 0) | ||
1123 | { | ||
1124 | (void)bn_mul_words(r,a,na,0); | ||
1125 | return; | ||
1126 | } | ||
1127 | else | ||
1128 | rr[0]=bn_mul_words(r,a,na,b[0]); | ||
1129 | |||
1130 | for (;;) | ||
1131 | { | ||
1132 | if (--nb <= 0) return; | ||
1133 | rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]); | ||
1134 | if (--nb <= 0) return; | ||
1135 | rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]); | ||
1136 | if (--nb <= 0) return; | ||
1137 | rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]); | ||
1138 | if (--nb <= 0) return; | ||
1139 | rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]); | ||
1140 | rr+=4; | ||
1141 | r+=4; | ||
1142 | b+=4; | ||
1143 | } | ||
1144 | } | ||
1145 | |||
1146 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
1147 | { | ||
1148 | #ifdef BN_COUNT | ||
1149 | fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n); | ||
1150 | #endif | ||
1151 | bn_mul_words(r,a,n,b[0]); | ||
1152 | |||
1153 | for (;;) | ||
1154 | { | ||
1155 | if (--n <= 0) return; | ||
1156 | bn_mul_add_words(&(r[1]),a,n,b[1]); | ||
1157 | if (--n <= 0) return; | ||
1158 | bn_mul_add_words(&(r[2]),a,n,b[2]); | ||
1159 | if (--n <= 0) return; | ||
1160 | bn_mul_add_words(&(r[3]),a,n,b[3]); | ||
1161 | if (--n <= 0) return; | ||
1162 | bn_mul_add_words(&(r[4]),a,n,b[4]); | ||
1163 | r+=4; | ||
1164 | b+=4; | ||
1165 | } | ||
1166 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_nist.c b/src/lib/libcrypto/bn/bn_nist.c deleted file mode 100644 index c6de032696..0000000000 --- a/src/lib/libcrypto/bn/bn_nist.c +++ /dev/null | |||
@@ -1,844 +0,0 @@ | |||
1 | /* crypto/bn/bn_nist.c */ | ||
2 | /* | ||
3 | * Written by Nils Larsch for the OpenSSL project | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | |||
59 | #include "bn_lcl.h" | ||
60 | #include "cryptlib.h" | ||
61 | |||
62 | |||
63 | #define BN_NIST_192_TOP (192+BN_BITS2-1)/BN_BITS2 | ||
64 | #define BN_NIST_224_TOP (224+BN_BITS2-1)/BN_BITS2 | ||
65 | #define BN_NIST_256_TOP (256+BN_BITS2-1)/BN_BITS2 | ||
66 | #define BN_NIST_384_TOP (384+BN_BITS2-1)/BN_BITS2 | ||
67 | #define BN_NIST_521_TOP (521+BN_BITS2-1)/BN_BITS2 | ||
68 | |||
69 | /* pre-computed tables are "carry-less" values of modulus*(i+1) */ | ||
70 | #if BN_BITS2 == 64 | ||
71 | static const BN_ULONG _nist_p_192[][BN_NIST_192_TOP] = { | ||
72 | {0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFEULL,0xFFFFFFFFFFFFFFFFULL}, | ||
73 | {0xFFFFFFFFFFFFFFFEULL,0xFFFFFFFFFFFFFFFDULL,0xFFFFFFFFFFFFFFFFULL}, | ||
74 | {0xFFFFFFFFFFFFFFFDULL,0xFFFFFFFFFFFFFFFCULL,0xFFFFFFFFFFFFFFFFULL} | ||
75 | }; | ||
76 | static const BN_ULONG _nist_p_192_sqr[] = { | ||
77 | 0x0000000000000001ULL,0x0000000000000002ULL,0x0000000000000001ULL, | ||
78 | 0xFFFFFFFFFFFFFFFEULL,0xFFFFFFFFFFFFFFFDULL,0xFFFFFFFFFFFFFFFFULL | ||
79 | }; | ||
80 | static const BN_ULONG _nist_p_224[][BN_NIST_224_TOP] = { | ||
81 | {0x0000000000000001ULL,0xFFFFFFFF00000000ULL, | ||
82 | 0xFFFFFFFFFFFFFFFFULL,0x00000000FFFFFFFFULL}, | ||
83 | {0x0000000000000002ULL,0xFFFFFFFE00000000ULL, | ||
84 | 0xFFFFFFFFFFFFFFFFULL,0x00000001FFFFFFFFULL} /* this one is "carry-full" */ | ||
85 | }; | ||
86 | static const BN_ULONG _nist_p_224_sqr[] = { | ||
87 | 0x0000000000000001ULL,0xFFFFFFFE00000000ULL, | ||
88 | 0xFFFFFFFFFFFFFFFFULL,0x0000000200000000ULL, | ||
89 | 0x0000000000000000ULL,0xFFFFFFFFFFFFFFFEULL, | ||
90 | 0xFFFFFFFFFFFFFFFFULL | ||
91 | }; | ||
92 | static const BN_ULONG _nist_p_256[][BN_NIST_256_TOP] = { | ||
93 | {0xFFFFFFFFFFFFFFFFULL,0x00000000FFFFFFFFULL, | ||
94 | 0x0000000000000000ULL,0xFFFFFFFF00000001ULL}, | ||
95 | {0xFFFFFFFFFFFFFFFEULL,0x00000001FFFFFFFFULL, | ||
96 | 0x0000000000000000ULL,0xFFFFFFFE00000002ULL}, | ||
97 | {0xFFFFFFFFFFFFFFFDULL,0x00000002FFFFFFFFULL, | ||
98 | 0x0000000000000000ULL,0xFFFFFFFD00000003ULL}, | ||
99 | {0xFFFFFFFFFFFFFFFCULL,0x00000003FFFFFFFFULL, | ||
100 | 0x0000000000000000ULL,0xFFFFFFFC00000004ULL}, | ||
101 | {0xFFFFFFFFFFFFFFFBULL,0x00000004FFFFFFFFULL, | ||
102 | 0x0000000000000000ULL,0xFFFFFFFB00000005ULL}, | ||
103 | }; | ||
104 | static const BN_ULONG _nist_p_256_sqr[] = { | ||
105 | 0x0000000000000001ULL,0xFFFFFFFE00000000ULL, | ||
106 | 0xFFFFFFFFFFFFFFFFULL,0x00000001FFFFFFFEULL, | ||
107 | 0x00000001FFFFFFFEULL,0x00000001FFFFFFFEULL, | ||
108 | 0xFFFFFFFE00000001ULL,0xFFFFFFFE00000002ULL | ||
109 | }; | ||
110 | static const BN_ULONG _nist_p_384[][BN_NIST_384_TOP] = { | ||
111 | {0x00000000FFFFFFFFULL,0xFFFFFFFF00000000ULL,0xFFFFFFFFFFFFFFFEULL, | ||
112 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL}, | ||
113 | {0x00000001FFFFFFFEULL,0xFFFFFFFE00000000ULL,0xFFFFFFFFFFFFFFFDULL, | ||
114 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL}, | ||
115 | {0x00000002FFFFFFFDULL,0xFFFFFFFD00000000ULL,0xFFFFFFFFFFFFFFFCULL, | ||
116 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL}, | ||
117 | {0x00000003FFFFFFFCULL,0xFFFFFFFC00000000ULL,0xFFFFFFFFFFFFFFFBULL, | ||
118 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL}, | ||
119 | {0x00000004FFFFFFFBULL,0xFFFFFFFB00000000ULL,0xFFFFFFFFFFFFFFFAULL, | ||
120 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL}, | ||
121 | }; | ||
122 | static const BN_ULONG _nist_p_384_sqr[] = { | ||
123 | 0xFFFFFFFE00000001ULL,0x0000000200000000ULL,0xFFFFFFFE00000000ULL, | ||
124 | 0x0000000200000000ULL,0x0000000000000001ULL,0x0000000000000000ULL, | ||
125 | 0x00000001FFFFFFFEULL,0xFFFFFFFE00000000ULL,0xFFFFFFFFFFFFFFFDULL, | ||
126 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL | ||
127 | }; | ||
128 | static const BN_ULONG _nist_p_521[] = | ||
129 | {0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL, | ||
130 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL, | ||
131 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL, | ||
132 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL, | ||
133 | 0x00000000000001FFULL}; | ||
134 | static const BN_ULONG _nist_p_521_sqr[] = { | ||
135 | 0x0000000000000001ULL,0x0000000000000000ULL,0x0000000000000000ULL, | ||
136 | 0x0000000000000000ULL,0x0000000000000000ULL,0x0000000000000000ULL, | ||
137 | 0x0000000000000000ULL,0x0000000000000000ULL,0xFFFFFFFFFFFFFC00ULL, | ||
138 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL, | ||
139 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL, | ||
140 | 0xFFFFFFFFFFFFFFFFULL,0x000000000003FFFFULL | ||
141 | }; | ||
142 | #elif BN_BITS2 == 32 | ||
143 | static const BN_ULONG _nist_p_192[][BN_NIST_192_TOP] = { | ||
144 | {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFE,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}, | ||
145 | {0xFFFFFFFE,0xFFFFFFFF,0xFFFFFFFD,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}, | ||
146 | {0xFFFFFFFD,0xFFFFFFFF,0xFFFFFFFC,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF} | ||
147 | }; | ||
148 | static const BN_ULONG _nist_p_192_sqr[] = { | ||
149 | 0x00000001,0x00000000,0x00000002,0x00000000,0x00000001,0x00000000, | ||
150 | 0xFFFFFFFE,0xFFFFFFFF,0xFFFFFFFD,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF | ||
151 | }; | ||
152 | static const BN_ULONG _nist_p_224[][BN_NIST_224_TOP] = { | ||
153 | {0x00000001,0x00000000,0x00000000,0xFFFFFFFF, | ||
154 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}, | ||
155 | {0x00000002,0x00000000,0x00000000,0xFFFFFFFE, | ||
156 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF} | ||
157 | }; | ||
158 | static const BN_ULONG _nist_p_224_sqr[] = { | ||
159 | 0x00000001,0x00000000,0x00000000,0xFFFFFFFE, | ||
160 | 0xFFFFFFFF,0xFFFFFFFF,0x00000000,0x00000002, | ||
161 | 0x00000000,0x00000000,0xFFFFFFFE,0xFFFFFFFF, | ||
162 | 0xFFFFFFFF,0xFFFFFFFF | ||
163 | }; | ||
164 | static const BN_ULONG _nist_p_256[][BN_NIST_256_TOP] = { | ||
165 | {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0x00000000, | ||
166 | 0x00000000,0x00000000,0x00000001,0xFFFFFFFF}, | ||
167 | {0xFFFFFFFE,0xFFFFFFFF,0xFFFFFFFF,0x00000001, | ||
168 | 0x00000000,0x00000000,0x00000002,0xFFFFFFFE}, | ||
169 | {0xFFFFFFFD,0xFFFFFFFF,0xFFFFFFFF,0x00000002, | ||
170 | 0x00000000,0x00000000,0x00000003,0xFFFFFFFD}, | ||
171 | {0xFFFFFFFC,0xFFFFFFFF,0xFFFFFFFF,0x00000003, | ||
172 | 0x00000000,0x00000000,0x00000004,0xFFFFFFFC}, | ||
173 | {0xFFFFFFFB,0xFFFFFFFF,0xFFFFFFFF,0x00000004, | ||
174 | 0x00000000,0x00000000,0x00000005,0xFFFFFFFB}, | ||
175 | }; | ||
176 | static const BN_ULONG _nist_p_256_sqr[] = { | ||
177 | 0x00000001,0x00000000,0x00000000,0xFFFFFFFE, | ||
178 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFE,0x00000001, | ||
179 | 0xFFFFFFFE,0x00000001,0xFFFFFFFE,0x00000001, | ||
180 | 0x00000001,0xFFFFFFFE,0x00000002,0xFFFFFFFE | ||
181 | }; | ||
182 | static const BN_ULONG _nist_p_384[][BN_NIST_384_TOP] = { | ||
183 | {0xFFFFFFFF,0x00000000,0x00000000,0xFFFFFFFF,0xFFFFFFFE,0xFFFFFFFF, | ||
184 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}, | ||
185 | {0xFFFFFFFE,0x00000001,0x00000000,0xFFFFFFFE,0xFFFFFFFD,0xFFFFFFFF, | ||
186 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}, | ||
187 | {0xFFFFFFFD,0x00000002,0x00000000,0xFFFFFFFD,0xFFFFFFFC,0xFFFFFFFF, | ||
188 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}, | ||
189 | {0xFFFFFFFC,0x00000003,0x00000000,0xFFFFFFFC,0xFFFFFFFB,0xFFFFFFFF, | ||
190 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}, | ||
191 | {0xFFFFFFFB,0x00000004,0x00000000,0xFFFFFFFB,0xFFFFFFFA,0xFFFFFFFF, | ||
192 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}, | ||
193 | }; | ||
194 | static const BN_ULONG _nist_p_384_sqr[] = { | ||
195 | 0x00000001,0xFFFFFFFE,0x00000000,0x00000002,0x00000000,0xFFFFFFFE, | ||
196 | 0x00000000,0x00000002,0x00000001,0x00000000,0x00000000,0x00000000, | ||
197 | 0xFFFFFFFE,0x00000001,0x00000000,0xFFFFFFFE,0xFFFFFFFD,0xFFFFFFFF, | ||
198 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF | ||
199 | }; | ||
200 | static const BN_ULONG _nist_p_521[] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF, | ||
201 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF, | ||
202 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF, | ||
203 | 0xFFFFFFFF,0x000001FF}; | ||
204 | static const BN_ULONG _nist_p_521_sqr[] = { | ||
205 | 0x00000001,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000, | ||
206 | 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000, | ||
207 | 0x00000000,0x00000000,0x00000000,0x00000000,0xFFFFFC00,0xFFFFFFFF, | ||
208 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF, | ||
209 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF, | ||
210 | 0xFFFFFFFF,0xFFFFFFFF,0x0003FFFF | ||
211 | }; | ||
212 | #else | ||
213 | #error "unsupported BN_BITS2" | ||
214 | #endif | ||
215 | |||
216 | |||
217 | static const BIGNUM _bignum_nist_p_192 = | ||
218 | { | ||
219 | (BN_ULONG *)_nist_p_192[0], | ||
220 | BN_NIST_192_TOP, | ||
221 | BN_NIST_192_TOP, | ||
222 | 0, | ||
223 | BN_FLG_STATIC_DATA | ||
224 | }; | ||
225 | |||
226 | static const BIGNUM _bignum_nist_p_224 = | ||
227 | { | ||
228 | (BN_ULONG *)_nist_p_224[0], | ||
229 | BN_NIST_224_TOP, | ||
230 | BN_NIST_224_TOP, | ||
231 | 0, | ||
232 | BN_FLG_STATIC_DATA | ||
233 | }; | ||
234 | |||
235 | static const BIGNUM _bignum_nist_p_256 = | ||
236 | { | ||
237 | (BN_ULONG *)_nist_p_256[0], | ||
238 | BN_NIST_256_TOP, | ||
239 | BN_NIST_256_TOP, | ||
240 | 0, | ||
241 | BN_FLG_STATIC_DATA | ||
242 | }; | ||
243 | |||
244 | static const BIGNUM _bignum_nist_p_384 = | ||
245 | { | ||
246 | (BN_ULONG *)_nist_p_384[0], | ||
247 | BN_NIST_384_TOP, | ||
248 | BN_NIST_384_TOP, | ||
249 | 0, | ||
250 | BN_FLG_STATIC_DATA | ||
251 | }; | ||
252 | |||
253 | static const BIGNUM _bignum_nist_p_521 = | ||
254 | { | ||
255 | (BN_ULONG *)_nist_p_521, | ||
256 | BN_NIST_521_TOP, | ||
257 | BN_NIST_521_TOP, | ||
258 | 0, | ||
259 | BN_FLG_STATIC_DATA | ||
260 | }; | ||
261 | |||
262 | |||
263 | const BIGNUM *BN_get0_nist_prime_192(void) | ||
264 | { | ||
265 | return &_bignum_nist_p_192; | ||
266 | } | ||
267 | |||
268 | const BIGNUM *BN_get0_nist_prime_224(void) | ||
269 | { | ||
270 | return &_bignum_nist_p_224; | ||
271 | } | ||
272 | |||
273 | const BIGNUM *BN_get0_nist_prime_256(void) | ||
274 | { | ||
275 | return &_bignum_nist_p_256; | ||
276 | } | ||
277 | |||
278 | const BIGNUM *BN_get0_nist_prime_384(void) | ||
279 | { | ||
280 | return &_bignum_nist_p_384; | ||
281 | } | ||
282 | |||
283 | const BIGNUM *BN_get0_nist_prime_521(void) | ||
284 | { | ||
285 | return &_bignum_nist_p_521; | ||
286 | } | ||
287 | |||
288 | |||
289 | static void nist_cp_bn_0(BN_ULONG *buf, BN_ULONG *a, int top, int max) | ||
290 | { | ||
291 | int i; | ||
292 | BN_ULONG *_tmp1 = (buf), *_tmp2 = (a); | ||
293 | |||
294 | #ifdef BN_DEBUG | ||
295 | OPENSSL_assert(top <= max); | ||
296 | #endif | ||
297 | for (i = (top); i != 0; i--) | ||
298 | *_tmp1++ = *_tmp2++; | ||
299 | for (i = (max) - (top); i != 0; i--) | ||
300 | *_tmp1++ = (BN_ULONG) 0; | ||
301 | } | ||
302 | |||
303 | static void nist_cp_bn(BN_ULONG *buf, BN_ULONG *a, int top) | ||
304 | { | ||
305 | int i; | ||
306 | BN_ULONG *_tmp1 = (buf), *_tmp2 = (a); | ||
307 | for (i = (top); i != 0; i--) | ||
308 | *_tmp1++ = *_tmp2++; | ||
309 | } | ||
310 | |||
311 | #if BN_BITS2 == 64 | ||
312 | #define bn_cp_64(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0; | ||
313 | #define bn_64_set_0(to, n) (to)[n] = (BN_ULONG)0; | ||
314 | /* | ||
315 | * two following macros are implemented under assumption that they | ||
316 | * are called in a sequence with *ascending* n, i.e. as they are... | ||
317 | */ | ||
318 | #define bn_cp_32_naked(to, n, from, m) (((n)&1)?(to[(n)/2]|=((m)&1)?(from[(m)/2]&BN_MASK2h):(from[(m)/2]<<32))\ | ||
319 | :(to[(n)/2] =((m)&1)?(from[(m)/2]>>32):(from[(m)/2]&BN_MASK2l))) | ||
320 | #define bn_32_set_0(to, n) (((n)&1)?(to[(n)/2]&=BN_MASK2l):(to[(n)/2]=0)); | ||
321 | #define bn_cp_32(to,n,from,m) ((m)>=0)?bn_cp_32_naked(to,n,from,m):bn_32_set_0(to,n) | ||
322 | #else | ||
323 | #define bn_cp_64(to, n, from, m) \ | ||
324 | { \ | ||
325 | bn_cp_32(to, (n)*2, from, (m)*2); \ | ||
326 | bn_cp_32(to, (n)*2+1, from, (m)*2+1); \ | ||
327 | } | ||
328 | #define bn_64_set_0(to, n) \ | ||
329 | { \ | ||
330 | bn_32_set_0(to, (n)*2); \ | ||
331 | bn_32_set_0(to, (n)*2+1); \ | ||
332 | } | ||
333 | #if BN_BITS2 == 32 | ||
334 | #define bn_cp_32(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0; | ||
335 | #define bn_32_set_0(to, n) (to)[n] = (BN_ULONG)0; | ||
336 | #endif | ||
337 | #endif /* BN_BITS2 != 64 */ | ||
338 | |||
339 | |||
340 | #define nist_set_192(to, from, a1, a2, a3) \ | ||
341 | { \ | ||
342 | bn_cp_64(to, 0, from, (a3) - 3) \ | ||
343 | bn_cp_64(to, 1, from, (a2) - 3) \ | ||
344 | bn_cp_64(to, 2, from, (a1) - 3) \ | ||
345 | } | ||
346 | |||
347 | int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, | ||
348 | BN_CTX *ctx) | ||
349 | { | ||
350 | int top = a->top, i; | ||
351 | int carry; | ||
352 | register BN_ULONG *r_d, *a_d = a->d; | ||
353 | BN_ULONG t_d[BN_NIST_192_TOP], | ||
354 | buf[BN_NIST_192_TOP], | ||
355 | c_d[BN_NIST_192_TOP], | ||
356 | *res; | ||
357 | PTR_SIZE_INT mask; | ||
358 | static const BIGNUM _bignum_nist_p_192_sqr = { | ||
359 | (BN_ULONG *)_nist_p_192_sqr, | ||
360 | sizeof(_nist_p_192_sqr)/sizeof(_nist_p_192_sqr[0]), | ||
361 | sizeof(_nist_p_192_sqr)/sizeof(_nist_p_192_sqr[0]), | ||
362 | 0,BN_FLG_STATIC_DATA }; | ||
363 | |||
364 | field = &_bignum_nist_p_192; /* just to make sure */ | ||
365 | |||
366 | if (BN_is_negative(a) || BN_ucmp(a,&_bignum_nist_p_192_sqr)>=0) | ||
367 | return BN_nnmod(r, a, field, ctx); | ||
368 | |||
369 | i = BN_ucmp(field, a); | ||
370 | if (i == 0) | ||
371 | { | ||
372 | BN_zero(r); | ||
373 | return 1; | ||
374 | } | ||
375 | else if (i > 0) | ||
376 | return (r == a) ? 1 : (BN_copy(r ,a) != NULL); | ||
377 | |||
378 | if (r != a) | ||
379 | { | ||
380 | if (!bn_wexpand(r, BN_NIST_192_TOP)) | ||
381 | return 0; | ||
382 | r_d = r->d; | ||
383 | nist_cp_bn(r_d, a_d, BN_NIST_192_TOP); | ||
384 | } | ||
385 | else | ||
386 | r_d = a_d; | ||
387 | |||
388 | nist_cp_bn_0(buf, a_d + BN_NIST_192_TOP, top - BN_NIST_192_TOP, BN_NIST_192_TOP); | ||
389 | |||
390 | nist_set_192(t_d, buf, 0, 3, 3); | ||
391 | carry = (int)bn_add_words(r_d, r_d, t_d, BN_NIST_192_TOP); | ||
392 | nist_set_192(t_d, buf, 4, 4, 0); | ||
393 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_192_TOP); | ||
394 | nist_set_192(t_d, buf, 5, 5, 5) | ||
395 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_192_TOP); | ||
396 | |||
397 | if (carry > 0) | ||
398 | carry = (int)bn_sub_words(r_d,r_d,_nist_p_192[carry-1],BN_NIST_192_TOP); | ||
399 | else | ||
400 | carry = 1; | ||
401 | |||
402 | /* | ||
403 | * we need 'if (carry==0 || result>=modulus) result-=modulus;' | ||
404 | * as comparison implies subtraction, we can write | ||
405 | * 'tmp=result-modulus; if (!carry || !borrow) result=tmp;' | ||
406 | * this is what happens below, but without explicit if:-) a. | ||
407 | */ | ||
408 | mask = 0-(PTR_SIZE_INT)bn_sub_words(c_d,r_d,_nist_p_192[0],BN_NIST_192_TOP); | ||
409 | mask &= 0-(PTR_SIZE_INT)carry; | ||
410 | res = (BN_ULONG *) | ||
411 | (((PTR_SIZE_INT)c_d&~mask) | ((PTR_SIZE_INT)r_d&mask)); | ||
412 | nist_cp_bn(r_d, res, BN_NIST_192_TOP); | ||
413 | r->top = BN_NIST_192_TOP; | ||
414 | bn_correct_top(r); | ||
415 | |||
416 | return 1; | ||
417 | } | ||
418 | |||
419 | typedef BN_ULONG (*bn_addsub_f)(BN_ULONG *,const BN_ULONG *,const BN_ULONG *,int); | ||
420 | |||
421 | #define nist_set_224(to, from, a1, a2, a3, a4, a5, a6, a7) \ | ||
422 | { \ | ||
423 | bn_cp_32(to, 0, from, (a7) - 7) \ | ||
424 | bn_cp_32(to, 1, from, (a6) - 7) \ | ||
425 | bn_cp_32(to, 2, from, (a5) - 7) \ | ||
426 | bn_cp_32(to, 3, from, (a4) - 7) \ | ||
427 | bn_cp_32(to, 4, from, (a3) - 7) \ | ||
428 | bn_cp_32(to, 5, from, (a2) - 7) \ | ||
429 | bn_cp_32(to, 6, from, (a1) - 7) \ | ||
430 | } | ||
431 | |||
432 | int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, | ||
433 | BN_CTX *ctx) | ||
434 | { | ||
435 | int top = a->top, i; | ||
436 | int carry; | ||
437 | BN_ULONG *r_d, *a_d = a->d; | ||
438 | BN_ULONG t_d[BN_NIST_224_TOP], | ||
439 | buf[BN_NIST_224_TOP], | ||
440 | c_d[BN_NIST_224_TOP], | ||
441 | *res; | ||
442 | PTR_SIZE_INT mask; | ||
443 | union { bn_addsub_f f; PTR_SIZE_INT p; } u; | ||
444 | static const BIGNUM _bignum_nist_p_224_sqr = { | ||
445 | (BN_ULONG *)_nist_p_224_sqr, | ||
446 | sizeof(_nist_p_224_sqr)/sizeof(_nist_p_224_sqr[0]), | ||
447 | sizeof(_nist_p_224_sqr)/sizeof(_nist_p_224_sqr[0]), | ||
448 | 0,BN_FLG_STATIC_DATA }; | ||
449 | |||
450 | |||
451 | field = &_bignum_nist_p_224; /* just to make sure */ | ||
452 | |||
453 | if (BN_is_negative(a) || BN_ucmp(a,&_bignum_nist_p_224_sqr)>=0) | ||
454 | return BN_nnmod(r, a, field, ctx); | ||
455 | |||
456 | i = BN_ucmp(field, a); | ||
457 | if (i == 0) | ||
458 | { | ||
459 | BN_zero(r); | ||
460 | return 1; | ||
461 | } | ||
462 | else if (i > 0) | ||
463 | return (r == a)? 1 : (BN_copy(r ,a) != NULL); | ||
464 | |||
465 | if (r != a) | ||
466 | { | ||
467 | if (!bn_wexpand(r, BN_NIST_224_TOP)) | ||
468 | return 0; | ||
469 | r_d = r->d; | ||
470 | nist_cp_bn(r_d, a_d, BN_NIST_224_TOP); | ||
471 | } | ||
472 | else | ||
473 | r_d = a_d; | ||
474 | |||
475 | #if BN_BITS2==64 | ||
476 | /* copy upper 256 bits of 448 bit number ... */ | ||
477 | nist_cp_bn_0(t_d, a_d + (BN_NIST_224_TOP-1), top - (BN_NIST_224_TOP-1), BN_NIST_224_TOP); | ||
478 | /* ... and right shift by 32 to obtain upper 224 bits */ | ||
479 | nist_set_224(buf, t_d, 14, 13, 12, 11, 10, 9, 8); | ||
480 | /* truncate lower part to 224 bits too */ | ||
481 | r_d[BN_NIST_224_TOP-1] &= BN_MASK2l; | ||
482 | #else | ||
483 | nist_cp_bn_0(buf, a_d + BN_NIST_224_TOP, top - BN_NIST_224_TOP, BN_NIST_224_TOP); | ||
484 | #endif | ||
485 | nist_set_224(t_d, buf, 10, 9, 8, 7, 0, 0, 0); | ||
486 | carry = (int)bn_add_words(r_d, r_d, t_d, BN_NIST_224_TOP); | ||
487 | nist_set_224(t_d, buf, 0, 13, 12, 11, 0, 0, 0); | ||
488 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_224_TOP); | ||
489 | nist_set_224(t_d, buf, 13, 12, 11, 10, 9, 8, 7); | ||
490 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_224_TOP); | ||
491 | nist_set_224(t_d, buf, 0, 0, 0, 0, 13, 12, 11); | ||
492 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_224_TOP); | ||
493 | |||
494 | #if BN_BITS2==64 | ||
495 | carry = (int)(r_d[BN_NIST_224_TOP-1]>>32); | ||
496 | #endif | ||
497 | u.f = bn_sub_words; | ||
498 | if (carry > 0) | ||
499 | { | ||
500 | carry = (int)bn_sub_words(r_d,r_d,_nist_p_224[carry-1],BN_NIST_224_TOP); | ||
501 | #if BN_BITS2==64 | ||
502 | carry=(int)(~(r_d[BN_NIST_224_TOP-1]>>32))&1; | ||
503 | #endif | ||
504 | } | ||
505 | else if (carry < 0) | ||
506 | { | ||
507 | /* it's a bit more comlicated logic in this case. | ||
508 | * if bn_add_words yields no carry, then result | ||
509 | * has to be adjusted by unconditionally *adding* | ||
510 | * the modulus. but if it does, then result has | ||
511 | * to be compared to the modulus and conditionally | ||
512 | * adjusted by *subtracting* the latter. */ | ||
513 | carry = (int)bn_add_words(r_d,r_d,_nist_p_224[-carry-1],BN_NIST_224_TOP); | ||
514 | mask = 0-(PTR_SIZE_INT)carry; | ||
515 | u.p = ((PTR_SIZE_INT)bn_sub_words&mask) | | ||
516 | ((PTR_SIZE_INT)bn_add_words&~mask); | ||
517 | } | ||
518 | else | ||
519 | carry = 1; | ||
520 | |||
521 | /* otherwise it's effectively same as in BN_nist_mod_192... */ | ||
522 | mask = 0-(PTR_SIZE_INT)(*u.f)(c_d,r_d,_nist_p_224[0],BN_NIST_224_TOP); | ||
523 | mask &= 0-(PTR_SIZE_INT)carry; | ||
524 | res = (BN_ULONG *)(((PTR_SIZE_INT)c_d&~mask) | | ||
525 | ((PTR_SIZE_INT)r_d&mask)); | ||
526 | nist_cp_bn(r_d, res, BN_NIST_224_TOP); | ||
527 | r->top = BN_NIST_224_TOP; | ||
528 | bn_correct_top(r); | ||
529 | |||
530 | return 1; | ||
531 | } | ||
532 | |||
533 | #define nist_set_256(to, from, a1, a2, a3, a4, a5, a6, a7, a8) \ | ||
534 | { \ | ||
535 | bn_cp_32(to, 0, from, (a8) - 8) \ | ||
536 | bn_cp_32(to, 1, from, (a7) - 8) \ | ||
537 | bn_cp_32(to, 2, from, (a6) - 8) \ | ||
538 | bn_cp_32(to, 3, from, (a5) - 8) \ | ||
539 | bn_cp_32(to, 4, from, (a4) - 8) \ | ||
540 | bn_cp_32(to, 5, from, (a3) - 8) \ | ||
541 | bn_cp_32(to, 6, from, (a2) - 8) \ | ||
542 | bn_cp_32(to, 7, from, (a1) - 8) \ | ||
543 | } | ||
544 | |||
545 | int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, | ||
546 | BN_CTX *ctx) | ||
547 | { | ||
548 | int i, top = a->top; | ||
549 | int carry = 0; | ||
550 | register BN_ULONG *a_d = a->d, *r_d; | ||
551 | BN_ULONG t_d[BN_NIST_256_TOP], | ||
552 | buf[BN_NIST_256_TOP], | ||
553 | c_d[BN_NIST_256_TOP], | ||
554 | *res; | ||
555 | PTR_SIZE_INT mask; | ||
556 | union { bn_addsub_f f; PTR_SIZE_INT p; } u; | ||
557 | static const BIGNUM _bignum_nist_p_256_sqr = { | ||
558 | (BN_ULONG *)_nist_p_256_sqr, | ||
559 | sizeof(_nist_p_256_sqr)/sizeof(_nist_p_256_sqr[0]), | ||
560 | sizeof(_nist_p_256_sqr)/sizeof(_nist_p_256_sqr[0]), | ||
561 | 0,BN_FLG_STATIC_DATA }; | ||
562 | |||
563 | field = &_bignum_nist_p_256; /* just to make sure */ | ||
564 | |||
565 | if (BN_is_negative(a) || BN_ucmp(a,&_bignum_nist_p_256_sqr)>=0) | ||
566 | return BN_nnmod(r, a, field, ctx); | ||
567 | |||
568 | i = BN_ucmp(field, a); | ||
569 | if (i == 0) | ||
570 | { | ||
571 | BN_zero(r); | ||
572 | return 1; | ||
573 | } | ||
574 | else if (i > 0) | ||
575 | return (r == a)? 1 : (BN_copy(r ,a) != NULL); | ||
576 | |||
577 | if (r != a) | ||
578 | { | ||
579 | if (!bn_wexpand(r, BN_NIST_256_TOP)) | ||
580 | return 0; | ||
581 | r_d = r->d; | ||
582 | nist_cp_bn(r_d, a_d, BN_NIST_256_TOP); | ||
583 | } | ||
584 | else | ||
585 | r_d = a_d; | ||
586 | |||
587 | nist_cp_bn_0(buf, a_d + BN_NIST_256_TOP, top - BN_NIST_256_TOP, BN_NIST_256_TOP); | ||
588 | |||
589 | /*S1*/ | ||
590 | nist_set_256(t_d, buf, 15, 14, 13, 12, 11, 0, 0, 0); | ||
591 | /*S2*/ | ||
592 | nist_set_256(c_d, buf, 0, 15, 14, 13, 12, 0, 0, 0); | ||
593 | carry = (int)bn_add_words(t_d, t_d, c_d, BN_NIST_256_TOP); | ||
594 | /* left shift */ | ||
595 | { | ||
596 | register BN_ULONG *ap,t,c; | ||
597 | ap = t_d; | ||
598 | c=0; | ||
599 | for (i = BN_NIST_256_TOP; i != 0; --i) | ||
600 | { | ||
601 | t= *ap; | ||
602 | *(ap++)=((t<<1)|c)&BN_MASK2; | ||
603 | c=(t & BN_TBIT)?1:0; | ||
604 | } | ||
605 | carry <<= 1; | ||
606 | carry |= c; | ||
607 | } | ||
608 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_256_TOP); | ||
609 | /*S3*/ | ||
610 | nist_set_256(t_d, buf, 15, 14, 0, 0, 0, 10, 9, 8); | ||
611 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_256_TOP); | ||
612 | /*S4*/ | ||
613 | nist_set_256(t_d, buf, 8, 13, 15, 14, 13, 11, 10, 9); | ||
614 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_256_TOP); | ||
615 | /*D1*/ | ||
616 | nist_set_256(t_d, buf, 10, 8, 0, 0, 0, 13, 12, 11); | ||
617 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP); | ||
618 | /*D2*/ | ||
619 | nist_set_256(t_d, buf, 11, 9, 0, 0, 15, 14, 13, 12); | ||
620 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP); | ||
621 | /*D3*/ | ||
622 | nist_set_256(t_d, buf, 12, 0, 10, 9, 8, 15, 14, 13); | ||
623 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP); | ||
624 | /*D4*/ | ||
625 | nist_set_256(t_d, buf, 13, 0, 11, 10, 9, 0, 15, 14); | ||
626 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP); | ||
627 | |||
628 | /* see BN_nist_mod_224 for explanation */ | ||
629 | u.f = bn_sub_words; | ||
630 | if (carry > 0) | ||
631 | carry = (int)bn_sub_words(r_d,r_d,_nist_p_256[carry-1],BN_NIST_256_TOP); | ||
632 | else if (carry < 0) | ||
633 | { | ||
634 | carry = (int)bn_add_words(r_d,r_d,_nist_p_256[-carry-1],BN_NIST_256_TOP); | ||
635 | mask = 0-(PTR_SIZE_INT)carry; | ||
636 | u.p = ((PTR_SIZE_INT)bn_sub_words&mask) | | ||
637 | ((PTR_SIZE_INT)bn_add_words&~mask); | ||
638 | } | ||
639 | else | ||
640 | carry = 1; | ||
641 | |||
642 | mask = 0-(PTR_SIZE_INT)(*u.f)(c_d,r_d,_nist_p_256[0],BN_NIST_256_TOP); | ||
643 | mask &= 0-(PTR_SIZE_INT)carry; | ||
644 | res = (BN_ULONG *)(((PTR_SIZE_INT)c_d&~mask) | | ||
645 | ((PTR_SIZE_INT)r_d&mask)); | ||
646 | nist_cp_bn(r_d, res, BN_NIST_256_TOP); | ||
647 | r->top = BN_NIST_256_TOP; | ||
648 | bn_correct_top(r); | ||
649 | |||
650 | return 1; | ||
651 | } | ||
652 | |||
653 | #define nist_set_384(to,from,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12) \ | ||
654 | { \ | ||
655 | bn_cp_32(to, 0, from, (a12) - 12) \ | ||
656 | bn_cp_32(to, 1, from, (a11) - 12) \ | ||
657 | bn_cp_32(to, 2, from, (a10) - 12) \ | ||
658 | bn_cp_32(to, 3, from, (a9) - 12) \ | ||
659 | bn_cp_32(to, 4, from, (a8) - 12) \ | ||
660 | bn_cp_32(to, 5, from, (a7) - 12) \ | ||
661 | bn_cp_32(to, 6, from, (a6) - 12) \ | ||
662 | bn_cp_32(to, 7, from, (a5) - 12) \ | ||
663 | bn_cp_32(to, 8, from, (a4) - 12) \ | ||
664 | bn_cp_32(to, 9, from, (a3) - 12) \ | ||
665 | bn_cp_32(to, 10, from, (a2) - 12) \ | ||
666 | bn_cp_32(to, 11, from, (a1) - 12) \ | ||
667 | } | ||
668 | |||
669 | int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, | ||
670 | BN_CTX *ctx) | ||
671 | { | ||
672 | int i, top = a->top; | ||
673 | int carry = 0; | ||
674 | register BN_ULONG *r_d, *a_d = a->d; | ||
675 | BN_ULONG t_d[BN_NIST_384_TOP], | ||
676 | buf[BN_NIST_384_TOP], | ||
677 | c_d[BN_NIST_384_TOP], | ||
678 | *res; | ||
679 | PTR_SIZE_INT mask; | ||
680 | union { bn_addsub_f f; PTR_SIZE_INT p; } u; | ||
681 | static const BIGNUM _bignum_nist_p_384_sqr = { | ||
682 | (BN_ULONG *)_nist_p_384_sqr, | ||
683 | sizeof(_nist_p_384_sqr)/sizeof(_nist_p_384_sqr[0]), | ||
684 | sizeof(_nist_p_384_sqr)/sizeof(_nist_p_384_sqr[0]), | ||
685 | 0,BN_FLG_STATIC_DATA }; | ||
686 | |||
687 | |||
688 | field = &_bignum_nist_p_384; /* just to make sure */ | ||
689 | |||
690 | if (BN_is_negative(a) || BN_ucmp(a,&_bignum_nist_p_384_sqr)>=0) | ||
691 | return BN_nnmod(r, a, field, ctx); | ||
692 | |||
693 | i = BN_ucmp(field, a); | ||
694 | if (i == 0) | ||
695 | { | ||
696 | BN_zero(r); | ||
697 | return 1; | ||
698 | } | ||
699 | else if (i > 0) | ||
700 | return (r == a)? 1 : (BN_copy(r ,a) != NULL); | ||
701 | |||
702 | if (r != a) | ||
703 | { | ||
704 | if (!bn_wexpand(r, BN_NIST_384_TOP)) | ||
705 | return 0; | ||
706 | r_d = r->d; | ||
707 | nist_cp_bn(r_d, a_d, BN_NIST_384_TOP); | ||
708 | } | ||
709 | else | ||
710 | r_d = a_d; | ||
711 | |||
712 | nist_cp_bn_0(buf, a_d + BN_NIST_384_TOP, top - BN_NIST_384_TOP, BN_NIST_384_TOP); | ||
713 | |||
714 | /*S1*/ | ||
715 | nist_set_256(t_d, buf, 0, 0, 0, 0, 0, 23-4, 22-4, 21-4); | ||
716 | /* left shift */ | ||
717 | { | ||
718 | register BN_ULONG *ap,t,c; | ||
719 | ap = t_d; | ||
720 | c=0; | ||
721 | for (i = 3; i != 0; --i) | ||
722 | { | ||
723 | t= *ap; | ||
724 | *(ap++)=((t<<1)|c)&BN_MASK2; | ||
725 | c=(t & BN_TBIT)?1:0; | ||
726 | } | ||
727 | *ap=c; | ||
728 | } | ||
729 | carry = (int)bn_add_words(r_d+(128/BN_BITS2), r_d+(128/BN_BITS2), | ||
730 | t_d, BN_NIST_256_TOP); | ||
731 | /*S2 */ | ||
732 | carry += (int)bn_add_words(r_d, r_d, buf, BN_NIST_384_TOP); | ||
733 | /*S3*/ | ||
734 | nist_set_384(t_d,buf,20,19,18,17,16,15,14,13,12,23,22,21); | ||
735 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP); | ||
736 | /*S4*/ | ||
737 | nist_set_384(t_d,buf,19,18,17,16,15,14,13,12,20,0,23,0); | ||
738 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP); | ||
739 | /*S5*/ | ||
740 | nist_set_384(t_d, buf,0,0,0,0,23,22,21,20,0,0,0,0); | ||
741 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP); | ||
742 | /*S6*/ | ||
743 | nist_set_384(t_d,buf,0,0,0,0,0,0,23,22,21,0,0,20); | ||
744 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP); | ||
745 | /*D1*/ | ||
746 | nist_set_384(t_d,buf,22,21,20,19,18,17,16,15,14,13,12,23); | ||
747 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP); | ||
748 | /*D2*/ | ||
749 | nist_set_384(t_d,buf,0,0,0,0,0,0,0,23,22,21,20,0); | ||
750 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP); | ||
751 | /*D3*/ | ||
752 | nist_set_384(t_d,buf,0,0,0,0,0,0,0,23,23,0,0,0); | ||
753 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP); | ||
754 | |||
755 | /* see BN_nist_mod_224 for explanation */ | ||
756 | u.f = bn_sub_words; | ||
757 | if (carry > 0) | ||
758 | carry = (int)bn_sub_words(r_d,r_d,_nist_p_384[carry-1],BN_NIST_384_TOP); | ||
759 | else if (carry < 0) | ||
760 | { | ||
761 | carry = (int)bn_add_words(r_d,r_d,_nist_p_384[-carry-1],BN_NIST_384_TOP); | ||
762 | mask = 0-(PTR_SIZE_INT)carry; | ||
763 | u.p = ((PTR_SIZE_INT)bn_sub_words&mask) | | ||
764 | ((PTR_SIZE_INT)bn_add_words&~mask); | ||
765 | } | ||
766 | else | ||
767 | carry = 1; | ||
768 | |||
769 | mask = 0-(PTR_SIZE_INT)(*u.f)(c_d,r_d,_nist_p_384[0],BN_NIST_384_TOP); | ||
770 | mask &= 0-(PTR_SIZE_INT)carry; | ||
771 | res = (BN_ULONG *)(((PTR_SIZE_INT)c_d&~mask) | | ||
772 | ((PTR_SIZE_INT)r_d&mask)); | ||
773 | nist_cp_bn(r_d, res, BN_NIST_384_TOP); | ||
774 | r->top = BN_NIST_384_TOP; | ||
775 | bn_correct_top(r); | ||
776 | |||
777 | return 1; | ||
778 | } | ||
779 | |||
780 | #define BN_NIST_521_RSHIFT (521%BN_BITS2) | ||
781 | #define BN_NIST_521_LSHIFT (BN_BITS2-BN_NIST_521_RSHIFT) | ||
782 | #define BN_NIST_521_TOP_MASK ((BN_ULONG)BN_MASK2>>BN_NIST_521_LSHIFT) | ||
783 | |||
784 | int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, | ||
785 | BN_CTX *ctx) | ||
786 | { | ||
787 | int top = a->top, i; | ||
788 | BN_ULONG *r_d, *a_d = a->d, | ||
789 | t_d[BN_NIST_521_TOP], | ||
790 | val,tmp,*res; | ||
791 | PTR_SIZE_INT mask; | ||
792 | static const BIGNUM _bignum_nist_p_521_sqr = { | ||
793 | (BN_ULONG *)_nist_p_521_sqr, | ||
794 | sizeof(_nist_p_521_sqr)/sizeof(_nist_p_521_sqr[0]), | ||
795 | sizeof(_nist_p_521_sqr)/sizeof(_nist_p_521_sqr[0]), | ||
796 | 0,BN_FLG_STATIC_DATA }; | ||
797 | |||
798 | field = &_bignum_nist_p_521; /* just to make sure */ | ||
799 | |||
800 | if (BN_is_negative(a) || BN_ucmp(a,&_bignum_nist_p_521_sqr)>=0) | ||
801 | return BN_nnmod(r, a, field, ctx); | ||
802 | |||
803 | i = BN_ucmp(field, a); | ||
804 | if (i == 0) | ||
805 | { | ||
806 | BN_zero(r); | ||
807 | return 1; | ||
808 | } | ||
809 | else if (i > 0) | ||
810 | return (r == a)? 1 : (BN_copy(r ,a) != NULL); | ||
811 | |||
812 | if (r != a) | ||
813 | { | ||
814 | if (!bn_wexpand(r,BN_NIST_521_TOP)) | ||
815 | return 0; | ||
816 | r_d = r->d; | ||
817 | nist_cp_bn(r_d,a_d, BN_NIST_521_TOP); | ||
818 | } | ||
819 | else | ||
820 | r_d = a_d; | ||
821 | |||
822 | /* upper 521 bits, copy ... */ | ||
823 | nist_cp_bn_0(t_d,a_d + (BN_NIST_521_TOP-1), top - (BN_NIST_521_TOP-1),BN_NIST_521_TOP); | ||
824 | /* ... and right shift */ | ||
825 | for (val=t_d[0],i=0; i<BN_NIST_521_TOP-1; i++) | ||
826 | { | ||
827 | tmp = val>>BN_NIST_521_RSHIFT; | ||
828 | val = t_d[i+1]; | ||
829 | t_d[i] = (tmp | val<<BN_NIST_521_LSHIFT) & BN_MASK2; | ||
830 | } | ||
831 | t_d[i] = val>>BN_NIST_521_RSHIFT; | ||
832 | /* lower 521 bits */ | ||
833 | r_d[i] &= BN_NIST_521_TOP_MASK; | ||
834 | |||
835 | bn_add_words(r_d,r_d,t_d,BN_NIST_521_TOP); | ||
836 | mask = 0-(PTR_SIZE_INT)bn_sub_words(t_d,r_d,_nist_p_521,BN_NIST_521_TOP); | ||
837 | res = (BN_ULONG *)(((PTR_SIZE_INT)t_d&~mask) | | ||
838 | ((PTR_SIZE_INT)r_d&mask)); | ||
839 | nist_cp_bn(r_d,res,BN_NIST_521_TOP); | ||
840 | r->top = BN_NIST_521_TOP; | ||
841 | bn_correct_top(r); | ||
842 | |||
843 | return 1; | ||
844 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_prime.c b/src/lib/libcrypto/bn/bn_prime.c deleted file mode 100644 index 7b25979dd1..0000000000 --- a/src/lib/libcrypto/bn/bn_prime.c +++ /dev/null | |||
@@ -1,494 +0,0 @@ | |||
1 | /* crypto/bn/bn_prime.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include <stdio.h> | ||
113 | #include <time.h> | ||
114 | #include "cryptlib.h" | ||
115 | #include "bn_lcl.h" | ||
116 | #include <openssl/rand.h> | ||
117 | |||
118 | /* NB: these functions have been "upgraded", the deprecated versions (which are | ||
119 | * compatibility wrappers using these functions) are in bn_depr.c. | ||
120 | * - Geoff | ||
121 | */ | ||
122 | |||
123 | /* The quick sieve algorithm approach to weeding out primes is | ||
124 | * Philip Zimmermann's, as implemented in PGP. I have had a read of | ||
125 | * his comments and implemented my own version. | ||
126 | */ | ||
127 | #include "bn_prime.h" | ||
128 | |||
129 | static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, | ||
130 | const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont); | ||
131 | static int probable_prime(BIGNUM *rnd, int bits); | ||
132 | static int probable_prime_dh(BIGNUM *rnd, int bits, | ||
133 | const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); | ||
134 | static int probable_prime_dh_safe(BIGNUM *rnd, int bits, | ||
135 | const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); | ||
136 | |||
137 | int BN_GENCB_call(BN_GENCB *cb, int a, int b) | ||
138 | { | ||
139 | /* No callback means continue */ | ||
140 | if(!cb) return 1; | ||
141 | switch(cb->ver) | ||
142 | { | ||
143 | case 1: | ||
144 | /* Deprecated-style callbacks */ | ||
145 | if(!cb->cb.cb_1) | ||
146 | return 1; | ||
147 | cb->cb.cb_1(a, b, cb->arg); | ||
148 | return 1; | ||
149 | case 2: | ||
150 | /* New-style callbacks */ | ||
151 | return cb->cb.cb_2(a, b, cb); | ||
152 | default: | ||
153 | break; | ||
154 | } | ||
155 | /* Unrecognised callback type */ | ||
156 | return 0; | ||
157 | } | ||
158 | |||
159 | int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, | ||
160 | const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb) | ||
161 | { | ||
162 | BIGNUM *t; | ||
163 | int found=0; | ||
164 | int i,j,c1=0; | ||
165 | BN_CTX *ctx; | ||
166 | int checks = BN_prime_checks_for_size(bits); | ||
167 | |||
168 | ctx=BN_CTX_new(); | ||
169 | if (ctx == NULL) goto err; | ||
170 | BN_CTX_start(ctx); | ||
171 | t = BN_CTX_get(ctx); | ||
172 | if(!t) goto err; | ||
173 | loop: | ||
174 | /* make a random number and set the top and bottom bits */ | ||
175 | if (add == NULL) | ||
176 | { | ||
177 | if (!probable_prime(ret,bits)) goto err; | ||
178 | } | ||
179 | else | ||
180 | { | ||
181 | if (safe) | ||
182 | { | ||
183 | if (!probable_prime_dh_safe(ret,bits,add,rem,ctx)) | ||
184 | goto err; | ||
185 | } | ||
186 | else | ||
187 | { | ||
188 | if (!probable_prime_dh(ret,bits,add,rem,ctx)) | ||
189 | goto err; | ||
190 | } | ||
191 | } | ||
192 | /* if (BN_mod_word(ret,(BN_ULONG)3) == 1) goto loop; */ | ||
193 | if(!BN_GENCB_call(cb, 0, c1++)) | ||
194 | /* aborted */ | ||
195 | goto err; | ||
196 | |||
197 | if (!safe) | ||
198 | { | ||
199 | i=BN_is_prime_fasttest_ex(ret,checks,ctx,0,cb); | ||
200 | if (i == -1) goto err; | ||
201 | if (i == 0) goto loop; | ||
202 | } | ||
203 | else | ||
204 | { | ||
205 | /* for "safe prime" generation, | ||
206 | * check that (p-1)/2 is prime. | ||
207 | * Since a prime is odd, We just | ||
208 | * need to divide by 2 */ | ||
209 | if (!BN_rshift1(t,ret)) goto err; | ||
210 | |||
211 | for (i=0; i<checks; i++) | ||
212 | { | ||
213 | j=BN_is_prime_fasttest_ex(ret,1,ctx,0,cb); | ||
214 | if (j == -1) goto err; | ||
215 | if (j == 0) goto loop; | ||
216 | |||
217 | j=BN_is_prime_fasttest_ex(t,1,ctx,0,cb); | ||
218 | if (j == -1) goto err; | ||
219 | if (j == 0) goto loop; | ||
220 | |||
221 | if(!BN_GENCB_call(cb, 2, c1-1)) | ||
222 | goto err; | ||
223 | /* We have a safe prime test pass */ | ||
224 | } | ||
225 | } | ||
226 | /* we have a prime :-) */ | ||
227 | found = 1; | ||
228 | err: | ||
229 | if (ctx != NULL) | ||
230 | { | ||
231 | BN_CTX_end(ctx); | ||
232 | BN_CTX_free(ctx); | ||
233 | } | ||
234 | bn_check_top(ret); | ||
235 | return found; | ||
236 | } | ||
237 | |||
238 | int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, BN_GENCB *cb) | ||
239 | { | ||
240 | return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb); | ||
241 | } | ||
242 | |||
243 | int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, | ||
244 | int do_trial_division, BN_GENCB *cb) | ||
245 | { | ||
246 | int i, j, ret = -1; | ||
247 | int k; | ||
248 | BN_CTX *ctx = NULL; | ||
249 | BIGNUM *A1, *A1_odd, *check; /* taken from ctx */ | ||
250 | BN_MONT_CTX *mont = NULL; | ||
251 | const BIGNUM *A = NULL; | ||
252 | |||
253 | if (BN_cmp(a, BN_value_one()) <= 0) | ||
254 | return 0; | ||
255 | |||
256 | if (checks == BN_prime_checks) | ||
257 | checks = BN_prime_checks_for_size(BN_num_bits(a)); | ||
258 | |||
259 | /* first look for small factors */ | ||
260 | if (!BN_is_odd(a)) | ||
261 | /* a is even => a is prime if and only if a == 2 */ | ||
262 | return BN_is_word(a, 2); | ||
263 | if (do_trial_division) | ||
264 | { | ||
265 | for (i = 1; i < NUMPRIMES; i++) | ||
266 | if (BN_mod_word(a, primes[i]) == 0) | ||
267 | return 0; | ||
268 | if(!BN_GENCB_call(cb, 1, -1)) | ||
269 | goto err; | ||
270 | } | ||
271 | |||
272 | if (ctx_passed != NULL) | ||
273 | ctx = ctx_passed; | ||
274 | else | ||
275 | if ((ctx=BN_CTX_new()) == NULL) | ||
276 | goto err; | ||
277 | BN_CTX_start(ctx); | ||
278 | |||
279 | /* A := abs(a) */ | ||
280 | if (a->neg) | ||
281 | { | ||
282 | BIGNUM *t; | ||
283 | if ((t = BN_CTX_get(ctx)) == NULL) goto err; | ||
284 | BN_copy(t, a); | ||
285 | t->neg = 0; | ||
286 | A = t; | ||
287 | } | ||
288 | else | ||
289 | A = a; | ||
290 | A1 = BN_CTX_get(ctx); | ||
291 | A1_odd = BN_CTX_get(ctx); | ||
292 | check = BN_CTX_get(ctx); | ||
293 | if (check == NULL) goto err; | ||
294 | |||
295 | /* compute A1 := A - 1 */ | ||
296 | if (!BN_copy(A1, A)) | ||
297 | goto err; | ||
298 | if (!BN_sub_word(A1, 1)) | ||
299 | goto err; | ||
300 | if (BN_is_zero(A1)) | ||
301 | { | ||
302 | ret = 0; | ||
303 | goto err; | ||
304 | } | ||
305 | |||
306 | /* write A1 as A1_odd * 2^k */ | ||
307 | k = 1; | ||
308 | while (!BN_is_bit_set(A1, k)) | ||
309 | k++; | ||
310 | if (!BN_rshift(A1_odd, A1, k)) | ||
311 | goto err; | ||
312 | |||
313 | /* Montgomery setup for computations mod A */ | ||
314 | mont = BN_MONT_CTX_new(); | ||
315 | if (mont == NULL) | ||
316 | goto err; | ||
317 | if (!BN_MONT_CTX_set(mont, A, ctx)) | ||
318 | goto err; | ||
319 | |||
320 | for (i = 0; i < checks; i++) | ||
321 | { | ||
322 | if (!BN_pseudo_rand_range(check, A1)) | ||
323 | goto err; | ||
324 | if (!BN_add_word(check, 1)) | ||
325 | goto err; | ||
326 | /* now 1 <= check < A */ | ||
327 | |||
328 | j = witness(check, A, A1, A1_odd, k, ctx, mont); | ||
329 | if (j == -1) goto err; | ||
330 | if (j) | ||
331 | { | ||
332 | ret=0; | ||
333 | goto err; | ||
334 | } | ||
335 | if(!BN_GENCB_call(cb, 1, i)) | ||
336 | goto err; | ||
337 | } | ||
338 | ret=1; | ||
339 | err: | ||
340 | if (ctx != NULL) | ||
341 | { | ||
342 | BN_CTX_end(ctx); | ||
343 | if (ctx_passed == NULL) | ||
344 | BN_CTX_free(ctx); | ||
345 | } | ||
346 | if (mont != NULL) | ||
347 | BN_MONT_CTX_free(mont); | ||
348 | |||
349 | return(ret); | ||
350 | } | ||
351 | |||
352 | static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, | ||
353 | const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont) | ||
354 | { | ||
355 | if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */ | ||
356 | return -1; | ||
357 | if (BN_is_one(w)) | ||
358 | return 0; /* probably prime */ | ||
359 | if (BN_cmp(w, a1) == 0) | ||
360 | return 0; /* w == -1 (mod a), 'a' is probably prime */ | ||
361 | while (--k) | ||
362 | { | ||
363 | if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */ | ||
364 | return -1; | ||
365 | if (BN_is_one(w)) | ||
366 | return 1; /* 'a' is composite, otherwise a previous 'w' would | ||
367 | * have been == -1 (mod 'a') */ | ||
368 | if (BN_cmp(w, a1) == 0) | ||
369 | return 0; /* w == -1 (mod a), 'a' is probably prime */ | ||
370 | } | ||
371 | /* If we get here, 'w' is the (a-1)/2-th power of the original 'w', | ||
372 | * and it is neither -1 nor +1 -- so 'a' cannot be prime */ | ||
373 | bn_check_top(w); | ||
374 | return 1; | ||
375 | } | ||
376 | |||
377 | static int probable_prime(BIGNUM *rnd, int bits) | ||
378 | { | ||
379 | int i; | ||
380 | prime_t mods[NUMPRIMES]; | ||
381 | BN_ULONG delta,maxdelta; | ||
382 | |||
383 | again: | ||
384 | if (!BN_rand(rnd,bits,1,1)) return(0); | ||
385 | /* we now have a random number 'rand' to test. */ | ||
386 | for (i=1; i<NUMPRIMES; i++) | ||
387 | mods[i]=(prime_t)BN_mod_word(rnd,(BN_ULONG)primes[i]); | ||
388 | maxdelta=BN_MASK2 - primes[NUMPRIMES-1]; | ||
389 | delta=0; | ||
390 | loop: for (i=1; i<NUMPRIMES; i++) | ||
391 | { | ||
392 | /* check that rnd is not a prime and also | ||
393 | * that gcd(rnd-1,primes) == 1 (except for 2) */ | ||
394 | if (((mods[i]+delta)%primes[i]) <= 1) | ||
395 | { | ||
396 | delta+=2; | ||
397 | if (delta > maxdelta) goto again; | ||
398 | goto loop; | ||
399 | } | ||
400 | } | ||
401 | if (!BN_add_word(rnd,delta)) return(0); | ||
402 | bn_check_top(rnd); | ||
403 | return(1); | ||
404 | } | ||
405 | |||
406 | static int probable_prime_dh(BIGNUM *rnd, int bits, | ||
407 | const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx) | ||
408 | { | ||
409 | int i,ret=0; | ||
410 | BIGNUM *t1; | ||
411 | |||
412 | BN_CTX_start(ctx); | ||
413 | if ((t1 = BN_CTX_get(ctx)) == NULL) goto err; | ||
414 | |||
415 | if (!BN_rand(rnd,bits,0,1)) goto err; | ||
416 | |||
417 | /* we need ((rnd-rem) % add) == 0 */ | ||
418 | |||
419 | if (!BN_mod(t1,rnd,add,ctx)) goto err; | ||
420 | if (!BN_sub(rnd,rnd,t1)) goto err; | ||
421 | if (rem == NULL) | ||
422 | { if (!BN_add_word(rnd,1)) goto err; } | ||
423 | else | ||
424 | { if (!BN_add(rnd,rnd,rem)) goto err; } | ||
425 | |||
426 | /* we now have a random number 'rand' to test. */ | ||
427 | |||
428 | loop: for (i=1; i<NUMPRIMES; i++) | ||
429 | { | ||
430 | /* check that rnd is a prime */ | ||
431 | if (BN_mod_word(rnd,(BN_ULONG)primes[i]) <= 1) | ||
432 | { | ||
433 | if (!BN_add(rnd,rnd,add)) goto err; | ||
434 | goto loop; | ||
435 | } | ||
436 | } | ||
437 | ret=1; | ||
438 | err: | ||
439 | BN_CTX_end(ctx); | ||
440 | bn_check_top(rnd); | ||
441 | return(ret); | ||
442 | } | ||
443 | |||
444 | static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd, | ||
445 | const BIGNUM *rem, BN_CTX *ctx) | ||
446 | { | ||
447 | int i,ret=0; | ||
448 | BIGNUM *t1,*qadd,*q; | ||
449 | |||
450 | bits--; | ||
451 | BN_CTX_start(ctx); | ||
452 | t1 = BN_CTX_get(ctx); | ||
453 | q = BN_CTX_get(ctx); | ||
454 | qadd = BN_CTX_get(ctx); | ||
455 | if (qadd == NULL) goto err; | ||
456 | |||
457 | if (!BN_rshift1(qadd,padd)) goto err; | ||
458 | |||
459 | if (!BN_rand(q,bits,0,1)) goto err; | ||
460 | |||
461 | /* we need ((rnd-rem) % add) == 0 */ | ||
462 | if (!BN_mod(t1,q,qadd,ctx)) goto err; | ||
463 | if (!BN_sub(q,q,t1)) goto err; | ||
464 | if (rem == NULL) | ||
465 | { if (!BN_add_word(q,1)) goto err; } | ||
466 | else | ||
467 | { | ||
468 | if (!BN_rshift1(t1,rem)) goto err; | ||
469 | if (!BN_add(q,q,t1)) goto err; | ||
470 | } | ||
471 | |||
472 | /* we now have a random number 'rand' to test. */ | ||
473 | if (!BN_lshift1(p,q)) goto err; | ||
474 | if (!BN_add_word(p,1)) goto err; | ||
475 | |||
476 | loop: for (i=1; i<NUMPRIMES; i++) | ||
477 | { | ||
478 | /* check that p and q are prime */ | ||
479 | /* check that for p and q | ||
480 | * gcd(p-1,primes) == 1 (except for 2) */ | ||
481 | if ( (BN_mod_word(p,(BN_ULONG)primes[i]) == 0) || | ||
482 | (BN_mod_word(q,(BN_ULONG)primes[i]) == 0)) | ||
483 | { | ||
484 | if (!BN_add(p,p,padd)) goto err; | ||
485 | if (!BN_add(q,q,qadd)) goto err; | ||
486 | goto loop; | ||
487 | } | ||
488 | } | ||
489 | ret=1; | ||
490 | err: | ||
491 | BN_CTX_end(ctx); | ||
492 | bn_check_top(p); | ||
493 | return(ret); | ||
494 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_prime.h b/src/lib/libcrypto/bn/bn_prime.h deleted file mode 100644 index 51d2194feb..0000000000 --- a/src/lib/libcrypto/bn/bn_prime.h +++ /dev/null | |||
@@ -1,327 +0,0 @@ | |||
1 | /* Auto generated by bn_prime.pl */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #ifndef EIGHT_BIT | ||
60 | #define NUMPRIMES 2048 | ||
61 | typedef unsigned short prime_t; | ||
62 | #else | ||
63 | #define NUMPRIMES 54 | ||
64 | typedef unsigned char prime_t; | ||
65 | #endif | ||
66 | static const prime_t primes[NUMPRIMES]= | ||
67 | { | ||
68 | 2, 3, 5, 7, 11, 13, 17, 19, | ||
69 | 23, 29, 31, 37, 41, 43, 47, 53, | ||
70 | 59, 61, 67, 71, 73, 79, 83, 89, | ||
71 | 97, 101, 103, 107, 109, 113, 127, 131, | ||
72 | 137, 139, 149, 151, 157, 163, 167, 173, | ||
73 | 179, 181, 191, 193, 197, 199, 211, 223, | ||
74 | 227, 229, 233, 239, 241, 251, | ||
75 | #ifndef EIGHT_BIT | ||
76 | 257, 263, | ||
77 | 269, 271, 277, 281, 283, 293, 307, 311, | ||
78 | 313, 317, 331, 337, 347, 349, 353, 359, | ||
79 | 367, 373, 379, 383, 389, 397, 401, 409, | ||
80 | 419, 421, 431, 433, 439, 443, 449, 457, | ||
81 | 461, 463, 467, 479, 487, 491, 499, 503, | ||
82 | 509, 521, 523, 541, 547, 557, 563, 569, | ||
83 | 571, 577, 587, 593, 599, 601, 607, 613, | ||
84 | 617, 619, 631, 641, 643, 647, 653, 659, | ||
85 | 661, 673, 677, 683, 691, 701, 709, 719, | ||
86 | 727, 733, 739, 743, 751, 757, 761, 769, | ||
87 | 773, 787, 797, 809, 811, 821, 823, 827, | ||
88 | 829, 839, 853, 857, 859, 863, 877, 881, | ||
89 | 883, 887, 907, 911, 919, 929, 937, 941, | ||
90 | 947, 953, 967, 971, 977, 983, 991, 997, | ||
91 | 1009,1013,1019,1021,1031,1033,1039,1049, | ||
92 | 1051,1061,1063,1069,1087,1091,1093,1097, | ||
93 | 1103,1109,1117,1123,1129,1151,1153,1163, | ||
94 | 1171,1181,1187,1193,1201,1213,1217,1223, | ||
95 | 1229,1231,1237,1249,1259,1277,1279,1283, | ||
96 | 1289,1291,1297,1301,1303,1307,1319,1321, | ||
97 | 1327,1361,1367,1373,1381,1399,1409,1423, | ||
98 | 1427,1429,1433,1439,1447,1451,1453,1459, | ||
99 | 1471,1481,1483,1487,1489,1493,1499,1511, | ||
100 | 1523,1531,1543,1549,1553,1559,1567,1571, | ||
101 | 1579,1583,1597,1601,1607,1609,1613,1619, | ||
102 | 1621,1627,1637,1657,1663,1667,1669,1693, | ||
103 | 1697,1699,1709,1721,1723,1733,1741,1747, | ||
104 | 1753,1759,1777,1783,1787,1789,1801,1811, | ||
105 | 1823,1831,1847,1861,1867,1871,1873,1877, | ||
106 | 1879,1889,1901,1907,1913,1931,1933,1949, | ||
107 | 1951,1973,1979,1987,1993,1997,1999,2003, | ||
108 | 2011,2017,2027,2029,2039,2053,2063,2069, | ||
109 | 2081,2083,2087,2089,2099,2111,2113,2129, | ||
110 | 2131,2137,2141,2143,2153,2161,2179,2203, | ||
111 | 2207,2213,2221,2237,2239,2243,2251,2267, | ||
112 | 2269,2273,2281,2287,2293,2297,2309,2311, | ||
113 | 2333,2339,2341,2347,2351,2357,2371,2377, | ||
114 | 2381,2383,2389,2393,2399,2411,2417,2423, | ||
115 | 2437,2441,2447,2459,2467,2473,2477,2503, | ||
116 | 2521,2531,2539,2543,2549,2551,2557,2579, | ||
117 | 2591,2593,2609,2617,2621,2633,2647,2657, | ||
118 | 2659,2663,2671,2677,2683,2687,2689,2693, | ||
119 | 2699,2707,2711,2713,2719,2729,2731,2741, | ||
120 | 2749,2753,2767,2777,2789,2791,2797,2801, | ||
121 | 2803,2819,2833,2837,2843,2851,2857,2861, | ||
122 | 2879,2887,2897,2903,2909,2917,2927,2939, | ||
123 | 2953,2957,2963,2969,2971,2999,3001,3011, | ||
124 | 3019,3023,3037,3041,3049,3061,3067,3079, | ||
125 | 3083,3089,3109,3119,3121,3137,3163,3167, | ||
126 | 3169,3181,3187,3191,3203,3209,3217,3221, | ||
127 | 3229,3251,3253,3257,3259,3271,3299,3301, | ||
128 | 3307,3313,3319,3323,3329,3331,3343,3347, | ||
129 | 3359,3361,3371,3373,3389,3391,3407,3413, | ||
130 | 3433,3449,3457,3461,3463,3467,3469,3491, | ||
131 | 3499,3511,3517,3527,3529,3533,3539,3541, | ||
132 | 3547,3557,3559,3571,3581,3583,3593,3607, | ||
133 | 3613,3617,3623,3631,3637,3643,3659,3671, | ||
134 | 3673,3677,3691,3697,3701,3709,3719,3727, | ||
135 | 3733,3739,3761,3767,3769,3779,3793,3797, | ||
136 | 3803,3821,3823,3833,3847,3851,3853,3863, | ||
137 | 3877,3881,3889,3907,3911,3917,3919,3923, | ||
138 | 3929,3931,3943,3947,3967,3989,4001,4003, | ||
139 | 4007,4013,4019,4021,4027,4049,4051,4057, | ||
140 | 4073,4079,4091,4093,4099,4111,4127,4129, | ||
141 | 4133,4139,4153,4157,4159,4177,4201,4211, | ||
142 | 4217,4219,4229,4231,4241,4243,4253,4259, | ||
143 | 4261,4271,4273,4283,4289,4297,4327,4337, | ||
144 | 4339,4349,4357,4363,4373,4391,4397,4409, | ||
145 | 4421,4423,4441,4447,4451,4457,4463,4481, | ||
146 | 4483,4493,4507,4513,4517,4519,4523,4547, | ||
147 | 4549,4561,4567,4583,4591,4597,4603,4621, | ||
148 | 4637,4639,4643,4649,4651,4657,4663,4673, | ||
149 | 4679,4691,4703,4721,4723,4729,4733,4751, | ||
150 | 4759,4783,4787,4789,4793,4799,4801,4813, | ||
151 | 4817,4831,4861,4871,4877,4889,4903,4909, | ||
152 | 4919,4931,4933,4937,4943,4951,4957,4967, | ||
153 | 4969,4973,4987,4993,4999,5003,5009,5011, | ||
154 | 5021,5023,5039,5051,5059,5077,5081,5087, | ||
155 | 5099,5101,5107,5113,5119,5147,5153,5167, | ||
156 | 5171,5179,5189,5197,5209,5227,5231,5233, | ||
157 | 5237,5261,5273,5279,5281,5297,5303,5309, | ||
158 | 5323,5333,5347,5351,5381,5387,5393,5399, | ||
159 | 5407,5413,5417,5419,5431,5437,5441,5443, | ||
160 | 5449,5471,5477,5479,5483,5501,5503,5507, | ||
161 | 5519,5521,5527,5531,5557,5563,5569,5573, | ||
162 | 5581,5591,5623,5639,5641,5647,5651,5653, | ||
163 | 5657,5659,5669,5683,5689,5693,5701,5711, | ||
164 | 5717,5737,5741,5743,5749,5779,5783,5791, | ||
165 | 5801,5807,5813,5821,5827,5839,5843,5849, | ||
166 | 5851,5857,5861,5867,5869,5879,5881,5897, | ||
167 | 5903,5923,5927,5939,5953,5981,5987,6007, | ||
168 | 6011,6029,6037,6043,6047,6053,6067,6073, | ||
169 | 6079,6089,6091,6101,6113,6121,6131,6133, | ||
170 | 6143,6151,6163,6173,6197,6199,6203,6211, | ||
171 | 6217,6221,6229,6247,6257,6263,6269,6271, | ||
172 | 6277,6287,6299,6301,6311,6317,6323,6329, | ||
173 | 6337,6343,6353,6359,6361,6367,6373,6379, | ||
174 | 6389,6397,6421,6427,6449,6451,6469,6473, | ||
175 | 6481,6491,6521,6529,6547,6551,6553,6563, | ||
176 | 6569,6571,6577,6581,6599,6607,6619,6637, | ||
177 | 6653,6659,6661,6673,6679,6689,6691,6701, | ||
178 | 6703,6709,6719,6733,6737,6761,6763,6779, | ||
179 | 6781,6791,6793,6803,6823,6827,6829,6833, | ||
180 | 6841,6857,6863,6869,6871,6883,6899,6907, | ||
181 | 6911,6917,6947,6949,6959,6961,6967,6971, | ||
182 | 6977,6983,6991,6997,7001,7013,7019,7027, | ||
183 | 7039,7043,7057,7069,7079,7103,7109,7121, | ||
184 | 7127,7129,7151,7159,7177,7187,7193,7207, | ||
185 | 7211,7213,7219,7229,7237,7243,7247,7253, | ||
186 | 7283,7297,7307,7309,7321,7331,7333,7349, | ||
187 | 7351,7369,7393,7411,7417,7433,7451,7457, | ||
188 | 7459,7477,7481,7487,7489,7499,7507,7517, | ||
189 | 7523,7529,7537,7541,7547,7549,7559,7561, | ||
190 | 7573,7577,7583,7589,7591,7603,7607,7621, | ||
191 | 7639,7643,7649,7669,7673,7681,7687,7691, | ||
192 | 7699,7703,7717,7723,7727,7741,7753,7757, | ||
193 | 7759,7789,7793,7817,7823,7829,7841,7853, | ||
194 | 7867,7873,7877,7879,7883,7901,7907,7919, | ||
195 | 7927,7933,7937,7949,7951,7963,7993,8009, | ||
196 | 8011,8017,8039,8053,8059,8069,8081,8087, | ||
197 | 8089,8093,8101,8111,8117,8123,8147,8161, | ||
198 | 8167,8171,8179,8191,8209,8219,8221,8231, | ||
199 | 8233,8237,8243,8263,8269,8273,8287,8291, | ||
200 | 8293,8297,8311,8317,8329,8353,8363,8369, | ||
201 | 8377,8387,8389,8419,8423,8429,8431,8443, | ||
202 | 8447,8461,8467,8501,8513,8521,8527,8537, | ||
203 | 8539,8543,8563,8573,8581,8597,8599,8609, | ||
204 | 8623,8627,8629,8641,8647,8663,8669,8677, | ||
205 | 8681,8689,8693,8699,8707,8713,8719,8731, | ||
206 | 8737,8741,8747,8753,8761,8779,8783,8803, | ||
207 | 8807,8819,8821,8831,8837,8839,8849,8861, | ||
208 | 8863,8867,8887,8893,8923,8929,8933,8941, | ||
209 | 8951,8963,8969,8971,8999,9001,9007,9011, | ||
210 | 9013,9029,9041,9043,9049,9059,9067,9091, | ||
211 | 9103,9109,9127,9133,9137,9151,9157,9161, | ||
212 | 9173,9181,9187,9199,9203,9209,9221,9227, | ||
213 | 9239,9241,9257,9277,9281,9283,9293,9311, | ||
214 | 9319,9323,9337,9341,9343,9349,9371,9377, | ||
215 | 9391,9397,9403,9413,9419,9421,9431,9433, | ||
216 | 9437,9439,9461,9463,9467,9473,9479,9491, | ||
217 | 9497,9511,9521,9533,9539,9547,9551,9587, | ||
218 | 9601,9613,9619,9623,9629,9631,9643,9649, | ||
219 | 9661,9677,9679,9689,9697,9719,9721,9733, | ||
220 | 9739,9743,9749,9767,9769,9781,9787,9791, | ||
221 | 9803,9811,9817,9829,9833,9839,9851,9857, | ||
222 | 9859,9871,9883,9887,9901,9907,9923,9929, | ||
223 | 9931,9941,9949,9967,9973,10007,10009,10037, | ||
224 | 10039,10061,10067,10069,10079,10091,10093,10099, | ||
225 | 10103,10111,10133,10139,10141,10151,10159,10163, | ||
226 | 10169,10177,10181,10193,10211,10223,10243,10247, | ||
227 | 10253,10259,10267,10271,10273,10289,10301,10303, | ||
228 | 10313,10321,10331,10333,10337,10343,10357,10369, | ||
229 | 10391,10399,10427,10429,10433,10453,10457,10459, | ||
230 | 10463,10477,10487,10499,10501,10513,10529,10531, | ||
231 | 10559,10567,10589,10597,10601,10607,10613,10627, | ||
232 | 10631,10639,10651,10657,10663,10667,10687,10691, | ||
233 | 10709,10711,10723,10729,10733,10739,10753,10771, | ||
234 | 10781,10789,10799,10831,10837,10847,10853,10859, | ||
235 | 10861,10867,10883,10889,10891,10903,10909,10937, | ||
236 | 10939,10949,10957,10973,10979,10987,10993,11003, | ||
237 | 11027,11047,11057,11059,11069,11071,11083,11087, | ||
238 | 11093,11113,11117,11119,11131,11149,11159,11161, | ||
239 | 11171,11173,11177,11197,11213,11239,11243,11251, | ||
240 | 11257,11261,11273,11279,11287,11299,11311,11317, | ||
241 | 11321,11329,11351,11353,11369,11383,11393,11399, | ||
242 | 11411,11423,11437,11443,11447,11467,11471,11483, | ||
243 | 11489,11491,11497,11503,11519,11527,11549,11551, | ||
244 | 11579,11587,11593,11597,11617,11621,11633,11657, | ||
245 | 11677,11681,11689,11699,11701,11717,11719,11731, | ||
246 | 11743,11777,11779,11783,11789,11801,11807,11813, | ||
247 | 11821,11827,11831,11833,11839,11863,11867,11887, | ||
248 | 11897,11903,11909,11923,11927,11933,11939,11941, | ||
249 | 11953,11959,11969,11971,11981,11987,12007,12011, | ||
250 | 12037,12041,12043,12049,12071,12073,12097,12101, | ||
251 | 12107,12109,12113,12119,12143,12149,12157,12161, | ||
252 | 12163,12197,12203,12211,12227,12239,12241,12251, | ||
253 | 12253,12263,12269,12277,12281,12289,12301,12323, | ||
254 | 12329,12343,12347,12373,12377,12379,12391,12401, | ||
255 | 12409,12413,12421,12433,12437,12451,12457,12473, | ||
256 | 12479,12487,12491,12497,12503,12511,12517,12527, | ||
257 | 12539,12541,12547,12553,12569,12577,12583,12589, | ||
258 | 12601,12611,12613,12619,12637,12641,12647,12653, | ||
259 | 12659,12671,12689,12697,12703,12713,12721,12739, | ||
260 | 12743,12757,12763,12781,12791,12799,12809,12821, | ||
261 | 12823,12829,12841,12853,12889,12893,12899,12907, | ||
262 | 12911,12917,12919,12923,12941,12953,12959,12967, | ||
263 | 12973,12979,12983,13001,13003,13007,13009,13033, | ||
264 | 13037,13043,13049,13063,13093,13099,13103,13109, | ||
265 | 13121,13127,13147,13151,13159,13163,13171,13177, | ||
266 | 13183,13187,13217,13219,13229,13241,13249,13259, | ||
267 | 13267,13291,13297,13309,13313,13327,13331,13337, | ||
268 | 13339,13367,13381,13397,13399,13411,13417,13421, | ||
269 | 13441,13451,13457,13463,13469,13477,13487,13499, | ||
270 | 13513,13523,13537,13553,13567,13577,13591,13597, | ||
271 | 13613,13619,13627,13633,13649,13669,13679,13681, | ||
272 | 13687,13691,13693,13697,13709,13711,13721,13723, | ||
273 | 13729,13751,13757,13759,13763,13781,13789,13799, | ||
274 | 13807,13829,13831,13841,13859,13873,13877,13879, | ||
275 | 13883,13901,13903,13907,13913,13921,13931,13933, | ||
276 | 13963,13967,13997,13999,14009,14011,14029,14033, | ||
277 | 14051,14057,14071,14081,14083,14087,14107,14143, | ||
278 | 14149,14153,14159,14173,14177,14197,14207,14221, | ||
279 | 14243,14249,14251,14281,14293,14303,14321,14323, | ||
280 | 14327,14341,14347,14369,14387,14389,14401,14407, | ||
281 | 14411,14419,14423,14431,14437,14447,14449,14461, | ||
282 | 14479,14489,14503,14519,14533,14537,14543,14549, | ||
283 | 14551,14557,14561,14563,14591,14593,14621,14627, | ||
284 | 14629,14633,14639,14653,14657,14669,14683,14699, | ||
285 | 14713,14717,14723,14731,14737,14741,14747,14753, | ||
286 | 14759,14767,14771,14779,14783,14797,14813,14821, | ||
287 | 14827,14831,14843,14851,14867,14869,14879,14887, | ||
288 | 14891,14897,14923,14929,14939,14947,14951,14957, | ||
289 | 14969,14983,15013,15017,15031,15053,15061,15073, | ||
290 | 15077,15083,15091,15101,15107,15121,15131,15137, | ||
291 | 15139,15149,15161,15173,15187,15193,15199,15217, | ||
292 | 15227,15233,15241,15259,15263,15269,15271,15277, | ||
293 | 15287,15289,15299,15307,15313,15319,15329,15331, | ||
294 | 15349,15359,15361,15373,15377,15383,15391,15401, | ||
295 | 15413,15427,15439,15443,15451,15461,15467,15473, | ||
296 | 15493,15497,15511,15527,15541,15551,15559,15569, | ||
297 | 15581,15583,15601,15607,15619,15629,15641,15643, | ||
298 | 15647,15649,15661,15667,15671,15679,15683,15727, | ||
299 | 15731,15733,15737,15739,15749,15761,15767,15773, | ||
300 | 15787,15791,15797,15803,15809,15817,15823,15859, | ||
301 | 15877,15881,15887,15889,15901,15907,15913,15919, | ||
302 | 15923,15937,15959,15971,15973,15991,16001,16007, | ||
303 | 16033,16057,16061,16063,16067,16069,16073,16087, | ||
304 | 16091,16097,16103,16111,16127,16139,16141,16183, | ||
305 | 16187,16189,16193,16217,16223,16229,16231,16249, | ||
306 | 16253,16267,16273,16301,16319,16333,16339,16349, | ||
307 | 16361,16363,16369,16381,16411,16417,16421,16427, | ||
308 | 16433,16447,16451,16453,16477,16481,16487,16493, | ||
309 | 16519,16529,16547,16553,16561,16567,16573,16603, | ||
310 | 16607,16619,16631,16633,16649,16651,16657,16661, | ||
311 | 16673,16691,16693,16699,16703,16729,16741,16747, | ||
312 | 16759,16763,16787,16811,16823,16829,16831,16843, | ||
313 | 16871,16879,16883,16889,16901,16903,16921,16927, | ||
314 | 16931,16937,16943,16963,16979,16981,16987,16993, | ||
315 | 17011,17021,17027,17029,17033,17041,17047,17053, | ||
316 | 17077,17093,17099,17107,17117,17123,17137,17159, | ||
317 | 17167,17183,17189,17191,17203,17207,17209,17231, | ||
318 | 17239,17257,17291,17293,17299,17317,17321,17327, | ||
319 | 17333,17341,17351,17359,17377,17383,17387,17389, | ||
320 | 17393,17401,17417,17419,17431,17443,17449,17467, | ||
321 | 17471,17477,17483,17489,17491,17497,17509,17519, | ||
322 | 17539,17551,17569,17573,17579,17581,17597,17599, | ||
323 | 17609,17623,17627,17657,17659,17669,17681,17683, | ||
324 | 17707,17713,17729,17737,17747,17749,17761,17783, | ||
325 | 17789,17791,17807,17827,17837,17839,17851,17863, | ||
326 | #endif | ||
327 | }; | ||
diff --git a/src/lib/libcrypto/bn/bn_prime.pl b/src/lib/libcrypto/bn/bn_prime.pl deleted file mode 100644 index 3fafb6f3e9..0000000000 --- a/src/lib/libcrypto/bn/bn_prime.pl +++ /dev/null | |||
@@ -1,119 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # bn_prime.pl | ||
3 | |||
4 | $num=2048; | ||
5 | $num=$ARGV[0] if ($#ARGV >= 0); | ||
6 | |||
7 | push(@primes,2); | ||
8 | $p=1; | ||
9 | loop: while ($#primes < $num-1) | ||
10 | { | ||
11 | $p+=2; | ||
12 | $s=int(sqrt($p)); | ||
13 | |||
14 | for ($i=0; defined($primes[$i]) && $primes[$i]<=$s; $i++) | ||
15 | { | ||
16 | next loop if (($p%$primes[$i]) == 0); | ||
17 | } | ||
18 | push(@primes,$p); | ||
19 | } | ||
20 | |||
21 | # print <<"EOF"; | ||
22 | # /* Auto generated by bn_prime.pl */ | ||
23 | # /* Copyright (C) 1995-1997 Eric Young (eay\@mincom.oz.au). | ||
24 | # * All rights reserved. | ||
25 | # * Copyright remains Eric Young's, and as such any Copyright notices in | ||
26 | # * the code are not to be removed. | ||
27 | # * See the COPYRIGHT file in the SSLeay distribution for more details. | ||
28 | # */ | ||
29 | # | ||
30 | # EOF | ||
31 | |||
32 | print <<\EOF; | ||
33 | /* Auto generated by bn_prime.pl */ | ||
34 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
35 | * All rights reserved. | ||
36 | * | ||
37 | * This package is an SSL implementation written | ||
38 | * by Eric Young (eay@cryptsoft.com). | ||
39 | * The implementation was written so as to conform with Netscapes SSL. | ||
40 | * | ||
41 | * This library is free for commercial and non-commercial use as long as | ||
42 | * the following conditions are aheared to. The following conditions | ||
43 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
44 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
45 | * included with this distribution is covered by the same copyright terms | ||
46 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
47 | * | ||
48 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
49 | * the code are not to be removed. | ||
50 | * If this package is used in a product, Eric Young should be given attribution | ||
51 | * as the author of the parts of the library used. | ||
52 | * This can be in the form of a textual message at program startup or | ||
53 | * in documentation (online or textual) provided with the package. | ||
54 | * | ||
55 | * Redistribution and use in source and binary forms, with or without | ||
56 | * modification, are permitted provided that the following conditions | ||
57 | * are met: | ||
58 | * 1. Redistributions of source code must retain the copyright | ||
59 | * notice, this list of conditions and the following disclaimer. | ||
60 | * 2. Redistributions in binary form must reproduce the above copyright | ||
61 | * notice, this list of conditions and the following disclaimer in the | ||
62 | * documentation and/or other materials provided with the distribution. | ||
63 | * 3. All advertising materials mentioning features or use of this software | ||
64 | * must display the following acknowledgement: | ||
65 | * "This product includes cryptographic software written by | ||
66 | * Eric Young (eay@cryptsoft.com)" | ||
67 | * The word 'cryptographic' can be left out if the rouines from the library | ||
68 | * being used are not cryptographic related :-). | ||
69 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
70 | * the apps directory (application code) you must include an acknowledgement: | ||
71 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
72 | * | ||
73 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
74 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
75 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
76 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
77 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
78 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
79 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
80 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
81 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
82 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
83 | * SUCH DAMAGE. | ||
84 | * | ||
85 | * The licence and distribution terms for any publically available version or | ||
86 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
87 | * copied and put under another distribution licence | ||
88 | * [including the GNU Public Licence.] | ||
89 | */ | ||
90 | |||
91 | EOF | ||
92 | |||
93 | for ($i=0; $i <= $#primes; $i++) | ||
94 | { | ||
95 | if ($primes[$i] > 256) | ||
96 | { | ||
97 | $eight=$i; | ||
98 | last; | ||
99 | } | ||
100 | } | ||
101 | |||
102 | printf "#ifndef EIGHT_BIT\n"; | ||
103 | printf "#define NUMPRIMES %d\n",$num; | ||
104 | printf "typedef unsigned short prime_t;\n"; | ||
105 | printf "#else\n"; | ||
106 | printf "#define NUMPRIMES %d\n",$eight; | ||
107 | printf "typedef unsigned char prime_t;\n"; | ||
108 | printf "#endif\n"; | ||
109 | print "static const prime_t primes[NUMPRIMES]=\n\t{\n\t"; | ||
110 | $init=0; | ||
111 | for ($i=0; $i <= $#primes; $i++) | ||
112 | { | ||
113 | printf "\n#ifndef EIGHT_BIT\n\t" if ($primes[$i] > 256) && !($init++); | ||
114 | printf("\n\t") if (($i%8) == 0) && ($i != 0); | ||
115 | printf("%4d,",$primes[$i]); | ||
116 | } | ||
117 | print "\n#endif\n\t};\n"; | ||
118 | |||
119 | |||
diff --git a/src/lib/libcrypto/bn/bn_print.c b/src/lib/libcrypto/bn/bn_print.c deleted file mode 100644 index bebb466d08..0000000000 --- a/src/lib/libcrypto/bn/bn_print.c +++ /dev/null | |||
@@ -1,359 +0,0 @@ | |||
1 | /* crypto/bn/bn_print.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include <ctype.h> | ||
61 | #include "cryptlib.h" | ||
62 | #include <openssl/buffer.h> | ||
63 | #include "bn_lcl.h" | ||
64 | |||
65 | static const char Hex[]="0123456789ABCDEF"; | ||
66 | |||
67 | /* Must 'OPENSSL_free' the returned data */ | ||
68 | char *BN_bn2hex(const BIGNUM *a) | ||
69 | { | ||
70 | int i,j,v,z=0; | ||
71 | char *buf; | ||
72 | char *p; | ||
73 | |||
74 | buf=(char *)OPENSSL_malloc(a->top*BN_BYTES*2+2); | ||
75 | if (buf == NULL) | ||
76 | { | ||
77 | BNerr(BN_F_BN_BN2HEX,ERR_R_MALLOC_FAILURE); | ||
78 | goto err; | ||
79 | } | ||
80 | p=buf; | ||
81 | if (a->neg) *(p++)='-'; | ||
82 | if (BN_is_zero(a)) *(p++)='0'; | ||
83 | for (i=a->top-1; i >=0; i--) | ||
84 | { | ||
85 | for (j=BN_BITS2-8; j >= 0; j-=8) | ||
86 | { | ||
87 | /* strip leading zeros */ | ||
88 | v=((int)(a->d[i]>>(long)j))&0xff; | ||
89 | if (z || (v != 0)) | ||
90 | { | ||
91 | *(p++)=Hex[v>>4]; | ||
92 | *(p++)=Hex[v&0x0f]; | ||
93 | z=1; | ||
94 | } | ||
95 | } | ||
96 | } | ||
97 | *p='\0'; | ||
98 | err: | ||
99 | return(buf); | ||
100 | } | ||
101 | |||
102 | /* Must 'OPENSSL_free' the returned data */ | ||
103 | char *BN_bn2dec(const BIGNUM *a) | ||
104 | { | ||
105 | int i=0,num, ok = 0; | ||
106 | char *buf=NULL; | ||
107 | char *p; | ||
108 | BIGNUM *t=NULL; | ||
109 | BN_ULONG *bn_data=NULL,*lp; | ||
110 | |||
111 | /* get an upper bound for the length of the decimal integer | ||
112 | * num <= (BN_num_bits(a) + 1) * log(2) | ||
113 | * <= 3 * BN_num_bits(a) * 0.1001 + log(2) + 1 (rounding error) | ||
114 | * <= BN_num_bits(a)/10 + BN_num_bits/1000 + 1 + 1 | ||
115 | */ | ||
116 | i=BN_num_bits(a)*3; | ||
117 | num=(i/10+i/1000+1)+1; | ||
118 | bn_data=(BN_ULONG *)OPENSSL_malloc((num/BN_DEC_NUM+1)*sizeof(BN_ULONG)); | ||
119 | buf=(char *)OPENSSL_malloc(num+3); | ||
120 | if ((buf == NULL) || (bn_data == NULL)) | ||
121 | { | ||
122 | BNerr(BN_F_BN_BN2DEC,ERR_R_MALLOC_FAILURE); | ||
123 | goto err; | ||
124 | } | ||
125 | if ((t=BN_dup(a)) == NULL) goto err; | ||
126 | |||
127 | #define BUF_REMAIN (num+3 - (size_t)(p - buf)) | ||
128 | p=buf; | ||
129 | lp=bn_data; | ||
130 | if (BN_is_zero(t)) | ||
131 | { | ||
132 | *(p++)='0'; | ||
133 | *(p++)='\0'; | ||
134 | } | ||
135 | else | ||
136 | { | ||
137 | if (BN_is_negative(t)) | ||
138 | *p++ = '-'; | ||
139 | |||
140 | i=0; | ||
141 | while (!BN_is_zero(t)) | ||
142 | { | ||
143 | *lp=BN_div_word(t,BN_DEC_CONV); | ||
144 | lp++; | ||
145 | } | ||
146 | lp--; | ||
147 | /* We now have a series of blocks, BN_DEC_NUM chars | ||
148 | * in length, where the last one needs truncation. | ||
149 | * The blocks need to be reversed in order. */ | ||
150 | BIO_snprintf(p,BUF_REMAIN,BN_DEC_FMT1,*lp); | ||
151 | while (*p) p++; | ||
152 | while (lp != bn_data) | ||
153 | { | ||
154 | lp--; | ||
155 | BIO_snprintf(p,BUF_REMAIN,BN_DEC_FMT2,*lp); | ||
156 | while (*p) p++; | ||
157 | } | ||
158 | } | ||
159 | ok = 1; | ||
160 | err: | ||
161 | if (bn_data != NULL) OPENSSL_free(bn_data); | ||
162 | if (t != NULL) BN_free(t); | ||
163 | if (!ok && buf) | ||
164 | { | ||
165 | OPENSSL_free(buf); | ||
166 | buf = NULL; | ||
167 | } | ||
168 | |||
169 | return(buf); | ||
170 | } | ||
171 | |||
172 | int BN_hex2bn(BIGNUM **bn, const char *a) | ||
173 | { | ||
174 | BIGNUM *ret=NULL; | ||
175 | BN_ULONG l=0; | ||
176 | int neg=0,h,m,i,j,k,c; | ||
177 | int num; | ||
178 | |||
179 | if ((a == NULL) || (*a == '\0')) return(0); | ||
180 | |||
181 | if (*a == '-') { neg=1; a++; } | ||
182 | |||
183 | for (i=0; isxdigit((unsigned char) a[i]); i++) | ||
184 | ; | ||
185 | |||
186 | num=i+neg; | ||
187 | if (bn == NULL) return(num); | ||
188 | |||
189 | /* a is the start of the hex digits, and it is 'i' long */ | ||
190 | if (*bn == NULL) | ||
191 | { | ||
192 | if ((ret=BN_new()) == NULL) return(0); | ||
193 | } | ||
194 | else | ||
195 | { | ||
196 | ret= *bn; | ||
197 | BN_zero(ret); | ||
198 | } | ||
199 | |||
200 | /* i is the number of hex digests; */ | ||
201 | if (bn_expand(ret,i*4) == NULL) goto err; | ||
202 | |||
203 | j=i; /* least significant 'hex' */ | ||
204 | m=0; | ||
205 | h=0; | ||
206 | while (j > 0) | ||
207 | { | ||
208 | m=((BN_BYTES*2) <= j)?(BN_BYTES*2):j; | ||
209 | l=0; | ||
210 | for (;;) | ||
211 | { | ||
212 | c=a[j-m]; | ||
213 | if ((c >= '0') && (c <= '9')) k=c-'0'; | ||
214 | else if ((c >= 'a') && (c <= 'f')) k=c-'a'+10; | ||
215 | else if ((c >= 'A') && (c <= 'F')) k=c-'A'+10; | ||
216 | else k=0; /* paranoia */ | ||
217 | l=(l<<4)|k; | ||
218 | |||
219 | if (--m <= 0) | ||
220 | { | ||
221 | ret->d[h++]=l; | ||
222 | break; | ||
223 | } | ||
224 | } | ||
225 | j-=(BN_BYTES*2); | ||
226 | } | ||
227 | ret->top=h; | ||
228 | bn_correct_top(ret); | ||
229 | ret->neg=neg; | ||
230 | |||
231 | *bn=ret; | ||
232 | bn_check_top(ret); | ||
233 | return(num); | ||
234 | err: | ||
235 | if (*bn == NULL) BN_free(ret); | ||
236 | return(0); | ||
237 | } | ||
238 | |||
239 | int BN_dec2bn(BIGNUM **bn, const char *a) | ||
240 | { | ||
241 | BIGNUM *ret=NULL; | ||
242 | BN_ULONG l=0; | ||
243 | int neg=0,i,j; | ||
244 | int num; | ||
245 | |||
246 | if ((a == NULL) || (*a == '\0')) return(0); | ||
247 | if (*a == '-') { neg=1; a++; } | ||
248 | |||
249 | for (i=0; isdigit((unsigned char) a[i]); i++) | ||
250 | ; | ||
251 | |||
252 | num=i+neg; | ||
253 | if (bn == NULL) return(num); | ||
254 | |||
255 | /* a is the start of the digits, and it is 'i' long. | ||
256 | * We chop it into BN_DEC_NUM digits at a time */ | ||
257 | if (*bn == NULL) | ||
258 | { | ||
259 | if ((ret=BN_new()) == NULL) return(0); | ||
260 | } | ||
261 | else | ||
262 | { | ||
263 | ret= *bn; | ||
264 | BN_zero(ret); | ||
265 | } | ||
266 | |||
267 | /* i is the number of digests, a bit of an over expand; */ | ||
268 | if (bn_expand(ret,i*4) == NULL) goto err; | ||
269 | |||
270 | j=BN_DEC_NUM-(i%BN_DEC_NUM); | ||
271 | if (j == BN_DEC_NUM) j=0; | ||
272 | l=0; | ||
273 | while (*a) | ||
274 | { | ||
275 | l*=10; | ||
276 | l+= *a-'0'; | ||
277 | a++; | ||
278 | if (++j == BN_DEC_NUM) | ||
279 | { | ||
280 | BN_mul_word(ret,BN_DEC_CONV); | ||
281 | BN_add_word(ret,l); | ||
282 | l=0; | ||
283 | j=0; | ||
284 | } | ||
285 | } | ||
286 | ret->neg=neg; | ||
287 | |||
288 | bn_correct_top(ret); | ||
289 | *bn=ret; | ||
290 | bn_check_top(ret); | ||
291 | return(num); | ||
292 | err: | ||
293 | if (*bn == NULL) BN_free(ret); | ||
294 | return(0); | ||
295 | } | ||
296 | |||
297 | int BN_asc2bn(BIGNUM **bn, const char *a) | ||
298 | { | ||
299 | const char *p = a; | ||
300 | if (*p == '-') | ||
301 | p++; | ||
302 | |||
303 | if (p[0] == '0' && (p[1] == 'X' || p[1] == 'x')) | ||
304 | { | ||
305 | if (!BN_hex2bn(bn, p + 2)) | ||
306 | return 0; | ||
307 | } | ||
308 | else | ||
309 | { | ||
310 | if (!BN_dec2bn(bn, p)) | ||
311 | return 0; | ||
312 | } | ||
313 | if (*a == '-') | ||
314 | (*bn)->neg = 1; | ||
315 | return 1; | ||
316 | } | ||
317 | |||
318 | #ifndef OPENSSL_NO_BIO | ||
319 | #ifndef OPENSSL_NO_FP_API | ||
320 | int BN_print_fp(FILE *fp, const BIGNUM *a) | ||
321 | { | ||
322 | BIO *b; | ||
323 | int ret; | ||
324 | |||
325 | if ((b=BIO_new(BIO_s_file())) == NULL) | ||
326 | return(0); | ||
327 | BIO_set_fp(b,fp,BIO_NOCLOSE); | ||
328 | ret=BN_print(b,a); | ||
329 | BIO_free(b); | ||
330 | return(ret); | ||
331 | } | ||
332 | #endif | ||
333 | |||
334 | int BN_print(BIO *bp, const BIGNUM *a) | ||
335 | { | ||
336 | int i,j,v,z=0; | ||
337 | int ret=0; | ||
338 | |||
339 | if ((a->neg) && (BIO_write(bp,"-",1) != 1)) goto end; | ||
340 | if (BN_is_zero(a) && (BIO_write(bp,"0",1) != 1)) goto end; | ||
341 | for (i=a->top-1; i >=0; i--) | ||
342 | { | ||
343 | for (j=BN_BITS2-4; j >= 0; j-=4) | ||
344 | { | ||
345 | /* strip leading zeros */ | ||
346 | v=((int)(a->d[i]>>(long)j))&0x0f; | ||
347 | if (z || (v != 0)) | ||
348 | { | ||
349 | if (BIO_write(bp,&(Hex[v]),1) != 1) | ||
350 | goto end; | ||
351 | z=1; | ||
352 | } | ||
353 | } | ||
354 | } | ||
355 | ret=1; | ||
356 | end: | ||
357 | return(ret); | ||
358 | } | ||
359 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_rand.c b/src/lib/libcrypto/bn/bn_rand.c deleted file mode 100644 index b376c28ff3..0000000000 --- a/src/lib/libcrypto/bn/bn_rand.c +++ /dev/null | |||
@@ -1,305 +0,0 @@ | |||
1 | /* crypto/bn/bn_rand.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include <stdio.h> | ||
113 | #include <time.h> | ||
114 | #include "cryptlib.h" | ||
115 | #include "bn_lcl.h" | ||
116 | #include <openssl/rand.h> | ||
117 | |||
118 | static int bnrand(int pseudorand, BIGNUM *rnd, int bits, int top, int bottom) | ||
119 | { | ||
120 | unsigned char *buf=NULL; | ||
121 | int ret=0,bit,bytes,mask; | ||
122 | time_t tim; | ||
123 | |||
124 | if (bits == 0) | ||
125 | { | ||
126 | BN_zero(rnd); | ||
127 | return 1; | ||
128 | } | ||
129 | |||
130 | bytes=(bits+7)/8; | ||
131 | bit=(bits-1)%8; | ||
132 | mask=0xff<<(bit+1); | ||
133 | |||
134 | buf=(unsigned char *)OPENSSL_malloc(bytes); | ||
135 | if (buf == NULL) | ||
136 | { | ||
137 | BNerr(BN_F_BNRAND,ERR_R_MALLOC_FAILURE); | ||
138 | goto err; | ||
139 | } | ||
140 | |||
141 | /* make a random number and set the top and bottom bits */ | ||
142 | time(&tim); | ||
143 | RAND_add(&tim,sizeof(tim),0.0); | ||
144 | |||
145 | if (pseudorand) | ||
146 | { | ||
147 | if (RAND_pseudo_bytes(buf, bytes) == -1) | ||
148 | goto err; | ||
149 | } | ||
150 | else | ||
151 | { | ||
152 | if (RAND_bytes(buf, bytes) <= 0) | ||
153 | goto err; | ||
154 | } | ||
155 | |||
156 | #if 1 | ||
157 | if (pseudorand == 2) | ||
158 | { | ||
159 | /* generate patterns that are more likely to trigger BN | ||
160 | library bugs */ | ||
161 | int i; | ||
162 | unsigned char c; | ||
163 | |||
164 | for (i = 0; i < bytes; i++) | ||
165 | { | ||
166 | RAND_pseudo_bytes(&c, 1); | ||
167 | if (c >= 128 && i > 0) | ||
168 | buf[i] = buf[i-1]; | ||
169 | else if (c < 42) | ||
170 | buf[i] = 0; | ||
171 | else if (c < 84) | ||
172 | buf[i] = 255; | ||
173 | } | ||
174 | } | ||
175 | #endif | ||
176 | |||
177 | if (top != -1) | ||
178 | { | ||
179 | if (top) | ||
180 | { | ||
181 | if (bit == 0) | ||
182 | { | ||
183 | buf[0]=1; | ||
184 | buf[1]|=0x80; | ||
185 | } | ||
186 | else | ||
187 | { | ||
188 | buf[0]|=(3<<(bit-1)); | ||
189 | } | ||
190 | } | ||
191 | else | ||
192 | { | ||
193 | buf[0]|=(1<<bit); | ||
194 | } | ||
195 | } | ||
196 | buf[0] &= ~mask; | ||
197 | if (bottom) /* set bottom bit if requested */ | ||
198 | buf[bytes-1]|=1; | ||
199 | if (!BN_bin2bn(buf,bytes,rnd)) goto err; | ||
200 | ret=1; | ||
201 | err: | ||
202 | if (buf != NULL) | ||
203 | { | ||
204 | OPENSSL_cleanse(buf,bytes); | ||
205 | OPENSSL_free(buf); | ||
206 | } | ||
207 | bn_check_top(rnd); | ||
208 | return(ret); | ||
209 | } | ||
210 | |||
211 | int BN_rand(BIGNUM *rnd, int bits, int top, int bottom) | ||
212 | { | ||
213 | return bnrand(0, rnd, bits, top, bottom); | ||
214 | } | ||
215 | |||
216 | int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom) | ||
217 | { | ||
218 | return bnrand(1, rnd, bits, top, bottom); | ||
219 | } | ||
220 | |||
221 | #if 1 | ||
222 | int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom) | ||
223 | { | ||
224 | return bnrand(2, rnd, bits, top, bottom); | ||
225 | } | ||
226 | #endif | ||
227 | |||
228 | |||
229 | /* random number r: 0 <= r < range */ | ||
230 | static int bn_rand_range(int pseudo, BIGNUM *r, const BIGNUM *range) | ||
231 | { | ||
232 | int (*bn_rand)(BIGNUM *, int, int, int) = pseudo ? BN_pseudo_rand : BN_rand; | ||
233 | int n; | ||
234 | int count = 100; | ||
235 | |||
236 | if (range->neg || BN_is_zero(range)) | ||
237 | { | ||
238 | BNerr(BN_F_BN_RAND_RANGE, BN_R_INVALID_RANGE); | ||
239 | return 0; | ||
240 | } | ||
241 | |||
242 | n = BN_num_bits(range); /* n > 0 */ | ||
243 | |||
244 | /* BN_is_bit_set(range, n - 1) always holds */ | ||
245 | |||
246 | if (n == 1) | ||
247 | BN_zero(r); | ||
248 | else if (!BN_is_bit_set(range, n - 2) && !BN_is_bit_set(range, n - 3)) | ||
249 | { | ||
250 | /* range = 100..._2, | ||
251 | * so 3*range (= 11..._2) is exactly one bit longer than range */ | ||
252 | do | ||
253 | { | ||
254 | if (!bn_rand(r, n + 1, -1, 0)) return 0; | ||
255 | /* If r < 3*range, use r := r MOD range | ||
256 | * (which is either r, r - range, or r - 2*range). | ||
257 | * Otherwise, iterate once more. | ||
258 | * Since 3*range = 11..._2, each iteration succeeds with | ||
259 | * probability >= .75. */ | ||
260 | if (BN_cmp(r ,range) >= 0) | ||
261 | { | ||
262 | if (!BN_sub(r, r, range)) return 0; | ||
263 | if (BN_cmp(r, range) >= 0) | ||
264 | if (!BN_sub(r, r, range)) return 0; | ||
265 | } | ||
266 | |||
267 | if (!--count) | ||
268 | { | ||
269 | BNerr(BN_F_BN_RAND_RANGE, BN_R_TOO_MANY_ITERATIONS); | ||
270 | return 0; | ||
271 | } | ||
272 | |||
273 | } | ||
274 | while (BN_cmp(r, range) >= 0); | ||
275 | } | ||
276 | else | ||
277 | { | ||
278 | do | ||
279 | { | ||
280 | /* range = 11..._2 or range = 101..._2 */ | ||
281 | if (!bn_rand(r, n, -1, 0)) return 0; | ||
282 | |||
283 | if (!--count) | ||
284 | { | ||
285 | BNerr(BN_F_BN_RAND_RANGE, BN_R_TOO_MANY_ITERATIONS); | ||
286 | return 0; | ||
287 | } | ||
288 | } | ||
289 | while (BN_cmp(r, range) >= 0); | ||
290 | } | ||
291 | |||
292 | bn_check_top(r); | ||
293 | return 1; | ||
294 | } | ||
295 | |||
296 | |||
297 | int BN_rand_range(BIGNUM *r, const BIGNUM *range) | ||
298 | { | ||
299 | return bn_rand_range(0, r, range); | ||
300 | } | ||
301 | |||
302 | int BN_pseudo_rand_range(BIGNUM *r, const BIGNUM *range) | ||
303 | { | ||
304 | return bn_rand_range(1, r, range); | ||
305 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_recp.c b/src/lib/libcrypto/bn/bn_recp.c deleted file mode 100644 index 2e8efb8dae..0000000000 --- a/src/lib/libcrypto/bn/bn_recp.c +++ /dev/null | |||
@@ -1,234 +0,0 @@ | |||
1 | /* crypto/bn/bn_recp.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include "cryptlib.h" | ||
61 | #include "bn_lcl.h" | ||
62 | |||
63 | void BN_RECP_CTX_init(BN_RECP_CTX *recp) | ||
64 | { | ||
65 | BN_init(&(recp->N)); | ||
66 | BN_init(&(recp->Nr)); | ||
67 | recp->num_bits=0; | ||
68 | recp->flags=0; | ||
69 | } | ||
70 | |||
71 | BN_RECP_CTX *BN_RECP_CTX_new(void) | ||
72 | { | ||
73 | BN_RECP_CTX *ret; | ||
74 | |||
75 | if ((ret=(BN_RECP_CTX *)OPENSSL_malloc(sizeof(BN_RECP_CTX))) == NULL) | ||
76 | return(NULL); | ||
77 | |||
78 | BN_RECP_CTX_init(ret); | ||
79 | ret->flags=BN_FLG_MALLOCED; | ||
80 | return(ret); | ||
81 | } | ||
82 | |||
83 | void BN_RECP_CTX_free(BN_RECP_CTX *recp) | ||
84 | { | ||
85 | if(recp == NULL) | ||
86 | return; | ||
87 | |||
88 | BN_free(&(recp->N)); | ||
89 | BN_free(&(recp->Nr)); | ||
90 | if (recp->flags & BN_FLG_MALLOCED) | ||
91 | OPENSSL_free(recp); | ||
92 | } | ||
93 | |||
94 | int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) | ||
95 | { | ||
96 | if (!BN_copy(&(recp->N),d)) return 0; | ||
97 | BN_zero(&(recp->Nr)); | ||
98 | recp->num_bits=BN_num_bits(d); | ||
99 | recp->shift=0; | ||
100 | return(1); | ||
101 | } | ||
102 | |||
103 | int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, | ||
104 | BN_RECP_CTX *recp, BN_CTX *ctx) | ||
105 | { | ||
106 | int ret=0; | ||
107 | BIGNUM *a; | ||
108 | const BIGNUM *ca; | ||
109 | |||
110 | BN_CTX_start(ctx); | ||
111 | if ((a = BN_CTX_get(ctx)) == NULL) goto err; | ||
112 | if (y != NULL) | ||
113 | { | ||
114 | if (x == y) | ||
115 | { if (!BN_sqr(a,x,ctx)) goto err; } | ||
116 | else | ||
117 | { if (!BN_mul(a,x,y,ctx)) goto err; } | ||
118 | ca = a; | ||
119 | } | ||
120 | else | ||
121 | ca=x; /* Just do the mod */ | ||
122 | |||
123 | ret = BN_div_recp(NULL,r,ca,recp,ctx); | ||
124 | err: | ||
125 | BN_CTX_end(ctx); | ||
126 | bn_check_top(r); | ||
127 | return(ret); | ||
128 | } | ||
129 | |||
130 | int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, | ||
131 | BN_RECP_CTX *recp, BN_CTX *ctx) | ||
132 | { | ||
133 | int i,j,ret=0; | ||
134 | BIGNUM *a,*b,*d,*r; | ||
135 | |||
136 | BN_CTX_start(ctx); | ||
137 | a=BN_CTX_get(ctx); | ||
138 | b=BN_CTX_get(ctx); | ||
139 | if (dv != NULL) | ||
140 | d=dv; | ||
141 | else | ||
142 | d=BN_CTX_get(ctx); | ||
143 | if (rem != NULL) | ||
144 | r=rem; | ||
145 | else | ||
146 | r=BN_CTX_get(ctx); | ||
147 | if (a == NULL || b == NULL || d == NULL || r == NULL) goto err; | ||
148 | |||
149 | if (BN_ucmp(m,&(recp->N)) < 0) | ||
150 | { | ||
151 | BN_zero(d); | ||
152 | if (!BN_copy(r,m)) return 0; | ||
153 | BN_CTX_end(ctx); | ||
154 | return(1); | ||
155 | } | ||
156 | |||
157 | /* We want the remainder | ||
158 | * Given input of ABCDEF / ab | ||
159 | * we need multiply ABCDEF by 3 digests of the reciprocal of ab | ||
160 | * | ||
161 | */ | ||
162 | |||
163 | /* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */ | ||
164 | i=BN_num_bits(m); | ||
165 | j=recp->num_bits<<1; | ||
166 | if (j>i) i=j; | ||
167 | |||
168 | /* Nr := round(2^i / N) */ | ||
169 | if (i != recp->shift) | ||
170 | recp->shift=BN_reciprocal(&(recp->Nr),&(recp->N), | ||
171 | i,ctx); /* BN_reciprocal returns i, or -1 for an error */ | ||
172 | if (recp->shift == -1) goto err; | ||
173 | |||
174 | /* d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i - BN_num_bits(N)))| | ||
175 | * = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i - BN_num_bits(N)))| | ||
176 | * <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)| | ||
177 | * = |m/N| | ||
178 | */ | ||
179 | if (!BN_rshift(a,m,recp->num_bits)) goto err; | ||
180 | if (!BN_mul(b,a,&(recp->Nr),ctx)) goto err; | ||
181 | if (!BN_rshift(d,b,i-recp->num_bits)) goto err; | ||
182 | d->neg=0; | ||
183 | |||
184 | if (!BN_mul(b,&(recp->N),d,ctx)) goto err; | ||
185 | if (!BN_usub(r,m,b)) goto err; | ||
186 | r->neg=0; | ||
187 | |||
188 | #if 1 | ||
189 | j=0; | ||
190 | while (BN_ucmp(r,&(recp->N)) >= 0) | ||
191 | { | ||
192 | if (j++ > 2) | ||
193 | { | ||
194 | BNerr(BN_F_BN_DIV_RECP,BN_R_BAD_RECIPROCAL); | ||
195 | goto err; | ||
196 | } | ||
197 | if (!BN_usub(r,r,&(recp->N))) goto err; | ||
198 | if (!BN_add_word(d,1)) goto err; | ||
199 | } | ||
200 | #endif | ||
201 | |||
202 | r->neg=BN_is_zero(r)?0:m->neg; | ||
203 | d->neg=m->neg^recp->N.neg; | ||
204 | ret=1; | ||
205 | err: | ||
206 | BN_CTX_end(ctx); | ||
207 | bn_check_top(dv); | ||
208 | bn_check_top(rem); | ||
209 | return(ret); | ||
210 | } | ||
211 | |||
212 | /* len is the expected size of the result | ||
213 | * We actually calculate with an extra word of precision, so | ||
214 | * we can do faster division if the remainder is not required. | ||
215 | */ | ||
216 | /* r := 2^len / m */ | ||
217 | int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) | ||
218 | { | ||
219 | int ret= -1; | ||
220 | BIGNUM *t; | ||
221 | |||
222 | BN_CTX_start(ctx); | ||
223 | if((t = BN_CTX_get(ctx)) == NULL) goto err; | ||
224 | |||
225 | if (!BN_set_bit(t,len)) goto err; | ||
226 | |||
227 | if (!BN_div(r,NULL,t,m,ctx)) goto err; | ||
228 | |||
229 | ret=len; | ||
230 | err: | ||
231 | bn_check_top(r); | ||
232 | BN_CTX_end(ctx); | ||
233 | return(ret); | ||
234 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_shift.c b/src/lib/libcrypto/bn/bn_shift.c deleted file mode 100644 index c4d301afc4..0000000000 --- a/src/lib/libcrypto/bn/bn_shift.c +++ /dev/null | |||
@@ -1,220 +0,0 @@ | |||
1 | /* crypto/bn/bn_shift.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include "cryptlib.h" | ||
61 | #include "bn_lcl.h" | ||
62 | |||
63 | int BN_lshift1(BIGNUM *r, const BIGNUM *a) | ||
64 | { | ||
65 | register BN_ULONG *ap,*rp,t,c; | ||
66 | int i; | ||
67 | |||
68 | bn_check_top(r); | ||
69 | bn_check_top(a); | ||
70 | |||
71 | if (r != a) | ||
72 | { | ||
73 | r->neg=a->neg; | ||
74 | if (bn_wexpand(r,a->top+1) == NULL) return(0); | ||
75 | r->top=a->top; | ||
76 | } | ||
77 | else | ||
78 | { | ||
79 | if (bn_wexpand(r,a->top+1) == NULL) return(0); | ||
80 | } | ||
81 | ap=a->d; | ||
82 | rp=r->d; | ||
83 | c=0; | ||
84 | for (i=0; i<a->top; i++) | ||
85 | { | ||
86 | t= *(ap++); | ||
87 | *(rp++)=((t<<1)|c)&BN_MASK2; | ||
88 | c=(t & BN_TBIT)?1:0; | ||
89 | } | ||
90 | if (c) | ||
91 | { | ||
92 | *rp=1; | ||
93 | r->top++; | ||
94 | } | ||
95 | bn_check_top(r); | ||
96 | return(1); | ||
97 | } | ||
98 | |||
99 | int BN_rshift1(BIGNUM *r, const BIGNUM *a) | ||
100 | { | ||
101 | BN_ULONG *ap,*rp,t,c; | ||
102 | int i; | ||
103 | |||
104 | bn_check_top(r); | ||
105 | bn_check_top(a); | ||
106 | |||
107 | if (BN_is_zero(a)) | ||
108 | { | ||
109 | BN_zero(r); | ||
110 | return(1); | ||
111 | } | ||
112 | if (a != r) | ||
113 | { | ||
114 | if (bn_wexpand(r,a->top) == NULL) return(0); | ||
115 | r->top=a->top; | ||
116 | r->neg=a->neg; | ||
117 | } | ||
118 | ap=a->d; | ||
119 | rp=r->d; | ||
120 | c=0; | ||
121 | for (i=a->top-1; i>=0; i--) | ||
122 | { | ||
123 | t=ap[i]; | ||
124 | rp[i]=((t>>1)&BN_MASK2)|c; | ||
125 | c=(t&1)?BN_TBIT:0; | ||
126 | } | ||
127 | bn_correct_top(r); | ||
128 | bn_check_top(r); | ||
129 | return(1); | ||
130 | } | ||
131 | |||
132 | int BN_lshift(BIGNUM *r, const BIGNUM *a, int n) | ||
133 | { | ||
134 | int i,nw,lb,rb; | ||
135 | BN_ULONG *t,*f; | ||
136 | BN_ULONG l; | ||
137 | |||
138 | bn_check_top(r); | ||
139 | bn_check_top(a); | ||
140 | |||
141 | r->neg=a->neg; | ||
142 | nw=n/BN_BITS2; | ||
143 | if (bn_wexpand(r,a->top+nw+1) == NULL) return(0); | ||
144 | lb=n%BN_BITS2; | ||
145 | rb=BN_BITS2-lb; | ||
146 | f=a->d; | ||
147 | t=r->d; | ||
148 | t[a->top+nw]=0; | ||
149 | if (lb == 0) | ||
150 | for (i=a->top-1; i>=0; i--) | ||
151 | t[nw+i]=f[i]; | ||
152 | else | ||
153 | for (i=a->top-1; i>=0; i--) | ||
154 | { | ||
155 | l=f[i]; | ||
156 | t[nw+i+1]|=(l>>rb)&BN_MASK2; | ||
157 | t[nw+i]=(l<<lb)&BN_MASK2; | ||
158 | } | ||
159 | memset(t,0,nw*sizeof(t[0])); | ||
160 | /* for (i=0; i<nw; i++) | ||
161 | t[i]=0;*/ | ||
162 | r->top=a->top+nw+1; | ||
163 | bn_correct_top(r); | ||
164 | bn_check_top(r); | ||
165 | return(1); | ||
166 | } | ||
167 | |||
168 | int BN_rshift(BIGNUM *r, const BIGNUM *a, int n) | ||
169 | { | ||
170 | int i,j,nw,lb,rb; | ||
171 | BN_ULONG *t,*f; | ||
172 | BN_ULONG l,tmp; | ||
173 | |||
174 | bn_check_top(r); | ||
175 | bn_check_top(a); | ||
176 | |||
177 | nw=n/BN_BITS2; | ||
178 | rb=n%BN_BITS2; | ||
179 | lb=BN_BITS2-rb; | ||
180 | if (nw >= a->top || a->top == 0) | ||
181 | { | ||
182 | BN_zero(r); | ||
183 | return(1); | ||
184 | } | ||
185 | if (r != a) | ||
186 | { | ||
187 | r->neg=a->neg; | ||
188 | if (bn_wexpand(r,a->top-nw+1) == NULL) return(0); | ||
189 | } | ||
190 | else | ||
191 | { | ||
192 | if (n == 0) | ||
193 | return 1; /* or the copying loop will go berserk */ | ||
194 | } | ||
195 | |||
196 | f= &(a->d[nw]); | ||
197 | t=r->d; | ||
198 | j=a->top-nw; | ||
199 | r->top=j; | ||
200 | |||
201 | if (rb == 0) | ||
202 | { | ||
203 | for (i=j; i != 0; i--) | ||
204 | *(t++)= *(f++); | ||
205 | } | ||
206 | else | ||
207 | { | ||
208 | l= *(f++); | ||
209 | for (i=j-1; i != 0; i--) | ||
210 | { | ||
211 | tmp =(l>>rb)&BN_MASK2; | ||
212 | l= *(f++); | ||
213 | *(t++) =(tmp|(l<<lb))&BN_MASK2; | ||
214 | } | ||
215 | *(t++) =(l>>rb)&BN_MASK2; | ||
216 | } | ||
217 | bn_correct_top(r); | ||
218 | bn_check_top(r); | ||
219 | return(1); | ||
220 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_sqr.c b/src/lib/libcrypto/bn/bn_sqr.c deleted file mode 100644 index 270d0cd348..0000000000 --- a/src/lib/libcrypto/bn/bn_sqr.c +++ /dev/null | |||
@@ -1,294 +0,0 @@ | |||
1 | /* crypto/bn/bn_sqr.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include "cryptlib.h" | ||
61 | #include "bn_lcl.h" | ||
62 | |||
63 | /* r must not be a */ | ||
64 | /* I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96 */ | ||
65 | int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) | ||
66 | { | ||
67 | int max,al; | ||
68 | int ret = 0; | ||
69 | BIGNUM *tmp,*rr; | ||
70 | |||
71 | #ifdef BN_COUNT | ||
72 | fprintf(stderr,"BN_sqr %d * %d\n",a->top,a->top); | ||
73 | #endif | ||
74 | bn_check_top(a); | ||
75 | |||
76 | al=a->top; | ||
77 | if (al <= 0) | ||
78 | { | ||
79 | r->top=0; | ||
80 | return 1; | ||
81 | } | ||
82 | |||
83 | BN_CTX_start(ctx); | ||
84 | rr=(a != r) ? r : BN_CTX_get(ctx); | ||
85 | tmp=BN_CTX_get(ctx); | ||
86 | if (!rr || !tmp) goto err; | ||
87 | |||
88 | max = 2 * al; /* Non-zero (from above) */ | ||
89 | if (bn_wexpand(rr,max) == NULL) goto err; | ||
90 | |||
91 | if (al == 4) | ||
92 | { | ||
93 | #ifndef BN_SQR_COMBA | ||
94 | BN_ULONG t[8]; | ||
95 | bn_sqr_normal(rr->d,a->d,4,t); | ||
96 | #else | ||
97 | bn_sqr_comba4(rr->d,a->d); | ||
98 | #endif | ||
99 | } | ||
100 | else if (al == 8) | ||
101 | { | ||
102 | #ifndef BN_SQR_COMBA | ||
103 | BN_ULONG t[16]; | ||
104 | bn_sqr_normal(rr->d,a->d,8,t); | ||
105 | #else | ||
106 | bn_sqr_comba8(rr->d,a->d); | ||
107 | #endif | ||
108 | } | ||
109 | else | ||
110 | { | ||
111 | #if defined(BN_RECURSION) | ||
112 | if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) | ||
113 | { | ||
114 | BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL*2]; | ||
115 | bn_sqr_normal(rr->d,a->d,al,t); | ||
116 | } | ||
117 | else | ||
118 | { | ||
119 | int j,k; | ||
120 | |||
121 | j=BN_num_bits_word((BN_ULONG)al); | ||
122 | j=1<<(j-1); | ||
123 | k=j+j; | ||
124 | if (al == j) | ||
125 | { | ||
126 | if (bn_wexpand(tmp,k*2) == NULL) goto err; | ||
127 | bn_sqr_recursive(rr->d,a->d,al,tmp->d); | ||
128 | } | ||
129 | else | ||
130 | { | ||
131 | if (bn_wexpand(tmp,max) == NULL) goto err; | ||
132 | bn_sqr_normal(rr->d,a->d,al,tmp->d); | ||
133 | } | ||
134 | } | ||
135 | #else | ||
136 | if (bn_wexpand(tmp,max) == NULL) goto err; | ||
137 | bn_sqr_normal(rr->d,a->d,al,tmp->d); | ||
138 | #endif | ||
139 | } | ||
140 | |||
141 | rr->neg=0; | ||
142 | /* If the most-significant half of the top word of 'a' is zero, then | ||
143 | * the square of 'a' will max-1 words. */ | ||
144 | if(a->d[al - 1] == (a->d[al - 1] & BN_MASK2l)) | ||
145 | rr->top = max - 1; | ||
146 | else | ||
147 | rr->top = max; | ||
148 | if (rr != r) BN_copy(r,rr); | ||
149 | ret = 1; | ||
150 | err: | ||
151 | bn_check_top(rr); | ||
152 | bn_check_top(tmp); | ||
153 | BN_CTX_end(ctx); | ||
154 | return(ret); | ||
155 | } | ||
156 | |||
157 | /* tmp must have 2*n words */ | ||
158 | void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp) | ||
159 | { | ||
160 | int i,j,max; | ||
161 | const BN_ULONG *ap; | ||
162 | BN_ULONG *rp; | ||
163 | |||
164 | max=n*2; | ||
165 | ap=a; | ||
166 | rp=r; | ||
167 | rp[0]=rp[max-1]=0; | ||
168 | rp++; | ||
169 | j=n; | ||
170 | |||
171 | if (--j > 0) | ||
172 | { | ||
173 | ap++; | ||
174 | rp[j]=bn_mul_words(rp,ap,j,ap[-1]); | ||
175 | rp+=2; | ||
176 | } | ||
177 | |||
178 | for (i=n-2; i>0; i--) | ||
179 | { | ||
180 | j--; | ||
181 | ap++; | ||
182 | rp[j]=bn_mul_add_words(rp,ap,j,ap[-1]); | ||
183 | rp+=2; | ||
184 | } | ||
185 | |||
186 | bn_add_words(r,r,r,max); | ||
187 | |||
188 | /* There will not be a carry */ | ||
189 | |||
190 | bn_sqr_words(tmp,a,n); | ||
191 | |||
192 | bn_add_words(r,r,tmp,max); | ||
193 | } | ||
194 | |||
195 | #ifdef BN_RECURSION | ||
196 | /* r is 2*n words in size, | ||
197 | * a and b are both n words in size. (There's not actually a 'b' here ...) | ||
198 | * n must be a power of 2. | ||
199 | * We multiply and return the result. | ||
200 | * t must be 2*n words in size | ||
201 | * We calculate | ||
202 | * a[0]*b[0] | ||
203 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | ||
204 | * a[1]*b[1] | ||
205 | */ | ||
206 | void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t) | ||
207 | { | ||
208 | int n=n2/2; | ||
209 | int zero,c1; | ||
210 | BN_ULONG ln,lo,*p; | ||
211 | |||
212 | #ifdef BN_COUNT | ||
213 | fprintf(stderr," bn_sqr_recursive %d * %d\n",n2,n2); | ||
214 | #endif | ||
215 | if (n2 == 4) | ||
216 | { | ||
217 | #ifndef BN_SQR_COMBA | ||
218 | bn_sqr_normal(r,a,4,t); | ||
219 | #else | ||
220 | bn_sqr_comba4(r,a); | ||
221 | #endif | ||
222 | return; | ||
223 | } | ||
224 | else if (n2 == 8) | ||
225 | { | ||
226 | #ifndef BN_SQR_COMBA | ||
227 | bn_sqr_normal(r,a,8,t); | ||
228 | #else | ||
229 | bn_sqr_comba8(r,a); | ||
230 | #endif | ||
231 | return; | ||
232 | } | ||
233 | if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) | ||
234 | { | ||
235 | bn_sqr_normal(r,a,n2,t); | ||
236 | return; | ||
237 | } | ||
238 | /* r=(a[0]-a[1])*(a[1]-a[0]) */ | ||
239 | c1=bn_cmp_words(a,&(a[n]),n); | ||
240 | zero=0; | ||
241 | if (c1 > 0) | ||
242 | bn_sub_words(t,a,&(a[n]),n); | ||
243 | else if (c1 < 0) | ||
244 | bn_sub_words(t,&(a[n]),a,n); | ||
245 | else | ||
246 | zero=1; | ||
247 | |||
248 | /* The result will always be negative unless it is zero */ | ||
249 | p= &(t[n2*2]); | ||
250 | |||
251 | if (!zero) | ||
252 | bn_sqr_recursive(&(t[n2]),t,n,p); | ||
253 | else | ||
254 | memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); | ||
255 | bn_sqr_recursive(r,a,n,p); | ||
256 | bn_sqr_recursive(&(r[n2]),&(a[n]),n,p); | ||
257 | |||
258 | /* t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero | ||
259 | * r[10] holds (a[0]*b[0]) | ||
260 | * r[32] holds (b[1]*b[1]) | ||
261 | */ | ||
262 | |||
263 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
264 | |||
265 | /* t[32] is negative */ | ||
266 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
267 | |||
268 | /* t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1]) | ||
269 | * r[10] holds (a[0]*a[0]) | ||
270 | * r[32] holds (a[1]*a[1]) | ||
271 | * c1 holds the carry bits | ||
272 | */ | ||
273 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
274 | if (c1) | ||
275 | { | ||
276 | p= &(r[n+n2]); | ||
277 | lo= *p; | ||
278 | ln=(lo+c1)&BN_MASK2; | ||
279 | *p=ln; | ||
280 | |||
281 | /* The overflow will stop before we over write | ||
282 | * words we should not overwrite */ | ||
283 | if (ln < (BN_ULONG)c1) | ||
284 | { | ||
285 | do { | ||
286 | p++; | ||
287 | lo= *p; | ||
288 | ln=(lo+1)&BN_MASK2; | ||
289 | *p=ln; | ||
290 | } while (ln == 0); | ||
291 | } | ||
292 | } | ||
293 | } | ||
294 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_sqrt.c b/src/lib/libcrypto/bn/bn_sqrt.c deleted file mode 100644 index 6beaf9e5e5..0000000000 --- a/src/lib/libcrypto/bn/bn_sqrt.c +++ /dev/null | |||
@@ -1,393 +0,0 @@ | |||
1 | /* crypto/bn/bn_sqrt.c */ | ||
2 | /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | ||
3 | * and Bodo Moeller for the OpenSSL project. */ | ||
4 | /* ==================================================================== | ||
5 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
6 | * | ||
7 | * Redistribution and use in source and binary forms, with or without | ||
8 | * modification, are permitted provided that the following conditions | ||
9 | * are met: | ||
10 | * | ||
11 | * 1. Redistributions of source code must retain the above copyright | ||
12 | * notice, this list of conditions and the following disclaimer. | ||
13 | * | ||
14 | * 2. Redistributions in binary form must reproduce the above copyright | ||
15 | * notice, this list of conditions and the following disclaimer in | ||
16 | * the documentation and/or other materials provided with the | ||
17 | * distribution. | ||
18 | * | ||
19 | * 3. All advertising materials mentioning features or use of this | ||
20 | * software must display the following acknowledgment: | ||
21 | * "This product includes software developed by the OpenSSL Project | ||
22 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
23 | * | ||
24 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
25 | * endorse or promote products derived from this software without | ||
26 | * prior written permission. For written permission, please contact | ||
27 | * openssl-core@openssl.org. | ||
28 | * | ||
29 | * 5. Products derived from this software may not be called "OpenSSL" | ||
30 | * nor may "OpenSSL" appear in their names without prior written | ||
31 | * permission of the OpenSSL Project. | ||
32 | * | ||
33 | * 6. Redistributions of any form whatsoever must retain the following | ||
34 | * acknowledgment: | ||
35 | * "This product includes software developed by the OpenSSL Project | ||
36 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
37 | * | ||
38 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
39 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
40 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
41 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
42 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
43 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
44 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
45 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
46 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
47 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
48 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
49 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
50 | * ==================================================================== | ||
51 | * | ||
52 | * This product includes cryptographic software written by Eric Young | ||
53 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
54 | * Hudson (tjh@cryptsoft.com). | ||
55 | * | ||
56 | */ | ||
57 | |||
58 | #include "cryptlib.h" | ||
59 | #include "bn_lcl.h" | ||
60 | |||
61 | |||
62 | BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
63 | /* Returns 'ret' such that | ||
64 | * ret^2 == a (mod p), | ||
65 | * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course | ||
66 | * in Algebraic Computational Number Theory", algorithm 1.5.1). | ||
67 | * 'p' must be prime! | ||
68 | */ | ||
69 | { | ||
70 | BIGNUM *ret = in; | ||
71 | int err = 1; | ||
72 | int r; | ||
73 | BIGNUM *A, *b, *q, *t, *x, *y; | ||
74 | int e, i, j; | ||
75 | |||
76 | if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) | ||
77 | { | ||
78 | if (BN_abs_is_word(p, 2)) | ||
79 | { | ||
80 | if (ret == NULL) | ||
81 | ret = BN_new(); | ||
82 | if (ret == NULL) | ||
83 | goto end; | ||
84 | if (!BN_set_word(ret, BN_is_bit_set(a, 0))) | ||
85 | { | ||
86 | if (ret != in) | ||
87 | BN_free(ret); | ||
88 | return NULL; | ||
89 | } | ||
90 | bn_check_top(ret); | ||
91 | return ret; | ||
92 | } | ||
93 | |||
94 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); | ||
95 | return(NULL); | ||
96 | } | ||
97 | |||
98 | if (BN_is_zero(a) || BN_is_one(a)) | ||
99 | { | ||
100 | if (ret == NULL) | ||
101 | ret = BN_new(); | ||
102 | if (ret == NULL) | ||
103 | goto end; | ||
104 | if (!BN_set_word(ret, BN_is_one(a))) | ||
105 | { | ||
106 | if (ret != in) | ||
107 | BN_free(ret); | ||
108 | return NULL; | ||
109 | } | ||
110 | bn_check_top(ret); | ||
111 | return ret; | ||
112 | } | ||
113 | |||
114 | BN_CTX_start(ctx); | ||
115 | A = BN_CTX_get(ctx); | ||
116 | b = BN_CTX_get(ctx); | ||
117 | q = BN_CTX_get(ctx); | ||
118 | t = BN_CTX_get(ctx); | ||
119 | x = BN_CTX_get(ctx); | ||
120 | y = BN_CTX_get(ctx); | ||
121 | if (y == NULL) goto end; | ||
122 | |||
123 | if (ret == NULL) | ||
124 | ret = BN_new(); | ||
125 | if (ret == NULL) goto end; | ||
126 | |||
127 | /* A = a mod p */ | ||
128 | if (!BN_nnmod(A, a, p, ctx)) goto end; | ||
129 | |||
130 | /* now write |p| - 1 as 2^e*q where q is odd */ | ||
131 | e = 1; | ||
132 | while (!BN_is_bit_set(p, e)) | ||
133 | e++; | ||
134 | /* we'll set q later (if needed) */ | ||
135 | |||
136 | if (e == 1) | ||
137 | { | ||
138 | /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse | ||
139 | * modulo (|p|-1)/2, and square roots can be computed | ||
140 | * directly by modular exponentiation. | ||
141 | * We have | ||
142 | * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), | ||
143 | * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. | ||
144 | */ | ||
145 | if (!BN_rshift(q, p, 2)) goto end; | ||
146 | q->neg = 0; | ||
147 | if (!BN_add_word(q, 1)) goto end; | ||
148 | if (!BN_mod_exp(ret, A, q, p, ctx)) goto end; | ||
149 | err = 0; | ||
150 | goto vrfy; | ||
151 | } | ||
152 | |||
153 | if (e == 2) | ||
154 | { | ||
155 | /* |p| == 5 (mod 8) | ||
156 | * | ||
157 | * In this case 2 is always a non-square since | ||
158 | * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime. | ||
159 | * So if a really is a square, then 2*a is a non-square. | ||
160 | * Thus for | ||
161 | * b := (2*a)^((|p|-5)/8), | ||
162 | * i := (2*a)*b^2 | ||
163 | * we have | ||
164 | * i^2 = (2*a)^((1 + (|p|-5)/4)*2) | ||
165 | * = (2*a)^((p-1)/2) | ||
166 | * = -1; | ||
167 | * so if we set | ||
168 | * x := a*b*(i-1), | ||
169 | * then | ||
170 | * x^2 = a^2 * b^2 * (i^2 - 2*i + 1) | ||
171 | * = a^2 * b^2 * (-2*i) | ||
172 | * = a*(-i)*(2*a*b^2) | ||
173 | * = a*(-i)*i | ||
174 | * = a. | ||
175 | * | ||
176 | * (This is due to A.O.L. Atkin, | ||
177 | * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, | ||
178 | * November 1992.) | ||
179 | */ | ||
180 | |||
181 | /* t := 2*a */ | ||
182 | if (!BN_mod_lshift1_quick(t, A, p)) goto end; | ||
183 | |||
184 | /* b := (2*a)^((|p|-5)/8) */ | ||
185 | if (!BN_rshift(q, p, 3)) goto end; | ||
186 | q->neg = 0; | ||
187 | if (!BN_mod_exp(b, t, q, p, ctx)) goto end; | ||
188 | |||
189 | /* y := b^2 */ | ||
190 | if (!BN_mod_sqr(y, b, p, ctx)) goto end; | ||
191 | |||
192 | /* t := (2*a)*b^2 - 1*/ | ||
193 | if (!BN_mod_mul(t, t, y, p, ctx)) goto end; | ||
194 | if (!BN_sub_word(t, 1)) goto end; | ||
195 | |||
196 | /* x = a*b*t */ | ||
197 | if (!BN_mod_mul(x, A, b, p, ctx)) goto end; | ||
198 | if (!BN_mod_mul(x, x, t, p, ctx)) goto end; | ||
199 | |||
200 | if (!BN_copy(ret, x)) goto end; | ||
201 | err = 0; | ||
202 | goto vrfy; | ||
203 | } | ||
204 | |||
205 | /* e > 2, so we really have to use the Tonelli/Shanks algorithm. | ||
206 | * First, find some y that is not a square. */ | ||
207 | if (!BN_copy(q, p)) goto end; /* use 'q' as temp */ | ||
208 | q->neg = 0; | ||
209 | i = 2; | ||
210 | do | ||
211 | { | ||
212 | /* For efficiency, try small numbers first; | ||
213 | * if this fails, try random numbers. | ||
214 | */ | ||
215 | if (i < 22) | ||
216 | { | ||
217 | if (!BN_set_word(y, i)) goto end; | ||
218 | } | ||
219 | else | ||
220 | { | ||
221 | if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end; | ||
222 | if (BN_ucmp(y, p) >= 0) | ||
223 | { | ||
224 | if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end; | ||
225 | } | ||
226 | /* now 0 <= y < |p| */ | ||
227 | if (BN_is_zero(y)) | ||
228 | if (!BN_set_word(y, i)) goto end; | ||
229 | } | ||
230 | |||
231 | r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ | ||
232 | if (r < -1) goto end; | ||
233 | if (r == 0) | ||
234 | { | ||
235 | /* m divides p */ | ||
236 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); | ||
237 | goto end; | ||
238 | } | ||
239 | } | ||
240 | while (r == 1 && ++i < 82); | ||
241 | |||
242 | if (r != -1) | ||
243 | { | ||
244 | /* Many rounds and still no non-square -- this is more likely | ||
245 | * a bug than just bad luck. | ||
246 | * Even if p is not prime, we should have found some y | ||
247 | * such that r == -1. | ||
248 | */ | ||
249 | BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS); | ||
250 | goto end; | ||
251 | } | ||
252 | |||
253 | /* Here's our actual 'q': */ | ||
254 | if (!BN_rshift(q, q, e)) goto end; | ||
255 | |||
256 | /* Now that we have some non-square, we can find an element | ||
257 | * of order 2^e by computing its q'th power. */ | ||
258 | if (!BN_mod_exp(y, y, q, p, ctx)) goto end; | ||
259 | if (BN_is_one(y)) | ||
260 | { | ||
261 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); | ||
262 | goto end; | ||
263 | } | ||
264 | |||
265 | /* Now we know that (if p is indeed prime) there is an integer | ||
266 | * k, 0 <= k < 2^e, such that | ||
267 | * | ||
268 | * a^q * y^k == 1 (mod p). | ||
269 | * | ||
270 | * As a^q is a square and y is not, k must be even. | ||
271 | * q+1 is even, too, so there is an element | ||
272 | * | ||
273 | * X := a^((q+1)/2) * y^(k/2), | ||
274 | * | ||
275 | * and it satisfies | ||
276 | * | ||
277 | * X^2 = a^q * a * y^k | ||
278 | * = a, | ||
279 | * | ||
280 | * so it is the square root that we are looking for. | ||
281 | */ | ||
282 | |||
283 | /* t := (q-1)/2 (note that q is odd) */ | ||
284 | if (!BN_rshift1(t, q)) goto end; | ||
285 | |||
286 | /* x := a^((q-1)/2) */ | ||
287 | if (BN_is_zero(t)) /* special case: p = 2^e + 1 */ | ||
288 | { | ||
289 | if (!BN_nnmod(t, A, p, ctx)) goto end; | ||
290 | if (BN_is_zero(t)) | ||
291 | { | ||
292 | /* special case: a == 0 (mod p) */ | ||
293 | BN_zero(ret); | ||
294 | err = 0; | ||
295 | goto end; | ||
296 | } | ||
297 | else | ||
298 | if (!BN_one(x)) goto end; | ||
299 | } | ||
300 | else | ||
301 | { | ||
302 | if (!BN_mod_exp(x, A, t, p, ctx)) goto end; | ||
303 | if (BN_is_zero(x)) | ||
304 | { | ||
305 | /* special case: a == 0 (mod p) */ | ||
306 | BN_zero(ret); | ||
307 | err = 0; | ||
308 | goto end; | ||
309 | } | ||
310 | } | ||
311 | |||
312 | /* b := a*x^2 (= a^q) */ | ||
313 | if (!BN_mod_sqr(b, x, p, ctx)) goto end; | ||
314 | if (!BN_mod_mul(b, b, A, p, ctx)) goto end; | ||
315 | |||
316 | /* x := a*x (= a^((q+1)/2)) */ | ||
317 | if (!BN_mod_mul(x, x, A, p, ctx)) goto end; | ||
318 | |||
319 | while (1) | ||
320 | { | ||
321 | /* Now b is a^q * y^k for some even k (0 <= k < 2^E | ||
322 | * where E refers to the original value of e, which we | ||
323 | * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). | ||
324 | * | ||
325 | * We have a*b = x^2, | ||
326 | * y^2^(e-1) = -1, | ||
327 | * b^2^(e-1) = 1. | ||
328 | */ | ||
329 | |||
330 | if (BN_is_one(b)) | ||
331 | { | ||
332 | if (!BN_copy(ret, x)) goto end; | ||
333 | err = 0; | ||
334 | goto vrfy; | ||
335 | } | ||
336 | |||
337 | |||
338 | /* find smallest i such that b^(2^i) = 1 */ | ||
339 | i = 1; | ||
340 | if (!BN_mod_sqr(t, b, p, ctx)) goto end; | ||
341 | while (!BN_is_one(t)) | ||
342 | { | ||
343 | i++; | ||
344 | if (i == e) | ||
345 | { | ||
346 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); | ||
347 | goto end; | ||
348 | } | ||
349 | if (!BN_mod_mul(t, t, t, p, ctx)) goto end; | ||
350 | } | ||
351 | |||
352 | |||
353 | /* t := y^2^(e - i - 1) */ | ||
354 | if (!BN_copy(t, y)) goto end; | ||
355 | for (j = e - i - 1; j > 0; j--) | ||
356 | { | ||
357 | if (!BN_mod_sqr(t, t, p, ctx)) goto end; | ||
358 | } | ||
359 | if (!BN_mod_mul(y, t, t, p, ctx)) goto end; | ||
360 | if (!BN_mod_mul(x, x, t, p, ctx)) goto end; | ||
361 | if (!BN_mod_mul(b, b, y, p, ctx)) goto end; | ||
362 | e = i; | ||
363 | } | ||
364 | |||
365 | vrfy: | ||
366 | if (!err) | ||
367 | { | ||
368 | /* verify the result -- the input might have been not a square | ||
369 | * (test added in 0.9.8) */ | ||
370 | |||
371 | if (!BN_mod_sqr(x, ret, p, ctx)) | ||
372 | err = 1; | ||
373 | |||
374 | if (!err && 0 != BN_cmp(x, A)) | ||
375 | { | ||
376 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); | ||
377 | err = 1; | ||
378 | } | ||
379 | } | ||
380 | |||
381 | end: | ||
382 | if (err) | ||
383 | { | ||
384 | if (ret != NULL && ret != in) | ||
385 | { | ||
386 | BN_clear_free(ret); | ||
387 | } | ||
388 | ret = NULL; | ||
389 | } | ||
390 | BN_CTX_end(ctx); | ||
391 | bn_check_top(ret); | ||
392 | return ret; | ||
393 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_word.c b/src/lib/libcrypto/bn/bn_word.c deleted file mode 100644 index ee7b87c45c..0000000000 --- a/src/lib/libcrypto/bn/bn_word.c +++ /dev/null | |||
@@ -1,247 +0,0 @@ | |||
1 | /* crypto/bn/bn_word.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include "cryptlib.h" | ||
61 | #include "bn_lcl.h" | ||
62 | |||
63 | BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) | ||
64 | { | ||
65 | #ifndef BN_LLONG | ||
66 | BN_ULONG ret=0; | ||
67 | #else | ||
68 | BN_ULLONG ret=0; | ||
69 | #endif | ||
70 | int i; | ||
71 | |||
72 | if (w == 0) | ||
73 | return (BN_ULONG)-1; | ||
74 | |||
75 | bn_check_top(a); | ||
76 | w&=BN_MASK2; | ||
77 | for (i=a->top-1; i>=0; i--) | ||
78 | { | ||
79 | #ifndef BN_LLONG | ||
80 | ret=((ret<<BN_BITS4)|((a->d[i]>>BN_BITS4)&BN_MASK2l))%w; | ||
81 | ret=((ret<<BN_BITS4)|(a->d[i]&BN_MASK2l))%w; | ||
82 | #else | ||
83 | ret=(BN_ULLONG)(((ret<<(BN_ULLONG)BN_BITS2)|a->d[i])% | ||
84 | (BN_ULLONG)w); | ||
85 | #endif | ||
86 | } | ||
87 | return((BN_ULONG)ret); | ||
88 | } | ||
89 | |||
90 | BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) | ||
91 | { | ||
92 | BN_ULONG ret = 0; | ||
93 | int i, j; | ||
94 | |||
95 | bn_check_top(a); | ||
96 | w &= BN_MASK2; | ||
97 | |||
98 | if (!w) | ||
99 | /* actually this an error (division by zero) */ | ||
100 | return (BN_ULONG)-1; | ||
101 | if (a->top == 0) | ||
102 | return 0; | ||
103 | |||
104 | /* normalize input (so bn_div_words doesn't complain) */ | ||
105 | j = BN_BITS2 - BN_num_bits_word(w); | ||
106 | w <<= j; | ||
107 | if (!BN_lshift(a, a, j)) | ||
108 | return (BN_ULONG)-1; | ||
109 | |||
110 | for (i=a->top-1; i>=0; i--) | ||
111 | { | ||
112 | BN_ULONG l,d; | ||
113 | |||
114 | l=a->d[i]; | ||
115 | d=bn_div_words(ret,l,w); | ||
116 | ret=(l-((d*w)&BN_MASK2))&BN_MASK2; | ||
117 | a->d[i]=d; | ||
118 | } | ||
119 | if ((a->top > 0) && (a->d[a->top-1] == 0)) | ||
120 | a->top--; | ||
121 | ret >>= j; | ||
122 | bn_check_top(a); | ||
123 | return(ret); | ||
124 | } | ||
125 | |||
126 | int BN_add_word(BIGNUM *a, BN_ULONG w) | ||
127 | { | ||
128 | BN_ULONG l; | ||
129 | int i; | ||
130 | |||
131 | bn_check_top(a); | ||
132 | w &= BN_MASK2; | ||
133 | |||
134 | /* degenerate case: w is zero */ | ||
135 | if (!w) return 1; | ||
136 | /* degenerate case: a is zero */ | ||
137 | if(BN_is_zero(a)) return BN_set_word(a, w); | ||
138 | /* handle 'a' when negative */ | ||
139 | if (a->neg) | ||
140 | { | ||
141 | a->neg=0; | ||
142 | i=BN_sub_word(a,w); | ||
143 | if (!BN_is_zero(a)) | ||
144 | a->neg=!(a->neg); | ||
145 | return(i); | ||
146 | } | ||
147 | /* Only expand (and risk failing) if it's possibly necessary */ | ||
148 | if (((BN_ULONG)(a->d[a->top - 1] + 1) == 0) && | ||
149 | (bn_wexpand(a,a->top+1) == NULL)) | ||
150 | return(0); | ||
151 | i=0; | ||
152 | for (;;) | ||
153 | { | ||
154 | if (i >= a->top) | ||
155 | l=w; | ||
156 | else | ||
157 | l=(a->d[i]+w)&BN_MASK2; | ||
158 | a->d[i]=l; | ||
159 | if (w > l) | ||
160 | w=1; | ||
161 | else | ||
162 | break; | ||
163 | i++; | ||
164 | } | ||
165 | if (i >= a->top) | ||
166 | a->top++; | ||
167 | bn_check_top(a); | ||
168 | return(1); | ||
169 | } | ||
170 | |||
171 | int BN_sub_word(BIGNUM *a, BN_ULONG w) | ||
172 | { | ||
173 | int i; | ||
174 | |||
175 | bn_check_top(a); | ||
176 | w &= BN_MASK2; | ||
177 | |||
178 | /* degenerate case: w is zero */ | ||
179 | if (!w) return 1; | ||
180 | /* degenerate case: a is zero */ | ||
181 | if(BN_is_zero(a)) | ||
182 | { | ||
183 | i = BN_set_word(a,w); | ||
184 | if (i != 0) | ||
185 | BN_set_negative(a, 1); | ||
186 | return i; | ||
187 | } | ||
188 | /* handle 'a' when negative */ | ||
189 | if (a->neg) | ||
190 | { | ||
191 | a->neg=0; | ||
192 | i=BN_add_word(a,w); | ||
193 | a->neg=1; | ||
194 | return(i); | ||
195 | } | ||
196 | |||
197 | if ((a->top == 1) && (a->d[0] < w)) | ||
198 | { | ||
199 | a->d[0]=w-a->d[0]; | ||
200 | a->neg=1; | ||
201 | return(1); | ||
202 | } | ||
203 | i=0; | ||
204 | for (;;) | ||
205 | { | ||
206 | if (a->d[i] >= w) | ||
207 | { | ||
208 | a->d[i]-=w; | ||
209 | break; | ||
210 | } | ||
211 | else | ||
212 | { | ||
213 | a->d[i]=(a->d[i]-w)&BN_MASK2; | ||
214 | i++; | ||
215 | w=1; | ||
216 | } | ||
217 | } | ||
218 | if ((a->d[i] == 0) && (i == (a->top-1))) | ||
219 | a->top--; | ||
220 | bn_check_top(a); | ||
221 | return(1); | ||
222 | } | ||
223 | |||
224 | int BN_mul_word(BIGNUM *a, BN_ULONG w) | ||
225 | { | ||
226 | BN_ULONG ll; | ||
227 | |||
228 | bn_check_top(a); | ||
229 | w&=BN_MASK2; | ||
230 | if (a->top) | ||
231 | { | ||
232 | if (w == 0) | ||
233 | BN_zero(a); | ||
234 | else | ||
235 | { | ||
236 | ll=bn_mul_words(a->d,a->d,a->top,w); | ||
237 | if (ll) | ||
238 | { | ||
239 | if (bn_wexpand(a,a->top+1) == NULL) return(0); | ||
240 | a->d[a->top++]=ll; | ||
241 | } | ||
242 | } | ||
243 | } | ||
244 | bn_check_top(a); | ||
245 | return(1); | ||
246 | } | ||
247 | |||